Response to reviewer 1 (our replies are in bold)

Ashley et al. present an assessment on the usefulness of d13C of fatty acids to assess paleoproduction in an Antarctic coastal setting. The manuscript is well-written, the data appropriate and extensive, and the research question interesting and relevant. The rationale for this work is fully explained, the introduction is clear and the methodology is sound. The main results and discussion section is generally clear, but not enough attention and focus is given to linking the data to productivity. At present, it almost looks like productivity was chosen because the trends could not be explained by anything else. I am sure this is not the case, but it needs to be made clearer for the reader as well.

We have added an additional few sentences to the introduction explaining the starting point for this work and our d13C interpretations and our aims for the discussion (lines 60-66).

There are a few criticisms I have which ought to be addressed before this manuscript is ready for publication.

1. The manuscript is focusing on one specific site, and while the observed links to productivity are observed here, the site is very particular and in no way is this ready to be extrapolated at all to any other sites in Antarctica or any other settings. Hence, the title is a little presumptuous, while at the same time the phrasing as a question makes it vague. The phrasing of “fatty acid carbon isotopes” won’t be valued by some in the isotope community as it can sound a little bit colloquial. I would suggest changing to “d13C of fatty acids trace paleoproduction off the coast of Adelie Land, Antarctica” or something along these lines.

We have changed the title to: ‘Exploring the use of compound-specific carbon isotopes as a palaeoproduction proxy off the coast of Adélie Land, East Antarctica.’

2. The manuscript gives a lot of space for trying to pin down a single, or majority, producer, for fatty acids such as C18. I think this is impossible as so many organisms produce C18 FA, and thus this discussion can be shortened and focused.

We have shortened section 3.2.

3. The changes observed in d13C are very small and some comments on how significant changes of 1‰ really are would be useful.

As mentioned previously, the fatty acid δ13C data is discussed in the manuscript in comparison with other environmental δ13C signals to help understand the importance of the ~5‰ range in fatty acid δ13C, which we feel is sufficient to help the reader understand the significance of such changes.

4. I can see a number of analytical issues that should be addressed. First of all, there is no explanation on how the correction for the methyl-group 13C values was carried out. This needs to be explained, or, if the C used for methylation has not been analysed for 13C and is not available anymore, and it is thus impossible to make this correction, it needs to be clearly acknowledged that values are not absolute.

We have included details about how the d13C values were correction for the derivatization (lines 144-153)
The second issue is that the standard used (C19) is not the best for FAME as it is an n-alkane, and was only added post-extraction, hence analysis is semi-quantitative at best which needs to made clearer.

We had added some text at the start of Section 3.1. mentioning that the C19 alkane was added post-extraction and hence concentrations estimates are semi-quantitative (lines 188-190).

5. Throughout the manuscript, often words such as “extremely”, “very high”, etc. are used – I would recommend a thorough edit removing these descriptions and replacing them with actual values that allow the reader to put them into context.

Line 68: Give a number instead of “extremely high” – how high?
Line 70: “highly productive” as above

We have edited this to include specific annual net primary productivity rates (lines 85-87)

Line 94: See comment 4 on internal standard – when was it added? Does it really allow quantification at this point?

As above, we have mentioned this at the start of section 3.1 (lines 188-190)

Line 97: Are these values corrected for Me? Are these errors subsequently appropriately propagated? What is the significance of a change of just above 3 x SD (0.26 vs 1 %o)?

As mentioned previously, the δ^{13}C errors are based on the duplicate measurements which we believe is a conservative approach to estimating error. We refer to our response to point 3 above in which we discuss the significance of a change of 1%.

Line 102: Which internal standards?

We have included details of the internal standard used in the methods section (lines 158-160)

Line 194: Saying that a marine source is “entirely possible” sounds strange – do you want to say likely?

We have changed this to likely (line 261)

Lines 213-214: There are more novel studies on FA, Wakeham and also Hilary Close

It is not clear which specific papers the reviewer is referring to here, or whether they are more relevant/add much to the discussion compared to the references already cited.

Line 291: What do you mean by weaker coherence?

We have changed the wording to: ‘There is less similarity between the C24 and both the HBI triene also HBI diene, (compared to the coherence between C18 FA and HBI triene), which suggests that the C24 FA is predominantly produced by an organism which is not associated with sea ice, and thus instead with more open waters.’ (lines 359-362)

Lines 547-549:
We know that there are many algae that make these FA so this is not likely to be resolved. At the same time, the non-distinctive nature of these molecules will make it difficult to apply this proxy to other settings where there are likely other producers. The whole paragraph is not particularly relevant and I would shorten and/or delete or move up so the work does not finish on a weak statement.

We have moved this paragraph further up in the conclusion section so it doesn’t end the paper (lines 617-623).
Response to Referee #2 (our replied are in bold)

The high latitude region of the Southern Hemisphere which include Antarctic ice sheet and Southern Ocean is thought to play an important role in climate system, especially in long-climate change. Hence, it is important to investigate paleoclimate change the region to better understand Earth’s climate. However, due to limited application of environmental proxies in the region, significant portions of Earth history, environmental records in the high latitude region are less developed than that of low and mid latitudes. Lower and higher molecular fatty acids that are produced by varieties of organisms in the ocean environment are ubiquitous in ocean sediments. Thus, fatty acids may have a potential as paleoenvironmental proxy. This study explores paleoclimatic utility of fatty acids in Southern Ocean sediments and suggests that stable carbon isotope ratio of the low (C18) and mid (C24) chain fatty acids could be used as productivity proxy in the sea ice area. Although further studies are needed to confirm robustness of the proxy, this study contributes development of biogeochemical proxy which has a potential to apply to high latitude ocean sediment. Hence, this study fits scope of Biogeosciences and suitable for publication in the journal. I have some comments on the article as below.

1. I would suggest to include some explanations that application of biomarker proxy is limited in polar regions into the introduction section (e.g. a powerful proxy such alkenone is not applicable in this region. HBI compounds, that are useful proxy of sea ice, are labile and cannot be applied to geological deep past. On the other hand, fatty acids are ubiquitous and abundantly detected even in old sediment and has a potential but its utility has not been investigated well). Such explanations highlight importance of this work.

We have included a few additional sentences in the introduction explaining the potential utility of fatty acids as a paleo proxy in this region (lines 54-59)

2. Although a number of fatty acids including C16 to C26 were abundantly detected in the studied samples (Figure S2), the authors show and discuss d13C results of C18 and C24 fatty acids only. I wonder why the authors focus the two compounds only. I suppose that aim of this paper is to investigate paleoclimatic utility of fatty acids in marine sediments. Hence, it is worth to also include results of the other compounds into the manuscript. I think many people are interested in results of other compounds and know how d13C profiles of other compounds look like. Including this significantly contributes to develop application of fatty acids in marine sediments to paleoclimate study.

As mentioned previously, we feel we have already answered this in the last paragraph of section 3.1. We will, however, provide a spreadsheet of the concentration (all fatty acids) and δ13C (C18 and C24 fatty acids) data as part of the supplement.

3. As for pCO2 effect on plankton d13C, important literature is missing in the manuscript (Pop et al., 1999, vol 13, 827-843, GBC). They measured d13C of POC along the north-south transect of the Southern Ocean and show significant negative correlation between dissolved CO2 and d13C of POC, suggesting strong control of pCO2 on d13C of phytoplankton. There needs to take into consideration the result for discussion.

We have included mention of the findings of Popp et al., 1999 to our discussion in Section 4.2 (lines 461-463).

4. 4.2.3. Productivity section: The authors argue that changes in productivity is the most plausible driver for variability of fatty acid d13C recorded in the sediment core based on the results of previous studies conducted in the Southern Ocean (Villinski et al., 2008; Arrigo et al., 2015; Zhang et
I basically agree that significant increase in productivity results in remarkable higher values of phytoplankton δ13C in the polynya environment. However, those papers (Villinski et al., 2008; Arrigo et al., 2015; Zhang et al., 2014) all argue that observed increases in productivity in the regions are caused by meltwater input which promote surface stratification in summer time with reducing vertical mixing and supplying Fe, providing ideal condition for algal growth. Shadwick et al., GRL (2013) and Jack Pan et al., PlosOne (2019) also clearly show a significant correlation between meltwater fraction, chlorophyll concentration and surface water pCO2 drawdown. Especially, Shadwick et al., GRL (2013) investigates glacial meltwater impact on biological carbon drawdown in the studied region. Indeed, those paper shows lowering surface pCO2 happened in the regions where meltwater plume intruded. Regardless of sea ice fluctuations, plankton production takes place in summer when ice sheet melts. This suggests variability of meltwater input rather significantly affects productivity. Therefore, I would suggest to consider possible link between meltwater and productivity in the manuscript.

As mentioned in our previous response, we feel that to include an interpretation of the drivers of productivity in our record is beyond the scope of this paper. However, we have added a few addition lines into the environmental setting section mentioned various drivers of productivity in the region (lines 87-92).

5. F. cylindrus% and F. rhombica% records are shown in Figures 6 and 7, but the authors do not mention anything about those records in the manuscript. I wonder why those data are shown in the figures.

We included relative abundances of these two diatoms in Fig. 6 along with F. kerguelensis, F. curta and CRS as representatives of the main diatom groups. We have included mention of the different diatom species included in Fig. 4 (lines 575-577) and an additional sentence pointing out the lack of similarity with F cylindrus and F. rhombica (lines 610-611).
Response to Referee #3 (our replies are in bold)

The manuscript by Ashley et al. proposes the use of the carbon isotope composition of selected fatty acids present in sediments as a palaeoproductivity proxy in an Antarctic polynya environment (Adélie Land). The topic, totally in line with the journal Biogeosciences, is worth being investigated as proxies of paleoproductivity, especially in Polar Regions, are still lacking. The authors present an interesting set of quantitative and isotopic data, and based on their expertise in polar environments, discuss their possible significance in terms of biogeochemical changes recorded in sediments. The approach is interesting but the discussion and the conclusions raised by the authors may appear a little over-optimistic as many assumptions are made and some potential biases are discarded too easily and/or overlooked. There are a number of issues that the authors should take into consideration before the manuscript can be considered for publication. Comments are made chronologically, regardless of their importance.

Line 89 and manuscript throughout: It should be made clear in the manuscript that the data are based solely on free FA which represent only part of the total FA present in sediments (especially in modern to sub-recent sediments). If the selected FA indeed represent tracers of primary production, than it would be worth having a look at the bound (esterified) FA as well.

We have made it clear in the introduction (and the start of section 3) that this paper is based on free, saturated fatty acids (line 52 and 183)

Lines 90-91: Please give more details on the use of BF3/MeOH as this treatment is known to be deleterious for some (poly)unsaturated FA.

We have included the concentration of BF3 used (line 111-112). As stated above, we have made clear that this paper is on saturated fatty acids, thus any effect of BF3 on polyunsaturated fatty acids should not affect our data.

Lines 91-94 and Fig. S2. Please give more detail on the chromatographic conditions used (for both GC and GC-MS analyses) and refer to figure S2.

We have now included details of the chromatographic conditions used for GC-FID, GC-MS and GC-IRMS analysis, including the GC column dimensions, carrier gas and oven temperature programme (lines 114-126).

Also, the quality of the GC trace shown in figure S2 must be improved as, at such, a clear absence of unsaturated FA (which elute very close to saturated FA) is difficult to admit. As the authors know, the quality of compound specific 13C analyses is highly dependent on the purity of the compounds investigated and the absence of co-elution. Unsaturated FA often exhibit distinct 13C compositions compared to their saturated counterparts, so even small co-elution may significantly bias δ13C values of saturated FA. An additional purification step using Si/Ag+ column chromatography may have been worth being investigated.

As mentioned in our previous response, any unsaturated FAs were below the detection limit of the GC and thus did not show up in any GC traces, hence their absence in figure S2. We carefully checked the baseline of samples during analysis and can confirm that any coelution of other peaks was minimal. We have now included an additional GC trace (below) which we hope is slightly clearer (Fig S2b).
Lastly, the peak attributed to the internal standard (C19 alkane) in Fig S2 is in fact most probably the C14 FA as it is not possible that the C19 FA elutes 15 minutes later than the C19 alkane. Please check peaks assignment (including the IS).

We have now included the GC trace noted above (Fig S2b) in which a very small C14 fatty acid peak is visible (at 13.9 minutes) next to the C19 alkane (at 14.3 minutes) indicating that they are in fact different peaks.

Lines 94-97. In line with the previous comment, more detail is undoubtedly required concerning CSIA. Which type of GC and conditions were used including the characteristics of the capillary column, the temperature of the interface and the oven, etc?

We have now added details of the chromatographic conditions used for GC-IRMS analysis, including the GC column dimensions, carrier gas and oven temperature programme (lines 114-126).

Does ‘Duplicate measures’ means that each sample was analyzed twice?

Yes

If so, the error given is a min-max and not a standard deviation.

We have changed the wording to remove standard deviation (line 142)

Were the measured \(\delta^{13}C \) values corrected 1) for the methyl group added through derivatization

We have added details of the correction for derivatization (lines 144-153)

and 2) for instrument deviation using a standard mixture?

No, the \(\delta^{13}C \) values were not corrected for the instrument deviation, but this was monitored throughout analysis using external standards (F8, Indiana) and remained low throughout.

Are the stable isotope ratios expressed relative to the standard Vienna Pee Dee Belemnite (V-PDB)?

Yes, they are expressed relative to VPDB. We have included mention of this in the methods section (line 127-128)

Line 102: which IS were used for HBI?
We have included details of the internal standard used for the HBI measurement in the methods (line 158-159)

Line 106: This is unclear as it sounds like a repetition of the previous sentence.

We have re-worded this (line 163)

Lines 125-126: The sole presence of saturated FA in (sub)actual sediments of (hyper) productive areas is very unusual (this is an additional reason why a very clear GC trace is needed in Fig. S2 which could even be included in the main manuscript). Would it be possible that unsaturated FA were (partly) destroyed by the BF3 treatment?

As mentioned in our previous response, we refer to lines 211-233. Our understanding is that the sole presence of saturated FA is not unusual. The hyper-productive environment offshore Adélie Land is unique and not well studied thus it is hard to know how it compares to other sites. We believe it is unlikely that unsaturated fatty acids would be destroyed by BF3 due to the low concentration we used.

Line 132: The actual figure 4 should become figure 2 and, consequently, actual figures 2 and 3 should become figures 3 and 4, respectively.

We have now changed the order of these figures.

Actual figure 4: The upward displacement of either one or two GC trace(s) within each group would make the different trends easier to compare. The horizontal axis could also be homogenized with that of figures 5 and 6 (age or eventually both depth and age, and from right to left).

The overlap of the FAME concentration plots shows the strong coherence between the datasets, which wouldn't be as clear if they were offset, thus we prefer to keep it this way. We choose to plot this data against depth in this figure since this section is dealing with how the FAME concentrations change downcore and how the different compounds compare to each other and age is not particularly relevant until later in the discussion. It is not really possible to have both age and depth on the x-axis since the age model is not completely linear. We will provide the data in the supplement so readers will be able to look at both depth and age if they wish.

Line 144 and all along the manuscript: Please also give an estimated time span when speaking in cm depth.

We have included mention of the rough age of the sediments when referring only to depth (lines 205, 296 and 451)

Lines 166-168: In Dalsgaard et al., the mean proportion of C18:0 FA in Prymnesiophyceae is only 3%! Please specify it.

As mentioned in our previous response, we pointed out in lines 168-170 that the majority of FAs produced were the unsaturated form which are preferentially broken down in the water column and sediments (Haddad et al., 1992; Matsuda, 1978; Colombo et al., 1997). Thus, although the C18 FA represents only 3% of the total FA fraction, its higher preservation rate compared to unsaturated fatty acids, increases its proportion in the sediment.
Line 170: ‘higher preservation rate’ may be misleading; replace with ‘higher potential of preservation’.
Line 170: replace ‘its proportion’ with ‘its relative proportion’.
This sentence has since been removed.

Lines 166-181: This whole section deals with proportions of C18 FA in laboratory cultures which can show great differences with the environment. Could authors comment on this?

This paragraph has since been removed.

Lines 181-183 and more generally: This is one of my main concerns. The C18 FA can be produced by various type of (micro)organisms and assigning a single origin to this compound is rather daring. Authors should definitely support their hypothesis and comment about other potential sources of this compound such as bacteria, macrofauna, zooplankton, atmospheric inputs, land plants... One would also expect concentration profiles to be combined with d13C values to strengthen interpretations on the origin of individual biomarkers.

As mentioned previous, in the second paragraph of section 4 we include the d13C values in our interpretation of the source of fatty acids which supports a pelagic phytoplankton source. Our suggestion of Phaeocystis antarctica as the main producer of C18 is clearly presented as the most likely dominant source based on the available information and is a conservative suggestion. We point out that contributions from other sources such as diatoms or dinoflagellates cannot be excluded. Inputs from land plants and atmospheric inputs are highly unlikely due to the location of the core (Antarctica) and the highly productive nature of the water column.

Line 184 and thereafter: The same comment (as that made for the C18 FA) holds for the C24 FA. In this case isotopic data could be additionally used to support a planktonic (vs terrestrial plants) origin.

We are very cautious in our interpretation of the C24 fatty acid and do not assign a specific source. As we point out, contributions from terrestrial plants are highly unlikely due to the lack of land plants proximal to the core and the highly productive nature of the water column in this area.

Line 200 and thereafter: This is true but the degradation rates of lipid biomarkers appear strongly dependent on the redox conditions. Could authors give information on the redox state at the water-sediment interface and the possible influence of bioturbation in the surficial sediments?

The preservation of annual to sub-annual laminae throughout the core indicates very reduced bioturbation and the presence of dysoxic to anoxic bottom waters. However, we argue that much of the degradation takes place within the water column which is well-mixed and oxygenated, as well as in the surface sediments. This is a highly productive environment involving many trophic levels thus recycling of material in the water column will be substantial resulting in anoxic bottom waters. We don’t have information on the redox conditions, it has never been undertaken and this would be very difficult to monitor at such a remote and hostile location.

Lines 227-229: Could this be due to an impact of bioturbation and/or to microbial production within the sediment?

This is highly unlikely due to lack of bioturbation and anoxic bottom waters. While we cannot rule out anaerobic microbial production in the surface sediments, this appears to be unlikely due to the consistent profile of FA homologues. If there was a major contribution from in situ microbes,
we would expect a change in the FA profile such as the presence of branched fatty acids etc. in younger samples.

Lines 257-259: A similarity between the concentration profiles of C18 FA, HBI triene and HBI diene is not obvious in figure 5. Authors are encouraged to reconsider/specify those words.

In lines 257-258 we state that “one key similarity between both the HBI diene and triene, and the FA concentrations is that the highest concentrations are found in the youngest sediments.” Figure 5 is split into two sections – the 1550-1950 period and 1950-2000 which have different y-axes. The y-axes for the 1950-2000 period (shown on the right) have much higher values for all four plots than the older period (shown on the left) since the concentrations in this period are much higher. Plotting the whole record on the same y-axis would mean that the plot is dominated by the high concentration in the top part of the core and the smaller-scale changes would not be visible, hence choosing to split it up. Thus, the similarity between the fatty acids and HBIs in having higher concentrations in the top part of the core is clear from the higher values in the y-axes on the right-hand side of the figure. The higher concentrations of fatty acids in the top of core are clearly shown in Figure 4.

Lines 261-262: This sentence is not clear. Do authors mean: ‘.... and to diagenetic transformation within the sediments including sulfurisation (ref), isomerisation (ref) and cyclisation (ref) reactions’

We have amended this sentence (lines 327-329).

Lines 262-264: This statement is misleading and in contradiction with section 3.4. Clearly, one cannot speak about a better preservation in the top sediments. The concentrations of HBI reflect the flux of lipids reaching the seafloor while the decrease in concentration downcore reflects enhanced degradation in the first cm of sediments (yet possibly including variations in productivity).

We have amended this sentence to make it clearer what we mean (lines 330-331)

Lines 272-273: I agree but this holds true if diagenetic conditions remain the same through time. Any indication on potential variations in the redox state of the water column and water-sediment interface back in time?

Unfortunately, we do not have data on the redox state of the water column as it has never been undertaken. Mn is sometimes used as a proxy for redox conditions at the water-sediment interface (Jimenez-Espejo et al., 2019). Unfortunately, this element has not been measured in DTGC2011 core.

Line 290: Again the concept that preservation of organic matter is better in surficial (younger) sediments is unfounded and in contradiction with section 3.4. It should be revised throughout the whole manuscript.

We have amended the sentence (line 359)

Lines 311-314 and thereafter: I don’t think such a difference can be considered really significant (keeping in mind that the reproducibility was +/- 0.26 per mill). This statement might be a little far-fetched and I would suggest to remove it.

We have amended the wording to make it clear this is a tentative suggestion only (lines 419).
Lines 355-356. I am not convinced by this statement when looking at the d13C profile of the C24 FA which shows a clear trend towards lighter values (2-3 per mill) within the last 150 years. Authors are mentioning this trend later on (lines 375-376). Could this be linked to increased land plant inputs due to ice retreat?

We have added a few additional sentences discussing the trend in the C24 d13C in relation to atmospheric CO2 d13C changes (lines 428-432).

Lines 366-367: please temper with ‘do not tend to produce high proportions of this compound’.

We have amended the sentence as suggested (lines 443).

Lines 372-378: This again is somewhat speculative. If both FA have distinct origins, than the diagenetic impact on their 13C composition may be significantly different. What about the possibility that either one or both FA are being produced in the top sediments?

We disagree that the C24 and C18 would have such different diagenetic pathways. While we cannot rule out this suggestion completely, we are not aware of any literature to suggest this would be the case. As mentioned before, there is no evidence of any bioturbation or metazoan benthic activity in the sediments, and the bottom waters are known to be anoxic meaning any fatty acid producers within the sediments would be very limited.

Section 4.3 (lines 522-530) and conclusions (lines 540-541): As considered for FA in actual figures 2 and 3, a correlation table would help in highlighting putative relationships between lipid biomarker (concentration or d13C) profiles and specific phytoplanktonic species.

While we agree that this could be helpful, unfortunately the biomarker and diatom data were taken from adjacent samples (thus have different depths and ages) meaning they cannot be directly compared (unless they were resampled which would introduce errors). In contrast, comparison of different fatty acid compounds was possible since they which were all present within each sample meaning they were analysed simultaneously. Furthermore, due to the nature of the data, having high frequency-high amplitude changes due to dynamic environment, and the fact that they are different types of data, we do not think that a correlation table comparing diatoms and biomarkers would be useful. For this reason, it is not common in palaeoclimatic to look at correlations and is generally considered more useful to look at broad coherence between datasets which may change downcore. Therefore, we think it is more useful to plot the downcore records together in order to see the coherence between them.
Fatty acid carbon isotopes: a new indicator of marine Antarctic paleoproductivity?

Exploring the use of compound-specific carbon isotopes as a palaeoproductivity proxy off the coast of Adélie Land, East Antarctica

Kate Ashley1, James Bendle1, Xavier Crosta2, Johan Etourneau2,3, Philippine Campagne2,4, Harry Gilchrist1, Uthmaan Ibraheem1, Sarah Greene1, Sabine Schmidt2, Yvette Eley1, Guillaume Massé4,5 and James Bendle1

1School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
2EPOC, UMR-CNRS 5805, Université de Bordeaux, 33615 Pessac, France
3EPHE/PSL Research University, 75014 Paris, France
4LOCEAN, UMR CNRS/UPCM/IRD/MNHN 7159, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris, France
5TAKUVIK, UMI 3376 UL/CNRS, Université Laval, 1045 avenue de la Médecine, Quebec City, Quebec, Canada G1V 0A6

Correspondence to: James Bendle (j.bendle@bham.ac.uk)

Abstract

The Antarctic coastal zone is an area of high primary productivity, particularly within coastal polynyas where large phytoplankton blooms and drawdown of CO₂ occur. Reconstruction of historical primary productivity changes, and the associated driving factors, could provide baseline insights on the role of these areas as sinks for atmospheric CO₂, especially in the context of projected changes in coastal Antarctic sea ice. Here we investigate the potential for using carbon isotopes (δ¹³C) of fatty acids in marine sediments as a proxy for primary productivity. We use a highly resolved sediment core from off the coast of Adélie Land spanning the last ~400 years and monitor changes in the concentrations and δ¹³C of fatty acids along with other proxy data from the same core. We discuss the different possible drivers of their variability and argue that C₁₆ fatty acid δ¹³C predominantly reflects phytoplankton productivity in open water environments, while C₁₈ fatty acid δ¹³C reflects productivity in the marginal ice zone. These new proxies have implications for better understanding carbon cycle dynamics in the Antarctica coastal zone in future paleoclimate studies.

1 Introduction

Antarctic coastal zones are important players in the global carbon cycle. The deep ocean is ventilated in these regions as part of the Southern Ocean overturning circulation, allowing waters rich in nutrients and CO₂ to be upwelled to the surface. In the absence of biological activity, most of the CO₂ would be leaked to the atmosphere. However, coastal polynyas within the Antarctic margin are areas of very high primary productivity during the spring and summer months (e.g. Arrigo et al., 2008) that rapidly reduces CO₂ to low levels through photosynthesis (Arrigo and van Dijken, 2003; Arrigo et al., 2008), resulting in surface water CO₂ undersaturation with respect to atmospheric CO₂ (Tortell et al., 2011). The subsequent export and burial of the organic carbon produced during these intense phytoplankton blooms can significantly lower atmospheric CO₂.
concentrations (Sigman and Boyle, 2000). Therefore, any change in the consumption of these nutrients by phytoplankton, or any change in phytoplankton community structure, may affect the air-sea CO₂ exchange in this region.

Records of past phytoplankton productivity offer an opportunity to document the drivers of primary productivity at different timescales from pluri-decadal to millennial. In the Antarctic coastal zone past work has focused on records of organic carbon, biogenic silica and diatom abundances (Leccaroni et al., 1998; Frignani et al., 1998; Denis et al., 2009; Peck et al., 2015). These proxies however may provide a biased view of phytoplankton productivity as they only record a signal of siliceous productivity and may suffer from alteration during settling and burial (Beucher et al., 2004; Tréguer et al., 2017). As such, there is no robust understanding of how such records respond to surface water CO₂ which is of major importance in the context of Antarctic coastal sea ice changes.

Here we investigate the use of compound specific carbon isotope analysis (δ¹³C) of free, saturated algal fatty acids (FAs) in marine sediments as a potential integrative proxy for reconstructing primary productivity in a polynya environment. Fatty acids have the potential to be a useful palaeoproductivity tool in this region due to their ubiquitous presence within marine sediments, while other commonly used compounds, such as alkenones, are absent. Fatty acids are also able to persist within the sediments for several thousand years, meaning they have the potential to be applied over long time spans in contrast to more labile compounds such as highly branched isoprenoid alkenes (HBIs). Furthermore, fatty acids are amenable to isotope analysis allowing them to yield more detailed information about the environment.

Previous studies in the highly-productive regions of the Southern Ocean have highlighted the potential for using compound-specific isotopes from algal biomarkers in sediments to track primary productivity changes both spatially and temporally. Villinski et al. (2008) found that the spatial variation in pCO₂ in the Ross Sea was associated with a variation in the δ¹³C of sedimentary organic carbon and sterol biomarkers, most likely due to a change in isotopic fractionation associated with the photosynthetic drawdown of CO₂. Their results demonstrate that the spatial variation in surface water CO₂ is recorded in sedimentary organic matter and algal biomarkers. We explore this further as well as looking into other potential drivers of compound-specific carbon isotopes.

We use samples from core DTGC2011, a 4.69 m sediment core recovered from offshore Adélie Land, East Antarctica, spanning the last ~400 years. The core chronology is based on radiocarbon dates and confirmed by ²¹⁰Pb excess activity measurements, which indicate that DTGC2011 spans the 1580-2000 C.E. period with a mean sedimentation rate of ~1 cm yr⁻¹ (Supplementary Information S1). In order to understand the signal recorded by the FAs, we estimate the most likely biological source of these compounds and the habitat and season of production. Moreover, we compare downcore changes in FA concentrations and δ¹³C with other proxy data from the same core.

Environmental setting

The Adélie drift is located in the Dumont D’Urville Trough in the Adélie Basin, ca. 35 km offshore from Adélie Land (Fig. 1). This is a 1000 m deep, glacially scoured depression on the East Antarctic continental shelf.
bounded to the east by the Adélie Bank. Sea ice plays a key role on the dynamics of the region, with both fast ice and pack ice present off the coast of Adélie Land. A large bank of fast ice forms annually between 135 and 142°E, and extends up to 120 km away from the coast (Massom et al., 2009). On the north edge of this fast ice buttress is an inlet of open water forming a polynya, an area of open water surrounded by sea ice (Bindoff et al., 2000).

The Adélie Coast is characterized by extremely high primary productivity, with phytoplankton assemblages dominated by diatoms (Beans et al., 2008). The site itself is located close to the Dumont D’Urville polynya (DDUP), with an annual net primary productivity (NPP) of 30.3 g C m⁻² a⁻¹, but is also directly downwind and downcurrent of the much larger and highly productive Mertz Glacier polynya (MGP) to the east, with an annual NPP of 39.9 g C m⁻² a⁻¹ (Arrigo et al., 2015 and van Dijken, 2003). Various factors are known to drive productivity trends in the Southern Ocean, including open water area, glacial melt and mixed layer depth (Arrigo et al., 2015). In the MGP, Arrigo (2007) found light and nutrient availability to be the most important factors, which will in turn be modulated by changes in mixed layer depth, ice cover and glacial ice melt.

Physiological differences in Phaeocystis antarctica compared to diatoms mean it can thrive in lower nutrient conditions and lower CO₂ levels. The region is affected by various water masses. High Salinity Shelf Water (HSSW) is formed on the shelf in coastal polynyas as a result of sea ice production and the associated brine rejection. HSSW flows out of the shelf through the Adélie sill at 143°E (Fig. 1). Modified Circumpolar Deep Water (mCDW) is a warm, macronutrient-rich and salty water mass which upwells onto the continental shelf through channels in the shelf break. mCDW has been observed to upwell near the Mertz Glacier at 144°E (Williams et al., 2008) (Fig. 1). The Antarctic Coastal Current, also known as the East Wind Drift, flows westward often adjacent to ice shelves (Thompson et al., 2018). The Antarctic Surface Water (AASW) is a widespread water mass which extends across the continental shelf and has a surface mixed layer varying from a shallow (ca. 10 m), warmer and fresher layer in summer to a deeper (ca. 100 m), colder layer in winter. This is also transported westward along with the Antarctic Coastal Current (Martin et al., 2017). Surface waters along the Adélie coast have relatively high concentrations of nitrate, silica and phosphorus, with spatially variable levels of Fe which may be due to re-suspension of sediments and calving of ice (Vaillancourt et al., 2003; Sambrotto et al., 2003).

2 Materials and Methods

Fatty acids

One hundred and thirty-five sediment samples were taken for organic geochemical analyses, sampled at 1 cm intervals in the top 50 cm, 2 cm intervals between 50 and 100 cm, and 5 cm intervals until 458 cm. Lipid extractions were completed at the University of Birmingham using dichloromethane/methanol (3:1 v/v) and ultrasonication. The acid and neutral fractions were separated using an aminopropyl-silica gel column and the FAs eluted using diethyl ether with 4% acetic acid. The acid fraction was derivatized using boron trifluoride (14 % in methanol (v/v)) in methanol and subsequently cleaned up using a silica gel column and the FAs-fatty acid methyl esters (FAMEs) eluted with dichloromethane. FAs were identified using an Agilent 7890B gas chromatograph (GC) coupled to an Agilent 5977A mass selective detector, with a BP5-MS (SGE) column (60m, 320μm internal diameter, 0.25μm film thickness).
Helium was used as the carrier gas set at a constant flow rate of 2 ml/min. The MSD was run in scan mode with a scan width of 50 to 800 mass units. Agilent gas chromatograph coupled to an Agilent mass selective detector and concentrations were quantified using an Agilent 7890B GC-flame ionization detector, using Hydrogen as the carrier gas with a constant flow rate of 2 ml/min-1. An Rtx™-200 column (105 m, 250µm internal diameter, 0.25µm film thickness) which has a poly(trifluoropropylmethylsiloxane) stationary phase was used for FA analyses to enable the best separation possible. The oven programme was: 70°C, held for 1 min, increased to 150°C at a rate of 30°C/min, increased to 320°C at a rate of 3°C/min, then held for 5 minutes. An Rtx™-200 column (105 m, 250µm internal diameter, 0.25µm film thickness) which has a poly(trifluoropropylmethylsiloxane) stationary phase was used for FA analysis with the inclusion of an internal standard (C19 alkane) of known concentration. FA concentrations were quantified by addition of a C19 alkane as an internal standard, prepared in-house to the concentration of 10 ng/µl. The peak areas of FAs and the internal standard were used to calculate the concentration of each compound.

The δ13C composition of fatty acids are described in delta notation:

\[δ^{13}C \text{(‰)} = \left(\frac{^{12}C/^{13}C \text{sample}}{^{12}C/^{13}C \text{standard}} - 1 \right) \times 1000 \]

whereby the standard is Vienna Pee Dee Belemnite. Carbon isotopes were measured using an Agilent 7890A GC coupled to an Isoprime GC5 furnace and an Isoprime 100 isotope ratio mass spectrometer (IRMS). The Isoprime GC5 furnace contained a CuO furnace tube kept at 850°C. Helium was used as the carrier gas set at a constant flow of 1.7 ml/min and CO2 was used as the reference gas. The GC had a VF-200ms column (60 m, 250µm internal diameter, 0.25µm film thickness) which also has a poly(trifluoropropylmethylsiloxane) stationary phase. The oven programme was: 70°C, held for 1 min, increased to 150°C at a rate of 30°C/min, increased to 320°C at a rate of 3°C/min, then held for 5 minutes. Most samples were run using an Agilent 7693 autosampler from dilutions of 10 – 100 µl. Where concentrations were very low, samples were dissolved in <10 µl and were manually injected. Most samples were run in duplicate except for a few cases where the sample concentration was so low that the entire sample had to be injected in one run.

Machine performance was routinely checked using a FA ester mix (F8; Indiana University) containing eight FA compounds. This was run before the start of analysis and after every five duplicate samples, with an Isoprime 100 isotope ratio mass spectrometer coupled to an Agilent gas chromatograph flame ionization detector and a GC5 furnace. Errors are based on the standard deviation of difference between duplicate measures and are all within 0.26‰.

To correct for the additional carbon added during MeOH derivatization, three FA standards were analysed for their bulk carbon isotope value using an Elementar Pyrocube at the University of Birmingham. Samples were combusted at 920°C before being passed through a reduction column and the isotopic composition of sample gases was determined on an Isoprime continuous flow mass-spectrometer. These samples were then derivatized and then analysed on the GC-IRMS for the δ13C value of the FAME. The δ13C of the FA (δ13CFA) and FAME (δ13CFAME) were used to calculate the δ13C of the MeOH (δ13CMEOH) as follows:

\[δ^{13}C \text{MeOH} = (n \text{FAME} \times δ^{13}C \text{FAME}) - (n \text{FA} \times δ^{13}C \text{FA}) \]

whereby nFAME is the number of carbons in the FAME and nFA is the number of carbons in the FA. δ13CMEOH was calculated to be ca. -40.8‰ and the δ13CFAME values were corrected using.
δ^{13}CFA = \((nFAME \times \delta^{13}CFAME) + 40.8) / nFA$

HBIs

Two hundred and thirty-four samples were taken every 2 cm over the whole core for highly branched isoprenoids (HBI) alkenes analysis. HBIs were extracted at Laboratoire d’Océanographie et du Climat: Experimentations et Approches Numériques (LOCEAN), separately from the fatty acids, using a mixture of 9 mL CH$_2$Cl$_2$/MeOH (2:1, v:v) to which hexyl nonadecane (m/z 266) was added as an internal standard during the first extraction steps, following the Belt et al. (2007) and Massé et al. (2011) protocols. Internal standards were added and applying several sonication and centrifugation steps were applied in order to fully extract properly the selected compounds (Etourneau et al., 2013). After drying with N$_2$ at 35°C, the total lipid extract was fractionated over a silica column into an apolar and a polar fraction using 3 mL hexane and 6 mL CH$_2$Cl$_2$/MeOH (1:1, v:v), respectively. HBIs were obtained from the apolar fraction by the fractionation over a silica column using hexane as eluent following the procedures reported by Belt et al. (2007) and Massé et al. (2011). After removing the solvent with N$_2$ at 35°C, elemental sulfur was removed using the TBA (Tetrabutylammonium) sulfite method (Jensen et al., 1977; Riis and Babel, 1999). The obtained hydrocarbon fraction was analyzed within an Agilent 7890A gas chromatograph (GC) fitted with 30 m fused silica Agilent J&C GC column (0.25 mm i.d., 0.25 µm film thickness), coupled to an Agilent 5975C Series mass selective detector (MSD). Spectra were collected using the Agilent MS-Chemstation software. Individual HBIs were identified on the basis of comparison between their GC retention times and mass spectra with those of previously authenticated HBIs (Johns et al., 1999) using the Mass Hunter software. Values are expressed as concentration relative to the internal standard.

Diatoms

One hundred and eighteen samples were taken every 4 cm over the whole core for diatom analyses. Sediment processing and slide preparation followed the method described in Crosta et al. (2020). Diatom counting followed the rules described in Crosta and Koç (2007). Around 350 diatom valves were counted in each sample at a 1000X magnification on a Nikon Eclipse 80i phase contrast microscope. Diatoms were identified to species or species group level. Absolute abundances of diatoms were calculated following the equation detailed in Crosta et al. (2008). The relative abundance of each species was determined as the fraction of diatom species against total diatom abundance in the sample.

3 Fatty acids within DTGC2011

Analysis by GC-MS identified seven dominant saturated FAs within the DTGC2011 samples (Fig. S2). These have carbon chain lengths of C$_{16}$ to C$_{18}$ and only the saturated forms (i.e. no double bonds) were identified. These are predominantly even chain length FAs, with only minor amounts of the C$_{17}$ compound measured (Gilchrist, 2018).

3.1 Fatty acid concentrations
The C₄₅ alkane was used as an internal standard to aid quantification of fatty acid concentrations. However, it should be noted that since this standard was added to samples post-extraction, our concentration estimates are semi-quantitative but can be used to compare concentration changes in different FA compounds.

Down core analysis of FA concentrations reveals clear groupings in concentration changes. In the upper part of the core (ca. 3 – 90 cm depth), spanning the last ~78 years, all FA compounds show a similar pattern, with elevated concentrations, broadly decreasing down-core (Fig. 2). Below this, however, two groups clearly diverge. These can be broadly divided into short-chained fatty acids (C₁₄ to C₂₀; SCFAs) and long-chained fatty acids (C₂₂ to C₃₀; LCFA). Within these groups, the concentrations of different compounds show similar trends, but the two groups (SCFAs vs LCFA) show different trends to each other (Gilchrist, 2018). This is confirmed by R² values calculated for the linear regression of concentrations of each FA against each other throughout the core (Table 1, Fig. 3). Correlations between the SCFAs have R² values between 0.97 and 0.99, while R² values of LCFA range between 0.88 and 0.95. Between the two groups, however, R² values are all lower, ranging between 0.50 and 0.77.

These distinct groupings suggest that compounds within each group (SCFAs and LCFA) likely have a common precursor organism or group of organisms, but the two groups themselves have different producers from each other. These producers may in turn thrive during different seasons or within different habitats and thus, the isotopic composition of compounds from these different groups may record different environmental signals.

R² values were also calculated for samples below 25 cm only (ca. 1875 – 1978 C.E.), to remove correlations associated with preservation changes in the top part of the core (discussed below). Although the R² values are not quite as high, they broadly confirm these groupings, with the R² values generally being greater within the two groups (n = 73). R² values range from 0.93 for the C₁₄ with C₂₀, down to 0.07 for the C₁₄ and C₁₈ (Table 2, Fig. 4).

The C₁₄ and C₂₀ FAs are the most abundant compounds within the SCFA and LCFA groups, respectively, and also the least correlated with each other both in the whole core (R² = 0.5) and below 25 cm (R² = 0.07), which suggests they are the most likely to be produced by different organisms. Furthermore, these two compounds yielded the highest quality isotope measurements, due to their greater concentrations, clean baseline and minimal coeluting peaks (Fig. S2). Thus, these two compounds (C₁₄ and C₂₀) will be the focus of analysis and discussion.

3.2 Potential sources of the C₁₄ fatty acid

Potential sources for the C₁₄ FA in core U1357 (recovered from the same site as DTGC2011) are discussed in Ashley et al. (in manuscript) who suggest the prymnesiophyte Phaeocystis antarctica to be the most likely main producer. This is based on a) previous studies of FAs produced by microalgae (Dalsgaard et al., 2003), b) the high observed abundance of P. antarctica within modern Adélie surface waters (Riaux-Gobin et al., 2011; Sambrotto et al., 2003) and c) comparison between the measured δ¹³C values and those reported in the literature for P. antarctica (Kopczynska et al., 1995; Wong and Sackett, 1978). Unfortunately, the absence of P. antarctica in sediments, as it does not biomineralize any test, precludes the direct comparison of down core
Dalegaard et al. (2003) looked at the FAs of eight major microalgal classes and showed that Prymnesiophyceae and Dinophyceae produce the highest proportions of the saturated C18 FA, the former to which *P. antarctica* belongs. They also showed that the majority of FAs produced were the unsaturated form which are preferentially broken down in the water column and sediments. As such, although the C18 FA represents only a small proportion of the total FA fraction, its higher preservation rate increases its proportion in the sediment.

Riaux-Gobin et al. (2013) found *P. antarctica* to dominate the surface waters offshore Adélie Land after spring sea ice break up, representing 16% of the phytoplankton assemblage. Although several species of the class Dinophyceae were also recorded, *P. antarctica* was more than 20 times more abundant than the 3 most abundant Dinophyceae taxa combined. Sambrotto et al. (2003) also observed large blooms of *Phaeocystis* sp. in stable, shallow mixed layer water along the edge of fast ice near the Mertz Glacier.

Furthermore, Skerratt et al. (1998) compared the FAs produced by *P. antarctica* and two Antarctic diatoms, in culture samples, and showed that *P. antarctica* produced a much higher percentage of both saturated FAs (C14-C20) and C18 FAs than the diatoms. This supports the hypothesis of *P. antarctica* being a dominant and abundant source of the saturated C18 FA in the Adélie basin though minor contributions of C14 from other phytoplankton species such as the diatoms and dinoflagellates cannot be excluded.

Furthermore, Skerratt et al. (1998) identified the FAs produced by *P. antarctica* and two Antarctic diatoms, *Chrysochromulina simplex* and *Odontella weissflogii*, from culture samples. Of the FAs produced by *P. antarctica*, 52% were saturated FAs (C14-C20) compared to just 14 and 11% for the two diatoms, respectively, the latter instead producing much more of the mono- and polyunsaturated FAs. The percentage of C18 FA produced by *P. antarctica* was also 4.1 and 12.5 times greater than the percentage of C18 produced by *C. simplex* and *O. weissflogii*, respectively. This supports the hypothesis of *P. antarctica* being a dominant and abundant source of the saturated C18 FA in the Adélie basin though minor contributions of C18 from other phytoplankton species such as the diatoms and dinoflagellates cannot be excluded.

3.3 Potential sources of the C18 fatty acid

Long-chain *n*-alkyl compounds, including FAs, are major components of vascular plant waxes and their presence within sediments has commonly been used as a biomarker of terrestrial plants (Pancost and Boot, 2004). Although plants such as bryophytes (e.g. mosses) which are present in the Antarctic do also produce LCFAs (Salminen et al., 2018), it is unlikely that FAs from terrestrial plants make a significant contribution to the water column, due to their extremely limited extent on the continent, and the significant distance of the site from other continental sources.

However, there is much evidence in the literature for various aquatic sources of LCFAs, a few of which are summarized in Table S2. Although not all of these sources are likely to be present within the coastal waters offshore Adélie Land, it highlights the wide range of organisms which can produce these compounds, and thus
suggests that an autochthonous marine source is entirely possible, especially considering the highly productive nature of this region.

3.4 Microbial degradation and diagenetic effects on fatty acid concentration

Both the C₁₀ and C₁₂ FAs show an overall decrease in concentrations down-core, with significantly higher concentrations in the top 80 cm (representing ~70 years) compared to the rest of the core. Below this point, FAs concentrations variations are attenuated (Fig. 2).

Many studies have shown that significant degradation of FAs occurs both within the water column and surface sediments as a result of microbial activity, and that there is preferential break down of both short-chained and unsaturated FA, compared to longer-chained and saturated FA (Haddad et al., 1992; Matsuda, 1978; Colombo et al., 1997). Haddad et al. (1992) studied the fate of FAs within rapidly accumulating (10.3 cm yr⁻¹) coastal marine sediments (off the coast of North Carolina, USA) and showed that the vast majority (ca. 90%) of saturated FAs were lost due to degradation within the top 100 cm (representing ~10 years). Similarly, Matsuda and Koyama (1977) found FA concentrations decrease rapidly within the top 20 cm of sediment (accumulating at 4 mm yr⁻¹) from Lake Suwa, Japan. Assuming similar processes apply to the DTGC2011 sediments, this suggests the declining concentrations within the upper part of the core are largely the result of diagenetic effects such as microbial activity occurring within the surface sediments, and thus do not reflect a real change in production of these compounds in the surface waters.

The complete lack of both unsaturated and short chained (fewer than 16 carbon atoms) FA compounds identified within DTGC2011 samples, even within the top layers, suggests that selective breakdown of compounds has already occurred within the water column and on the sea floor (before burial). Wakeham et al. (1984) assessed the loss of FAs with distance during their transport through the water column at a site in the equatorial Atlantic Ocean and estimated that only 0.4 to 2% of total FAs produced in the euphotic zone reached a depth of 389 m, and even less reaching more than 1,000 m depth, the vast majority of material being recycled in the upper water column. Their results also show a significant preference for degradation of both unsaturated and short chained compounds over saturated and longer chain length compounds. Although no studies into the fate of lipids within the water column exist for the Adélie region, the >1,000 m water depth at the core site would provide significant opportunity for these compounds to be broken down during transportation through the water column. It is likely, therefore, that the distribution of compounds preserved within the sediments will not be a direct reflection of production in the surface waters, and explains the preference for saturated FAs with carbon chain lengths of 16 and more.

Although FA concentrations in the top 80 cm of core DTGC2011 are much higher overall than the sediments below and show a broad decline over this section, there is a high level of variability. Concentrations do not decrease uniformly within the top part of the core, as may be expected if concentration change is a first order response to declining microbial activity. The peak in total FAs instead occurs at a depth of 21-22 cm with a concentration more than an order of magnitude higher than in the top layer. This variability creates difficulty in directly determining the effects of diagenesis. However, by 25 cm (ca. 1978 CE) the concentrations drop to below 1,000 ng g⁻¹ and remain so until 32 cm before increasing again. This may suggest that diagenetic effects of FA concentrations are largely complete by 25 cm (representing ca. 25 years), consistent with results from
336 Haddad et al. (1992) and Matsuda and Koyama (1977), and that subsequent down-core concentration variations predominantly represent real changes in export productivity, resulting from environmental factors. However, the fluctuating nature of concentrations particularly in the youngest sediments means it is difficult to clearly unpick the effects of diagenesis from actual changes in production of these compounds, and a clear cut-off point for diagenetic effects cannot be determined.

3.5 Comparison of fatty acid concentrations with highly branched isoprenoid alkenes

We compare FA concentrations with other organic compounds (whose source is better constrained) in DTGC2011 to better understand FA sources. Direct comparison between different organic compound classes can be made since both are susceptible to similar processes of diagenesis, in contrast to other proxies such as diatoms. In core DTGC2011, concentrations of di- and tri-unsaturated highly branched isoprenoid (HBI) alkenes (referred to as HBI diene and HBI triene, respectively hereafter) were available.

In Antarctic marine sediments HBIs have been used as a tool for reconstructing sea ice (Belt et al., 2016, 2017). Smik et al. (2016) compared the concentrations of HBIs in sediment samples offshore East Antarctica from the permanently open-ocean zone (POOZ), the marginal ice zone (MIZ) and the summer sea-ice zone (SIZ). They found the HBI diene reached the highest concentrations in the SIZ and was absent from the POOZ. In contrast, the HBI triene was most abundant in the MIZ, i.e. at the retreating sea ice edge, with much lower concentrations in the SIZ and POOZ. This suggests that the two compounds are produced in contrasting environments but remain sensitive to changes in sea ice.

The HBI diene biomarker (or IPSO25 for Ice Proxy Southern Ocean with 25 Carbons) is mainly biosynthesised by Berkeleya adelaeensis (Belt et al., 2016), a diatom which resides and blooms within the sea ice matrix, and thus can be used as a proxy for fast ice attached to the coast. In contrast, the presence of the HBI triene mostly in the MIZ is suggestive of a predominantly pelagic phytoplankton source (e.g. Rhizosolenia spp, Massé et al., 2011; Smik et al., 2016; Belt et al., 2017), rather than sea-ice dwelling diatoms (Smik et al., 2016). The fact that HBI triene reached its greatest abundance within the MIZ suggests its precursor organism may thrive in the stratified, nutrient-rich surface waters of the sea-ice edge.

One key similarity between both the HBI diene and triene, and the FA concentrations is that the highest concentrations are found in the youngest sediments. These compounds all show broad increases in concentration from 110 cm depth (ca. 1900 C.E) until the top of the core (Fig. 2 and 5). Concentrations of HBIs are also susceptible to degradation through the water column through visible light induced photo-degradation (Belt and Müller, 2013) and diagenetic effects within the, as well as reacting with sediments resulting in including sulphurisation (Sinninghe Damsté et al., 2007), isomerisation and cyclisation (Belt et al., 2000). Thus, it is likely that the elevated concentrations, and thus the similarity between FA and HBI concentrations, is due to better preservation at the top of the core, the material being fresher and thus less affected by diagenesis, with diagenetic effects having an increasing and progressive impact down to ca. 25cm depth.

However, despite an overall increase in HBI and FA concentrations above 110 cm depth, there are clear deviations from this trend. Concentrations of the HBI triene show some broad similarities with FA concentrations. In particular, both the HBI triene and the C18 FA have coeval concentration peaks around 1980-88, 1967, 1938, 1961-72, 1848 and 1752 C.E. (Fig. 25). These peaks are offset from the HBI diene
concentrations, suggesting that they result from increased production in the surface waters rather than simply changes in preservation. The HBI triene is more susceptible to degradation than the diene (Cabedo Sanz et al., 2016), so while this could explain some of the differences between the diene and triene records, where the triene increases independently of the diene, this is likely to be a genuine reflection of increased production of these compounds at the surface rather than an artefact of preservation processes.

This close similarity between the C_{24} FA and HBI triene concentrations (Fig. 4) suggests that the C_{18} may also be produced by an organism associated with the retreating ice edge. Phaeocystis antarctica has been proposed as a potential producer of the C_{18} in core U1357B (Ashley et al., in review). In the Ross Sea, P. antarctica has been observed to dominate the phytoplankton bloom during the spring, blooming in deep mixed layers as the sea ice begins to melt, after which diatoms tend to dominate during the summer (Arrigo et al., 1999; Tortell et al., 2011; DiTullio et al., 2000). However, a few studies in the Adélie region suggest this is not the case there. Offshore Adélie Land, P. antarctica has been found to only appear late in the spring/early summer, later than many diatom species. During this time, it occurs preferentially within the platelet ice and under-ice water (Riaux-Gobin et al., 2013). Furthermore, Sambrotto et al. (2003) observed a surface bloom of P. antarctica near the Mertz Glacier (Fig. 1) during the summer months, in very stable waters along the margin of fast ice and Riaux-Gobin et al. (2011) found P. antarctica to be abundant in the coastal surface waters eight days after ice break up. This indicates an ecological niche relationship with cold waters and ice melting conditions. This might explain the close similarity between the C_{18} and HBI triene concentrations, both produced by organisms occupying a similar habitat at the ice edge.

The C_{24} FA record also shows some similarity with the HBI triene record. This appears to be mostly in the top part of the core where the highest concentrations are found. The reason for this resemblance is unclear, especially considering the lack of correlation between the C_{24} and C_{18} FA concentrations. However, it may relate to the better preservation in younger samples, progressive effect of diagenesis through the core. There is less similarity between the C_{24} and both the HBI triene also HBI diene, (compared to the coherence between C_{18} FA and HBI triene), which suggests that the C_{24} FA is predominantly produced by an organism which is not associated with sea ice, and thus instead with more open waters. The weaker coherence between the C_{24} and the HBI triene, and also HBI diene, suggests that the C_{24} FA is predominantly produced by an organism which is not associated with sea ice, and thus instead with more open waters.

Seventy-three diatom species were encountered in core DTGC2011 (Campagne, 2015), with Fragilariopsis corta and Chaetoceros resting spores being the most abundant. However, trends in diatom abundances do not show any clear correlations with the C_{18} or C_{24} FA concentrations. While this would lend support to the hypothesis that diatoms are not the main producers of these compounds, the differing effects of diagenesis on the preservation of diatoms and lipids could also explain some of the differences in observed concentrations, particularly in the upper part of the core. The known producer of the HBI diene, Berkeleya adeliensis, for example, was not recorded within the core, likely due to their lightly silicified frustules which are more susceptible to dissolution (Belt et al., 2016). Therefore, despite the lack of a correlation between diatom abundances and FA concentrations, we cannot entirely rule out the possibility of a minor contribution of FAs by diatoms.
4 Carbon isotopes of fatty acids

Down-core changes in δ13C for the C16 and C24 FAs (δ13C16FA and δ13C24FA, respectively) (Fig. 67) clearly show different trends, with very little similarity between them (R2 = 0.016). This further supports the idea that these compounds are being produced by different organisms, and thus are recording different information.

The mean carbon isotope value of δ13C16FA of -29.8‰ in core U1357 from the same site (Ashley et al., in review) is suggestive of a pelagic phytoplankton source (Budge et al., 2008). In core DTGC2011 the mean values of δ13C16FA and δ13C24FA are -26.2‰ and -27.6‰, respectively. Though more positive, these values are still within the range of a phytoplankton source. Additionally, we tentatively suggest that the 0.5‰ more positive δ13C16FA mean value over the δ13C24FA may indicate the contribution of sea-ice dwelling algae producers, since carbon fixation occurring within the semi-closed system of the sea ice will lead to a higher degree of CO2 utilisation than in surrounding open waters (Henley et al., 2012). Although no studies on FA δ13C of different organisms are available for the Southern Ocean, Budge et al. (2008) measured the mean δ13C value of C16 FA from Arctic sea-ice algae (-24.0‰) to be 6.7‰ higher than pelagic phytoplankton (-30.7‰) from the same region.

The higher δ13C of the C24 FA could therefore be indicative of P. antarctica living partly within the sea ice, e.g. during early spring before ice break up. The more negative δ13C24FA suggests it is more likely to be produced by phytoplankton predominantly within open water.

4.1 Controls on δ13CFA

The δ13C16FA record shows a broadly increasing trend towards more positive values from ca. 1587 until ca. 1920 C.E., with short term fluctuations of up to -4‰ superimposed on this long-term trend (Fig. 76). This is followed by a period of higher variability with a full range of 5.6‰ until the most recent material (ca. 1999 C.E.), with more negative δ13C values between 1921 and 1977 C.E. and a rapid shift toward more positive values thereafter. In contrast, the δ13C24FA record overall shows a weak, negative trend, with large decadal fluctuations of up to 4.6‰, with a more pronounced negative trend after ca. 1880 C.E. (Fig. 67).

Below we consider the various factors which may control the carbon isotope value of algal biomarkers produced in the surface waters. Down-core changes in FA δ13C are likely to be a function of either the δ13C of the dissolved inorganic carbon (DIC) source, changes in the species producing the biomarkers, diagenesis or changing photosynthetic fractionation (ε0). The next section outlines the potential influence of these factors may have in order to assess the mostly likely dominant driver of FA δ13C.

4.1.1 Isotopic composition of DIC

The δ13C of the DIC source can be affected by upwelling or advection of different water masses, or the δ13C of atmospheric CO2. Around the Antarctic, distinct water masses have unique carbon, hydrogen and oxygen isotope signatures and thus isotopes can be used as water mass tracers (e.g. Mackensen, 2001, Archambeau et al., 1998). In the Weddell Sea for example, Mackensen (2001) determined the δ13C value of eight water masses, which ranged from 0.41‰ for Weddell Deep Water, sourced from CDW, to 1.63‰ for AASW. A similar range of ~1.5‰ was identified in water masses between the surface and ~5,500 m depth along a transect from South Africa to the Antarctic coast (Archambeau et al., 1998). Assuming similar values apply to these water
masses offshore Adélie Land, this range in values would be insufficient to explain the ~5‰ variation of δ13C recorded by both C4 and C3 FA, even in the situation of a complete change in water mass over the core site. Furthermore, site DTGC11, located within a 1,000 m deep depression and bounded by the Adélie Bank to the north, is relatively sheltered from direct upwelling of deep water (Fig. 1). Though inflow of mCDW has been shown to occur within the Adélie Depression to the east of the bank (Williams and Bindoff, 2003) and possibly within the Dumont d’Urville Trough, only very small amplitude changes in δ13C of benthic foraminifera, tracking upper CDW, have been observed over the Holocene in Palmer Deep, West Antarctica (Shevenell and Kennett, 2002). Although from a different location, this argues against large changes in the isotopic composition of the source of mCDW.

Changes in the δ13C of atmospheric CO2, which is in exchange with the surface waters could also have the potential to drive changes in the δ13C of algal biomarkers. Over the last ca. 200 years, the anthropogenic burning of fossil fuels has released of a large amount of CO2 depleted in 13C, meaning that the δ13C of CO2 has decreased by ca. 1.5‰, as recorded in the Law Dome ice core. Prior to this, however, the δ13C of CO2 in the atmosphere remained relatively stable, at least for the last thousand years (Francey et al., 1999). Therefore, this could potentially drive the δ13C of algal biomarkers towards lighter more negative values within the last 200 years, but this could not explain the full variation of ~5-6‰ in FA δ13C measured throughout the core.

Although the C4 δ13C shows a slight decrease over the last ca. 100 years, this is preceded by increasing δ13C, while the C3 δ13C displays no clear trend over the last 200 years. If atmospheric CO2 was a key driver of fatty acid δ13C, we would expect both compounds to respond together, showing a trend towards more negative values over the last 200 years which neither of them do. No clear trend towards lighter values is evident in the last 200 years of the FA δ13C records, which is significant compared to local and regional inter-annual variations as a result of other environmental drivers (discussed below).

4.1.2 Changing species

A shift in the organisms producing the FA could also affect δ13C where species have different fractionation factors. For example, changing diatom species have been shown to have an effect on bulk organic matter δ13C in core MD03-2601, offshore Adélie Land, over the last 5 ka (Crosta et al., 2005). However, the bulk organic matter might have contained other phytoplankton groups than diatoms with drastically different δ13C values and fractionation factors. Here we measured δ13C of individual biomarkers, produced by a more restricted group of phytoplankton groups (possibly restricted to a few dominant species) compared to bulk δ13C. As discussed above, the C16 appears to be produced predominantly by P. antarctica, whereas diatoms do not tend to produce high proportions of this compound (Dalsgaard et al., 2003).

4.1.3 Effect of diagenesis on lipid δ13C

Sun et al. (2004) studied the carbon isotope composition of FAs during 100 days of incubation in both oxic and anoxic seawater. They observed a shift towards more positive values in FA δ13C, ranging between 2.6‰ for the C14:0 and as much as 6.9‰ in the C18:2 under anoxic conditions. This suggests that diagenesis could affect FA δ13C in core DTGC2011. However, these observed changes are rapid (days to months), occurring on timescales which are unrealizable in the FA δ13C record (annual to decadal), and thus may have no effect on the trends observed in our record. Based on concentration data discussed above, it seems that diagenetic overprint is
largely complete by ~25 cm (Fig. 2). In the top 25 cm of the core (ca. 1978 – 1998 C.E.), the δ¹³C₁₈FA values increase by ~2.5 ‰, downward (R² = 0.63, n = 11) while the δ¹³C₁₈FA values display a large variation with no overall trend (R² = 0.12, n = 20). If diagenesis was driving the changes in δ¹³C, it is likely that this trend would be observed in all FA compounds.

Taken together, it appears that neither changes in the δ¹³C of the DIC, changing phytoplankton groups nor diagenesis can fully explain the variation of FA δ¹³C recorded within DTGC2011. Therefore, we hypothesise that changes in δ¹³C are the main driver of FA δ¹³C.

4.2 Controls on photosynthetic fractionation (ε₀)

There is a positive relationship between δo in marine algae and dissolved surface water CO₂(aq) concentration (Rau et al., 1989). As a result, higher δ¹³C values are hypothesised to reflect lower surface water CO₂(aq) and vice versa. Popp et al. (1999) showed a strong negative correlation between CO₂(aq) and δ¹³C of suspended particulate organic matter across a latitudinal transect in the Southern Ocean, suggesting that changes in surface water CO₂(aq) can explain a large amount of the variation in δ¹³C. Changes in surface water CO₂(aq) concentration in turn may be driven by various factors, including changing atmospheric CO₂ (Fischer et al., 1997), wind-driven upwelling of deep, carbon-rich water masses (Sigman and Boyle, 2000; Takahashi et al., 2009), sea-ice cover (Henley et al., 2012) and/or primary productivity (Villinski et al., 2008). Thus, determining the main driver(s) of surface water CO₂ changes offshore Adélie Land should enable interpretation of the DTGC2011 FA δ¹³C records.

4.2.1 Sea ice

Brine channels within sea ice have very low CO₂ concentrations and a limited inflow of seawater. Carbon isotopic fractionation of algae living within these channels has been shown to be greatly reduced compared to organisms living in the surrounding open waters (Gibson et al., 1999), leading to elevated δ¹³C values. It is thus possible that, under conditions of high sea-ice cover, enhanced FA contribution from sea-ice algae leads to elevated sedimentary δ¹³C values. HBI diene concentrations within DTGC2011 show a much greater presence of fast ice at the core site ca. 1960 C.E. (Fig. 25). However, during this time there is no clear elevation in δ¹³C concentrations in either δ¹³C₁₈FA or δ¹³C₁₈FA, both instead showing generally lower δ¹³C values. In fact, δ¹³C₁₈FA shows the lowest values of the whole record between 1925 and 1974 C.E., during which sea ice, as recorded by the HBI diene, is at its highest level. This suggests that inputs in sea-ice algae at this time are not driving changes in FA δ¹³C.

The DTGC2011 core site sits proximal to the Dumont D’Urville polynya, which has a summer area of 13.02 x 10⁵ km² and a winter area of 0.96 x 10⁵ km² (Arrigo and van Dijken, 2003). Changes in the size of the polynya both on seasonal and inter-annual time scales will affect air-sea CO₂ exchange and thus also surface water CO₂ concentration. A reduced polynya may lead to greater supersaturation of CO₂ in the surface waters due to reduced outgassing, allowing CO₂ to build up below the ice, leading to lower δ¹³C values of algal biomarkers produced in that habitat (Massé et al., 2011). Thus changes in the extent of sea ice may also effect FA δ¹³C.

4.2.2 Observed trends in surface water CO₂(aq)
If the trend in surface water CO$_2$$_{sat}$ paralleled atmospheric CO$_2$, with an increase of over 100 ppm over the last 200 years (MacFarling Meure et al., 2006), we might expect phytoplankton to exert a greater fractionation during photosynthesis in response to elevated surface water CO$_2$$_{sat}$ concentration, resulting in more negative δ13C values. Taking into account the decline in atmospheric δ13C$$_{atm}$ over the same period would further enhance the reduction in phytoplankton δ13C. Fischer et al. (1997) looked at the δ13C of both sinking matter and surface sediments in the South Atlantic and suggested that, since the preindustrial, surface water CO$_2$$_{sat}$ has increased much more in the Southern Ocean than in the tropics. They estimated that a 70 ppm increase in CO$_2$$_{sat}$ in surface waters of 1°C would decrease phytoplankton δ13C$_{org}$ by ca. 2.7‰, and up to 3.3‰ δ13C$$_{org}$; change are included, between preindustrial and 1977-1990. However, sea ice cover and summer primary productivity are likely to be much higher off Adélie Land than in the South Atlantic, both of which will affect air-sea gas exchange.

Shadwick et al. (2014) suggest that surface water CO$_2$ should track the atmosphere in the Mertz Polynya region, despite the seasonal ice cover limiting the time for establishing equilibrium with the atmosphere. They calculated wintertime CO$_2$ in the shelf waters of the Mertz Polynya region, offshore Adélie Land (Fig. 1), measuring ca. 360 ppm in 1996, ca. 396 ppm in 1999, and ca. 385 ppm in 2007, while atmospheric CO$_2$ at the South Pole was 360, 366 and 380 ppm, respectively (Keeling et al., 2005). Based on the 1996 and 2007 data, only, an increase in CO$_2$ of ca. 25 ppm is observed over these 11 years, coincident with the 20 ppm atmospheric CO$_2$ increase over this time period. However, high interannual variability (± ca. 30 ppm) is evident (e.g. 396 ppm in 1999) suggesting that other factors, particularly upwelling, may override this trend. The latter was also suggested by Roden et al. (2013) based on winter surface water measurements in Prydz Bay, indicating that decadal-scale carbon cycle variability is nearly twice as large as the anthropogenic CO$_2$ trend alone.

During the austral winter, upwelling of deep water masses causes CO$_2$ to build up in the surface waters, and sea ice cover limits gas exchange with the atmosphere (Arrigo et al., 2008; Shadwick et al., 2014). Although only limited data, the measurements by Shadwick et al. (2014) suggest slight supersaturation, of up to 30 ppm, occurs in the winter due to mixing with carbon-rich subsurface water, but with high interannual variability. This is compared to undersaturation of 15 to 40 ppm during the summer as a result of biological drawdown of CO$_2$. Roden et al. (2013) also observed varying levels of winter supersaturation in Prydz Bay, East Antarctica, with late winter CO$_2$ values of 433 ppm in 2011 (45 μatm higher than atmospheric CO$_2$), and suggested that intrusions of C-rich mCDW onto the shelf may play a part in this. Similarly, winter surface water CO$_2$ of 425 ppm has been measured by Sweeney (2003) in the Ross Sea, before being drawn down to below 150 ppm in the summer as phytoplankton blooms develop.

Enhanced upwelling of deep carbon-rich waters in the Southern Ocean are thought to have played a key role in the deglacial rise of atmospheric CO$_2$, increasing CO$_2$ concentrations by ~80 ppm (Anderson et al., 2009; Burke and Robinson, 2012). Changes in upwelling offshore Adélie Land could therefore drive some interannual variability in surface water CO$_2$ and hence FA δ13C in DTGC2011. However, upwelling tends to be stronger during the winter months, when sea-ice formation and subsequent brine rejection drive mixing with deeper C-rich waters. At this time, heavy sea-ice cover limits air-sea gas exchange and enhances CO$_2$ supersaturation in regional surface waters (Shadwick et al., 2014). In contrast, the phytoplankton producing FA thrive during the spring and summer months during which CO$_2$ is rapidly drawn down and the surface waters become
undersaturated. However, upwelling cannot be discarded as a possible contributor to surface water CO2 change. However, the core site is in a relatively sheltered area and is probably not affected by significant upwelling.

Based on these studies, changes in atmospheric CO2 concentration and δ13C of the source appear to be unlikely to be a dominant driver of the FA δ13C record, with interannual variations driven by other factors overriding any longer-term trend. There is also no clear anthropogenic decline in the FA δ13C record over the last 200 years, which supports this hypothesis.

4.2.3 Productivity

Given that changes in atmospheric CO2, source signal, sea ice algae or diagenesis seem unable to explain the full range of variability seen in the FA δ13C record, the most plausible driver appears to be changes in surface water primary productivity. Coastal polynya environments in the Antarctic are areas of very high primary productivity (Arrigo and van Dijken, 2003). The DTGC2011 core site sits near to the Dumont D’Urville polynya, and is just downstream of the larger and more productive MGP (Arrigo and van Dijken, 2003). In large polynyas such as the Ross Sea, primary productivity leads to intense drawdown of CO2 in the surface waters, resulting in reduced fractionation by the phytoplankton during photosynthesis (Villinski et al., 2008). In the Ross Sea, surface water CO2 has been observed to drop to below 100 ppm during times of large phytoplankton blooms (Tortell et al., 2011) demonstrating that primary productivity can play a key role in controlling surface water CO2 concentrations in a productive polynya environment. Arrigo et al. (2015) found the MGP to be the 8th most productive polynya in the Antarctic (out of 46) based on total net primary productivity during their sampling period, and Shadwick et al. (2014) observed CO2 drawdown in the MGP during the summer months. Therefore, we suggest that FA δ13C signals recorded in DTGC2011 is predominantly a signal of surface water CO2 driven by primary productivity. Indeed, the potential for the δ13C of sedimentary lipids to track surface water primary productivity has been recognised in the highly productive Ross Sea polynya. High variability in surface water CO2 values have been measured across the polynya during the summer months (December – January), ranging from less than 150 ppm in the western Ross Sea near the coast, to >400 ppm on the northern edge of the polynya. This pattern was closely correlated with diatom abundances, indicating intense drawdown of CO2 in the western region where diatom abundances were highest (Tortell et al., 2011). This spatial variation in productivity is recorded in particulate organic carbon (POC) δ13C, and is also tracked in the surface sediments by total organic carbon (TOC) δ13C and algal sterol δ13C, all of which show significantly higher values in the western Ross Sea. This spatial pattern in sterol δ13C was concluded to be directly related to CO2 drawdown at the surface, resulting in average sterol δ13C values varying from -27.9‰ in the west, where productivity is greatest, down to -33.5‰ further offshore (Villinski et al., 2008).

A similar relationship is evident in Prydz Bay, where POC δ13C was found to be positively correlated with POC concentration and negatively correlated with nutrient concentration, indicating greater drawdown of CO2 and nutrients under high productivity levels (Zhang et al., 2014).

This suggests it is possible to apply FA δ13C as a palaeoproductivity indicator in the highly productive Adélie polynya environment. However, it is important to constrain the most likely season and habitat being represented, since phytoplankton assemblages vary both spatially (e.g. ice edge or open water) and temporally (e.g. spring or summer). The incredibly high sedimentation rate (1-2 cm yr⁻¹) within the Adélie Basin is thought to result, on
top of regional high productivity, from syndepositional focusing processes bringing biogenic debris from the
shallower Adélie and Mertz banks to the ca. 1,000 m deep basin (Escutia et al., 2011). Thus, it is likely that core
DTGC2011 contains material from a wide area, including both the Mertz and Dumont d’Urville polynyas, and
areas both near the coast and further offshore, meaning it is quite possible that the C18 and C24 FAs are
integrating palaeoproductivity changes weighted towards different regional environments, which would explain
their different trends. Furthermore, surface water CO2 can vary spatially, such as in the Ross Sea polynya where
Tortell et al. (2011) measured surface water CO2 values ranging between 100 and 400 ppm. Thus, it is likely
that these two areas offshore Adélie Land where the C18 and C24 FAs are being produced will also have differing
surface water CO2 concentrations and trends.

4.3 Comparison of fatty acid δ13C with other proxy data
Comparison of down-core variations in FA δ13C with other proxy data can also be used to decipher the main
signal recorded. Comparison between δ13C24FA and the major diatom species abundances within the core
(Fragilariopsis kerguelensis, Fragilariopsis curta, Fragilariopsis rhombica, Fragilariopsis cylindrus,
Chaetoceros resting spores) within the core shows a reasonably close coherence with Fragilariopsis
kerguelensis, particularly since ~1800 C.E. (Fig. 25). Fragilariopsis kerguelensis is an open water diatom
species and one of the most dominant phytoplankton species offshore Adélie Land (Chiba et al., 2000), reaching
its peak abundance in the summer (Crosta et al., 2007). This suggests that the C24 FA is being produced during
the summer months and, as such, is reflecting productivity in more open waters. The δ13C24FA record does not
show any similarity to the sea-ice records, as inferred by HBI diene concentrations and abundances of
Fragilariopsis curta (Fig. 46 and 25); here again suggesting that these compounds are being produced in open
water during the summer months after sea ice has retreated.

As discussed above, P. antarctica is a likely producer for the C18 FA, a prymnesiophyte algae which has been
observed in the Adélie region in summer months residing predominantly along the margin of fast ice, but also
further offshore (Riaux-Gobin et al., 2013, 2011; Vaillancourt et al., 2003). The aversion of F. kerguelensis to
sea ice (and thus also the C24 FA producer in contrast to P. antarctica), may explain the clear lack of coherence
in the down-core trends in δ13C18FA and δ13C24FA (Fig. 26). Thus, we hypothesise that δ13C24FA is recording
surface water CO2 driven by productivity in the MIZ, whilst δ13C18FA is recording surface water CO2 in more
open water, further from the sea-ice edge.

HBI diene concentrations indicate elevated fast ice cover between ~1919 and 1970 C.E., with a particular peak
between 1942 and 1970 C.E., after which concentrations rapidly decline and remain low until the top of the core
(Fig. 27). Abundances of F. curta, used as a sea-ice proxy, similarly show peaks at this time indicative increased
sea-ice concentration (Campagne, 2015) (Fig. 75). δ13C18FA indicates a period of low productivity between
~1922 and 1977 C.E., broadly overlapping with this period of elevated fast ice concentration (Fig. 25), with a
mean value of -27.12‰. This is compared to the mean value of -26.23‰ in the subsequent period (~1978 to
1998 C.E.) during which HBI diene concentration remain low (Fig. 75). This suggests that productivity in the
coastal region was reduced, while sea-ice concentrations were high. This might be expected during a period of
enhanced ice cover – perhaps representing a reduction in the amount of open water, or a shorter open water
season – since the majority of productivity generally takes place within open water (Wilson et al., 1986).
Furthermore, δ¹³CFA shows a broad similarity with Chaetoceros resting spores (CRS) on a centennial scale, with lower productivity at the start of the record, ca. 1587 to 1662 C.E., followed by an increase in both proxies in the middle part of the record, where δ¹³CFA becomes relatively stable and CRS reaches its highest abundances of the record. This is then followed in the latter part of the record, after ca. 1900 C.E., by both proxies displaying lower values overall. CRS are associated with high nutrient levels and surface water stratification along the edge of receding sea ice, often following high productivity events (Crosta et al., 2008). The broad similarity to CRS, with lower values recorded during periods of high sea-ice concentrations, suggests that δ¹³CFA is similarly responding to productivity in stratified water at the ice edge. This supports the hypothesis that δ¹³CFA is recording primary productivity in the MIZ. Little similarity is evident between the fatty acid isotope records and F. cylindrus and F. rhombica.

5 Conclusions

FAs identified within core DTGC2011, recovered from offshore Adélie Land, were analysed for their concentrations and carbon isotope compositions to assess their utility as a palaeoproductivity proxy in an Antarctic polynya environment. The C₁₅ and C₁₄ compounds yielded the best isotope measurements and show very different δ¹³C trends, suggesting they are being produced by different species in different habitats and/or seasons. However, there are clearly uncertainties in interpreting the FA δ¹³C, and although we have made parsimonious interpretations, many assumptions have been made here. The producers of the C₁₅ and especially the C₁₄ FAs is a key source of uncertainty and will require further work to further elucidate. The possibility of inputs of FAs from multiple sources, in particular from organisms further up the food chain, has consequences for their interpretation since this could mean the δ¹³C FA is not fully reflecting just surface water conditions. Other key uncertainties are the magnitude of upwelling of CO₂ at the site in comparison to drawdown by phytoplankton, and the potential role of changes in air-sea CO₂ exchange.

Despite this, we argue that FA δ¹³C can be a potential productivity proxy, but should be used in parallel with other environmental proxies such as diatom abundances or HBIs. Comparison with other proxy data and information from previous studies suggests that the C₁₅ compound may be predominantly produced by P. antarctica, with δ¹³CFA reflecting productivity changes in the marginal ice zone, where it is sensitive to changes in ice cover. In contrast, δ¹³CFA, which compares well with abundances of the open water diatom F. kerguelensis, may be reflecting summer productivity further offshore, in open waters where it is less sensitive to fast ice changes. We argue that δ¹³CFA can be used as a productivity proxy, but should be used in parallel with other proxies such as diatom abundances or HBIs. The use of δ¹³C analysis of multiple FA compounds, as opposed to individual compounds or bulk isotope analysis, allows a more detailed insight into the palaeoproductivity dynamics of the region, with the potential to separate productivity trends within different habitats.

However, there are clearly uncertainties in interpreting the FA δ¹³C, and although we have made parsimonious interpretations, many assumptions have been made here. The producers of the C₁₅ and especially the C₁₄ FAs is a key source of uncertainty and will require further work to further elucidate. The possibility of inputs of FAs...
from multiple sources, in particular from organisms further up the food chain, has consequences for their interpretation since this could mean that δ¹³C FA is not fully reflecting just surface water conditions. Other key uncertainties are the magnitude of upwelling of CO₂ at the site in comparison to drawdown by phytoplankton, and the potential role of changes in air-sea CO₂ exchange.

References

Belt, S.T. and Müller, J. (2013) The Arctic sea ice biomarker IP 25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions. *Quaternary Science...

Campagne, P. (2015) Étude de la variabilité des conditions océanographiques et climatiques en Antarctique de
l’Est (Terre Adélie-Georges V) au cours de l’Holocène tardif et de la période instrumentale. L’Université de
Bordeaux.

fluctuations of biogenic component fluxes on the continental slope of the Ross Sea, Antarctica. Journal of
Marine Systems, 17, 515–525.

Changes in composition of fatty acids, sterols and aliphatic hydrocarbons during early diagenesis. Org.

Crosta X, Shukla S.K., Ther O., Ikehara M., Yamane M., Yokoyama Y. (2020) Last Abundant Appearance
Datum of Hemidiscus karstenii driven by climate change. Marine Micropaleontology,

Distribution in Prydz Bay, Antarctica - Relation To Organic Particulate Matter and Its Delta-C-13 Values.

doi:10.3402/polar.v30i0.5910.

Figure 1: Location of Site DTGC2011 on bathymetric map of the Adélie Land region (modified from Beaman et al., 2011), indicating positions of the main glaciers (prior to Mertz Glacier Tongue collapse in 2010) and pathways of the main water masses affecting the region: Antarctic Slope Current (ASC), Modified Circumpolar Deep Water (mCDW) and High Shelf Salinity Water (HSSW) (Williams and Bindoff, 2003).
Figure 2: Fatty acid concentrations (µg/g of dry sediment) with depth from core DTGC2011
a) C₁₆ and C₁₈ fatty acids b) C₁₇ and C₂₀ fatty acids c) C₂₂, C₂₄ and C₂₆ fatty acids.
Table 1: R² values for fatty acid concentrations throughout core DTGC2011. Values are colour coded according to the key on the left. Black border denotes correlations within each group.

Table 2: R² values for fatty acid concentrations in core DTGC2011 below 25 cm only. Values are colour coded according to the key on the left. Black border denotes correlations within each group.
Figure 35: Concentrations of the C18 fatty acid (blue), the HBI triene (red), HBI diene (grey) (Campagne, 2015), C24 fatty acid (orange) from core DTGC2011. The left-hand panels show 1550 to 1950 C.E. and the right hand panels show 1950 to 2000 C.E., plotted on different y-axes due to the elevated concentrations in the top part of the core. Grey vertical bands highlight coincident peaks in C18 fatty acid and HBI triene records.
Figure 64: δ^{13}C values of the C$_{24}$ fatty acid (orange) and relative abundances (%) of the open water diatom *Fragilariopsis kerguelensis* (green). Also shown are relative abundances of the four most abundant diatom groups in DTGC2011: *Chaetoceros* resting spores (CRS; grey line), *Fragilariopsis curta* group (dark blue line), *Fragilariopsis cylindrus* (purple line) and *Fragilariopsis rhombica* (light blue line). Thick line represents 3-point moving average for each. Grey vertical bands highlight periods where C$_{24}$ fatty acid δ^{13}C is in phase with *F. kerguelensis*.
Figure 5: $\delta^{13}C$ of the C$_{24}$ (orange) and C$_{18}$ (blue) fatty acid, HBI diene concentrations (green; plotted on a log scale) and relative abundances of *Fragilariopsis curta* plus *Fragilariopsis cylindrus* (purple). Latter two records reflect sea ice concentrations. Grey vertical band highlights period where low C$_{18}$ $\delta^{13}C$ overlaps with elevated HBI diene concentrations.