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Abstract (400 words) 34 

Net carbon balance on croplands depends on numerous factors (e.g., crop type, soil, climate 35 

and management practices) and their interactions. Agroecosystem models are generally used to 36 

assess cropland carbon fluxes under various agricultural land use and land management practices 37 

because of their ability to capture the complex interactive effects of factors influencing carbon 38 

balance. For regional carbon flux simulations, generally gridded climate data sets are used because 39 

they offer data for each grid cell of the region of interest. However, studies consistently report large 40 

uncertainties in gridded climate datasets, which will affect the accuracy of carbon flux simulations.  41 

This study investigates the uncertainties in daily weather variables of commonly used high 42 

resolution gridded climate datasets in the U.S (NARR, NLDAS, Prism and Daymet), and their impact 43 

on the accuracy of simulated Net Ecosystem Exchange (NEE) under irrigated and non-irrigated corn 44 

and soybeans using the Environmental Policy Integrated Climate (EPIC) agroecosystem model and 45 

observational data at four flux tower cropland sites in the U.S Midwest region. Further, the relative 46 

significance of each weather variable in influencing the uncertainty in flux estimates was evaluated. 47 

Results suggest that daily weather variables in all gridded climate datasets display some 48 

degree of bias, leading to considerable uncertainty in simulated NEE. The gridded climate datasets 49 

produced based on interpolation techniques (i.e. Daymet and Prism) were shown to have less 50 

uncertainties, and resulted in NEE estimates with relatively higher accuracy, likely due to their 51 

higher spatial resolution and higher dependency on meteorological station observations. The Mean 52 

Absolute Percentage Errors (MAPE) values of average growing season NEE estimates for Dayment, 53 

Prism, NLDAS and NARR include 22.53%, 23.45%, 62.52% and 66.18%, respectively. The NEE 54 

under irrigation management (MAPE= 53.15%) tends to be more sensitive to uncertainties compared 55 

to the fluxes under non-irrigation (MAPE= 34.19%).  56 

Further, this study highlights that NEE respond differently to the individual climate variables, 57 

and responses vary with management practices. Under irrigation management, NEE are more 58 

sensitive to shortwave radiation and temperature. Conversely, under non-irrigation management, 59 

precipitation is the most dominant climate factor influencing uncertainty in simulated NEE. These 60 

findings demonstrate that careful consideration is necessary when selecting climate data to mitigate 61 

uncertainties in simulated NEE. Further, alternative approaches such as integration of remote sensing 62 

data products may help reduce the models’ dependency on climate datasets and improve the accuracy 63 

in the simulated CO2 fluxes. 64 

 65 
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1. Introduction 66 

There has been renewed interest in tracking carbon on croplands because of their potential to 67 

offset atmospheric CO2 through sequestering carbon in crop vegetation and soil, and also soil carbon 68 

indicates the status of soil quality affecting long term crop production. Croplands act either as a 69 

source or sink for atmospheric CO2 depending on numerous factors (e.g. crop type, soil 70 

characteristics, climatic conditions and management practices), and their interactions. For instance, 71 

studies of continuous long-term flux tower measurements of CO2 exchange on agricultural sites have 72 

demonstrated that conservation practices (e.g., no tillage) promote significant amounts of carbon 73 

sequestration; thus, making such agricultural systems behave as a strong net carbon sink (Hollinger et 74 

al., 2005; Bernacchi et al., 2005). Sustainable agricultural management practices are estimated to 75 

result in approximately 45-98 Tg C year-1 soil carbon sequestration on US croplands (Lal et al., 1998; 76 

Chambers et al., 2016). On the other hand, intensive land use and land management practices (e.g., 77 

conventional tillage, residue burning) in agriculture often lead to negative carbon balance, leaving 78 

these systems as a source for atmospheric CO2 (Anderson-Teixeira et al., 2009). These intensive 79 

practices not only contribute to climate change, but also lead to deterioration of soil fertility through 80 

losing soil organic carbon, subsequently affecting long term agriculture production. The magnitude 81 

of impact on carbon balance with different agricultural land use and management practices is highly 82 

variable in space and time, and depends on environmental conditions and geographic characteristics 83 

(Hernandez-Ramirez et al., 2011). As such, there exists a need for understanding the impact of 84 

various agronomic practices and their interactions under various soil and management regimes on 85 

regional scale carbon dynamics. Such a knowledge base will help in developing effective policies 86 

and management strategies targeting carbon friendly agriculture at local to regional scale.  87 

 Agroecosystem models are tools widely used for analyses integrating the effects of climate, 88 

crop, soil, and land-use (Jones et al., 2017). Such models employ biophysical and biogeochemical 89 

principles coupled with crop management, climate and soils to simulate detailed carbon balance 90 

(Izaurralde et al, 2006; Bandaru et al., 2013). Climate variables are dominant factors influencing 91 

model simulations substantially (Agarwal, 1995). Models rely on weather inputs to simulate critical 92 

crop parameters (crop phenology, leaf area index [LAI] and evapotranspiration [ET]) that determine 93 

crop growth and development, subsequently impacting the net primary productivity (NPP), a primary 94 

carbon input. In addition, weather variables (e.g. temperature and precipitation) drive the simulation 95 

of soil respiration, which impacts NEE. Therefore, errors in weather variables will introduce 96 

uncertainty in the model estimates of carbon dynamics, and the magnitude of uncertainty depends not 97 

only on the level of error but also on an indefinite weather variable. For instance, soil respiration is 98 
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relatively more sensitive to temperature inconsistencies than other weather variables (Jones et al., 99 

2003). As such, a small margin of error in temperature irregularities may have substantial impacts on 100 

soil respiration estimates.  101 

 Models use either point scale in-situ observational data collected at meteorological stations or 102 

gridded climate databases that include geographically distributed weather estimates produced using 103 

either 1) interpolating observational climate data and other ancillary datasets (e.g. topographic 104 

characteristics) or (2) data modeling and assimilation techniques that model regional changes in 105 

weather based on satellite observations, land cover, local geographical characteristics and other 106 

attributes (Eum et al., 2014). For regional scale carbon flux simulations, generally gridded climate 107 

data sets are used because they offer data for each grid cell of the region of interest, while insufficient 108 

density of meteorological stations restricted the accurate representation of inherent spatial weather 109 

patterns over large regions (Bandaru et al., 2017). However, studies have been consistently reporting 110 

large uncertainties in gridded climate datasets (Van Wart et al., 2013; Bandaru et al., 2017). For 111 

instance, recently Bandaru et al. (2017) found higher biases in monthly weather variables (e.g. up to 112 

3°C in minimum temperature) of high-resolution climate datasets generally used in the U.S, which 113 

were found to result in percent errors up to 45% in biomass of hybrid poplar, a short rotation woody 114 

cropping system, simulated using 3-PG forest growth model. Similarly, other studies reported 115 

uncertainties ranging 10-50% in carbon fluxes under forest systems (Ito and Sasai, 2006; Poulter et 116 

al., 2011; Wu et al., 2017). However, there are no or very limited studies on understanding 117 

uncertainties in modeled cropland carbon fluxes. Crop models are typically run on daily time steps so 118 

biases in daily climate variables are expected to be different from those in monthly variables. As 119 

such, currently, there is a knowledge gap on the level of uncertainty in the estimated daily carbon 120 

fluxes with the use of gridded climate datasets in the agroecosystem models, and the relative 121 

importance of each of the weather variables (e.g. precipitation) affecting accuracy of carbon flux 122 

estimates.  As such, this study was conducted to 1) quantify the degree of uncertainty in daily 123 

weather variables of four gridded climate data sets commonly used in regional scale agroecological 124 

modeling studies in the U.S: the NARR (North American Regional Reanalysis), NLDAS (North 125 

American Land Data Assimilation System), Prism (Parameter-elevation Relationships on 126 

Independent Slopes Model), and Daymet; 2) evaluate their impact on simulated net ecosystem 127 

exchange (NEE), defined as a measure of net exchange of carbon between atmosphere and land 128 

surface per unit ground area (Kramer et al., 2002), under both irrigated and non-irrigated corn and 129 

soybeans using the Environmental Policy Integrated Climate (EPIC) agroecosystem model, and 3) 130 
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understand the relative significance of each weather variable in influencing the uncertainty in flux 131 

estimates.  132 

2. Materials and methods: 133 

 To understand the uncertainty in the four gridded datasets, observed weather data from four 134 

flux tower sites located in U.S. Midwest were used as reference data while quantifying the level of 135 

uncertainty in five weather variables typically required for agroecosystem models. These weather 136 

variables include (1) minimum air temperature (Tmin), (2) maximum air temperature (Tmax), (3) 137 

shortwave radiation (SR), (4) precipitation (Precip), and (5) relative humidity (RH). Further, we used 138 

the Environmental Policy Integrated Climate (EPIC) model to understand the influence of biases in 139 

gridded datasets on daily NEE under irrigated and non-irrigated corn and soybeans. First, we 140 

calibrated the EPIC model for corn and soybean crops using measured weather at flux tower sites, 141 

management and observed NEE data. Then 5 different site-level simulations were carried out using 142 

weather variables from four different gridded weather data sources, along with measured weather at 143 

the tower sites (Table-1). Later, NEE simulated by the measured weather data was used as a 144 

reference and assessed uncertainty in the NEE estimated using NARR, NLDAS, Daymet and Prism 145 

gridded datasets. Finally, to evaluate the relative contribution of each weather variable to the 146 

uncertainty in the NEE estimates, simulations were run using a single weather variable from the 147 

gridded datasets, and the rest of the weather variables were measured at sites for each simulation. For 148 

instance, to understand the impact of biases in shortwave radiation, simulations were run using 149 

shortwave radiation data from all four gridded data sources and the remaining weather variables (i.e. 150 

Tmax, Tmin, precipitation and relative humidity) from measured data at the flux tower sites. 151 

2.1 Study sites 152 

For this study, three AmeriFlux field experimental sites (US-NE1, US-NE2 and US-NE3) 153 

located at the University of Nebraska–Lincoln (UNL) Agricultural Research and Development 154 

Center near Mead, Nebraska were selected, as well as one AmeriFlux field site (US-BO1) at 155 

Bondville, Illinois (Meyers, 2016) (Table 1). These four sites are characterized by diverse crop 156 

management practices. US-NE1 (41°09′54.2″N, -96°28′35.9″W) and US-NE2 (41°09′53.6″N, -157 

96°28′07.5″W) are irrigated sites equipped with center-pivot irrigation systems while US-NE3 158 

(41°10′46.8″N, -96°26′22.7″W) and US-BO1 (40°00′61.3″, -88°29′04.4″W) are non-irrigated 159 

agriculture sites. US-NE1 has been continuously planted with corn since 2001 while US-NE2, US-160 

NE3 and US-BO1 are generally planted with corn and soybeans in rotation. Weather variables, 161 

energy, water and carbon fluxes have been measured on an hourly basis at these sites, which were 162 

averaged to produce daily measured values for this study. 163 
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2.2 Gridded Weather Databases 164 

Agroecosystem models prefer high resolution climate data, when available, to capture 165 

heterogeneity present in agricultural landscapes. As such, we evaluated four commonly used gridded 166 

datasets characterized by spatial resolution finer than 0.5° and covering the spatial extent of the U.S. 167 

The details of the selected gridded data are listed in Table 2. These datasets are classified into two 168 

groups. The data sets in the first group include NARR and NLDAS, which are determined based on 169 

atmospheric models and assimilation techniques, while the second group datasets (i.e. Daymet and 170 

Prism) are produced by spatially interpolating weather observations collected from various weather 171 

monitoring networks. 172 

2.2.1. NARR (North American Regional Reanalysis):  173 

The NARR gridded dataset (approximately 32 km spatial resolution) is produced at three-174 

hour intervals using the National Centers for Environmental Prediction (NCEP) Eta model, a 175 

mesoscale weather forecasting atmospheric model, along with the Regional Data Assimilation 176 

System (RDAS) (DiMegoet al., 1992). RDAS integrates data variables from various sources (e.g. 177 

outputs from the NCAR/NCEP Global reanalysis) (Mesinger et al., 2006) using a three-dimensional 178 

variational analysis scheme (3DVAR) and statistical interpolation (Kalnay et al., 1996), and produces 179 

fine spatial and temporal resolution estimates of various weather variables.  180 

2.2.2. NLDAS (North American Land Data Assimilation System)  181 

NLDAS produces high spatial (1/8°, approximately 12 km) and temporal (1-h) resolution 182 

weather variables through downscaling, and adjusts weather variables to account for the vertical 183 

difference between the NARR and NLDAS fields (Cosgrove et al., 2003). In addition, it corrects 184 

biases in shortwave radiation using Geostationary Operational Environmental Satellite (GOES) data 185 

(Pinkeret al., 2003). NLDAS precipitation data are constructed by taking daily gauge-based 186 

precipitation data and disaggregating to hourly resolution using radar data (Xia et al., 2012). 187 

2.2.3. PRISM (Parameter-elevation Relationships on Independent Slopes Model) 188 

Prism generates gridded weather data at two spatial resolutions (800 m and 4 km) and two 189 

temporal resolutions (daily and monthly) by interpolating observed weather at weather station 190 

networks (Abatzoglou, 2013). Prism uses gridded elevation data and computes a climate-elevation 191 

regression for each grid cell using observed data of nearby stations. Each station included in the 192 

regression is weighted based on similarity in physiographic characteristics (Daly et al., 2008). 193 

2.2.4. Daymet:  194 

Daymet interpolates daily weather station observations including Tmin, Tmax, and Precipitation 195 

based on gridded elevation data using a spatial convolution of a truncated Gaussian filter 196 
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interpolation method (Thornton and Running, 1999) and produces gridded data at 1 km spatial 197 

resolution on daily time intervals. Daymet produces downward shortwave radiation by using the 198 

MTclim algorithm (Thornton and Running, 1999). 199 

2.3 Estimation of uncertainties in gridded weather 200 

To estimate the uncertainties in weather variables of gridded datasets, measured climate data 201 

at flux tower sites were acquired from the Ameriflux website (http://ameriflux.lbl.gov/). Flux tower 202 

data was selected as opposed to observational data at meteorological weather stations because 203 

stations’ data are generally used as an input for producing some of the gridded datasets (i.e. Prism 204 

and Daymet) and therefore do not constitute as an independent source for comparison. Weather 205 

variables of each gridded dataset corresponding to each flux tower site were obtained. The Prism and 206 

Daymet datasets provide daily weather variables whereas NARR and NLDAS produce data at 3-hour 207 

and 1-hour temporal resolution, respectively. As such, NARR and NLDAS variables were aggregated 208 

to produce daily data and compared with daily flux tower data. Two metrics were used to assess the 209 

accuracy in the gridded datasets: 1) bias and 2) Mean Absolute Percentage Error (MAPE).  The bias 210 

denotes the deviation in the values of gridded weather variables from the corresponding measured 211 

values at flux tower sites, and is used to compute the direction (i.e. under- or over-estimation) of the 212 

uncertainty. A negative bias indicates underestimation compared to the flux tower observed data, 213 

while a positive bias indicates overestimation of the values. The MAPE values represent average 214 

error and can be used to assess the uncertainties in the gridded datasets. The bias and MAPE for 215 

precipitation, Tmax, Tmin, shortwave radiation and relative humidity of four gridded datasets were 216 

estimated using the equations below (Eq. (1&2)). 217 

 𝐵𝑖𝑎𝑠 =
1

𝑛
∑(𝑊𝑔 −𝑊𝑜)
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(2) 

where  bias = mean bias (units) 218 

            MAPE = mean absolute percentage error 219 

 n = available daily data for all stations 220 

 i = index for a unique station, year, and day combination 221 

 Wg = gridded data products 222 

 Wo = flux tower observed value 223 
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In the U.S. Midwest, major crops such as corn and soybeans are cultivated during the 224 

summer growing season, typically from spring (April) through late fall (November). Therefore, we 225 

included weather data for the time period covering the summer growing season in our analysis.  226 

Prism does not include shortwave radiation; therefore, biases and MAPE were computed for Daymet, 227 

NARR and NLDAS. 228 

2.3 Model simulations 229 

The EPIC agroecosystem model was used to simulate the NEE under irrigated and non-230 

irrigated corn and soybeans cultivated at flux tower sites and for the periods NEE measurements are 231 

available at flux tower sites (Table 1). 232 

2.3.2. Model description: 233 

The EPIC model simulates biophysical and biogeochemical ecosystem processes as 234 

influenced by climate, landscape, soil and management conditions (Williams et al., 1989; 2008). The 235 

carbon cycling module in EPIC was developed based on the Century model (Parton et al., 1994), and 236 

it includes detailed carbon routines that consider coupled carbon and nitrogen cycling to simulate 237 

carbon stocks and fluxes (both vertical and lateral fluxes) in managed and unmanaged lands. The 238 

EPIC carbon model has been well-tested and widely used for studying carbon dynamics under 239 

different cropping systems, management regimes, locations and at various scales (Apezteguía et al., 240 

2009; Bandaru et al., 2013; Izaurralde et al., 2007; Wang et al., 2005). 241 

2.3.3. Model calibration: 242 

To calibrate the model, we have used collected and measured data at flux tower sites on soil, 243 

weather, management practices and NEE, and implemented simulations at these sites for all available 244 

data and available years as listed in Table 1. The parameters were adjusted to optimize NEE 245 

estimates against measured flux data utilizing multi-objective genetic algorithm NSGA-II (Deb et al., 246 

2002). This method aims to provide near-optimal parameter sets for simulating each model output as 247 

well as a compromise between desired outcomes in order to identify parameter sets which provide 248 

more balanced model outcomes than single objective approaches. The calibrated results suggested 249 

that model was able to explain the variability present in the measured fluxes reasonably well, 250 

indicated by higher R2 and low RMSE values for all the sites (Figure 2). The R2 and RMSE (in 251 

bracket) values were 0.80 (29.11), 0.76 (30.34), 0.62 (34.05) and 0.61 (48.67) for US-NE1, US-NE2, 252 

US-NE3 and US-BO1, respectively. We used these calibration settings to simulate NEE using 253 

various gridded climate datasets.  254 

2.3.4. Model Simulations: 255 
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To estimate the impact of gridded datasets, simulations were implemented at flux tower sites 256 

using weather data from various data sources, and other inputs and parameters for the simulations 257 

were kept fixed. For soil information, we obtained input from the Soil Survey Geographic 258 

(SSURGO) database (http://websoilsurvey.nrcs.usda.gov/). The simulations were implemented for 12 259 

years (i.e. 2002 to 2012) for the US-NE1, US-NE2 and US-NE3 sites, while for US-BO1 site, runs 260 

were performed for 11 years from 1997-2007. Before actual simulations were initialized, spin-up 261 

runs were implemented for 20 historical years for all the sites using historical crop and management 262 

information to set the right initial conditions.  263 

Additional simulations were conducted to quantify the relative influence of each weather 264 

variable on the uncertainty in the NEE estimation. For each simulation, one weather variable from 265 

each of the gridded datasets was used, along the rest of the variables from site weather data. To use 266 

all weather variables from all gridded data sources, a total of 16 simulations were run.  267 

2.3.5. Assessment of uncertainty in the simulated NEE: 268 

 To understand the uncertainty in the simulated fluxes due to errors in the gridded weather 269 

data sources, we used NEE simulations conducted using measured weather data at flux tower sites 270 

(hereafter, referred to as reference fluxes) and compared them with estimated NEE using gridded 271 

weather datasets. Similar metrics (i.e. bias and MAPE) for evaluating uncertainty in the weather 272 

variables were used for assessing the uncertainty in NEE estimates based on various gridded datasets.  273 

3. Results 274 

3.1 Uncertainty in the gridded climate datasets 275 

The bias and Mean Absolute Percentage Error (MAPE) in the daily weather variables of 276 

various gridded datasets averaged over the years and sites are presented in Fig 1. Bias in Tmax and 277 

Tmin ranges from -3.94°C to 6.67°C depending on climate data source and the day of the growing 278 

season. Results showed that NARR and NLDAS overestimated Tmin while Daymet and Prism did not 279 

exhibit any consistent pattern showing both negative and positive bias values across the growing 280 

season. All data sources were shown to overestimate Tmax for most of the days in the growing season. 281 

The MAPE values range from 3.48% to 100.05%. Overall, the MAPE in both Tmax and Tmin tends to 282 

be higher at the beginning and end of the growing season irrespective of the data source. Among the 283 

climate datasets, Prism was found to have the lowest MAPE in Tmax and Tmin with an average 284 

growing season MAPE of 17.31% and 32.16%, respectively, followed by Daymet with 17.75% and 285 

38.86% MAPE for Tmax and Tmin, respectively (Table 3), but there is no significant difference 286 

between the two datasets. The NLDAS’s Tmax and Tmin, on average, have 18.93% and 76.59% 287 

MAPE, respectively, while NARR variables have MAPE of 18.53% and 75.01%, respectively (Table 288 
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3). These trends in MAPE were consistent across the study sites indicating the NLDAS and NARR 289 

have higher uncertainty in temperature variables compared to Prism and Daymet variables (Figure 3). 290 

Prism does not provide shortwave radiation; therefore, biases and MAPE were reported for other data 291 

sources (i.e. Daymet, NARR and NLDAS). All data sources were shown to overestimate shortwave 292 

radiation with bias ranging from 0.44 to 14.89 MJ m-2. Similar to the temperature variables, MAPE 293 

in shortwave radiation was found to be higher at the beginning and end of the growing season, more 294 

so at the end of the season, irrespective of the data source, with values ranging from 19.89 to 295 

354.12%. At all locations, patterns in average growing season MAPE in shortwave radiation are 296 

similar to NARR, exhibiting the highest MAPE (average over locations =146.28%), followed by 297 

NLDAS (average over locations=107.38%) and Daymet (average over locations=107.27%) (Table 298 

3). Unlike temperature and radiation variables, the daily uncertainty in precipitation data did not 299 

exhibit any specific behavior and showed inconsistency across the growing season. Bias in 300 

precipitation is either negative or positive with values spreading from -8.54 to 7.20 mm depending on 301 

the data source and date of the growing season. Further, all data sources have a high level of 302 

uncertainty in precipitation as shown by MAPE ranging 2.5 to 253.89%. The Daymet and Prism data 303 

were found to have relatively less uncertainty with growing season average MAPE values of 304 

107.51% and 117.87%, respectively, compared to NLDAS (MAPE=157.13%) and NARR 305 

(MAPE=180.08%) (Table 3). Results showed that all data sources underestimated relative humidity 306 

for most of the days with bias values ranging from -21.13 to 4.23.  Among all weather variables, 307 

relative humidity was shown to have the lowest uncertainty as indicated by MAPE values ranging 308 

between 6.88 to 30.30%. The uncertainty in relative humidity was found to be insignificant among 309 

the data sources. The average growing season MAPE values for NLDAS, NARR, Daymet and Prism 310 

are 14.22%, 15.71%, 16.06% and 14.46%, respectively (Table 3). 311 

3.2 Impact of gridded datasets on NEE estimates 312 

Figure 4 shows simulated daily NEE for corn and soybeans averaged over the years and 313 

grouped by irrigated and non-irrigated sites. Overall, daily trends in NEE estimated using gridded 314 

datasets were consistent with fluxes simulated using observed climate at flux tower sites. All flux 315 

estimates, irrespective of gridded data source, crop type and irrigation management, showed strong 316 

net carbon gain during the growing season. However, the results showed that the level of agreement 317 

among the estimated fluxes varies with the climate data source and irrigation management. The 318 

Daymet and Prism-based estimates showed better alignment with reference flux estimates compared 319 

to that of NLDAS and NARR. Further, simulated fluxes at irrigated sites, irrespective of climate data 320 
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source and crop type, were shown to deviate more from reference fluxes relative to the fluxes at non-321 

irrigated sites.  322 

The bias and MAPE in the daily NEE averaged over the years and grouped by irrigation 323 

management are presented in Figure 5. Bias values in NEE range from -96.01 kg ha-1 day-1 to 104.11 324 

kg ha-1 day-1 while MAPE in estimated fluxes spans from 0.01% to 391.09%. The magnitude of bias 325 

and MAPE depends on the source of the gridded data, day of the growing season, irrigation 326 

management and crop type. Bias in simulated fluxes early in the growing season was observed to be 327 

negative, indicating either overestimation of carbon gain or underestimation of carbon loss, while 328 

later in the growing season, bias values were positive, suggesting either underestimation of carbon 329 

gain or overestimation of carbon loss. Similar to the observed trends in the temperature and 330 

shortwave radiation data, MAPE values in the estimated fluxes were higher at the beginning and end 331 

of the growing season. Daymet based fluxes were found to have the lowest average growing season 332 

uncertainty with the lowest average MAPE and RMSE values of 22.53% and 10.82 kg ha-1 day-1, 333 

respectively followed by Prism (MAPE=23.45% and RMSE=13.59 kg ha-1 day-1), NLDAS 334 

(MAPE=62.52% and RMSE=24.47 kg ha-1 day-1) and NARR (MAPE=66.18% and RMSE=25.02 kg 335 

ha-1 day-1) (Table 4). Irrespective of the source of the climate data and crop type, simulated fluxes at 336 

irrigated sites showed higher uncertainty indicated by higher average growing season MAPE 337 

(53.15%) and RMSE values (23.98 kg ha-1 day-1) compared to that of the simulated NEE at non-338 

irrigated sites (MAPE=34.19% and RMSE=13.07 kg ha-1 day-1). The MAPE values for corn NEE 339 

were slightly less than soybeans NEE values. However, RMSE values for soybeans were lower 340 

compared to that of corn. This could be attributed to higher values of NEE for corn resulting in 341 

higher RMSE values, which may not necessarily indicate higher uncertainty. 342 

3.3 Influence of individual climate variables on NEE estimates 343 

The MAPE values in average NEE estimates that resulted from errors in the individual 344 

climate variables of different gridded datasets were grouped by irrigation management and crop type 345 

(Figure 6).  These results suggest that dominant climate factors influencing uncertainty in NEE vary 346 

with irrigation management irrespective of crop type and the source of gridded data. Under non-347 

irrigation management, precipitation was found to be the most influential factor followed resulting in 348 

higher uncertainty in NEE relative to other factors. The MAPE values in simulated NEE under non-349 

irrigation management range from 76.53% to 185.57% due to bias in precipitation, while bias in 350 

shortwave radiation resulted in MAPE values ranging from 72.92% to 119.11% depending on the 351 

source of climate data. Bias in other variables was found to induce less than 50% MAPE in simulated 352 

NEE. Uncertainty patterns in NEE estimates of different climate data sources were similar to the 353 

https://doi.org/10.5194/bg-2020-129
Preprint. Discussion started: 4 June 2020
c© Author(s) 2020. CC BY 4.0 License.



12 
 

findings in section 2.1. The Daymet and Prism climate variables performed better compared to 354 

NLDAS and NARR variables in terms of accuracy in estimated fluxes. Influence of precipitation 355 

biases appears to be less in soybeans simulations than in corn NEE estimates indicated by less MAPE 356 

values for soybeans fluxes. In contrast to the results observed under non-irrigated management, 357 

precipitation was shown to be the least influential factor under irrigation management, and shortwave 358 

radiation and temperature variables were dominant factors inducing higher uncertainty in NEE. The 359 

shortwave radiation bias resulted in MAPE values ranging from 90.79% to 148.36% in estimated 360 

NEE under irrigation management while bias in temperature variables induced MAPE values ranging 361 

from 28.71% to 91.90%. 362 

4. Discussion 363 

Given the high dependency of agroecosystem models on gridded climate datasets for 364 

simulating carbon fluxes, in this study four commonly used gridded data sets in the U.S were 365 

evaluated to understand uncertainty in their daily weather variables using observed meteorological 366 

data at four flux towers located on agricultural sites in the U.S Midwest region. In addition, we 367 

further studied the impact of uncertainties in climate datasets on estimated NEE.  368 

4.1 Uncertainties in climate datasets 369 

Our analysis suggests that all gridded climate datasets have some degree of uncertainty in 370 

their daily weather variables. The degree of uncertainty varies largely among the datasets depending 371 

on numerous factors (e.g., quality of inputs used in the climate and geo-statistical models, scale of 372 

the models, representation of land-atmosphere interactions) (Newman et al., 2015; Strachan and 373 

Daly, 2017). Similar to earlier findings (Bandaru et al., 2017), daily weather variables of Daymet and 374 

Prism datasets were shown to have less uncertainty as indicated by MAPE values compared to that of 375 

NLDAS and NARR datasets. The better performance of Daymet and Prism datasets could be mainly 376 

attributed to the use of meteorological station observations as part of model input and a finer model 377 

scale. In contrast, the NLDAS and NARR data sets primarily rely on atmospheric models run at 378 

coarse spatial scale, which often fails to capture local fine scale land use, or topographic and 379 

atmospheric interactions. Among Daymet and Prism, the Daymet daily weather variables exhibited 380 

less uncertainty, and this finding is in contrast to the earlier study where Prism variables showed 381 

higher accuracy when monthly weather variables were compared (Bandaru et al., 2017). This could 382 

be attributed to differences in topographic, physical, and atmospheric factors affecting daily and 383 

monthly weather variables and model scale. The Daymet model apparently has a better 384 

representation of daily local land-atmosphere interactions compared to the Prism model. The Prism 385 

uses historical climatology to establish local relationships whereas Daymet develops independent 386 
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regression of weather variables against elevation (Thornton et al., 1997; Daly et al., 2008; Mourtzinis 387 

et al., 2018). Further, the use of finer resolution elevation maps as input in the Daymet model also 388 

contribute to superior accuracy (Ruiz-Arias et al., 2009; Bishop and Beier, 2013). Previous studies 389 

noted that a change in the model scale to a coarser spatial scale led to greater uncertainty in the 390 

output for interpolation models (Bishop & Beier, 2013).  391 

Irrespective of the dataset, temperature and shortwave radiation variables exhibited a high 392 

level of uncertainty during the beginning and end of the growing season which represent early spring 393 

and late fall, respectively. The high uncertainty during early spring and late fall could be due to many 394 

factors. During winter months, seasonal variance in temperature and radiation is high due to constant 395 

strife between subtropical warm air and polar cold air interacting each other. Also, the storm track is 396 

more powerful because of a much stronger equator-to-pole temperature gradient. These factors could 397 

create a lower signal-to-noise ratio in reanalysis datasets due to model scale and an inadequate 398 

representation of these complex processes. Additionally, the cloud cover mask used in the models 399 

may have a lot of uncertainty during winter months affecting simulation of cloud radiative effects 400 

leading to errors in shortwave radiation (Zhang et al., 2016). Interpolation models used in the 401 

Daymet and Prism primarily rely on the relationship between climate and topographic features and 402 

do not have representation for complex climate dynamics that exist during winter months. Also 403 

measurement errors were found to be high during the winter months which could introduce 404 

uncertainty in interpolated datasets. 405 

4.1 Trends and uncertainties in NEE estimates 406 

Croplands are generally regarded as a carbon sink in all growing seasons since the carbon 407 

assimilation rate is higher than the total respiration rate during most of the growing season. At the 408 

start of the growing season, NEE tends to be positive indicating carbon loss due to negligible rates of 409 

photosynthesis and relatively higher respiration rates but as the growing season progresses, the 410 

carbon assimilation rate increases and NEE becomes negative, making croplands act as a carbon 411 

sink. NEE increases until the onset of senescence (Hernandez-Ramirez et al., 2011; Gilmanov et al., 412 

2013) and tends to become positive again at the end of the growing season due to the decline in the 413 

rate of carbon sequestration (Gilmanov et al., 2013). In both corn and soybeans NEE estimates, this 414 

pattern was evident even though there were differences in magnitude of daily NEE estimates 415 

depending on the climate data sources, crop type, growth stage and irrigation management. Corn has 416 

a higher net CO2 uptake potential compared to that of soybeans as corn is a C4 plant, which has a 417 

more efficient in CO2 sequestration mechanism. Earlier studies found that corn’s peak CO2 uptake 418 

rate is approximately 1.7 times higher than that of soybeans. Further, corn has ~15 days more CO2 419 
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sink periods (Dold et al., 2019). Irrigated croplands generally have higher net carbon gain compared 420 

to non-irrigated croplands. Suyker & Verma (2012) reported approximately 20% higher net carbon 421 

gain in irrigated corn systems compared to the gain under non-irrigated corn. These trends in daily 422 

NEE differences between corn and soybeans and irrigated and non-irrigated management found in 423 

our NEE estimates, which suggests that the model structure is adequate to capture seasonal complex 424 

dynamics in carbon exchange under various cropping systems and management practices.  425 

Even though NEE estimates captured general seasonal trends, a considerable amount of 426 

uncertainty was introduced by climate datasets. The differences in uncertainty in the NEE estimates 427 

match with bias patterns in climate datasets. Lower biases in Daymet and Prism climate variables 428 

yielded better NEE estimates with less uncertainty compared to the estimates from NLDAS and 429 

NARR datasets. Similar findings were reported in the earlier studies, which found that interpolated 430 

climate datasets produced based on observational data are characterized by less bias, and result in 431 

flux estimates with better accuracy (Poulter et al., 2011).  432 

Our results indicated that biases in individual climate variables won't translate linearly to the 433 

uncertainties in NEE estimates, even though biases in certain climate variables have strong impact 434 

under specific conditions. For instance, irrespective of the source of climate data, shortwave radiation 435 

and maximum temperature were overestimated for all days during the growing season while 436 

precipitation exhibited random seasonal bias. However, the biases in daily NEE did not reflect a bias 437 

pattern in any of these variables. Similar trends were found in the earlier studies on forest fluxes 438 

(Barman et al., 2014). The processes determining various carbon components (e.g. net primary 439 

production and soil respiration) are influenced by various individual climate factors and their 440 

interactions among themselves and with other factors (e.g., soil characteristics) (Schelenkar and 441 

roberts, 2009; Hernandez-Ramirez et al., 2011). Their relationship is generally non-linear. For 442 

instance, in widely distant vapor pressure deficit conditions at different locations, similar temperature 443 

and moisture conditions can lead to entirely different carbon uptake responses (Siebert et al., 2017). 444 

Further, water and heat stress during the reproductive stage impacts the CO2 assimilation rate 445 

significantly higher than stress during some vegetative growth stages. Therefore, bias in NEE is a 446 

cumulative effect of biases in climate variables and their interactions with other factors such as crop 447 

type, phenology, soil and management practices.  448 

Results suggest that NEE are more sensitive to the biases in precipitation and shortwave 449 

radiation compared to other climate variables under non-irrigated conditions, whereas under irrigated 450 

conditions, biases in shortwave radiation and temperature variables impact the NEE uncertainty 451 

maximum. The temperature and precipitation variables are used in models to determine plant growth 452 
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limiting factors (i.e. heat stress, water stress, and number of frost days) influencing net primary 453 

production. Additionally, these variables influence other plant and soil processes (e.g., soil 454 

respiration, evapotranspiration). Under non-irrigated conditions, precipitation becomes the most 455 

limiting factor, particularly in sub-tropical and temperate climatic conditions such as in our study 456 

region (Kukal & Irmak, 2018). Further, daily biomass (primary carbon input) simulated by models is 457 

highly sensitive to the duration and timing of dry/wet spells (Dubrovsk´y et al., 2000), which also 458 

impacts respiration rates through affecting litter decomposition rates. Therefore, uncertainty in the 459 

precipitation amounts, especially during critical growth stages, has a substantial impact on the NEE 460 

estimates (Irmak et al., 2000). Our results showed that precipitation biases are characterized by a 461 

random pattern with both under- and over-estimation of precipitation amounts throughout the 462 

growing season which substantially impact simulation of duration and timing of wet/dry spells and 463 

lead to high uncertainty in NEE.  Under irrigation management, precipitation is not a limiting factor. 464 

So, heat stress acts as a primary growth limiting factor and leads to a pronounced impact on plant 465 

growth and carbon exchange (Sippel, 2018). Uncertainty in the temperature variables also influence 466 

growing season length and crop maturity period since it influences crop development (Warrington 467 

and Kanemasu, 1983; Ritichi et al., 1998). Shortwave radiation was found to be a major climatic 468 

variable in models affecting NEE under both non-irrigated and irrigated conditions. Shortwave 469 

radiation determines total potential biomass (a primary carbon input), which contributes to a major 470 

fraction in the total NEE values. Therefore, a small degree of uncertainty in shortwave radiation may 471 

result in high level of uncertainty in total net primary production.  472 

Our results showed that NEE uncertainties are larger under irrigated conditions compared to 473 

those under non-irrigated conditions, particularly towards the end of the growing season. Relative to 474 

the reference NEE at irrigated sites, NEE estimates based on gridded datasets, particularly NARR 475 

and NLDAS were found to reach peak earlier (Figure 2) and showed large deviation in the daily NEE 476 

trends after the peak. This could be because model simulated earlier development of the crop due to 477 

uncertainties in short wave radiation and temperature variables which primarily influence crop 478 

growth and development patterns under irrigated conditions.  479 

5. Conclusions 480 

This study demonstrates that commonly used high resolution gridded climate datasets, 481 

irrespective of data source, are characterized with some degree of uncertainty and these uncertainties 482 

have a large influence on simulated NEE. However, the level of uncertainty in NEE estimates vary 483 

with gridded data source and management practices. The gridded climate datasets produced based on 484 

interpolation techniques (i.e. Daymet and Prism) were shown to have less uncertainties and resulted 485 
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in better NEE estimates with relatively higher accuracy. Simulations of NEE under irrigation 486 

management were shown to be more sensitive to errors in climate data compared to fluxes under 487 

non-irrigation. Further, this study highlights that NEE respond differently to individual climate 488 

variables, and responses vary with management practices. Under irrigation management, NEE are 489 

more sensitive to shortwave radiation and temperature, and biases in these variables substantially 490 

influence uncertainty in NEE estimates. Conversely, under non-irrigation management, precipitation 491 

is a dominant climate factor influencing uncertainty in simulated NEE at the most.   492 

Considering the biases in gridded data sources and their impact on NEE estimates, it is 493 

important that careful consideration is taken when selecting climate data so that uncertainties in 494 

simulated NEE can be mitigated. Also, when reporting NEE or other carbon elements (e.g. NPP) or 495 

used in other models (e.g. integrated assessment models), uncertainties should be accounted. Further, 496 

alternative approaches such as integration of remote sensing data products should be considered to 497 

reduce the model’s dependency on climate datasets. Advances in remote sensing facilitate the 498 

development of crop type land surface products (i.e. leaf area index (LAI), evapotranspiration and 499 

soil moisture), which are determined in the models as intermediate state variables using climate data. 500 

These variables play an important role in determining NEE by influencing various processes (e.g. 501 

CO2 uptake rate and soil respiration). Forcing agroecosystem models to use remote sensing retrieved 502 

crop variables instead of estimating using climate variables is expected to decrease the uncertainty in 503 

the NEE estimates. 504 
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 702 
 703 

Fig.1. Comparison of simulated NEE estimated with best calibration settings, with measured 704 

fluxes at four Ameriflux tower sites located in the U.S Midwest.  705 

 706 

 707 

 708 

 709 

 710 

 711 

 712 

 713 

 714 

 715 

 716 

 717 

 718 

 719 

 720 

 721 

 722 

 723 

https://doi.org/10.5194/bg-2020-129
Preprint. Discussion started: 4 June 2020
c© Author(s) 2020. CC BY 4.0 License.



22 
 

 724 

 725 
 726 

 727 
 728 

 729 

https://doi.org/10.5194/bg-2020-129
Preprint. Discussion started: 4 June 2020
c© Author(s) 2020. CC BY 4.0 License.



23 
 

 730 

 731 

Fig.2. Comparison of bias and Mean Absolute Percentage Error (MAPE) in weather variables over 732 

the growing season (April–October) from gridded climate datasets. Bias and MAPE values shown 733 

in this figure calculated using equation 1&2.  734 
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 741 
 742 

Fig.3. Comparison of Mean Absolute Percentage Error (MAPE) (averaged over the growing 743 

season and years) in weather variables of gridded datasets for different flux tower locations. 744 
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 762 
 763 

 764 

Fig.4. Average daily Net Ecosystem Exchange (NEE) estimates (averaged over sites and years) 765 

for irrigated corn and soybeans systems, simulated using various gridded datasets and measured 766 

weather data at flux tower sites. 767 
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 776 

 777 

 778 

 779 

Fig.5. Comparison of bias and Mean Absolute Percentage Error (MAPE) in daily Net Ecosystem 780 

Exchange (NEE) estimates for irrigated and non-irrigated corn and soybeans, simulated using 781 

gridded climate datasets.  782 
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 785 

Fig.6. Mean Absolute Percentage Error (MAPE) (averaged over growing season and years) in Net 786 

Ecosystem Exchanges (NEE) estimates for irrigated and non-irrigated corn and soybeans from 16 787 

simulations conducted to understand the impact of individual weather variables. For each 788 

simulation, one weather variable from a one of the gridded datasets was used along the rest of the 789 

variables from site weather data.  790 

 791 
 792 

 793 

 794 

 795 

 796 

 797 

 798 

 799 

 800 

 801 

 802 

 803 

 804 

 805 

 806 

 807 

 808 

 809 

 810 

 811 

 812 

 813 

 814 

 815 

 816 

 817 

https://doi.org/10.5194/bg-2020-129
Preprint. Discussion started: 4 June 2020
c© Author(s) 2020. CC BY 4.0 License.



28 
 

Table 1. Details of flux tower sites providing reference observational climate and CO2 flux data.  818 

 819 

 820 

 821 

Table 2. Details of gridded weather datasets evaluated in this study. 822 

 823 

Gridded 

data 

Spatial  

resolution 

Temporal  

resolution 

Data length Download Source  

NARR 32 km 3-hourly 1979-present ftp://ftp.cdc.noaa.gov/Datasets/NARR/  

NLDAS 12 km 1-hourly 1979-present http://disc.sci.gsfc.nasa.gov/hydrology 

Prism 800 m daily 1981-present http://www.prism.oregonstate.edu/ 

Daymet 1 km daily 1980-present https://Daymet.ornl.gov/ 

 824 

Table 3. MAPE (%) of climate variables (averaged over growing season and years) of various 825 

climate datasets. 826 

 827 

 Max. Temperature Min. Temperature Shortwave radiation Precipitation Relative humidity 

NLDAS 18.93 

18.53 

17.75 

17.31 

76.59 

75.01 

38.86 

32.16 

107.38 

146.28 

107.27 

- 

157.13 

180.08 

107.51 

117.87 

14.22 

15.71 

16.06 

14.46 

NARR 

Daymet 

Prism 

 828 

Table 4. MAPE and RMSE of Net Ecosystem Exchange (NEE) estimates (averaged over 829 

growing season and years) for irrigated and non-irrigated corn and soybeans. 830 

 831 

 Non-Irrigated Corn Irrigated Corn Non-Irrigated Soybeans Irrigated Soybeans 

MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE 

NLDAS 41.36 19.76 

25.02 

11.54 

13.89 

76.39 40.46 

37.89 

15.00 

19.99 

51.96 10.61 

12.94 

4.66 

6.12 

80.37 27.06 

24.88 

12.11 

14.43 

NARR 49.83 77.96 57.93 79.04 

Daymet 18.91 20.77 16.85 33.60 

Prism 21.89 22.97 14.83 34.12 

 832 

 833 

Station Abbrev. Latitude Longitude Crop rotation data length (y) Elevation (m) 

Mead Irrigated, NE 

Mead Irrigated, NE 

Ne1 

Ne2 

41.16 

41.16 

-96.47 

-96.47 

Continuous Corn 

Corn-Soybeans 

2001 to 2012 

2001 to 2012 

361 

362 
Mead Non-irrigated, NE Ne3 41.18 -96.43 Corn-Soybeans 2001 to 2012 363 
Bondville, IL Bo1 40.00 -88.29 Corn-Soybeans 1996 to 2007 219 
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