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Abstract. The CloudRoots field experiment was designed to obtain a comprehensive observational data set that includes 

soil, plant and atmospheric variables to investigate the interaction between a heterogeneous land surface and its overlying 20 

atmospheric boundary layer at the sub-hourly and sub–kilometre scale. Our findings demonstrate the need to include 

measurements at leaf level to better understand the relations between stomatal aperture and evapotranspiration (ET) during 

the growing season at the diurnal scale. Based on these observations, we obtain accurate parameters for the mechanistic 

representation of photosynthesis and stomatal aperture. Once the new parameters are implemented, the model reproduces the 

stomatal leaf conductance and the leaf-level photosynthesis satisfactorily.  At the canopy scale, we find a consistent diurnal 25 

pattern on the contributions of plant transpiration and soil evaporation using different measurement techniques. From the 

high frequency and vertical resolution of state variables and carbon dioxide (CO2) measurements, we infer a profile of the 

CO2 assimilation in the canopy with non-linear variations with height.  Observations taken with a laser scintillometer allow 

us to quantify the non-steadiness of the surface turbulent fluxes during the rapid changes driven by perturbation of 

photosynthetically active radiation by cloud flecks. More specifically, we find two-minute delays between the cloud 30 

radiation perturbation and ET. To study the relevance of advection and surface heterogeneity for the land-atmosphere 

interaction, we employ a coupled surface-atmospheric conceptual model that integrates the surface and upper-air 

observations made at different scales from leaf to the landscape. At the landscape scale, we calculate a composite sensible 

heat flux, by weighting measured fluxes with two different land-use categories, which is consistent with the diurnal 

evolution of the boundary-layer depth. Using sun-induced fluorescence measurements, we also quantify the spatial 35 

variability of ET and find large variations at the sub-kilometre scale around the CloudRoots site. Our study shows that 
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throughout the entire growing season, the wide variations in stomatal opening and photosynthesis lead to large diurnal 

variations of plant transpiration at the leaf, plant, canopy and landscape scales. Integrating different advanced instrumental 

techniques with modelling also enable us to determine variations of ET that depend on the scale where the measurement 

were taken and on the plant growing stage. 

1. Introduction 5 

Evapotranspiration (ET), the net exchange of water vapour between the land and the atmosphere, remains an elusive process 

to be measured, quantified and represented in models because of it depends on the interaction of multiple processes that act 

in a wide range of scales (Katul et al., 2012). ET is a key variable in the exchange of heat, moisture and carbon dioxide at the 

surface and it strongly depends on how radiation and energy are partitioned into latent and sensible heat (Moene and Dam, 

2014; Monson and Baldocchi, 2014). The amounts of direct and diffuse radiation reaching the leaves depend on the transfer 10 

of radiation that is strongly perturbed by clouds and aerosols, and on its subsequent penetration into the canopy. Triggered 

by ambient light conditions, the stomatal responses coupled to the surface and boundary-layer dynamics is the main driver 

that regulates how the net available radiative energy is partitioned between the turbulent sensible and latent heat fluxes (van 

Heerwaarden and Teuling, 2014). However, due to the highly non-stationary nature of atmospheric radiation (van Kesteren, 

et al., 2013b) and turbulent nature of the meteorological fluctuations, we still lack a fundamental understanding of the two-15 

way feedback between stomatal control and cloud radiation perturbations across scales and land/atmosphere conditions 

(Katul et al., 2012; Sikma et al., 2018). 

The bi-directional link between surface processes and boundary layer clouds as described above is what we refer to as the 

CloudRoots concept, where boundary-layer dynamics and clouds are rooted in, or coupled to, the surface and vice-versa 

(Vilà-Guerau de Arellano et al, 2014). The degree of coupling depends on soil, plant and weather conditions characterized 20 

by the diurnal variability of wind, temperature and specific humidity (Sikma et al., 2018). To fully comprehend this system 

requires inclusion of all necessary parameters at the required spatial scales, from the size of the stomata (10 - 100μm) to the 

depth of the boundary layer and cloud top (~3 km), temporal scales from seconds to daily and seasonal cycles and across 

disciplines bringing together experts from ecophysiology to turbulence. This can only be obtained by integrating 

experimental and modelling efforts. Here we describe and show first results of the CloudRoots field experiment aimed at 25 

obtaining new understanding about the interaction between the soil, vegetation and the clear/cloudy boundary layers at these 

sub-hourly and sub-kilometre scales, i.e. on spatiotemporal scales smaller than the characteristic grid resolution scales of the 

weather (typical resolution ranging from 1 to 10 km) and climate (typical resolution ranging from 20 to 100 km) models. In 

that respect, CloudRoots field campaign continues the tradition of experiments that connect land surface properties with 

boundary-layer dynamics, but now using advanced instrumental techniques and modelling the coupling between the essential 30 

processes. Two examples of such previous campaigns are the First ISLSCP Field Experiment (FIFE) (Hall et al., 1989) and 

the Boreal Ecosystem-Atmosphere Study (BOREAS) (Sellers et al., 1995). 
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Thanks to their high-quality routine measurement program (Franz et al., 2018; Rebmann et al., 2018), ICOS sites lend 

themselves as anchors for additional experiments. Here, we describe the CloudRoots campaign near the agricultural site 

Selhausen (ICOS site DE-RuS) and the Jülich Observatory for Cloud Evolution – Core Facility (JOYCE, http://joyce.cloud) 

in Germany during spring 2018 (Löhnert et al., 2015). In order to quantify all the necessary scales of interest - leaf, canopy 

and landscape-, we complemented the existing radiation, flux and soil measurements of the ICOS site by scintillometry, 5 

microlysimeters, sap-flow and leaf-level flux measurements, quasi-instantaneous vertical profiles and spectroscopic 

measurements of vegetation indices and sun-induced fluorescence (SIF). Scintillometers provided minute-scale turbulent 

fluxes enabling us to connect stomatal responses to the energy, moisture and CO2 fluxes at this timescale. Microlysimeters, 

soil flux chambers, sap-flow, leaf-level chambers and canopy-resolving profile all have the ability to distinguish vegetation 

from soil CO2 and water vapour (H2O) fluxes in contrast to the eddy-covariance technique that provided net fluxes from the 10 

two sources combined. The remote sensing measurements of boundary-layer dynamic evolution and cloud properties made 

at JOYCE provided evidence on diurnal variations of the boundary-layer depth, the role of entrainment and cloud diurnal 

variability. A key aspect of the research strategy of CloudRoots is the integration of all these measurements in a land-

atmosphere conceptual model CLASS (Vilà-Guerau de Arellano et al., 2015). This model has been specially developed to 

support the interpretation of measurements at the sub-hourly scales (Vilà-Guerau de Arellano et al., 2019).  15 

To this end, we study the following five facets of the diurnal interactions between the land and the atmosphere: (i) 

observational validation at leaf level of the mechanistic model representation of the stomatal aperture and photosynthesis, (ii) 

the diurnal variability of H2O-CO2 flux partition due to the soil and plant contributions at the canopy level, (iii) the no-

steadiness of these fluxes due to the influence of clouds, (iv) the spatial heterogeneity of ET inferred from the SIF 

measurements and (v) the integration of the observations in the conceptual model CLASS to quantify the influence of of land 20 

-surface heterogeneity and advection. We finally obtain a daily estimation of ET and discussed differences with respect to 

the observational or modelling techniques. 

The paper is organized as follows. In Section 2 we give a detailed overview of the field experiment with special emphasis on 

the instrumentation used that serve the overall goals of our CloudRoots concept. The results Section 3 is organized along the 

five topics outlined above. First, at leaf level, we validate a photosynthesis-conductance mechanistic model that is commonly 25 

used in large-eddy simulations (Pedruzo-Bagazgoitia et al., 2017; Sikma et al., 2018) and the global numerical model 

prediction system ECMWF-IFS (Boussetta et al., 2013). This allows us to assess the need to revisit currently used constants 

in the mechanistic model representing photosynthesis. This part is completed by comparing leaf transpiration rate with tiller-

level measurements of sap flow at different stages of the growing season. Second, and in order to scale up to the canopy 

level, we analyse the soil and plant partitioning of the net ET and net ecosystem exchange (NEE) based on the inversion of 30 

observed high-resolution vertical concentration profiles (Warland and Thurtell, 2000; Santos et al., 2011). Third, in 

analysing the impact of clouds on ET, we measure the potential effectiveness of diffuse radiation in enhancing ET and NEE 

(Kanniah et al., 2012). Extending previous work by van Kesteren et al. (2013b), we quantify the time-lag between 

fluctuations in incoming shortwave radiation and ET in the field. These real-world measurements are an essential addition to 

http://joyce.cloud/
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time-lag of plant responses to radiation changes studied in laboratory experiments (Vico et al., 2011). Fourth, we infer the 

spatial variability of ET around the CloudRoots site using SIF remote-sensing observations. Fifth, all these observations are 

then integrated in several numerical experiments made by CLASS with special emphasize on the treatment and role of how 

to include surface heterogeneity and heat/moisture advection to improve the interpretation of the observations. Finally, in the 

discussion Section 4 we bring together and discuss all CloudRoots methodologies by comparing their daily ET estimates. 5 

Conclusions are given in Section 5. 

2. Description of the Cloud Roots field experiment and modelling effort 

2.1 Site description 

The CloudRoots field campaign was carried out at the Terrestrial Environmental Observatory (TERENO) Selhausen, which 

is located in the southern part of the Lower Rhine Embayment in Western Germany (50°52'09''N, 6°27'01''E, 104.5 m 10 

altitude) in a region largely dominated by agriculture (Fig. 1). In 2011, the site was equipped with micrometeorological 

measurement devices for long-term monitoring of energy and carbon exchange. Since 2015, the station has been extended in 

accordance with ICOS standards for Level 1 sites (ICOS site code DE-RuS) (Ney et al., 2019). For this campaign, a further 

IRGASON eddy-covariance (EC) system with an open path gas analyser (see Sect. 3.4) was placed on the test field and used 

for additional flux measurements presented here. 15 

The test field covered 9.8 ha and was surrounded by other croplands (Ney and Graf, 2018). As Fig. 1 shows, these cultivated 

areas comprise mainly winter wheat, winter barley, sugar beet, rapeseed, maize, potatoes and peas, whereby the various field 

sizes and locations of crops has led to small-scale heterogeneity in the vegetation cover. An agricultural road, mainly used by 

farm machinery, passes by the northern edge of the field. The next inhabited settlement is located 500 m to the west (Fig. 

1a). There are two lignite open-cast mines in the wider surrounding of the study site, located 6 km northeast (extension of 20 

4400 ha with a maximum depth of 470 m b. g. l.) and 6 km west (extension of 1400 ha with a maximum depth of 200 m b. g. 

l.). In general, the land surface at the study site is flat and has a slope less than 4°. A loess layer with a thickness of about 1 m 

covers Quaternary sediments, which were mainly built-up from fluvial deposits of the Rur river system. The overlying soil is 

an Orthic Luvisol according to the USDA classification (IUSS Working Group WRB, 2006), whose texture is silt loam with 

a mixture of 14% clay, 73% silt and 13% sand (Schmidt et al., 2012). 25 

The local climate is classified as temperate maritime with an annual mean air temperature of 10.3°C and an annual mean 

precipitation of 718 mm (reference period 1981-2010, data taken from the DWD climate station of the Forschungszentrum 

Jülich 5.3 km distant from the test site). The observation period from beginning of May until end of June 2018 was 

characterized by a 2.9°C higher mean air temperature (17.5°C) and 46% less precipitation in comparison to the long-term 

average. Fig. 1b shows the heterogeneity quantified by the sensible heat fluxes measured at the CloudRoots site and a bare 30 

soil field nearby. In consequence, and as shown by Fig 1c, in CloudRoots we aim to integrate horizontal and vertical scales 

in the analysis of ET and its relation to boundary-layer dynamics. 
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The field campaign covered the main growing phases (booting, heading and maturity stage) of winter wheat. During the 

observation period, we did three intensive observation periods (IOP). During these IOPs the following complementary 

instruments and measurements were added: microlysimeters, leaf-level measurements, SIF measurements on canopy and 

regional scale, as well as vertical profiles of state variables and CO2 within and above the canopy were performed. Fig. 2 

shows a timeline of the deployment of the campaign-specific measurement setup (see Sect. 3.4) that includes the IOPs on 7th 5 

May (IOP 1), 15th (IOP 2) and 28th June 2018 (IOP 3). The main meteorological and biometric conditions are summarized in 

Table 1. The test field was cultivated with a crop rotation cycle typical of the region (Ney et al., 2019). The rotation prior to 

the observation period was beet/potatoes/winter wheat (catch-crop) and sugar beet. Residues of the harvest of sugar beet 

were left on the site and ploughed in before the cultivation cycle started with the sowing of winter wheat (Triticum aestivum 

L.; variety Premio) in October 2017. The field was fertilised with mineral nitrogen (N) once in March, April and May 2018 10 

(81.6, 39.2 and 50 kg N ha-1, respectively). The wheat was harvested on 17 July 2018 with a yield of 92 dt ha-1. A detailed 

overview of the field management practices before, during and after the campaign is given in the Appendix (Table A1). 

2.2 Weather and crop description during the IOPs 

The weather situation during all three IOPs was mainly characterized by an anticyclonic pressure pattern over Central 

Europe (IOP 1 and IOP 2), extending up to Northern Europe during IOP 3, which led to high 2 m-temperatures up to 24 to 15 

26°C during IOP 1 and IOP 2, and 28°C during IOP 3 (Table 1). Cloudiness and temperature-inversion heights at the top of 

the atmospheric boundary layer were different. While weak subsidence motions during IOP 1 led to a slightly rising 

temperature-inversion layer between 1200 to 2000 m abobe ground level (a. g. l.) with clear conditions during the whole 

period (mean daytime global radiation S↓ of 514 W m-2), a weak cold front passed the measuring site from the northwest in 

the early morning of IOP 2 (mean daytime S↓ of 311 W m-2). Diurnal heating caused the replacement of a layer of 20 

stratocumulus at a height of 1800 m a. g. l., in the morning, followed by the appearance of scattered towering cumulus 

clouds. Light showers occurred only in the vicinity of the site. During IOP 3, a few shallow cumulus and cirrus clouds 

appeared, despite the existence of a small upper-air low which passed the area around the edge of a larger cut-off, although it 

was located above South-Eastern Europe. The mixed boundary layer was topped at a height of around 1700 m a. g. l.  

The persistent high-pressure weather conditions resulted in a drought during the entire observation period. Ongoing dryness 25 

led to a reduction in the soil water content at 20 cm depth (Table 1) from 27 vol.% during IOP 1 to 15 vol.% at IOP 3. 

Maturity occurred 14 days earlier than in previous years. The leaf area index (LAI) ranged from 4.5 (green growing stage) 

m2 m-2 in IOP 1 to 5.5 m2m-2 IOP 2 (green/yellow ripening stage). No changes in LAI were observed between IOP 2 and IOP 

3 (yellow/senescence stage). 

2.3 Instrument description 30 

Table 2 summarizes all the variables measured and modelled during CloudRoots, together with specific nomenclature and 

information on units and scales. 
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2.3.1 Microlysimeters 

For direct measurements of soil evaporation (Elys), four microlysimeters were installed at a number of locations around the 

EC-station (one in each cardinal direction) at the beginning of every observation period. In order to obtain an undisturbed 

soil monolith for each microlysimeter, an SDR-35 polyvinyl chloride (PVC) collar with an inner diameter of 0.2 m, a wall 

thickness of 0.005 m, and a depth of 0.11 m was pushed carefully into the ground. Afterwards the collar including the soil 5 

column was retrieved, its outside was cleaned, and the bottom of each lysimeter was sealed with an acrylic glass disc, which 

prevented percolation and capillary rise from or into the microlysimeter. The microlysimeters were then weighed initially 

and returned to their original positions. We made sure that the lysimeters were levelled with the soil surface, their walls fully 

surrounded by soil, and that the crop was affected and destroyed as little as possible, so that the general conditions and 

characteristics of the field site could still be maintained (e.g., regarding heat flux, shading). All four microlysimeters were 10 

subsequently collected, cleaned, weighed and distributed again every sixty or ninety minutes. A scale with a precision of 0.1 

g (equivalent to 0.00318 mm evaporation) was used. The scale was enclosed in a box to avoid wind effects during the 

measurements. Finally, the measured weight differences were converted to W m-2 by means of the lysimeters surface area, 

the time periods between weighing and the latent heat of vaporization (Quade et al., 2019).  

2.3.2 Soil CO2 flux chambers 15 

Soil respiration (Rs) was observed with an automated soil CO2 gas flux system (Li-8100, Li-Cor Inc. Biosciences, Lincoln, 

Nebraska, USA), connected to four long-term soil flux chambers. The chambers were installed close to the EC-station (one 

in each cardinal direction) on top of PVC soil collars with a diameter of 0.2 m and a total height of 0.07 m, from which 0.05 

m was inserted into the soil. Each chamber was closed at thirty-minute intervals for 90 seconds during flux measurements, 

while CO2, water vapour concentrations and chamber headspace temperature were recorded at a sampling rate of 1 Hz. The 20 

CO2 concentration was standardized to dry air and a constant temperature, to eliminate effects of changes in air density and 

water vapour dilution during closure time. Rs was subsequently calculated by adjusting a linear regression fit to the final 60 

seconds of the measurement before reopening. 

2.3.3 Leaf-level measurements 

Leaf gas exchange was measured using a Li-Cor LI-6400XT portable photosynthesis system with a 6400-02B LED light 25 

source. Leaf-level measurements included instantaneous stomatal conductance to water vapour (gsw) and photosynthesis 

(Aleaf), maximum light-saturated photosynthesis (Amax), CO2-response curves and light-response curves. Measurements of gsw 

and Aleaf were performed during the three IOPs, starting at sunrise and ending when measurements of gsw indicated that 

stomata had nearly closed (gsw < 0.05 mol m-2 s-1). For measurements of gsw and Aleaf, tillers were picked randomly in the 

field and immediately mounted in the leaf chamber for measurements. Initial tests showed no difference in gsw between 30 

excised and attached tillers. Settings of leaf chamber photosynthetically active radiation (PAR) and CO2 followed the diurnal 
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variability measured in the field. For comparison with other observations, measurements of gsw and Aleaf were binned and 

averaged at thirty-minute intervals. Maximum light-saturated photosynthetic capacity (Amax) was measured during the three 

IOPs as well as on 8th May between 10:00 and 12:00 UTC. For measurements of Amax the light intensity (PAR) was set to 

1500 μmol m-2 s-1 and the leaf was equilibrated under a reference CO2 concentration of 450 μmol CO2 mol-1air. CO2 

response curves were measured during IOP 1 and IOP 3 prescribing CO2 concentrations in the following order: 450, 50, 100, 5 

150, 250, 350, 450, 600, 800, 1200 μmolCO2 mol-1air. All CO2-response curves were measured using a light intensity (PAR) 

of 1500 μmol m-2 s-1. Light-response curves were measured on IOP 1 only and used a reference CO2 concentration of 450 

μmolCO2 mol-1air. PAR values were changed in the following order: 0, 25, 50, 100, 200, 400, 800, 1200 1500 μmol m-2 s-1. 

The stomatal conductance to water vapour (gsw [mol m-2 s-1]) of the A-PAR curves in between 0-200 µmol m-2 s-1 for the 

three repetitive experiments within the PAR range were (average and standard (deviation in brackets): 0.49 (0.13), 10 

0.12(0.02) and 0.34(0.06). Leaves were allowed to equilibrate to leaf chamber conditions in terms of gas exchange 

(approximately one to two minutes), but not in terms of stomatal aperture. For all measurements, leaf chamber temperature 

was set between 20°C and 25°C. Relative humidity in the leaf chamber was set between 60% and 75%. Measurements of 

Amax, CO2-response curves and light-response curves were performed on attached tillers. 

2.3.4 Sap-flow 15 

Sap-flow in wheat tillers was measured with the heat-balance method (Sakuratani 1981; Baker and van Bavel, 1987). 

Twenty-four tillers were selected at random, diameters measured with an electronic calliper and SGA3-type sap-flow sensors 

installed at the lowest possible internodes following the procedure recommended by the manufacturer (Dynamax, 2007). 

Sensors were connected with electrically shielded wired to AM 16/32 multiplexers controlled and scanned by CR1000 data 

loggers (Campbell Scientific, Logan, Utah, USA). Energy supply to the stem heaters was carefully regulated to the highest 20 

permissible level in order to obtain a strong heat signal. We employed the dual voltage regulators (Dynamax AVRDC) 

which were parts of wired measurement, control and extension units assembled and tested by the heat-balance sensor 

manufacturer (Flow32 1K A and B models, Dynamax Inc., Houston, Texas USA) Data were processed according to the 

calculation procedure of Dynamax (2007) with adaptations to wheat (Langensiepen et al. 2014) to obtain reliable data on the 

convective stem heat flow generated by sap flow. Here we take the evolution of the tiller densities from 480 tillers m-2 (IOP 25 

1 and IOP 2) to 370 tillers m-2 (IOP 3) into account. 

2.3.5 Profiling-elevator 

Vertical profiles H2O and CO2 expressed as mole fractions χH2O and χCO2 (mole of substance per mole of moist air), 

temperature (Tair,p) and wind speed (up) from the soil surface to the surface layer above the crop canopy were measured with 

a portable elevator system. The elevator moved continuously up and down the measuring sensors attached to an extension 30 

arm over a total profile height of 2 m. A sampling tube connected to a differential gas analyser (LI-7000, Li-Cor Inc. 

Biosciences, Lincoln, Nebraska, USA) collected χH2O and χCO2 at a frequency of 20 Hz. Tair,p and up were measured at the 
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same frequency by a ventilated fine wire thermocouple (FW3, Campbell Scientific, Logan, Utah, USA) and a hotwire 

anemometer (8455-075-1, TSI, Shoreview, Minnesota, USA). All measurements were duplicated as a continuous fixed-

height measurement at the top of the profile. During the data post-processing, the temporal and vertical resolution of the 

mean profiles was set to a time-averaging block of thirty minutes with a vertical resolution of 0.025 m. Time delays in each 

variable with respect to the position caused by response times of the sensors, electronic delays and the tube transport of the 5 

gas samples were adjusted by a hysteresis minimization algorithm. Detailed information on the profile measurement setup 

and the processing the data profile is given in Ney and Graf (2018). The measured concentration profiles were then used to 

determine the vertical source profiles of H2O and CO2, with the aim of providing an independent, non-invasive partitioning 

between aboveground net primary production (NPP) and Rs or evaporation (E) and transpiration (Tr). To estimate source 

profiles and flux partitioning we used an analytical dispersion Lagrangian technique introduced by Warland and Thurtell 10 

(2000) and further developed by Santos et al. (2011). Other than in the abovementioned literature, a simple optimization 

method (Nelder and Mead, 1965) was used to fit four parameters: soil source, canopy source and shape parameters p and q 

of a beta distribution which describes the vertical source distribution within the canopy. 

2.3.6 Scintillometer 

The receiver of a displaced-beam laser scintillometer, hereafter referred to as DBLS (SLS-20, Scintec, Rottenburg, 15 

Germany), was placed 9 m south-east from the EC station (Fig. 1). The scintillometer measurements height was 1.95 m a. g. 

l.. The path length towards the instrument transmitter was 86.8 m. It was pointed along North-West to South-East. The 

DBLS measures the scintillation intensity of two displaced laser-beams (wavelength of 670nm and separation distance of 

~2.7mm). The structure parameter of temperature (CT
2) and dissipation rate of turbulent kinetic energy (ε) are determined 

from the log-variance of one beam and log-covariance between the beams,. The general equation that links the scintillometer 20 

measurements to fluxes is given by:  

 

𝑭𝑭𝒙𝒙 = 𝝆𝝆𝑲𝑲𝒙𝒙 �𝒖𝒖∗,
𝒛𝒛
𝑳𝑳� 𝒛𝒛

𝟏𝟏
𝟑𝟑�𝑪𝑪𝒙𝒙𝟐𝟐

𝟐𝟐  (1) 

 

where Fx is defined as the turbulent flux of the transported variable x, Cx
2, is the structure function parameter of x, and Kx 

represents the turbulent exchange coefficient that links Fx to Cx
2. Kx is a function of the friction velocity, u*, and the 25 

Obukhov length, L. Finally ρ is the air density and z the measurement height above the surface. For the sensible heat flux, H, 

x represents temperature (T) and appropriate constants need to be added to convert Eq. (1) to energy fluxes H, u* and L are 

solved iteratively as a function of the DBLS measured CT
2 and ε (Thiermann, 1992; Hartogensis et al., 2002). The Monin-

Obukhov Similarity Theory (MOST) functions that define Kx were taken from Kooijmans and Hartogensis (2015). For our 

purpose, however, the exact shape of the MOST functions is of minor importance as we are primarily interested in the 30 

dynamic, temporal behaviour of the fluxes rather than an accurate description of their quantitative values. We are aware that 
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advective contributions can lead to the violation of MOST. However, advection was not influencing our measurements for 

two reasons. First, the scintillometer transmitter and receiver are far enough from the edges of the CloudRoots field given the 

height of the sensor (1.95 m), the wind speed and direction during the IOPs, and the stability conditions. All of these make 

that footprints are small enough to fit within the field. Typical footprint length (90% footprint contribution) for the 3 IOPs 

yields: IOP 1 (85 m), IOP 2 (30 m) and IO P3 (75 m). Second, the scintillometer has a path weighting function that is 5 

maximum in the middle of the path and near-zero at the transmitter and receiver positions, i.e. the major contribution occurs 

at the farthest point of the field edge. 

The added value of DBLS fluxes over the traditional EC method is that they converge to statistically stable flux estimates at 

much shorter flux averaging times of one minute or less, while the EC technique typically requires flux averaging times of 

ten to thirty-minutes (Hartogensis et al 2002; van Kesteren et al., 2013b). The essence behind this is that the flux estimate is 10 

based on structure parameters which are defined in the inertial range of the turbulent spectrum. As such the flux estimates 

rely on a limited range of the turbulent scales that contribute to the flux rather than all as is the case with the EC method.  

We also adopted the combination technique introduced by van Kesteren et al. (2013a, 2013b) to obtain fluxes of H2O and 

CO2 at these short time scales. This technique combines structure parameters of H2O and CO2 which are obtained from H2O 

and CO2 time-series from an Infra-Red Gas Analyser (IRGASON system; see Sect. 2.3.7) with an exchange coefficient 15 

defined by the DBLS fluxes to finally calculate flux estimates of H2O and CO2. In other words, with u* and L solved with the 

DBLS, Eq. (1) can be evaluated using structure parameters of trace gases x, where in this case x represents the specific 

density, qx, of H2O or CO2. 

2.3.7 Eddy-covariance and ancillary micrometeorological measurements 

A continuously running EC system was operated in the middle of the field (Fig. 1), comprising a three-dimensional sonic 20 

anemometer (Model CSAT-3, Campbell Scientific, Inc., Logan, Utah, USA) and an open path infrared gas analyser (Model 

LI-7500, Li-Cor, Inc., Biosciences, Lincoln, Nebraska, USA). The sensors height was 2.34 m a. g. l. Raw data were sampled 

in 20 Hz mode and fluxes and averages were calculated as thirty-minutes block averages using the TK3.11 software package 

developed at the University of Bayreuth, including corrections and quality control as given in Mauder et al. (2013). Missing 

values in the calculated turbulent fluxes were filled with the marginal distribution sampling (MDS) method following 25 

Reichstein et al., (2005) which is implemented in the REddyProc software package (Wutzler et al., 2018). The station also 

included measurements of all components of the radiation budget (NR01, Hukseflux, Delft, the Netherlands), PAR (LI-

190R, Li-Cor Inc. Biosciences, Lincoln, Nebraska, USA and BF5, Delta-T Devices, Cambridge UK), air temperature (Tair) 

and humidity (HMP45C, Vaisala Inc., Helsinki, Finland) at 2.4 m, and precipitation (Thies Clima type tipping bucket, 

distributed by Ecotech, Bonn, Germany) at 1.0 m a. g. l.. Radiation measurements were taken at 2.5 m. Soil heat flux, 30 

temperature and moisture were measured next to the station (3 x HFP01SC at 3 and 8 cm, Hukseflux, the Netherlands, 3 x 

TCAV, Campbell Scientific, Logan, USA, 1 cm, 5 cm and 2 to 65 cm layer average, 2 x CS616, Campbell Scientific, Logan, 

USA, 2 to 6 cm layer average), but also at five points distributed across the field using the wireless SoilNet sensor system 
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(Bogena et al., 2010). One SoilNet point was placed next to the station, while the other four were placed next to the soil CO2 

efflux chambers described above. Each SoilNet point comprised a single soil heat flux measurement at 5 cm (HFP01SC, see 

above) and combined temperature and soil water content measurements in depths of 1, 5, 10, 20, 50 and 100 cm (SMT100, 

Truebner GmbH, Neustadt, Germany). 

A second mobile EC station with instruments heights of 1.93 m a. g. l. was deployed in the immediate vicinity of the 5 

continuously monitoring station during the measurement campaign. The system comprised an IRGASON EC system 

(SN1185 Irgason EC150, Campbell Scientific, Inc., Logan, Utah, USA; PTB101B pressure sensor, Vaisala Inc., Helsinki, 

Finland) with an additional LI-7500 sensor (same manufacturer). Here, fluxes were processed with the LiCor EddyPro 

v6.2.2 software. Radiation (CM11 for global and CG2 for long wave radiation, Kipp & Zonen B.V., Delft, Netherlands), 

ground heat flux (4 x HFP01SC at 5 cm depth, Hukseflux, the Netherlands) and temperatures at depths of 2 cm (4 x) and 8 10 

cm (2 x) were also measured at this station. 

2.3.8 Canopy-level measurements of reflectance and sun-induced fluorescence (SIF): FloxBox 

A field spectroscopy system was used (FLOX, JB Hyperspectral Devices UG, Düsseldorf, Germany) for canopy-level 

measurements of reflectance and SIF. FLOX is constructed for high temporal frequency acquisition of continuous top-of-

canopy optical properties with a focus on sun-induced chlorophyll fluorescence. The system is equipped with two 15 

spectrometers: an Ocean Optics FLAME S, covering the full range of Visible and Near-Infrared (VIS-NIR) and an Ocean 

Optics QEPro, with a high spectral resolution (Full Width at Half Maximum – FWHM - of 0.3 nm) in the 650-800 nm range 

of the fluorescence emission. The optical input of each spectrometer is split between two fibre optic cables, that lead to a 

cosine receptor that measures solar irradiance and a bare fibre bundle that measures the target-reflected radiance. 

Spectrometers are housed in a Peltier thermally regulated box to keep the internal temperature lower than 25 °C in order to 20 

reduce dark current drift. The signal is automatically optimized for each channel at the beginning of each measurement cycle 

and two associated dark spectra are collected as well. Metadata such as spectrometer temperature, detector temperature and 

humidity, Global Positioning System (GPS) coordinates and time are also simultaneously stored in the secure digital 

memory of the system. More detailed information about the system can be found in Wohlfahrt (2018) and in Campbell 

(2019). 25 

2.3.9 Regional level measurements of reflectance and sun-induced fluorescence (SIF): HyPlant 

An airborne high performance imaging spectrometer (HyPlant) was used for regional level measurements of the same 

quantities. Several flight lines over the 15 km x 15 km study site with 1-3 m pixel resolution. HyPlant is a hyperspectral 

imaging system for airborne and ground-based use, developed as a cooperative effort between Forschungszentrum Jülich 

(Germany) and the company SPECIM (Oulu, Finland). It consists of two sensor heads, named DUAL and FLUO. The 30 

DUAL module is a line-imaging push-broom hyperspectral sensor, which provides contiguous spectral information from 370 

nm to 2500 nm in a single device that utilizes a standard objective lens with 3 nm spectral resolution in the VIS/NIR spectral 
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range and 10-nm spectral resolution in the SWIR spectral range. The FLUO module measures the vegetation fluorescence 

signal with a separate push-broom sensor which produces data at high spectral resolution (0.25 nm) in the spectral window 

between 670 and 780 nm. The position and altitude sensor (GPS/INS sensor) provides, synchronously with the image data, 

aircraft position and altitude data for image rectification and geo-referencing. Both imagers are mounted in a single platform 

with the mechanical capability to align the field of view (FOV). A more detailed description of the sensor is given in Rascher 5 

et al. (2015).  

Sun-induced fluorescence (F687 and F760) was retrieved in the two oxygen absorption bands according to the iFLD method. 

Surface reflectance and vegetation indices were calculated after an atmospheric correction using the MODTRAN software 

package was applied. The atmospheric correction was performed using the MODTRAN software package (for an overview 

of the data processing of HyPlant see Siegmann et al. 2019). For the reasons of easier comparison of SIF values with other 10 

methods of this paper, the commonly used SIF units (mW m-2 sr-1 nm-1) were replaced by nmol m-2 sr-1 s-1 using conversion 

factors 6.35 for F760 and 5.74 for F687, respectively. 

2.3.10 Boundary-layer and cloud remote sensing measurements 

JOYCE remote sensing facility (Löhnert et al., 2015) (located at a distance of 5 km from the test site) provided continuous 

information about boundary-layer and cloud characteristics. Specifically, microwave and LIDAR measurements were used 15 

to compare the CLASS model results (see next section) with the inferred boundary-layer depth. This comparison was 

completed by vertical profiles measured by the routine radio soundings at Essen (station ID EDZE/10410 at a distance of 75 

km). 

2.4 Modelling from leaf to landscape scales: CLASS 

The Chemistry Land-surface Atmosphere Soil Slab (CLASS, https://classmodel.github.io/) is a model that couples the soil-20 

vegetation-atmospheric processes and is used to interpret the observations and analyse the interaction of scales (Vilà-Guerau 

de Arellano, et al., 2015). It contains a leaf-level representation of photosynthesis and stomatal aperture (leaf resistance). By 

upscaling this leaf resistance to the canopy level (surface canopy resistance), it connects with the soil processes and 

boundary-layer diurnal dynamics. In 2.4.1 and 2.4.2 we will subsequently discuss the two main modules of CLASS that we 

will target in this paper, i.e. the leaf level photosynthesis module and the mixed layer module. 25 

2.4.1 Modelling leaf-level photosynthesis 

Leaf-level photosynthesis was modelled using the representation of photosynthetic biochemistry, as included in CLASS 

(Vilà-Guerau de Arellano et al., 2015), which was originally developed by Goudriaan (1986) and further adapted to 

meteorological applications by Jacobs and de Bruin (1997). As this model describes the relationship between stomatal 

conductance (gs) and photosynthesis (A), it is usually referred to as the A-gs sub-model. In short, plant transpiration and CO2 30 

assimilation as part of the surface energy balance model are represented by a two-big leaves model, one for sunlit leaves and 

https://classmodel.github.io/


12 
 

one for shaded leaves (Jacobs and de Bruin, 1997; Pedruzo-Bagazgoitia et al., 2017). The exchange at the leaf surface 

depends on the gradient of atmospheric CO2 and an internal leaf CO2 concentration which depends on the water-vapour 

deficit, and leaf conductance. The CO2 exchange is upscaled to the canopy level by integrating over the leaf area index 

(LAI). 

Available field measurements were used for improving the model settings at the leaf level. The parameters representing the 5 

initial value of the light-use efficiency (α0) and the temperature-normalized maximum leaf-level photosynthesis rate 

(Am,max298) were fitted using light-response curves (Fig. 5), and CO2-response curves (Fig. 3b) collected on 8th May 2018 

(one day after IOP 1), respectively. Table 3 summarizes the optimized values used in the A-gs (sub)model to simulate the 

leaf-level photosynthesis. The A-PAR curves contain only the lower light intensity values (0-200 µmol m-2 s-1) for which the 

light response is near-linear and not limited by CO2 diffusion into the leaf. As leaf-level measurements of Amax indicated a 10 

decline in photosynthetic capacity in the course of the growing season (Fig. 5c), we performed additional measurements of 

Am,max298 to represent the observed seasonal decline for IOP 2 and IOP 3. The impact on these optimized values are shown 

and discussed in Section 3.5. 

2.4.2 Modelling the diurnal variability of landscape surface fluxes and boundary-layer dynamics  

The fundamental assumption of the mixed-layer model is that under convective conditions the atmospheric boundary layer 15 

(ABL) dynamics lead to profiles of the meteorological state variables that are uniform (well-mixed) with height. As a result, 

these state variables are governed by horizontally averaged 0-dimensional slab equations: one equation for the evolution 

through time of the slab variable and another for the difference between the residual layer (in the morning transition) and the 

free tropospheric values and the slab value, i.e. the jump at the interface between residual layer and ABL. The ABL 

dynamics are governed by the mixed-layer equations of potential temperature (heat), specific humidity (moisture), CO2 and  20 

two horizontal wind momentum components. In addition, there is an equation that governs the boundary-layer growth which 

depends on the buoyancy flux at the surface and the jump in the virtual potential temperature at the interface between the 

atmospheric boundary layer and the free troposphere.  

A key feature of the model is its representation of the sub-daily variability of the land-atmosphere interactions (van 

Heerwaarden et al., 2010; Vilà-Guerau de Arellano et al., 2015). The net ecosystem exchange is calculated as a result of the 25 

assimilation of CO2 by plants and the CO2 soil efflux. We calculate the assimilation rate from photosynthesis and the 

stomatal aperture measurements at leaf level (see previous section), up-scaled to canopy level (Ronda et al., 2001). This 

model depends on the diurnal variability of PAR, temperature (Tair and Tair,p) and the water-vapour deficit (VPD). The two-

big leaves approach is used (sunlit and shaded) to take the different contributions of direct and diffuse radiation into account 

(Pedruzo-Bagazgoitia et al., 2017). The soil efflux is calculated as a function of the soil temperature and moisture. Other 30 

relevant physical processes include a radiation transfer model, the Penman-Monteith equation included in the surface energy 

balance, and the possibility of adding large-scale forcings such as vertical subsidence motions and large-scale advection of 

momentum, heat, moisture and CO2. Within the context of CloudRoots, it is important to mention that the model assumes a 
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horizontal homogeneous surface. While the experimental field itself is quite homogeneous, it is surrounded by other land-use 

types at a spatial scale that will affect the boundary layer. In that respect, and in setting the initial and boundary conditions 

for the numerical case, we assume that the boundary layer dynamic is governed by a sensible heat flux that is an aggregate of 

all the fields shown in Fig. 1b.  

3 Results: Integrating spatiotemporal scales from leaf to boundary layer 5 

This section is structured following the five facets of the diurnal interactions between the land and the atmosphere outlined 

in the introduction. 

3.1 Leaf-level exchange of H2O and CO2: observations and modelling  

We combine leaf-level and sap flow measurements of tiller assimilation and transpiration with leaf-level assimilation 

modelled by CLASS, A-gs representation, to study their variation during the growing season and the impact of unsteady 10 

PAR due to the presence of clouds. 

3.1.1 Stomatal conductance and sap flow 

Our leaf-level measurements revealed clear diurnal patterns in gsw during all the IOPs (Fig. 3). The observed daily maximum 

gsw decreased over the growing season. This daily maximum gsw occurred at an earlier time during each IOP. Specifically, 

the thirty-minute average daily maximum gsw declined from 0.84 mol m-2 s-1 (around 10 UTC, 12 local time LT) during IOP 15 

1 and 0.83 mol m-2 s-1 (around 10 UTC) during IOP 2 to 0.30 mol m-2 s-1 (in between 5:30 and 6:30 UTC) during IOP 3. The 

weather during IOP 2 was characterized by large cumulus clouds passing over the field site, which were made visible in the 

large fluctuations in PAR (Fig. 3b, 11 and 12). The cloud-related changes in light intensity induced consistent stomatal 

opening-closing responses during IOP 2. The relatively low gsw observed during IOP 3 probably reflects the continuing 

drought that characterized the 2018 growing season in combination with the relatively high VPD and high temperatures. Sap 20 

flow measurements were performed during IOP 2 and IOP 3 (Figs. 3b and 3c), and one earlier non-IOP day (7th June) (Fig. 

4). Measurements of sap flow revealed clear diurnal patterns for all measurement days and consistent responses to cloud-

induced changes in light intensity during IOP 2 (Fig. 3b). These responses were comparable to the observed responses in gsw 

during IOP 2. Interestingly, the notable decline in leaf-level gsw between IOP 2 and IOP 3 was neither reflected in the 

measurements of sap flow, nor ET measurements with the eddy-covariance. For IOP 3, the ET measured by the eddy-25 

covariance had still maximum values of 300 W m-2. Thereafter, the decrease on ET started one week after (5th July) with 

values lower than 100 W m-2. This discrepancy could partly be explained by increases in VPD and wind speed between IOP 

2 and IOP 3. The more probable causes are senescence effects on physiological control of transpiration and the physical 

reactions to heat of the wheat tillers which were noticeably wilting between IOP 2 and IOP 3. This observation has not been 
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so far reported in the literature. Further studies of the relationships between senescence and simultaneously occurring 

changes in the heat-physical properties of wheat tillers are needed to explain this phenomenon. 

3.1.2 Observed versus modelled leaf-level photosynthesis 

One of the main aims in CloudRoots is to improve the mechanistic modelling of photosynthesis and stomatal aperture. To 

this end, we calibrate the constants of the A-gs model using systematic in-situ field observations. Fig. 5 shows the 5 

dependencies of leaf-level photosynthesis of Aleaf on PAR (Fig. 5a) and the leaf-internal CO2 concentration (Fig. 5b), and the 

long-term decline in maximum light-saturated photosynthesis (Fig. 5c). Our observations indicate the need to calibrate the 

model depending on the functional type of the plant, in particular the dependence of Aleaf  on PAR, during the field 

campaign. Table 2 summarises the new constant values used in the A-gs model adjusted to the winter wheat crop conditions. 

Fig. 6 shows a comparison of the model results of Aleaf using the new constants and the measurements of Aleaf and NPP 10 

together with the diurnal variation in PAR and VPD during the three IOPs. Our measurements and model results of Aleaf 

showed clear diurnal patterns during each IOP, and a consistent decline over the three IOPs. The decline in Aleaf was 

comparable to the decline in Amax (Fig. 5c) and probably reflects a combination of seasonal decay in photosynthetic capacity 

and increasing stomatal limitations owing to persistent drought, especially during IOP 3. The magnitude of the seasonal 

decline in Aleaf was comparable to the seasonal decline in NPP derived from EC data. Cloud-induced changes in PAR during 15 

IOP 2 also induced changes in Aleaf. The A-gs model reproduced the diurnal patterns in Aleaf during each IOP as well as the 

cloud-induced changes in Aleaf during IOP 2. The agreement is very satisfactory during IOP 1 characterized by cloudless 

conditions and the maturity of winter wheat. The model underestimated Aleaf during IOP 3, which was a result of the strong 

stomatal limitations that influenced the measurement of Amax on which the model parameterisation from IOP 3 was based. 

The model furthermore overestimates the decline in Aleaf between 14:00 and 19:00 UTC, which probably reflects a 20 

misrepresentation of the temperature and VPD sensitivity of Triticum aestivum. 

3.2 Canopy-level partitioning of the net H2O and CO2 fluxes between soil and plant processes 

Moving from leaf to canopy scale, we analyse the detailed profiles of micrometeorology and carbon dioxide collected using 

the elevator and infer vertical assimilation profiles as well as the diurnal variability in the surface contributions to ET and 

NEE. 25 

3.2.1 Concentration profiles of H2O and CO2, temperature and wind speed 

Fig. 7 shows selected thirty-minute mean profiles of χH2O and χCO2, temperature and wind speed versus height (z) above 

ground level during IOP 1 and IOP 2. Over the diurnal cycle, χCO2 concentrations fell between 08:00 and 13:00 UTC from 

370 to 360 μmol mol-1 in the mid canopy during IOP 1 but stagnated slightly below 370 μmol mol-1 during IOP 2. This 

seasonal reduction in CO2 uptake was also observed in measured Aleaf, i.e. see the decrease of the maximum values in Fig. 6. 30 
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The lowest values were observed during local noon, simultaneously with the highest PAR values (Fig. 5b). χCO2 minima 

were located in the upper third of the canopy during IOP 1 and during the middle third during IOP 2. The highest χCO2 

values were found near the soil surface due to soil respiration, lower light intensity caused by shadowing and a low amount 

of photosynthetic organs in the stems. Maximum χCO2 concentrations were measured in the morning and evening hours and 

peaked at about 475 and 420 μmol mol-1 during IOP 1 and IOP 2, respectively. The photosynthetic CO2 uptake by plants is 5 

highly related to plant transpiration. Consequently, χH2O in the canopy space was higher than in the air above the canopy. 

The highest values were found directly above the soil surface and were caused by evaporation and within the canopy due to 

plant transpiration. 

The highest temperatures appeared near the canopy top (Fig. 7d, 6e, 7j and 7l). In the late morning of IOP 2, the temperature 

reached a distinct maximum just below the canopy top (Fig. 7j). This phenomenon has been reported in previous studies 10 

(Ney and Graf, 2018) and is caused by the changing solar incidence angle. A low angle of incidence in the morning and 

afternoon limited the heating to an area just below the canopy surface. Previous studies have shown that the presence of such 

a pronounced temperature maximum has the potential to increase thermal stability within the canopy and thus inhibit the 

vertical turbulent exchange of sensible heat (Gryning et al., 2001; Ney and Graf, 2018; Sikma et al. 2020). It can be assumed 

that the sensible heat flux within the dense plant stand was largely determined by the entire canopy. In other words, during 15 

the day, mixing near the soil surface was impeded by stable temperature stratification while in the evening, cooling expanded 

upwards from the soil surface (Fig. 7f). In general, the processes described above were more pronounced during IOP 2 with 

its greater canopy height than with the lower canopy during IOP 1. The vertical wind profile showed consistently low wind 

speeds within the dense canopy (< 0.5 m s-1). Above the canopy layer, the wind speed increased in a log-like profile up to a 

maximum of 2 m s-1. 20 

3.2.2 Profiles of gross primary production 

The detailed profile observations presented in the previous section enable us to calculate height resolved estimates of gross 

primary production A. Using the 30 min-averages of the vertical profiles for temperature, moisture, and CO2 in the canopy, 

A is determined using the A-gs model (Jacobs et al., 1997; Ronda et al., 2001). A (mg m-2 s-1) is calculated as follows: 

 25 

𝑨𝑨 = 𝑳𝑳𝑳𝑳𝑳𝑳 (𝑨𝑨𝒎𝒎(𝒉𝒉) + 𝑹𝑹𝒅𝒅(𝒉𝒉)) �𝟏𝟏 − 𝒆𝒆𝒆𝒆𝒆𝒆 �
−𝜶𝜶𝜶𝜶𝜶𝜶𝜶𝜶(𝒉𝒉)

𝑨𝑨𝒎𝒎(𝒉𝒉) + 𝑹𝑹𝒅𝒅(𝒉𝒉)�� (2) 

 

where LAD (mleaf
2 m-3) is the leaf area density, Am(h) is the CO2 primary productivity (mg mleaf

2 s-1) as a function of height 

h, Rd(h) (mg mleaf
2 s-1) the CO2 dark respiration as a function of h, α (mg J-1) is the light use efficiency, and PAR(h) (W mleaf

-

2) is the amount of available photosynthetically active radiation within the canopy. Solar zenith angle related variation in 

PAR intrusion and differences between atmospheric and skin values for temperature, moisture, and CO2 are neglected. Fig. 30 

8a shows the winter wheat LAD applied in the calculation. 
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Fig. 8b shows that the entire canopy contributes to the photosynthetic activity, but with maximum A at h/hc = 0.7 (hc: canopy 

height). This is primarily caused by the extinction of PAR within the canopy and reduced leaf density distribution close to 

the ground (Fig. 8a). Maximum diurnal productivity is found at around h/hc = 0.7, with the diurnal maximum at 12:00 UTC. 

Integration over the canopy shows minor discrepancies with respect to the bulk A-gs model calculation, as the profile data 

allows for a more precise evaluation of photosynthetic activity. The profile measurements combined with Eq. (2) therefore 5 

allows for an improved modelling of the photosynthetic CO2 uptake of vegetation depending on height and the 

understanding of mechanisms. More accurate estimates of CO2 gross primary production still require improved knowledge 

of plant canopy micrometeorology (Drewry et al., 2014) .  

3.2.3 Profile based partitioning of H2O and CO2 

Fig. 9 shows the measured fluxes of latent heat, NEE and soil respiration, as well as their partitioning based on the inversion 10 

of vertical high-resolution concentration profiles into the evaporation/transpiration and Rs/NPP components. In this section, 

positive values indicate a flux from the surface/plants into the atmosphere and vice versa. During IOP 1, measured latent 

heat flux (LvE, hereafter referred to as ETec) showed a typical daily pattern under clear sky conditions (Fig. 9a) with 

maximum ETec at noon (345 W m-2). Evaporation E of both methods displayed comparable values in the morning and 

evening but differed at midday. In the morning, the evaporation estimated using the profile measurements and method (Ep) 15 

and the lysimeter observations (Elysi) both consistently suggested low E/ET fractions with E below 10 W m-2. Towards noon, 

Ep increased to 25 and Elysi to 60 W m-2, and in the afternoon Elysi reached a maximum of 101 ± 41 W m-2 (no Ep available). 

Estimated Trp increased to about 290 Wm-2 at 11:00 UTC, this being the highest diurnal proportion of ET. Lower Trp levels 

around 12:00 UTC are probably due to a sub-optimal performance of the profile-based partitioning at this particular time. 

For example, none of the available inversion methods, including the algorithm by Santos et al. (2011) used here, includes the 20 

effect of local thermal stability varying with height. Fig. 7 demonstrates that thermal stability increased from the canopy top 

towards the ground around noon of IOP 1 (Fig. 7e), which may have contributed to the large increase of humidity towards 

the surface (Fig. 7b) due to the lack of mixing. 

Variations in CO2 fluxes NEE, NPP and Rs during IOP 1 are shown in Fig.9b. NEEec followed a typical diurnal cycle, with 

strong negative fluxes during the day and slightly positive values (carbon source) during transition times. The highest NEE 25 

was observed before noon (-25 μmol m-2 s-1). NPPp followed the graph of NEEec, with higher values (-26 μmol m-2 s-1) in the 

morning hours than during the afternoon under comparable PAR values. This behaviour coincides with the photosynthesis 

rate observed at leaf level in Fig. 6a and provides further evidence that carbon uptake by plants was limited due to stomatal 

occlusion caused by the increase in VPD (Fig. 6a) and/or Tair in the afternoon. Profile-based Rs,p ranged between 0.5 to 6 

μmol m-2 s-1 with higher values around noon. Compared to measured Rs,ch, Rs,p lay within the standard deviations of Rs,ch, 30 

though Rs,p was significantly lower during the morning and evening hours. 
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3.3 Effects of clouds on surface turbulent fluxes 

3.3.1 Cloud-induced diffuse fertilisation effect on evapotranspiration 

One of the main aims of CloudRoots was to obtain observational evidence of the effects of clouds on the CO2 assimilation 

and ET. Fig. 10 shows the net primary production (NPP) (left) and LvE (right), both measured using the eddy-covariance, 

observed under a wide range of clear and cloudy skies as a function of PAR and compared to Q*at the top of the canopy (van 5 

Diepen and Moene, 2019). We analyse a two-week period of observations, between 7th May and 20th May 2018. The effect 

of the different direct and diffuse radiation due to cloud perturbations is distinguishable with an enhancement of NPP under 

clear conditions whereas LvE is reduced. Clouds affect plant photosynthesis by increasing the fraction of diffuse solar 

radiation that arrives at the top of the canopy (Kanniah et al., 2012). With a larger contribution of diffuse solar radiation, and 

within the canopy, the radiation spreads more equally over all leaves and thereby increasing the light-use efficiency of a 10 

canopy (Farquhar & Roderick, 2003). At a constant level of radiation at the top of the canopy, the increased light-use 

efficiency results in enhanced canopy photosynthesis which is known as the diffuse fertilisation effect (Roderick et al., 

2001). This phenomenon is especially noticeable for canopies with a high LAI (Knohl & Baldocchi, 2008; Dengel & Grace, 

2010). In CloudRoots, and due to the high values of LAI (values in between 4.5 to 5.5), we expect situations in which diffuse 

fertilisation occurs, but here the question is how it influences LvE. Previous large-eddy simulation modelling studies by 15 

Pedruzo-Bagazgoitia et al. (2017) have shown that under conditions dominated by clouds with a small optical depth, i.e. thin 

clouds, LvE is enhanced with respect to its clear-sky values at the same radiation level.  

We find that the observed LvE is higher, rather than lower, during clear conditions (less diffuse light) than under more 

diffused cloudy conditions. At constant Q*, the median of LvE is always higher under clear skies than for cloudy skies. The 

diffuse fraction plays a minor role and the decrease on LvE under cloudy conditions is mainly due to the reduction in the 20 

incoming shortwave radiation. Our observations indicate that LvE is driven by the partitioning of direct and diffuse radiation, 

but also other effects such as diurnal variations of temperature and the link to VPD may partially compensate for the 

different distribution of direct and diffuse radiation caused by clouds. The higher VPD values during the day partly offset the 

more optimal PAR conditions and therefore cause a closing of the stomatal that leads to decreases in LvE. For both clear and 

cloudy skies, the shaded area below the median represents conditions before 11:30 UTC and the shaded area above the 25 

median represents conditions after 11:30 UTC, i.e. implying a hysteresis loop (Zhang et al., 2014). This spread in LvE at a 

constant level of Q* is caused by a difference in VPD between morning (before 1130 UTC) and afternoon (after 1130 UTC). 

This is because on a clear day the VPD raised rapidly due to its non-linear dependence on temperature relative to a cloudy 

day. In a typical clear day at CloudRoots, the value of 200 W m-² for Q* is crossed twice: once in the morning and once in 

the afternoon. When 200 W m-² is crossed in the morning, the VPD is around 1000 Pa and reaches a value of 2000 Pa in the 30 

afternoon. On the other hand, on a cloudy day with similar values of around 200 W m-² the VPD remains almost constant 

through the entire day and with a value of 1000 Pa at 11:30 UTC.  
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The influence of VPD on LvE also has the effect that the diurnal cycles of Q* and LvE are out of phase due to its dependence 

on leaf temperature. Q* is primarily a function of incoming shortwave radiation and VPD of air temperature at the leaf 

surface. As a result, Q* and VPD peak at different times of the day. Q* peaks at maximum incoming shortwave radiation 

(local noon is at 11:30 UTC), and near-surface VPD times when air temperature peaks, which is around the time at which Q* 

= 0 (17:00 UTC). The diurnal cycle of the sun implies there is a short period around 11:30 UTC when Q* does not change. 5 

On the contrary, air temperature increases almost linearly around 11:30 UTC due to the approximately constant Q*, as does 

VPD. Therefore, peak values for LvE are found between the moments of maximum Q* and of maximum VPD. For this 

dataset, the peak of LvE is around 1200 UTC for both clear and cloudy skies although the peak for cloudy skies is less 

distinct due to the more fluctuating daily cycle of Q*. Because Q* and LvE are out of phase, the highest values for LvE do not 

occur in the bin with the highest net radiation, but rather in the bin of 400-500 W m-² (which roughly contains data from 10 

11:00 UTC and after 12:00 UTC). 

3.3.2 Cloud-induced radiation perturbations and response by turbulent fluxes  

The short interval fluxes (one minute) of the double beam laser scintillometer (DBLS) technique enable us to study the 

vegetation response to rapid radiation perturbations due to changes in cloud cover. The goal here is to illustrate this potential 

by discussing selected time-series under changing cloud conditions during IOP 2. The morning of IOP 2 was characterized 15 

by rapidly changing cloud conditions due to the overpass of a shallow cumulus cloud deck. A breakdown of the one-minute 

DBLS sensible heat flux in terms of contributions from turbulent exchange (KT) and the measure for temperature 

fluctuations (CT
2) is given in Fig. 11. This figure also depicts, on the same axes, scaled time-series of wind speed and PAR 

that can be regarded as proxies that fuel mechanically induced turbulence (wind speed) and buoyancy turbulence (radiation 

in general) as well as photosynthesis (PAR).  20 

First of all, the one-minute DBLS fluxes of H closely follow the cloud cover induced radiation changes, but with a time-lag 

of 45-120 seconds (Fig. 11a). This is similar to those reported by van Kesteren et al. (2013b). H fluxes measured with EC 

techniques even when estimated over the relatively short interval of ten minutes, which is not a standard output, are not 

capable of capturing such rapid dynamic behaviour of the flux regime (Fig. 11a). The dynamic behaviour in the DBLS H is 

mainly governed by fluctuations in T expressed by CT
2 (Fig. 11c) and to a lesser extent by changes in the exchange 25 

coefficient KT (Fig. 11b). Note that is impossible to fully distinguish the three variables H, KT and CT
2 from each other as 

they are all inter-connected, e.g. KT is defined in terms of the Obukhov length L, which in turn depends on H and u*. 

Nevertheless, our high-time-resolution observations demonstrate that changes in PAR induce very fast responses of the 

transported quantity T (Fig. 11c). Even in the absence of strong wind-induced variations in KT, these T variations lead to 

approximately similar dynamic behaviour of H. On top of this, the additional, but smaller wind induced fluctuations in KT 30 

are also reflected in H and lead to “noise” in the variability of H compared to the cloud-induced on-off behaviour of PAR. 

Next we examine how soon the fluxes of H2O and CO2 respond to the cloud induced radiation changes. Fig. 12 demonstrates 

that there is indeed a fast response, and the one-minute resolution fluxes of H2O and CO2 allow us to precisely determine a 
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delay time of approximately two minutes for the increases CO2 uptake and transpiration of H2O relative to the changes in 

PAR. The delay is once again undetectable with the standard thirty-minute eddy-covariance results (Fig. 12). This behaviour 

is in line with what was concluded about the state of the vegetation observed at leaf level (Sec. 3.1). As the vegetation is not 

water-stressed and is at a stage of development at which it is still actively growing, it will react rapidly to changes in 

radiation, i.e. it is in a radiation-limited regime. Under the conditions of our study, stomata appear to have reacted only 5 

slowly or remained constantly open, because leaves were unstressed or reacting only slowly to cloud-induced changes. 

Moreover, the timescale of a light-induced stomatal response (maximum values twenty minutes, Van Kesteren, 2013b) is 

normally larger than the timescale of most fluctuations in radiation. Our suggested explanation is that the one- to two-

minutes delay time observed between radiation and turbulent fluxes is due to processes associated to an inertia of the leaf in 

addition to turbulent transport between the leaf and laser path due to e.g. the small but not negligible storage of heat, H2O 10 

and CO2 in the canopy layer. However, we need further evidence to disentangle the separation in delays between H2O  and 

CO2 fluxes. 

3.4 Sun-induced fluorescence (SIF) measurements: temporal variability 

Studying spatial and seasonal variabilities in ET during plant growth was one of the key goals of CloudRoots. To this end, 

we analysed SIF observations measured on time and on space. The top-of-canopy measurements of SIF were carried out in 15 

two ways: (i) diurnal courses from a single representative location were recorded from a stationary FLOX system, and (ii) 

mobile measurements covering several locations within a field were recorded from a FLOX system that was housed in a 

backpack. To ensure reproducible measurements the two fibre optics of the system were attached to a gimbal and were 

placed with a movable tripod 2 m above ground. Diurnal curves were acquired on 7 May, 4 and 14 June (only morning hours 

due to cloudy conditions in afternoon); mobile measurements (with change of measurement locations during the day) on 6 20 

June and 26 June. As SIF measurements should be performed under clear-sky conditions only, records affected by clouds 

were carefully removed. Aerial maps of SIF were acquired with the high-resolution imaging spectrometer HyPlant. Fig. 13a 

shows the aerial map of F760 acquired on June 26th, suggesting homogeneous canopy properties within the winter wheat study 

field, while great differences can be seen between different fields. The same image identifies the FloxBox measurement 

locations in the same colour code that reconstruct the diurnal temporal variability of F760 during the entire CloudRoots 25 

campaign in Fig. 13b. 

Diurnal changes in photosynthetic activity are clearly visible in F760. Measurements made at different locations generally 

follow the same diurnal pattern, especially within the period 7 May to 14 June, further confirming the hypothesis that ET 

spatial heterogeneity within the winter wheat field was small. The seasonal changes are also traced by F760: From 7 May until 

14 June, the winter wheat canopy was photosynthetically active in a transition stage from booting (7 May) until grain filling 30 

(14 June), as is reflected by high SIF values. At the end of June, however, the canopy approached senescence and the 

reduction in photosynthesis was documented by greatly reduced fluorescence levels (see Fig. 13b, see pink values after 12 

UTC). This photosynthesis reduction is also corroborated by the normalised difference vegetation index (NDVI), which was 



20 
 

calculated as the normalized difference between far-red to red reflectance (see supplementary material for details). The green 

dense canopy has a NDVI value close to 1, and the decrease in NDVI is caused by the yellowish colour of the winter wheat 

canopy (see Fig. S2 at the supplementary information).  

3.5  Connecting SIF and evapotranspiration flux at the landscape scale 

It is difficult to directly quantify spatial variations in the ET flux with the currently available in-situ equipment due to the 5 

necessity of installing a large number of measurement stations. Recently some promising concepts have been published that 

exploit the relationship between SIF and plant water relations (Damm et al. 2018, Jonard et al. 2020). Following these 

concepts, we studied in two steps the connections between ET to regional measurements of SIF, which were recorded on this 

scale by the airborne sensor HyPlant (see Fig 13a). First, to obtain an estimation of the spatial variability ET at CloudRoots, 

we used the 15 km x 15 km map acquired by the HyPlant sensor on 26th June 2018 and a land use classification of the 10 

region (Lussem, 2018). ET cannot directly be measured, thus, it was predicted using different Kc coefficients that depend on 

the land use categories around CloudRoots. We define Kc as the ratio of ET over a particular crop relative to the ET of 

potential grass used as reference (Allen et al., 1998; Bogena et al., 2010). For this analysis, the regional land-use map that 

consisted of 32 different land-use classes was translated to a reduced classification scheme of 9 land-use classes, which 

covered most of the vegetation types in the study region (Table 4). Roads were excluded from the analyses, as we assumed 15 

that their effect is negligible on the 15 m x 15 m grid.  

For the estimation of Kc ET coefficients, we used the plant developmental stage at the CloudRoots site at the end of June. 

For the main regional crops, namely sugar beet, winter wheat, winter barley, and potatoes, local measurements of 

evapotranspiration by EC towers were used. These data have been collected over several years and weekly averaged. This 

enabled us to compute Kc from measured and potential ET averaged over the last two weeks of June. In the particular cases 20 

of winter wheat and especially winter barley, the Kc coefficient changes rapidly at this time of the year, in extreme cases 

from 1.0 to 0.3 within two weeks, due to the onset of senescence. Therefore, the coefficients for these two crops shall be 

used with care. In absence of eddy-covariance data, we calculates the characteristic values of Kc for each crop type and the 

developmental stage were taken from Allen et al. (1998). All estimated Kc coefficients for different crops can be found in 

Table 4. To estimate the ET over a specific area occupied by particular crop on a given day and time, the land-use map was 25 

transferred to the map of Kc coefficients according to Table 4 and then multiplied by the potential ET, using the ET grass as 

a reference value (ETgrass), specific to that moment in time. Fig. 14 shows the spatial variability of predicted ET for the IOP 

3 inferred from the Kc coefficients and the value of potential grass reference averaged between 09:00 and 14:00 UTC. The 

area is a 1 km x 1 km square, characterized by a mean of 5.76 mmol m-2 s-1 and a standard deviation of 1.86 mmol m-2 s-1. 

Fig. 14 shows that this method can provide plausible information on the variability of ET at the sub-kilometre scale and it 30 

points out to the need to introduce this sub-grid ET variability information in modelling studies. In the second step of the 

procedure, we compared this estimated ET to the SIF measurements (F760). Fig. 15 shows the correlation between estimated 

ET and solar-induced fluorescence F760 for 26th June (Julian day 177) for the different land covers. The correlation between 
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mean F760 values and predicted ET values is R2= 0.61 with larger of ET and F760 vales for crops and grass compared to the 

forest conditions. It is calculated from the comparison pixel by pixel of the SIF (Fig. 13a) and ET (Fig. 14.\). As the HyPlant 

overflight was carried out at noon in order to acquire the maximal SIF values and minimize the influence of changing sun 

angle, we also used the maximal value of ETgrass, measured at midday on 26th June. The large range of values of ET, F760 

and F687 from the different land-use categories corroborate the large variability of ET around the CloudRoots field.  5 

3.6  Boundary-layer integrated dynamics over heterogeneous landscapes  

To integrate and improve the interpretation of our observations, we used CLASS to model the cloudless day 7 May 2018 

(IOP 1). Our specific aims, related to the scales and processes under study, are: (i) at leaf level, to make use of the new 

constants in the mechanistic A-gs model obtained from the observations (Fig. 5 and Table 3), (ii) at landscape scale, to 

represent the sensible heat flux in a heterogeneous landscape and (iii) to estimate the potential impact of advection (heat) on 10 

the diurnal evolution of surface and boundary-layer variables. Table A2 summarises all initial and boundary conditions, 

constrained by the observations, which are employed in the modelling of the surface and atmospheric variables. Fig. 16 

compares the model results with the surface and upper-air observations. Focusing first on Fig. 16a, we found that the 

modelled H largely overestimates the observations taken at the CloudRoots. However, comparing our modelled H with the 

estimate of the regional flux shown in Fig. 1b, we found a satisfactory agreement in terms of magnitude and diurnal 15 

variability between this regional observed flux and CLASS model calculation. Note that here, and compared to Table 4, we 

oversimplified the land-surface categories in two: “bare soil” and “vegetated”. To complete this evaluation, we show in 

Figure S1 the impact of the optimized A-gs constants presented in Table 3 (CloudRoots) versus the default ones. Both, the 

evolution of surface fluxes and boundary-layer height are in better agreement with the observations. Similar impacts on how 

leaf processes (rice) can influence the meteorology were reported by Ikawa et al. (2018). There the boundary-layer 20 

temperature was changing up to 0.5 K depending on the constants used in the leaf photosynthesis model. 

Our explanation of the improved comparison between the observations and the CLASS results using the aggregated sensible 

heat flux is the following: in a heterogeneous landscape such as the location of CloudRoots (Fig. 1a), each surface type 

contributes its own latent and sensible heat fluxes. It is the landscape aggregate of heat fluxes (named regional and shown 

with triangles in Fig. 16a and introduced in Fig. 1b), and more specifically the sensible heat flux, that governs the boundary-25 

layer evolution in terms of height, potential temperature, specific humidity and atmospheric constituents. Only by using this 

higher H do we obtain satisfactory agreement with the observed boundary-layer height evolution, which reaches its 

maximum values at around 1500 m in the afternoon (Fig 8b).This further emphasises that the H measured with the EC 

instrument during CloudRoots is only representative of the specific measurement site (leaf and canopy scales). The 

landscape average is an aggregate of values of H made up of the mosaic of surfaces as shown in Fig.1. As a consequence, it 30 

is this composite H rather than, a local value of H, that is the main driver of the boundary-layer development (boundary-layer 

scales). With regard to ET, the model results are in good agreement with the local CloudRoots observations. This indicates 

the secondary and more local role played by ET in the dynamics of boundary layer development. For studies focusing on the 
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regional values of ET, it will be necessary to calculate landscape-scale aggregate following the same procedures as H, while 

for studies at the leaf and canopy scales the local observations of ET are representative. Focusing now on Fig 16b, we found 

a satisfactory agreement between the modelled boundary-layer height and the three independent observations made with 

three different instruments. In this Fig. 16b, it is interesting to note that the ABL height inferred by the radio sounding 

measurement collected more than 100 km distant from of the Cloud Roots site has values similar to those collected by the 5 

LIDAR located within a radius of 5 km from the CloudRoots site. We attribute these similar values to a boundary layer that 

is characterized by being spatial homogeneous and with a similar temporal evolution on the larger regional scale. 

In CLASS, besides solving the diurnal variability of the boundary-layer dynamics and the state variables, offers the 

possibility of adding a large-scale contribution that represents the advection of heat and/or moisture (see Vilà-Guerau de 

Arellano et al., 2015). We have performed a sensitivity analysis to determine the role played by heat advection for the 10 

surface fluxes and the boundary-layer development. In the specific case that is modelled on 7 May, we relate this advection 

of heat or moisture to the diurnal evolution of H contrast between the measurement site and its adjacent fields, i.e. horizontal 

transport of heat, moisture or momentum is driven by secondary circulations induced by the different thermal characteristics 

of the fields around the CloudRoots site (Fig. 1a). More specifically, we prescribe an advective heat contribution to represent 

the horizontal transport of heat due to the thermal variability of the surface conditions. This term follows an exponential 15 

function (Table A2) with maximum positive values of advection equal to 0.9 K h-1 at midday. This advective term is 

imposed only on the mixed-layer and not on the free troposphere. Fig. 16 shows how this advection of warm air to the 

CloudRoots site influences the boundary-layer height. Starting with H, warm advection leads to higher mixed-layer 

temperatures that reduce the gradient between the temperature at the surface and the atmosphere, and thus reduce H. We find 

an opposite effect on ET. The increase in temperature by advection of warm air leads to an increased atmospheric demand, 20 

and therefore enhances ET. With regard to the boundary-layer height, we might suppose that a drop in of H would lead to a 

decrease of the boundary-layer growth. However, the modelled boundary-layer height displays the opposite behaviour. This 

is because the lower H is partly offset by a decrease in the thermal inversion at the interface between the boundary layer and 

the free troposphere. Lower values of the difference in θv between the free troposphere and the mixed-layer enable 

boundary-layer air parcels to be more easily transported into the free troposphere, resulting in faster growth of the boundary-25 

layer. This is because of the virtual potential temperature between the environmental and the parcel is effectively reduced. 

The CLASS model results show that this process is more important than the decrease in H at the surface, and it allows the 

boundary layer to grow deeper than in the numerical experiment in which the warm advection is omitted. These numerical 

sensitivity experiment analyses enable us to quantify how non-local processes, in particular the effects of the regional 

average H and of warm advection, influence the observations at the measurement site. 30 
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4. Discussion 

CloudRoots offers an integrated methodology that combines field experiments across spatial scales (from leaf to landscape) 

closely linked to the modelling of the diurnal variability of the soil-plant-atmosphere continuum. To frame the discussion 

and link all our observations at the various scales and modelling efforts, we present in Fig. 17 all the different estimates of 

ET obtained during the three IOPs, averaged between 09:00 and 14:00 UTC in order to avoid the morning and afternoon 5 

transitions. Plotted alongside the ET estimates, we showed the leaf-level measurement of gsw to indicate the control of 

vegetation on canopy-level ET. The four instrumental techniques are: sap flow, the eddy-covariance (EC), scintillometer 

(averaged over thirty minutes and one minute), ET inferred by the profile lift measurements and ET infrared from the SIF 

observations. The ET modelled by CLASS is also included for IOP 1.  

In comparing ET from the three IOPs, we find significant differences in magnitude from different techniques. In general, the 10 

highest values of ET are observed during IOP 1. The three IOPs were characterized by differences in the stages of growth, 

from very active vegetation to senescent, and influenced by a range of weather conditions: IOP 1 cloudless, IOP 2 scattered 

and thick clouds, and IOP 3 shallow cumuli. It is surprising that the decay in the vegetation activity as quantified by the 

measurements of leaf conductivity (Fig. 3 lower panels) is less evident in differentiating IOP 3 (senescent stage) from the 

more active vegetation at IOP 1 and 2. Furthermore we observed, moving from IOP 1 to IOP 3, a much stronger decline in 15 

gsw, suggesting that stomatal closure compensated for increased atmospheric moisture demand. 

Several conclusions can be drawn from this intercomparison of ET observations using different techniques. Firstly, we might 

expect that the EC/scintillometer measurements, both with larger footprint and the inclusion of the soil evaporation 

contribution, show a net total ET that is similar to or higher than that one obtained by the sap-flow measurements. Secondly, 

we observed a far more pronounced response in declining gsw compared to all ET measurements. These results point to the 20 

need to measure more accurately the leaf energy balance to take the penetration of radiation in the canopy under clear and 

cloudy conditions into account. This would also require a revision of scaling procedure from the leaf to the canopy level. 

Secondly, it is known that the EC flux measurements normally underestimate the sensible and latent heat fluxes because the 

EC flux measurements filter out the low frequencies (Foken et al., 2008; Gao et al., 2017). This underestimation is difficult 

to determine, but as a first-guess and related to Fig. 17 the underestimation might range between 10 and 15%. 25 

Although the contribution of soil evaporation is small compared to plant transpiration due to the high vegetation cover, we 

need to stress that EC and scintillometer observations are similar to or smaller than the ET observed or inferred from the 

other techniques (Fig. 17). This highlights the difficulty of estimating ET due to the need to include and quantify the 

contributions of the four fundamental processes: soil evaporation, up-scaled leaf transpiration, evaporation related to the sap 

flow and the two non-local processes, entrainment of dry air and horizontal advection of heat and moisture. Here, the 30 

modelling of ET, taking into account for and integrating all these processes, enables us to discriminate among these 

processes and calculate the budget of ET as a function of these local and non-local contributions. In that respect, the CLASS 
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model is a tool capable of efficiently combining observations and model results that integrate surface and boundary-layer 

dynamics. The averaged modelled ET is at the higher range of the ET observed estimations during IOP 1. 

With respect to the differences between the one-minute and thirty-minute series measured by the scintillometer, their median 

is very similar in the three IOPs. However, differences become larger at smaller timescales due to the non-steadiness of ET 

under the presence of clouds. Here, the one-minute flux calculated from the scintillometer can capture the rapid and large 5 

fluctuations by clouds (Fig. 12), and in particular the maximum values. In order to obtain more definitive conclusions how 

ET varies under cloud conditions, we need to analyse in more detail other situations characterized by different diurnal cloud 

cycles, and systematically relate ET to key cloud characteristics such as the cloud optimal depth to determine how cloud 

thickness influences ET, and the time scale of the cloud passage. 

Regarding the quantification of the different processes contributing to ET, Fig. 9 illustrates the need to continue to test 10 

analytical techniques to identify the individual contributions of soil and plants to determine the diurnal ET budget. A 

possibly useful tracer would be the stable isotopic composition of water vapour and carbon dioxide (Lee et al., 2009; Griffis 

2013) and combined with isotope signals in modelling the surface and boundary-layer dynamics with the carbon and water 

exchanges. To further discriminate between soil and plant sources and sinks under unsteady conditions due to radiation and 

dynamic perturbations by cloud shading, these high-frequency stable isotope measurements should go beyond the typical 15 

average time of eddy-covariance (thirty minutes). As van Kesteren et al. (2013) showed, and is further corroborated in this 

work, the scintillometer technique combined with high-frequency observations of H2O and CO2 enable us to quantify the 

responses time of ET and CO2 assimilation to these intermittent radiation fluctuations or cloud flecks (Kaiser et al., 2018). 

Finally, the integration of all processes in the CLASS model shows the challenges in interpreting the measurements taken at 

the sub-kilometre scales and adequately representing the surface turbulent fluxes. Although the measurements indicate that 20 

the day selected for the modelling displayed a very homogeneous boundary layer depth over an area with a radius of 100 

km2, the sensible heat flux measured at the CloudRoots facility was not representative of it. Therefore, recommend to 

extending the number of stations by means of a multi-tower approach that would also include also detailed observations of 

the soil and plant conditions. In addition to obtaining a more representative field sensible heat flux which is better related to 

the development of the boundary layer, a denser network of spatial observation stations is also necessary to estimate more 25 

accurately the role of hectometre-scale heterogeneity-induced circulations and their relationships with the local advection of 

heat and moisture (Mauder et al., 2010). 

5. Conclusions 

 

Our main findings, organised from the smaller to the larger scales observed and modelled, are summarized as 30 

follows: 
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• At leaf scale, we find that stomatal conductance and gross primary production decrease in line with the 

increasing senescence of the plant. The tiller-level measurements of the sap flow are virtually constant 

throughout the growing period. Underlying causes need to be further investigated under controlled 

conditions. The successful modelling of the leaf stomatal conductance and the photosynthesis assimilations 

required the relevant constants used in the mechanistic model (A-gs) in the field to be measured. Modelled 5 

leaf-level photosynthesis compares better with the measurements during the mature growing period than 

during senescence. For future field experiments, we recommend of including leaf-level measurements in 

meteorological campaigns to improve calculations related to the water-carbon leaf and canopy exchanges. 

• At canopy scale, the high frequency vertical profiles – measured in and above the canopy - of wind speed, 

potential temperature, specific humidity and carbon dioxide prove to be very valuable in obtaining profiles 10 

of gross primary production in the canopy and as a function of height. By inverting these observed profiles, 

we obtain an estimate of the contributions of soils and plants to the net evapotranspiration and CO2 

ecosystem exchange. The validation against individual measurements of these components gives better 

results for the net ecosystem exchange than those for the net evapotranspiration. We argue that for 

evapotranspiration the dependence on temperature and water vapor deficit plays a more important role than 15 

for CO2 assimilation, the latter being mainly controlled by the partitioning between direct and diffuse 

radiation. 

• Under cloud conditions, we show that the perturbation by clouds of direct and diffuse radiation create large 

fluctuations in evapotranspiration and the CO2 assimilation with opposite signs for evapotranspiration and 

CO2 exchange. A cloudy boundary layer reduces evapotranspiration, whereas it enhances plant 20 

assimilation of CO2. The one-minute turbulent fluxes acquired by the scintillometer demonstrate the 

relevance of flux measurements observed at higher frequencies for improving quantification of the impact 

of clouds on the photosynthetically active radiation. With these fast-turbulent fluxes, we quantify delays of 

the turbulent fluxes with respect to the photosynthetically active radiation. These delays are on the order of 

minutes. Comparing these one-minute flux estimate with the standard thirty-minute average measured with 25 

the eddy-covariance technique, we find a lower median and a large increase in the variability of the net 

evapotranspiration. This information can be useful in determining the impact of rapid fluctuations driven 

by the impact of clouds on evapotranspiration and its impact on the closure of the surface energy balance. 

• At landscape and boundary-layer integrated scales, the modelled sensible heat flux correlates better with 

the area-weighted average flux than the local flux estimates. The area-weighted flux integrates in a simple 30 

manner a composite of bare soil and vegetated surfaces at regional scale (kilometres). This aggregate 

regional flux is representative of an area that is larger than the CloudRoots site (100 m x 100 m). 

Therefore, a model setup that represents the boundary layer evolution well only needed to be informed by 

the area-weighted average of two main surface types, bare soil and vegetated areas. The variations of ET 
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due to surface heterogeneity were also measured and inferred from airborne sun-induced fluorescence 

observations. Our findings corroborate the large heterogeneity of ET at the sub-kilometre scales with 

values ranging from forest (about 2.5 mmol m-2 s-1) to late crops such as potato or sugar beet  (8-10 mmol 

m-2 s-1) .  

• The comparison of all the ET measurements at the various scales show that there are still large differences 5 

in observing ET among the different observing techniques, the modelling of ET and their relation to 

stomatal aperture during the entire growing season. These ET observations do not show a clear pattern 

related to the scale at which they were measured. 

• The modelling and scale integration of this comprehensive observational data set enables us to study the 

carbon and water exchange at leaf, canopy and landscape levels. It also allow us to quantify how horizontal 10 

advection of heat within the mixed-layer influences the surface fluxes and the growth of the atmospheric-

boundary layer. We show, for instance, that the horizontal advection of heat leads to deeper boundary-

layer depths. This numerical experiment thus paves the way to more complete modelling studies, for 

instance using large-eddy simulation numerical experiments, on how surface and the overlaying 

atmosphere interact on sub-diurnal and sub-kilometre scales. 15 
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Figures 

 

 
Figure 1: a) Aerial view (Bing Maps, © 2019 Microsoft Corporation © 2019 DigitalGlobe © CNES (2019) Distribution 

Airbus DS) of the observation area. The ICOS Selhausen test site is located in the middle of the 10 x 10 km map section. The 5 

surrounding agricultural area was classified into the categories bare soil (including “late crops” after Table 3) and vegetated 

(“early crops”, forest and grassland after Table 3) during the IOP 1. b) Corresponding sensible heat flux (H) during IOP 1, 

whereby H of bare soil and vegetated area were measured and the regional average was estimated as weighted average (60% 

and 40% for vegetated and bare soil, respectively). c) Schematic sketch of horizontal (red) and vertical (black) length scales 

influencing the measurements. The larger indicated horizontal and vertical scales indicate the spatial scales of boundary layer 10 

dynamics. Horizontally, the 100 m scale is the size of the field hosting the ICOS test site. 
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Figure 2: Campaign-specific measurement setup and temporal developments from May to June 2018, including three 

intensive operation periods (IOP). 5 

 
Figure 3: Upper panels: diurnal changes in photosynthetically active radiation (PAR) and vapour pressure deficit (VPD) 

measured for (a) IOP 1, (b) IOP 2 and (c) IOP 3. Lower panels: Leaf-level measurements of stomatal conductance of water 

vapour (gsw), in b) and c) compared to tiller-level measurements of sap flow (Esap). Leaf-level measurements of gsw (blue 

markers) were averaged over thirty-minute intervals (blue line). Sap flow measurements represent the one-standard-deviation 10 

confidence interval (shaded region) of measurements on 24 tillers averaged over 30-minute time scales.  
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Figure 4: Sap-flow measured using the heat-balance method for 7 June 2018 (non-IOP day). 

 5 

 
Figure 5: Measurements of leaf-level photosynthesis (Aleaf) as function of photosynthetically active radiation (PAR) (a) and 

leaf-interior CO2 concentrations (ci) (b). These results were used to parameterize the A-gs model for IOP1, as indicated by 

the black line and shaded one-standard-deviation confidence interval. The red line indicates the model response using the 

default parameter values. (c) Observed and modelled seasonal decline in maximum light-saturated photosynthesis (Amax). 10 

Boxes indicate the variability in observed values in Amax, red markers indicate the modelled net photosynthesis rate using 

fitted values for Am,max298. Fitted and default A-gs model parameter values are indicated in Table 3. 
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Figure 6: Measured leaf-level photosynthesis (Aleaf) compared to modelled Aleaf using the A-gs model and canopy-level net 

primary productivity (NPPcanopy) for (a) IOP 1, (b) IOP 2 and (c) IOP 3. Measurements of Aleaf were plotted as 30-minute 

averages (blue line) and their one-standard-deviation confidence interval (shaded region). Upper panels show diurnal 5 

changes in photosynthetically active radiation (PAR) and vapour pressure deficit (VPD) measured for each IOP. 
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Figure 7: Selected (08:00, 13:00 and 18:30 UTC) 30-minutes mean profiles of the H2O and CO2 mole fractions (χH2O, 

χCO2), wind speed (up) and temperature (Tair,p) measured at high vertical resolution during IOP 1 (upper panel) and IOP 2 

(lower panel). Shaded areas indicate the 95 % confidence interval resulting from the standard deviation between individual 

profiles sampled within a thirty-minute average interval. The dashed lines indicate the canopy heights. 5 
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Figure 8: (a) Leaf area density (mleaf2 m-3) on 7 May 2018 as a function of height (h) normalized to the maximum canopy h 

(hc). The profile is typical for winter wheat as defined by Olesen et al. (2004). (b) Time evolution of CO2 gross primary 

production A (mg m-3 s-1) on 7 May 2018 as function of h normalized to hc. The profile is obtained using the profile 

measurements  and using Eq. (2).  5 

 

 
Figure 9: Source partitioning results for (a) H2O and (b) CO2 fluxes for IOP 1. Grey dashed lines show the measured latent 

heat flux (ETec) and net ecosystem exchange (NEEec) in half-hourly time steps. Values with subscript index p indicate 

estimate based on inversed profile concentration measurements (Sec. 3.4). Error bars for evaporation calculated from 10 

microlysimeters (Elysi) and soil respiration measurements (Rs,ch) indicated to one standard deviation. (ETec: 

evapotranspiration measured as latent heat flux LvE by the eddy-covariance system; E: evaporation; Tr: transpiration, NPP: 

aboveground net primary production; Rs: soil respiration). 
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Figure 10: Left panel: net primary production (NPP) versus the photosynthetic active radiation (PAR). Right panel: Latent 

heat (LvE) versus net radiation (Q*). In both figures, the observation period encompasses clear and cloudy skies during a two 

week-period starting on 7 May 2018 at 03:30 UTC (sunrise) and ending on the 20 May 2018 at 19:40 UTC (sunset). The 

solid line represents the median of the data. The lower and upper boundaries of the shaded area are the 25th and 75th 5 

percentiles of the data respectively.  
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Figure 11: IOP 2 (15 June 2018) time-series of: (a)  sensible heat flux (H) at one-minute intervals with a displaced beam 

laser scintillometer (DBLS) and at ten-minute intervals with an eddy-covariance system (EC), combined with scaled time-

series of photosynthetically active radiation (PAR, scaled by 1500 μmol m-2 s-1) and wind speed (U, scaled by 6 ms-1); (b) 5 

turbulent exchange coefficient KT and (c) structure parameter of temperature, CT
2 that together make up H in the DBLS 

method following Eq. (1). 

 

 

 10 
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Figure 12: IOP 2 (15 June 2018) time-series of: (a) latent heat fluxes (LvE) at one-minute intervals with a displaced beam 

laser scintillometer (DBLS) and at ten-minute intervals with an eddy-covariance system (EC) combined with scaled time-

series of photosynthetically active radiation (PAR, scaled by 1500 μmol m-2 s-1) and windspeed (U, scaled by 6 ms-1); (b) 5 

same as (a) but for the CO2 flux (FCO2). 
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Figure 13: a) Aerial map of F760 on 26 June 2018 with measurement locations used to combine with mobile (circles) and 

stationary (triangles) measurements. b) Diurnal changes in F760 on different days of the campaign as five-minute 

measurement averages depicted in the same colours as observation locations in a). 

 5 
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Figure 14: Spatial variability of evapotranspiration inferred from combining Kc coefficients with the value of potential grass 

reference ETgrass. The x- and y-axis represent the geographical coordinates of the CloudRoots site in metres (50°51'57.3"N 

6°26'42.5"E). 

 5 

 
Figure 15:  Relation between evapotranspiration and fluorescence F760 including the standard deviation for the nine land-

use categories defined in Table 3. The data were collected on 26 June 2018.  

 

 10 

 

 



43 
 

 

 

Figure 16: Comparison of the model and observed results of 7 May 2018: (left) surface fluxes and (right) boundary-layer 

depth. The regional H, an aggregate that combines the vegetated and bare soil surfaces around the CloudRoots site as shown 

in Fig. 1b, is also included. For the boundary-layer depth estimations, we used three different observational techniques. The 5 

LIDAR and microwave (MW) techniques were located at the JOYCE site facility. Solid and dashed lines represent the 

model results of surface fluxes and boundary-layer height with and without imposing the advection of heat, respectively 

(Table A2) for complete the information on initial and boundary conditions. 

 

 10 
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Figure 17: Summary of midday evapotranspiration collected using different instrumental techniques during (a) IOP 1, (b) 

IOP 2 and (c) IOP 3. ET fluxes (left y-axis) and gsw (right y-axis) reflect the period from 09:00 to 14:00 UTC. Box plots 

denote the variability in thirty-minute measurement intervals, except for the one-minute scintillometer measurements. 

Central mark of each box indicates the median, and the bottom and top edges of the box indicate the 25th and 75th 5 

percentiles, respectively. The acronyms are eddy-covariance (EC), scintillometer (Scint) with thirty-minute (30min) and one-

minute (1min) averages, ET inferred from the lift profiles (Lift), sap flow, ET calculated with the CLASS model and ET 

inferred from the sun-induced fluorescence (SIF). 
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Table 1: Meteorological and biometric conditions during the intensive operation periods on 7 May (IOP 1), 15 June (IOP 2) 

and 28 June 2018 (IOP 3). Global radiation, water vapour-pressure deficit (VPD), photosynthetically active radiation (PAR) 

and soil water content (SWC) are daily averages. The meteorological variables were measured at the height 2.4 ± 0.1 m (see 

Section 2.3.7 for details).  

 IOP 1 IOP 2 IOP 3 

Meteorological conditions    

cloud amount 0-1 3-6 0-4 

temperature range (°C)  7.0 - 25.4 13.2 - 23.9 10.1 – 27.6 

wind range (m s-1) 0.1 – 2.1 0.06 – 1.5 0.2 – 3.3 

global radiation* (W m-2) 514 311 462 

Biometric conditions    

canopy height (m) 0.45 0.80 0.78 

LAI (m2 m-2) 4.5 5.5 5.5 

VPD / VPDmax (hPa) 11.7 / 20.9  7.6 / 14.9 16.0 / 23.6 

PAR* (μmol m-2 s-1) 768 475 741 

SWC 5, 20, 50 cm (vol.%) 0.20 / 0.27 / 0.30 0.17 / 0.19 / 0.22 0.12 / 0.15 / 0.21 
* Daily averages calculated from sunrise to sunset 5 

Table 2: List of symbols, description, units and the representatively scale. 

Symbol Description Unit Scale represented 
A photosynthesis rate μmol m-2 s-1, mg m-2 s-1 landscape 
Aleaf leaf-level photosynthesis rate μmol m-2 s-1, mg m-2 s-1 leaf 
Am maximum light-saturated photosynthesis μmol m-2 s-1, mg m-2 s-1 landscape 
Am, max298 maximum leaf-level photosynthesis rate μmol m-2 s-1, mg m-2 s-1 leaf 
E evaporation mm, W m-2 several 
Elysi evaporation from microlysimeters W m-2 landscape 
Ep evaporation profile based W m-2 leaf 
Esap sap flow μmol tiller-2 s-1 leaf 
ET evapotranspiration mm, W m-2 several 
ETec evapotranspiration eddy-covariance W m-2 canopy 
gsw stomatal conductance of water vapour mol m-2 s-1 leaf 
h height m boundary-layer 
hc canopy height m canopy 
L Obukove lenght m canopy 
LvE latent heat flux W m-2 several 
LAD leaf area density  m2 m-3 canopy 
LAI leaf area index m2 m-2 canopy 
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NEE net ecosystem exchange μmol m-2 s-1, mg m-2 s-1 canopy 
NEEec net ecosystem exchange eddy covariance μmol m-2 s-1, mg m-2 s-1 canopy 
NPP/NPPcanopy  net primary production μmol m-2 s-1, mg m-2 s-1 canopy 
NPPp net primary prodyuction inferres profile μmol m-2 s-1, mg m-2 s-1 canopy 
PAR photosynthetically active radiation μmol m-2 s-1 , W m-2 leaf/canopy 
Q* net radiation W m-2  leaf/canopy 
Rd CO2 dark respiration mg m2 s-1 landscape 

Rs soil respiration μmol m-2 s-1 landscape 
Rs,ch soil respiration measured by chamber μmol m-2 s-1 landscape 
Rs,p soil respiration inferred from profile μmol m-2 s-1 landscape 
S↓ global radiation W m-2 landscape 
H sensible heat flux W m-2 canopy/landscape 
T temperature °C, K several 
Tair air temperature °C, K landscape 
Tair,p air temperature from vertical profile meas. °C, K leaf/canopy 
Trp transpiration, profile-based W m-2 leaf/canopy 
u wind speed m s-1 landscape 
up wind speed from vertical profile meas. m s-1 landscape 
u* friction velocity m s-1 landscape 
VPD water vapour-pressure deficit kPa leaf/canopy 
α light-use efficiency mg J-1 landscape 
α0 initial value of light-use efficiency mg J-1 landscape 
χH2O mole fractions of H2O concentration  μmol mol-1 leaf/Canopy 
χCO2 mole fractions of CO2 concentration μmol mol-1 leaf/Canopy 
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Table 3: Parameters representing the maximum leaf-level photosynthesis rate (Am,max298) and the initial value of light-use 

efficiency (α0) under low light, as adjusted in the original A-gs model to represent plant-specific photosynthesis 

characteristics for winter wheat (ww). Am,max298 was initially fitted using the A-Ci curves and α0 is fitted using the A-PAR 5 

curves taken during IOP 1 (Fig. 5). For IOP 2 and IOP 3, Am,max298 values were fitted only on leaf-level measurements of 

Amax. The values of IOP 1 were used as numerical settings for the CLASS model runs (Fig. 16). The equivalence to typical 

values of the commonly used in the Farquhar-Berry-von Caemmerer (FBvC) model of leaf photosynthesis (Farquhar et al., 

1980) is given in Table S1 at the supplementary information. 

Fitted model variable 
 
 
 

Default value 
(for C3 plants) 

Fitted 
ww 
 
IOP 1 

Fitted 
ww 
 
IOP 2 

Fitted 
ww 
 
IOP 3 

Mesophyll conductance at 298 K [mm s-1] 
 
maximum leaf-level photosynthesis rate 
(Am,max298) [mg m-2 s-1] 

7.0 
 
2.2 

10.0 
 
1.926 

10.0 
 
1.0 

10.0 
 
0.2 

 
light-use efficiency (α0)[mg J-1] 

 
0.017 

 
0.0053 

 
0.0053 

 
0.0053 

 10 

 

 

Table 4: Estimated Kc coefficients for different land-use classes, which are dominant in the study area. The land-use classes 

were calculated using a more detailed land use classification that consisted of 32 classes. For this study several classes 

having similar transpiration rates were combined. 15 

 Land-use class Kc Main surface types included 
1 Impervious 0.0 Roads, urban areas, industrial areas 
2 Bare soil 0.2 Bare fields, incl. harvested fields with rapeseed 

harvest residuals 
3 Needle forest 0.5 Managed spruce and pine forest 
4 Broad-leaf forest 0.7 Broad-leaf forest, scrubs 
5 Early crops (senescence) 0.6 Winter barley 
6 Early crops (approaching senescence) 0.7 Winter wheat 
7 Grassland 0.8 Natural grasslands, urban grasslands 
8 Late crops 1.1 Sugar beet, potato 
9 Maize 1.2 Maize 
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Appendix 1 

Construction of light and radiation response curves under clear and cloudy conditions 

For the construction of the light and radiation responses curves in Fig. 10, the data were divided into bins of PAR and Q*. 

For Fig 10a, we divide the data points in bins of incoming total PAR. Each bin covers a range of 50 Wm⁻², starting at 0-50 5 

Wm⁻² and presumably ending at around 350-400 Wm⁻² (maximal intensity for incoming direct PAR).  For Fig 10b, and the 

variable Q* each bin covers a range of 100 W m-², starting at -200 to 100 W m-² for cloudy skies and at 0 to 100 W m-² for 

clear skies. In both figures, for each data point the diffuse fraction of PAR is determined by combining measurements of 

incoming total PAR and incoming diffuse PAR. Subsequently, a data point is labelled ‘clear’ for diffuse fractions < 0.3 and 

labelled ‘cloudy’ for diffuse fractions > 0.8. We choose these boundaries to balance a distinct difference between clear and 10 

cloudy skies with a large enough sample size for each bin. For clear skies, the first two bins are missing. This is due to the 

fact that under clear skies low levels of Q* are the result of the sun being close to the horizon, and as a result solar radiation 

has to travel a long distance through the atmosphere before reaching the surface. In those cases, most of the solar radiation 

reaches the surface as diffuse radiation due to Rayleigh scattering and scattering by aerosols, and therefore does not meet the 

criteria to be labelled “clear”. For cloudy skies, bins are missing for high levels of Q*. Clouds attenuate solar radiation 15 

through absorption and backscattering, and thereby reduce Q* to a level lower than it would be for a clear sky. 

 

Table A1: Management activities on the test site over the winter wheat cultivation cycle before, during and after the 

observation period of the CloudRoots campaign. 

Date Management Product 

25 Oct 2018 sowing crop seeds winter wheat (Premio) 

8 Mar 2018 fertilisation 81.6 kg N ha-1 

9 Apr 2018 herbicide treatment 200 g ha-1 Broadway 

9 Apr 2018 herbicide treatment 1 l ha-1 CCC720 

22 Apr 2018 fertilisation 39.2 kg N ha-1 

2 May 2018 fungicide treatment 1 l ha-1 Capalo 

2 May 2018 fungicide treatment 0.3 l ha-1 Corbel 

2 May 2018 herbicide treatment 0.3 l ha-1 CCC720 

16 May 2018 fertilisation 50 kg N ha-1 

19 May 2018 fungicide treatment 1.5 l ha-1 Adexar 

19 May 2018 fungicide treatment 0.5 l ha-1 Diamant 

19 May 2018 insecticide treatment 0.3 l ha-1 Bulldock 
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16 July 2018 harvesting winter wheat, 92 dt ha-1 

19 July 2018 Straw pressed and removed  

25 Aug 2018 ploughing  

18 Sep 2018 harrowing  
 

Table A2: Initial and boundary conditions prescribed in CLASS to reproduce IOP 1 (7th May 2018). 

Mixed-layer model parameters 
Parameter (units) Value Source 
time steps (s) 60 - 
runtime (s) 50400 - 
residual-layer starting height (m) 135 Joyce microwave 
surface layer top height (m) 1400 radiosonde 
surface pressure (Pa) 100600 EC pressure gauge 
large-scale wind divergence (s-1) 0 default 
fc (m s-1) 1.10-4 latitude 
Coriolis parameter (-) 0.2 default 
Potential temperature 
initial mixed-layer temperature (K) 

 
286.2 

 
profile data and radiosonde 

jump in potential temperature from boundary layer to free troposphere 
(K) 

4 radiosonde 

jump in potential temperature from boundary layer to residual layer (K) 4.4 radiosonde 
free troposphere lapse-rate for potential temperature (h < 1400 m) (K) 4.9⋅10-3 radiosonde 
free troposphere lapse-rate for potential temperature (h < 1400 m) (K) 6.2⋅10-3 radiosonde 
advection of heat into the mixed-layer (K s-1)  

2.5 ∙ 10−4𝑒𝑒−
(𝑡𝑡[𝑈𝑈𝑈𝑈𝑈𝑈]−12)2

5  
 
Specific humidity 
initial function mixed-layer specific humidity (kg kg-1) 

  
 
0.0067 − 0.0004(𝑡𝑡[𝑈𝑈𝑈𝑈𝑈𝑈] − 6.5) 

Residual-layer lapse rate for specific humidity (kg kg-1 m-1) -1.4⋅10-3 radiosonde 
free troposphere lapse-rate specific humidity (h < 1400 m) (kg kg-1 m-1) -2.7⋅10-6 radiosonde 
free troposphere lapse-rate specific humidity (h < 1400 m) (kg kg-1 m-1) -9.0⋅10-6 radiosonde 

advection of specific humidity into the mixed-layer (kg kg-1 m-1) 0 default 
 
Carbon dioxide 
initial mixed-layer CO2 (μmolCO2 mol-1air) 

 
 
400 

 
 
profile measurements 

jump in CO2 at the inversion layer (μmolCO2 mol-1air) -44 profile measurements 
free troposphere lapse-rate for CO2 (μmolCO2 mol-1air m-1) 0 default 
advection of CO2 into the mixed-layer (μmolCO2 mol-1air s-1) 0 default 
 
Wind 
initial wind speed in the longitudinal direction (m s-1) 

 
 
1.75 

 
 
profile measurements 

jump in longitudinal wind velocity at the inversion layer (m s-1) 3 profile measurements 
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free troposphere lapse-rate for longitudinal wind velocity (m s-1 m-1) -1.8⋅10-3 profile measurements 
advection of longitudinal wind into the mixed-layer (m s-1 s-1) 0 default 
wind speed in the latitudinal direction (m s-1) 0 default 
jump in latitudinal wind velocity at the inversion layer (m s-1) 0 default 
free troposphere lapse rate for latitudinal wind velocity (m s-1 m-1) 0 default 
advection of latitudinal wind into the mixed-layer (m s-1 s-1) 0 default 
   
roughness length for momentum (m) 0.02 canopy height 
roughness length for scalars (m) 0.002 canopy height 
 
Geographical coordinates and radiation 
latitude (deg) 

 
 
50.9 

 
 
geographical location 

longitude (deg) 6.4 geographical location 
Julian day-of-year (days) (7 May 2018) 127 data selected case 
start time (hrs UTC) 6.0 - 
cloud cover fraction (-) 0 camera 
cloud-top radiative divergence (W m-2) 0 camera 
 
Soil 
soil moisture top soil layer (m3 m-3) 

 
 
0.177 

 
 
soil measurements 

soil moisture deep soil layer (m3 m-3) 0.286 soil measurements 
Vegetation cover fraction (-) 0.98 visual inspection, camera 
T top soil layer (K) 285.5 soil measurements 
T deep soil layer (K) 284 soil measurements 
Clapp & Hornberger parametre a (-) 0.219 soil composition 
Clapp & Hornberger parametre b (-) 5.3 soil composition 
Clapp & Hornberger parametre p (-) 4 soil composition 
saturated soil conductivity for heat (-) 3.56⋅10-6 soil composition 
saturated volumetric water content (-) 0.472 soil composition 
field capacity volumetric water content (-) 0.3 soil composition 
wilting point volumetric water content (-) 0.154 soil composition 
parameter to calculate top layer soil moisture tendency (-) disabled soil composition 
parameter to calculate top layer soil moisture tendency (-) disabled soil composition 
LAI (-) 4.5 on-site determination 
correction factor transpiration for VPD for high vegetation (-) 0 vegetation height 
minimum soil resistance [s m-1] 50 default 
albedo (-) 0.2 radiation measurements 
surface temperature (K) 286.3 profile measurements 
thickness of water layer on wet vegetation (m) 0.0002 default 
equivalent water-layer depth for wet vegetation (m) 0.0001 on-site observations 
thermal conductivity skin layer 5.9 default 

A-gs model parameters 
CO2 compensation concentration (mg m-3) 68.5 C3 reference value 
function parameter to calculate CO2 compensation (-) 1.5 C3 reference value 
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mesophyll conductance (m s-1) 10.0 leaf gas exchange 
maximum assimilation rate for CO2 at 298 K (mg m-2 s-1) 1.926 leaf gas exchange 
reference temperature to calculate mesophyll conductance (K) 278 C3 reference value 
reference temperature to calculate mesophyll conductance (K) 301 C3 reference value 
function parameter to calculate maximal primary productivity (-) 2.0 C3 reference value 
reference temperature to calculate maximal primary productivity (K) 281 C3 reference value 
reference temperature to calculate maximal primary productivity (K) 311 C3 reference value 
maximum value of the ratio between the leaf and external (-) 0.89 C3 reference value 
regression coefficient to calculate the ratio between the leaf 
and external CO2 concentration (-) 0.07 C3 reference value 
initial low-light-conditions use efficiency for CO2 (mg J-1) 0.0053 leaf gas exchange 
extinction coefficient PAR (m m-1) 0.7 C3 reference value 
minimum cuticular conductance (mm s-1) 2.5⋅10-4 C3 reference value 
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