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Abstract 10 
Models of soil organic carbon (SOC) storage and turnover can be useful tools to analyze the effects of soil and 

crop management practices and climate change on soil organic carbon stocks. The aggregated structure of soil is 

known to protect SOC from decomposition, and thus influence the potential for long-term sequestration. In turn, 

the turnover and storage of SOC affects soil aggregation, physical and hydraulic properties and the productive 

capacity of soil. These interactions have not yet been explicitly considered in modelling approaches. In this study, 15 
we present and describe a new model of the dynamic feedbacks between SOM storage and soil physical properties 

(porosity, pore size distribution, bulk density and layer thickness). A sensitivity analysis was first performed to 

understand the behaviour of the model. The identifiability of model parameters was then investigated by calibrating 

the model against a synthetic data set. This analysis revealed that it would not be possible to unequivocally estimate 

all of the model parameters from the kind of data usually available in field trials. Based on this information, the 20 
model was tested against measurements of bulk density and SOC concentration, as well as limited data on soil 

water retention and soil surface elevation, made during 63 years in a field trial located near Uppsala (Sweden) in 

three treatments with different OM inputs (bare fallow, animal and green manure). The model was able to 

accurately reproduce the changes in SOC, soil bulk density and, surface elevation observed in the field as well as 

and soil water retention curves  measured at the end of the experimental period in 2019 in two of the 25 
treatmentsobserved in the field. Treatment-specific variations in SOC dynamics caused by differences in OM input 

quality could be simulated very well by modifying the value for the OM retention coefficient ε (0.37 for animal 

manure and 0.14 for green manure). The model approach presented here may prove useful for management 

purposes, for example, in an analysis of carbon sequestration or soil degradation under land use and climate 

change. 30 

1 Introduction 

As a consequence of intensive cultivation, most agricultural soils have lost ca. 25–75 % of their antecedent store 

of SOC (Lal, 2013; Sanderman et al., 2017). Apart from contributing to the increase in atmospheric CO2, this has 

also degraded the inherent physical quality and productivity of soil (e.g. Lal, 2007; Rickson et al., 2015; Henryson 

et al., 2018). This is because many important soil physical and hydraulic (e.g. water retention and hydraulic 35 
conductivity) properties are strongly influenced by soil organic matter (SOM). For example, SOM increases 

porosity and reduces soil bulk density (e.g. Haynes and Naidu, 1998; Ruehlmann and Körschens, 2009; Jarvis et 

al., 2017). This is partly because the density of organic matter is less than that of soil minerals, but more 

importantly, it is a consequence of the aggregated soil structure induced by the microbial decomposition of fresh 

organic matter (Tisdall and Oades, 1982; Young and Crawford, 2004; Cosentino et al., 2006; Feeney et al., 2006; 40 
Bucka et al., 2019). Changes in the SOM content may also affect the pore size distribution, although the magnitude 

of these effects across different ranges of pore diameter is still a matter of some controversy (e.g. Hudson, 1994; 

Rawls et al., 2003; Loveland and Webb, 2003; Minasny and McBratney 2018; Libohova et al., 2018).  

The relationship between SOM and soil pore space properties can be characterized as a dynamic two-way 

interaction. This is because, in addition to the effects of SOM on soil pore size distribution and porosity, 45 
decomposition rates of SOM are reduced within microporous regions of soil that are poorly aerated and where the 

carbon is physically much less accessible to microorganisms (e.g. Ekschmitt et al., 2008; Dungait et al., 2012; 

Lehmann and Kleber, 2015). Whereas sorption interactions with mineral surfaces are probably the dominant 
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mechanisms protecting SOM from decomposition in coarse-textured soils, the additional physical protection 

afforded by microporous regions of the soil may lead to an enhanced long-term storage of SOM in structured fine-50 
textured soils (e.g. Hassink et al., 1993; Chevallier et al., 2004; Souza et al., 2017; Dignac et al., 2017). Thus, the 

turnover of both particulate and soluble SOM has been shown to depend on its location in soil pore networks of 

different diameter and connectivity and with contrasting microbial communities (e.g. Strong et al., 2004; Ruamps 

et al, 2011; Nunan et al., 2017). Recent studies using novel X-ray imaging techniques have also provided additional 

insights into how the soil pore space architecture regulates the physical protection of SOM in structured soil 55 
(Kravchenko and Guber, 2017). For example, Kravchenko et al. (2015) showed that the decomposition rates of 

intra-aggregate particulate SOM were 3 to 15 times faster in the presence of connected networks of aerated soil 

pores > 13 µm in diameter than in the absence of such pores. Toosi et al. (2017) showed that plant residues 

decomposed more slowly in soil microcosms dominated by pores 5-10 µm in diameter than in those containing a 

significant proportion of pores > 30 µm in diameter. Quigley et al. (2018) showed that pores 40–90 μm in size 60 

were associated with a fast influx of fresh carbon followed by its rapid decomposition, whereas soil pores < 40 μm 

in diameter were associated with reduced rates of carbon decomposition. From the foregoing, it follows that the 

turnover of SOM will be significantly affected by any physical or biological mixing process which transfers SOM 

between different pore regions in soil. For example, soil tillage may promote decomposition by exposing SOM 

that was previously effectively protected from microbial attack within microporous regions of the soil (e.g. 65 
Balesdent et al., 2000; Chevallier et al., 2004). Physical protection of SOM is also affected by the mixing resulting 

from the ingestion and casting of soil by earthworms (e.g. Martin, 1991; Görres et al. 2001; Angst et al., 2017).  

Some widely-used models of SOM turnover and storage attempt to implicitly account for the effects of chemical 

and physical protection by introducing a stable or inert pool (e.g. Falloon and Smith, 2000; Barré et al., 2010). 

Other models have also been proposed that explicitly predict the effects of soil structure on SOM storage and 70 
turnover by making use of the concept of soil micro- and macro-aggegrates (e.g. Stamati et al., 2013; Segoli et al., 

2013). An alternative approach would be to define soil structure in terms of the soil pore space. The advantage of 

this is that it allows a straightforward coupling to models of flow and transport processes in soil (e.g. Young et al., 

2001; Rabot et al., 2018). From a mathematical point of view, soil structure can be concisely described by the 

volume and connectivity of solids and pore space and the surface area and curvature of their interface, all expressed 75 
as a function of pore diameter (Vogel et al. 2010). We Of these metrics, we focus here on the total porosity and 

the pore size distribution and its integral the total porosity, since these properties underlie widely-used soil 

hydrological models based on Richards’ equation. Incorporating such a pore-space based approach to the 

interactions between SOM and soil structure into a soil-crop model would enable explicit recognition of the 

feedback links that exist between SOM dynamics, soil hydrological processes and plant growth (Henryson et al., 80 
2018). Kuka et al. (2007) earlier proposed a pore-based model of SOM turnover (CIPS), although they did not 

account for any feedbacks to soil physical properties and hydraulic functions. Here, we propose and test a new 

model that describes the dynamic two-way interactions between SOM storage and turnover, soil structure and soil 

physical properties. We first performed a sensitivity analysis of the proposed model and also investigated 

parameter identifiability using a synthetic data set (e.g. Luo et al., 2017). This was done because the data usually 85 
available from field experiments for testing models of SOM storage and turnover may be insufficient to uniquely 

identify the parameters of even the simplest models (Juston et al., 2010; Luo et al., 2017). Such problems of 

parameter ‘non-identifiability’ or ‘equifinality’ (Beven, 2006) may introduce considerable uncertainties into model 
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predictions under changing agro-environmental conditions (e.g. Sierra et al., 2015; Bradford, 2016; Luo et al., 

2017). Making use of the results of this sensitivity and uncertainty analysis, we calibrated the model against field 90 
data obtained from two treatments (bare fallow, animal manure) at the Ultuna long-term frame trial in Uppsala, 

Sweden, using measurements of the temporal changes in SOC concentrations and bulk density and limited data on 

the soil pore size distribution derived from water retention curves, as well as surface elevation. As a further test, 

we also compared predictions of the calibrated model with independent observations of measurements made in a 

green manure treatment in the same experiment. 95 

2 Description of the model  

2.1 Conceptual model 

The model describes the dynamic two-way interactions between SOM storage and turnover and soil porosity and 

pore size distribution.. A simple conceptual model is adopted to capture how the soil pore space changes as a result 

of changes in soil organic matter concentration (Figures 1 and 2). A list of all variables and their symbols can be 100 
found in Table S1 in the supplementary material. We consider that the total pore volume, Vp, comprises the sum 

of a constant textural pore volume, Vtext, defined as the minimum value of the pore volume found in a purely 

mineral soil matrix without SOM (e.g. Fies and Stengel, 1981; Yoon and Gimenéz, 2012) and a dynamic structural 

pore volume comprising both macropores, Vmac, and an aggregation pore volume, Vagg.  The biological processes 

underlying the generation of aggregation pores space (Dignac et al., 2017), which would be difficult to model 105 
individually in a mechanistic way, so we make no attempt to do so in our model. Instead, based on empirical 

knowledge, we simply assume a linear relationship between aggregation pore volume, Vagg, and the volume of soil 

organic matter (e.g. Emerson and McGarry, 2003; Boivin et al., 2009; Johannes et al., 2017). It should be 

emphasized here that although the model describes an aggregated pore space generated by microbial turnover of 

SOM, soil ‘aggregates’ themselves are not considered as explicit entities in this model, which instead is based on 110 
the soil pore space. In addition to classifying the soil pore space in terms of its origin, the model also considers 

three pore size classes (Figures 1 and 2). In addition to macropores, with the soil matrix porosity is partitioned into 

mesopores and micropores. 

 The model currently neglects storage of SOM in macropores because we expect that SOM per se would have little 

direct influence on the properties of soil macropore networks (e.g. Larsbo et al., 2016; Jarvis et al., 2017), but also 115 
because it would most likely be a minor component of the long-term SOM balance. The pore size distribution in 

the soil matrix influences SOM storage and turnover in the model in two ways: firstly, the mineralization rate of 

SOM in microporous regions is reduced due to physical protection. Secondly, the partitioning of OM inputs 

derived from plant roots between the two pore classes is determined by their relative volumes, in an attempt to 

mimic in a simple way how changes in soil structure affect the spatial distribution of root proliferation in soil. 120 
SOM is transferred between the two pore size classes using a simple mixing concept to reflect the homogenizing 

effects of soil tillage and faunal bioturbation. In this sense, the model has some conceptual similarities to the dual-

pore region models that are commonly used to quantify the effects of soil structure on water flow and solute 

transport (e.g. Larsbo et al. 2005).  

2.21 Soil organic matter storage and turnover  125 
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Four pools of organic matter (kg OM m-2) are considered in the model, comprising two types (qualities) of organic 

matter stored in the two pore regions of the soil matrix (Figures 1 to 3): the model tracks two pools of young 

undecomposed organic matter, one stored in parts of the soil in contact with well-aerated mesopore networks and 

the other stored in microporous soil regions (MY(mes) and MY(mic) respectively). Likewise, the model accounts for 

two pools of older microbially-processed organic matter, stored in the mesoporous and microporous regions of 130 
soil respectively (MO(mes) and MO(mic)). Both types of organic matter are transferred between the two pore regions 

by bio-physical mixing processes, such as tillage and bioturbation. The SOM fluxes and rates of change of storage 

in the four pools of organic matter in the model are given by a modified version of the ICBM model (Andrén and 

Kätterer, 1997; Wutzler and Reichstein, 2013) extended to account for organic matter storage in two pore regions: 

 135 
𝑑𝑑𝑑𝑑𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚)

𝑑𝑑𝑑𝑑
= 𝐼𝐼𝑚𝑚 + � 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚

𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚+𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚
� 𝐼𝐼𝑟𝑟 − 𝑘𝑘𝑌𝑌𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚) + 𝑇𝑇𝑌𝑌        (1) 

𝑑𝑑𝑑𝑑𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚)

𝑑𝑑𝑑𝑑
= �𝜀𝜀 𝑘𝑘𝑌𝑌𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚)� − �(1 − 𝜀𝜀) 𝑘𝑘𝑂𝑂𝑀𝑀𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚)� + 𝑇𝑇𝑂𝑂        (2) 

𝑑𝑑𝑑𝑑𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚)

𝑑𝑑𝑑𝑑
= � 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚

𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚+𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚
� 𝐼𝐼𝑟𝑟 − 𝑘𝑘𝑌𝑌𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚) − 𝑇𝑇𝑌𝑌        (3) 

𝑑𝑑𝑑𝑑𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚)

𝑑𝑑𝑑𝑑
= �𝜀𝜀 𝑘𝑘𝑌𝑌𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑐𝑐)� − �(1 − 𝜀𝜀) 𝑘𝑘𝑂𝑂𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑀𝑀𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚)� − 𝑇𝑇𝑂𝑂         (4) 

where φmic and φmes are micro- and mesoporosity (m3 m-3), kY and kO are the first-order rate constants for the 140 

decomposition of fresh and microbially-processed organic matter (year-1), Fprot is a response factor (-) varying 

from zero to unity that reduces decomposition in the micropore region to reflect a degree of physical protection, ε 

is an OM retention coefficient varying from zero to unity (-), TY and TO are source-sink terms (kg m-2 year-1) for 

the mixing of organic matter (e.g. by tillage or earthworm bioturbation) between the two pore classes and Ir and 

Im are the below-ground (root residues and exudates) and above-ground (litter and organic amendments e.g. 145 
manure) inputs of organic matter (kg m-2 year-1). It can be seen from equations 1 and 3 that the model assumes that 

root-derived organic matter is added to the microporous and mesoporous regions in proportion to their volumes, 

while above-ground litter and organic amendments are added solely to the mesopore region. Finally, TY and TO are 

source-sink terms (kg m-2 year-1) for the exchange of organic matter (e.g. by tillage or earthworm bioturbation) 

between the two pore classes the source-sink terms for mass exchange in equations 1 to 4 are given by: 150 

TY = 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚)−𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚)

2
�  (5) 

TO = 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑀𝑀𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚)−𝑀𝑀𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚)

2
�  (6) 

where kmix is a rate coefficient (year-1) determining how much the proportion of the stored organic matter which is 

mixed annually (year-1), varying between zero (no mixing) and unity (complete mixing on an annual time scale). 

It should be apparent from equations 1 – 6 that the effects of soil structure on SOM turnover become weaker as 155 
kmix and/or Fprot tend to unity. 

2.32 Soil physical properties  
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The model of SOM turnover and storage described by equations 1 to 6 above considers how the soil pore space 

influences SOM dynamics. We now derive a simple model of the feedback effects of SOM on porosity and pore 

size distribution. Our starting point is the fundamental phase relation for the total soil volume, Vt (m3): 160 

𝑉𝑉𝑡𝑡 = 𝑉𝑉𝑠𝑠 + 𝑉𝑉𝑝𝑝 = 𝑉𝑉𝑠𝑠(𝑜𝑜) + 𝑉𝑉𝑠𝑠(𝑚𝑚) + 𝑉𝑉𝑝𝑝 = �𝐴𝐴𝑥𝑥𝑥𝑥 �
𝑀𝑀𝑠𝑠(𝑜𝑜)

𝛾𝛾𝑜𝑜
+

𝑀𝑀𝑠𝑠(𝑚𝑚)

𝛾𝛾𝑚𝑚
� + 𝑉𝑉𝑝𝑝� (7)     

where Vs, Vs(o), Vs(m) and Vp are the volumes (m3) of solids, organic matter, mineral matter and pore space, γo and 

γm are the densities (kg m-3) of organic and mineral matter, Axs is a nominal cross-sectional area in the soil (= 1 m2), 

Ms(m) is the mass of mineral matter (kg m-2) and Ms(o) is the total mass of organic matter (kg OM m-2) given by:  

𝑀𝑀𝑠𝑠(𝑜𝑜) = 𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚) + 𝑀𝑀𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚)+ 𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚) + 𝑀𝑀𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚) (8) 165 

The mineral mass, Ms(m), in equation 7 is assumed constant and is obtained from user-defined values of a minimum 

matrix porosity, φmin (m3 m-3), and thickness of the soil layer, ∆zmin (m), corresponding to the theoretical minimum 

soil volume, Vt(min) (m3) attained when Ms(o) = 0: 

𝑀𝑀𝑠𝑠(𝑚𝑚) = Δ𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚𝛾𝛾𝑚𝑚(1 − 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚) (9) 

𝑉𝑉𝑡𝑡(𝑚𝑚𝑚𝑚𝑚𝑚) = 𝐴𝐴𝑥𝑥𝑥𝑥 Δ𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 (10) 170 

The volume of organic matter, Vs(o), and thus the total soil volume Vt, in equation 7 naturally changes as the stored 

mass of soil organic matter, Ms(o), changes. The total soil volume is also affected by changes in the dynamic soil 

pore volume, which comprises macropores, Vmac as well as aggregation pore space, Vagg, induced by microbial 

decomposition of organic matteractivity. Previous studies suggest that the volume of aggregation pore space, Vagg, 
should vary as a linear function of the volume of soil organic matter, Vs(o) (e.g. Emerson and McGarry, 2003; Boivin 175 
et al., 2009; Johannes et al., 2017). The remaining textural pore volume linked to soil mineral matter, Vtext, (see 

Figure 2) is constant. For the sake of simplicity, we also assume here that the soil macroporosity is also constant, 

such that Vmac is maintained proportional to the total soil volume. With these assumptions, the total pore volume, 

Vp, is given by: 

𝑉𝑉𝑝𝑝 = 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐴𝐴𝑥𝑥𝑥𝑥 �𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑀𝑀𝑠𝑠(𝑜𝑜)

𝛾𝛾𝑜𝑜
� + Δ𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 + Δ𝑧𝑧 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚�     (11) 180 

where fagg is an aggregation factor (m3 pore space m-3 organic matter) defined as the slope of the linear relationship 

assumed between the volume of aggregation pore space Vagg and the volume of organic matter Vs(o), φmac is the 

macroporosity (m3 m-3), ∆z is the layer thickness (m).  and tThe constant volume of textural pores, Vtext (m3), is 

obtained by combining equations 7, 9 and 10 with Ms(o) = 0.  

Changes Temporal variations in Vs(o) and Vp induce temporal variationschanges in the total soil volume (and 185 
therefore the soil layer thickness), porosity and bulk density. Combining equations 7, 9 and 11, gives the soil layer 

thickness as:  

Δ𝑧𝑧 = 𝑉𝑉𝑡𝑡
𝐴𝐴𝑥𝑥𝑥𝑥

=
��1+𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎��

𝑀𝑀𝑠𝑠(𝑜𝑜) 
𝛾𝛾𝑜𝑜

��+Δ𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

1−𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚
 (12) 

and the matrix porosity φmat (m3 m-3), total porosity, φ (m3 m-3), and soil bulk density, γb (kg m-3) as: 
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𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎+𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑉𝑉𝑡𝑡

=
�𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎�

𝑀𝑀𝑠𝑠(𝑜𝑜)
𝛾𝛾𝑜𝑜

��+�Δ𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚�

Δ𝑧𝑧  (13) 190 

𝜙𝜙 = 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎+𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

𝑉𝑉𝑡𝑡
= 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚  (14) 

𝛾𝛾𝑏𝑏 =
𝑀𝑀𝑠𝑠(𝑜𝑜)+𝑀𝑀𝑠𝑠(𝑚𝑚)

𝑉𝑉𝑡𝑡
=

𝑀𝑀𝑠𝑠(𝑜𝑜)+�Δ𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚𝛾𝛾𝑚𝑚(1−𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚)�

Δ𝑧𝑧
 (15) 

It is also helpful to derive expressions for porosity and bulk density as functions of the soil organic matter 

concentration, fsom (kg kg-1), rather than of Ms(o), since fsom is normally more often measured in the field. By 

definition: 195 

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑀𝑀𝑠𝑠(𝑜𝑜)

𝑀𝑀𝑠𝑠(𝑜𝑜)+𝑀𝑀𝑠𝑠(𝑚𝑚)
 (16) 

Combining equations 9 and 16 gives: 

𝑀𝑀𝑠𝑠(𝑜𝑜) = 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 Δ𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚  𝛾𝛾𝑚𝑚 (1−𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚)
1−𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠

 (17) 

Substituting equation 17 into equations 13 – 15 and simplifying givesleads to expressions for the matrix porosity 

and the soil bulk density: 200 

𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 =
���𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝛾𝛾𝑜𝑜

� 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎+�
𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚(1−𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠)
𝛾𝛾𝑚𝑚�1−𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚�

��(1−𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚)�

��𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝛾𝛾𝑜𝑜
��1+𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎��+�

1−𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠
 𝛾𝛾𝑚𝑚�1−𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚�

�
 (18) 

𝜙𝜙 = 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚  (19) 

𝛾𝛾𝑏𝑏 = 1−𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚

��𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝛾𝛾𝑜𝑜
��1+𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎��+�

1−𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠
 𝛾𝛾𝑚𝑚�1−𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚�

�
 (1920) 

In the absence of other governing processes, equations 14, 18 – 20and 19 enable the identification of upper and 

lower limits of porosity and bulk density that occur at limit SOM concentrations of zero (i.e. a purely mineral soil) 205 
and unity (i.e. organic soils). Setting fsom to zero defines the maximum and minimum values of bulk density and 

porosity respectively as: 

𝛾𝛾𝑏𝑏(𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠=0) = 𝛾𝛾𝑚𝑚(1 − 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚)(1 − 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚) (201) 

𝜙𝜙(𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠=0)𝜙𝜙 = 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚  (1 − 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚) (212) 

Conversely, bulk density and porosity attain minimum and maximum values respectively in an organic soil whenre 210 
𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 = 1 kg kg-1, such that: 

𝛾𝛾𝑏𝑏(𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠=1)𝛾𝛾𝑏𝑏 = 𝛾𝛾𝑜𝑜(1−𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚)
1+𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎

 (223) 

𝜙𝜙(𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠=1)𝜙𝜙 = � 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎
1+𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎

� (1 − 𝜙𝜙𝑚𝑚𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖) + 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 (234) 

Finally, The partitioning of the matrix porosity, φmat, is partitioned between micro- and mesoporosity is given by: 
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𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎(𝑚𝑚𝑚𝑚𝑚𝑚)+𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑚𝑚𝑚𝑚𝑚𝑚)

𝑉𝑉𝑡𝑡
=

�𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 �
�𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚)+𝑀𝑀𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚)�

𝛾𝛾𝑜𝑜
��+�𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑚𝑚𝑚𝑚𝑚𝑚)Δ𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚�

Δ𝑧𝑧
      (254) 215 

𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚  (256) 

where Vagg(mic) and Vtext(mic) are the volumes (m3) of aggregation and textural micropores respectively (see Figure 

2) and Ftext(mic) represents the proportion (-) of the textural pore space that comprises micropores. It may should be 

feasible to estimate Ftext(mic) from data on soil texture, since pore and particle size distributions are similar in the 

absence of structural pores (e.g. Arya et al., 1999; Yoon and Gimenéz, 2012; Arya and Heitman, 2015). 220 

The model described by equation 1920 was first derived by Federer Stewart et al. (197093), albeit in a simpler 

form in which macroporosity was is neglected and γo and fagg were are lumped into one parameter, the bulk density 

of a purely organic soil given by equation 223 with φmac=0. They showed that tThis simple model could has been 

shown to accurately represent the observed relationships between organic matter concentration and bulk density 

measured on 480 samples ofin forest soils in north-eastern U.S.AWales (Stewart et al., 1970; Adams, 1973) and 225 
north-eastern U.S.A (Federer et al., 1993) and agricultural soils in Australia (Tranter et al., 2007). More recently, 

this function has been incorporated into the Jena model (Ahrens et al., 2015; Yu et al., 2020). The validity of theis 

extended model approach presented here, which explicitly incorporates macroporosity and soil aggregation is 

further confirmed by Figure 4, which shows that equation 1920 gives reasonably good fits to paired measurements 

of bulk density and organic matter concentration made at three agricultural field sites in Sweden, including the 230 
Ultuna frame trial.  

Figure 5 shows the relationship between bulk density and organic matter concentration predicted by equation 19 

for values of fagg lying between zero and four. A comparison of the curves for values of fagg similar to those obtained 

in the model fitting to the data (ca. 2-4, see Figure 4) with that for fagg = 0 (i.e. no aggregation) demonstrates that 

aggregation dominates the effects of organic matter on soil bulk density, while the different densities of organic 235 

and mineral matter (γo and γm) only have a minor effect.  It should be noted that the composition of OM sources 

may affect the extent of soil aggregation generated by microbial activity (e.g. Bucka et al., 2019). In this respect, 

each of the four OM pools could have been characterized by a different value of the aggregation factor. However, 

we have assumed here that the two qualities of organic matter modify the pore space to the same extent in both the 

micropore and mesopore regions, so that only a single aggregation factor, fagg, is required in the model. As we will 240 
see later, this is because unequivocal parameterization of a more detailed model would be difficult to achieve, 

given the amount and kinds of data normally available from field experiments. Alternatively, a model of 

intermediate complexity can be envisaged in which fagg would take different values in micropore and mesopore 

regions. Such a model would only introduce one additional parameter compared with the simplest case assumed 

here, but even this modest increase in complexity could cause difficulties with parameter identifiability. 245 

2.4 Soil hydraulic properties 

Equations 13, 245 and 256 describe a partitioning of the matrix pore space into two size classes as a dynamic 

function of soil organic matter storage. This partitioning can also be used to estimate continuous model functions 

for soil hydraulic properties (water retention, hydraulic conductivity) to enable a straightforward coupling to 

hydrological models based on Richards’ equation. Most commonly used models of soil water retention employ 250 
two shape parameters to characterize the pore size distribution. Thus, one requirement of this approach is that one 
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of these two parameters must be assumed to remain constant. We illustrate this approach taking the widely used 

van Genuchten (1980) equation as an example. If residual water is negligible, the water content θ (m3 m-3) is given 

by: 

𝜃𝜃 = 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚(1 + |𝛼𝛼 𝜓𝜓|𝑛𝑛)
1
𝑛𝑛−1 (267) 255 

where ψ (cm) is the soil water pressure head and α (cm-1) and n (-) are shape parameters that reflect the pore size 

distribution. We assume that n can be held constant, since it is known to be strongly determined by soil texture 

(e.g. Wösten et al., 2001; Vereecken et al., 2010), while α is allowed to vary, as it is more influenced by the nature 

of the structural pore space in soil (Assouline and Or, 2013). In this case, α (cm-1) is given by: 

𝛼𝛼 =
��
𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚
𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚

�
− 𝑛𝑛
𝑛𝑛−1

−1�

1/𝑛𝑛

�𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚𝑚𝑚�
 (278) 260 

where ψmic/mes is a fixed user-defined pressure head (cm) defining the size of the largest micropore in soil. This 

model only considers the two pore size classes comprising matrix porosity. However, it is possible to extend this 

model to account for macropores by making use of dual-porosity concepts (Durner, 1994; Larsbo et al., 2005). 

3 Application of the model 

3.1 Sensitivity analysis 265 
We performed a Monte Carlo sensitivity analysis to better understand the behaviour of this new model. We ran 

500 simulations with parameter values obtained by Latin hypercube sampling from uniform distributions. The 

simulations were run for 2000 years to make the outputs independent of the assumed initial conditions. Organic 

matter was added solely from below-ground residues at a rate (0.02 g cm-2 year-1) that gave a final organic matter 

concentration of 0.03 kg kg-1 for the mean simulation. The sensitivity of the model parameters was quantified by 270 
Spearman rank partial correlation coefficients for three target output variables: the final values of bulk density, γb, 

soil organic matter concentration, fsom, and the micropore fraction of the matrix porosity, fmic (=φmic/φmat), as a 

measure to characterize the soil pore size distribution (see equation 278). Parameter ranges of Fprot and Ftext(mic) 

(0.05 < Fprot < 0.2; 0.5 < Ftext(mic) < 0.9; see Table 1) were selected to represent a well-structured loamy to fine-

textured soil, assuming a maximum pore size of the micropores of 5 µm (i.e. ψmic/mes = -600 cm). Our analysis 275 

focuses on matrix pore space properties and SOM, so the macroporosity was fixed at a constant value in these 

simulations. The sampled ranges for the remaining model parameters shown in Table 1 were selected to 

approximately match their expected variations based on previous modelling experience. 

The partial rank correlation coefficients are shown in Table 1. Not surprisingly, the organic matter concentration 

fsom was most affected by parameters regulating SOM turnover, especially the OM retention coefficient, ε, and the 280 
first-order rate coefficient for the microbially-processed OM pool, ko. As expected, the physical protection factor, 

Fprot, was also highly significantly (and negatively) correlated with fsom. Parameters controlling organic matter 

turnover also strongly affected the simulated bulk density, γb, along with soil physical parameters, especially the 

aggregation factor, fagg, and the minimum (i.e. textural) porosity, φmin. The pore size distribution, as expressed by 

the fraction of micropores, fmic, was most sensitive to changes in the micropore fraction of the textural pore space, 285 
Fmictext(textmic) (Table 1). This is encouraging because it is well known that soil texture exerts the most important 
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control on the pore size distribution in soil. The fraction of micropores was also highly significantly (and 

negatively) correlated with the mixing coefficient, kmix, presumably because this mixing transferred root-derived 

OM from micropores to mesopores. This is also the reason why the bulk density, γb, and fsom are also strongly 

correlated with kmix (Table 1), given that OM decomposition rates differ between the pore regions. 290 

3.2 Parameter identifiability 

The fact that model parameters are sensitive does not imply that they will be identifiable in a calibration procedure, 

since their effects on the target outputs may be correlated (e.g. Luo et al., 2017). We therefore investigated the 

identifiability of the model parameters using synthetic data generated by 50-year forward simulations of the model 

for two scenarios with different OM inputs: a bare fallow scenario with no OM inputs and a scenario with a 295 
constant OM input of 0.06 g cm-2 year-1. As initial conditions, the organic matter pools were set to values in 

equilibrium with a constant OM input of 0.02 g cm-2 year-1 giving an initial fsom of 0.03 kg kg-1. Simulated bulk 

density, γb, soil organic matter concentration, fsom, and the soil microporosity, φmic, were used as target output 

variables in the calibration. The SOM concentration was assumed to have been sampled every 5th year, while data 

for bulk density and microporosity were assumed to be available only at the start of the experiment and on two 300 
subsequent occasions (after 20 and 50 years). Errors were added to the model simulated values for all three target 

output variables to represent measurement and sampling uncertainties due to spatial variability. We calculated 

these errors assuming 10 replicates per sampling occasion and normally distributed errors with a coefficient of 

variation of 10 %. The parameter values used to generate the synthetic data are listed in Table 2. 

The model was calibrated against the synthetic data using the Powell conjugate gradient method (Powell, 2009) 305 
within given parameter ranges defined by minimum and maximum values (Table 2) and using the sum of squared 

errors as the goal function. The analysis was repeated 100 times for different initial starting values for the 

parameters in order to assess the uniqueness of the optimized parameter estimates. Two relatively insensitive 

parameters, γo and γm (Table 1), were assumed to be known and fixed at their true values (Table 2). Two further 

parameters were excluded from the calibration, namely the aggregation factor, fagg, and minimum porosity, φmin. 310 

Instead, they were fixed a priori by non-linear least squares regression on the synthetic data generated for bulk 

density and fsom using equation 1920 (with φmac = 0) and known values of 𝛾𝛾𝑜𝑜 and 𝛾𝛾𝑚𝑚 (Table 2). Optimized parameter 

sets with goal function values less than 10 % larger than the global optimum (n = 36) were considered acceptable 

(Beven, 2006). Figure 5 6 shows that the best simulation with the calibrated model closely matched the synthetic 

data for bulk density, SOM and microporosity. Nevertheless, only three of the six parameters (ε, ko and 315 
FmicFtext(textmic)) were identifiable, with values for the 36 best parameter sets limited to narrow ranges around the 

true values (Figure 67). This was not the case for the three remaining parameters: optimized values of kmix and ky 

covered almost the whole tested range, while optimized Fprot values were restricted to roughly half of the sampled 

range (Figure 67). As can be seen in Table 3, the mixing coefficient kmix correlated strongly with ky, ko, Fprot, and 

Ftext(mic), but not with ε. The strongest correlations were found between the rate constants ky and ko (r = 0.95) and 320 
ko and Fprot (r = -0.91). A strong correlation was also found between ε and ky, ko and Fprot. 

 

 

3.3 Model evaluation with data from a long-term field trial 
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3.3.1 Field measurements at the Ultuna frame trial  325 
The model was tested against data from the Ultuna long-term soil organic matter experiment at Uppsala, Sweden 

(59.82°N, 17.65°E) (Kirchmann et al., 1994; Witter, 1996; Herrmann and Witter, 2008; Kätterer et al., 2011). The 

climate is cold temperate and sub-humid with an annual mean air temperature of 6.3°C and a mean annual 

precipitation of 554 mm (1981-2014). The experiment was started in 1956 at the Swedish University of 

Agricultural Sciences in order to investigate the long-term effects of mineral N fertilizers and different organic 330 
amendments on crop yields, soil organic matter concentrations and soil physical properties. The soil texture in the 

uppermost 20 cm is clay loam (37% clay, 41% silt and 22% sand).  

Of the 15 treatments included in the experiment, three were chosen for model testing: a bare soil treatment (bare 

fallow) that has received neither mineral N fertilizer nor any organic amendments since the beginning of the 

experiment and two other treatments receiving no mineral N fertilizer but 4 t ha-1 C as organic amendments every 335 
second year in the form of green manure and animal manure, respectively. All three treatments receive P and K 

fertilizer (20 and 38 kg ha-1 yr-1) and are annually dug by hand, with the organic amendments mixed into the soil 

to a depth of 20 cm. The organic amendments were added irregularly at the beginning of the experiment i.e. in 

1956, 1960 and 1963, but have since been supplied every second year. Maize has been grown exclusively on all 

the cropped plots since 2000. Before 2000, the crop rotation included a sequence of barley, oats, beets (excluded 340 
after 1966) and occasionally rape. Samples for the measurement of SOC were taken after harvest of the crops 

every second year. The three selected treatments show contrasting temporal trends in SOC during the 63 years of 

the experiment. While SOC concentrations have decreased steadily in the bare fallow treatment, they are still 

increasing in the plots fertilized with animal manure. Addition of green manure led to a slight increase in SOC 

concentrations during the first 10-15 years of the experiment, followed by a period of approximately steady-state 345 
conditions and then a slight decline in SOC concentrations on the most recent sampling occasions. Soil bulk density 

was measured occasionally, i.e. in 1956, 1975 and 1991 (Kirchmann et al. 1994), 1993 (Gerzabek et al., 1997), 

1997 (Kirchmann and Gerzabek, 1999), 2009 (Kätterer et al. 2011) and in 2019 (this study). Kätterer et al. (2011) 

also reported measurements of relative surface elevation in 2009, which we utilize as additional validation data. 

Of the three treatments, the bare fallow plots show the largest bulk densities and the animal manure treatments the 350 
smallest. Information on the soil pore size distribution was extracted fromprovided by water retention curves 

measured on samples taken in the uppermost 10 cm of soil on three different sampling occasions. As soil water 

retention was not measured at the start of the experiment, we made use of measurements made in 1969 (13 years 

later) on samples taken from just outside the experimental plots (Wiklert et al., 1983) to initialize the model. Soil 

water retention was also measured on four replicate undisturbed core samples taken from the three treatments in 355 
1997, 41 years after the start of the experiment (Kirchmann and Gerzabek, 1999) and on eight replicate samples 

taken in 2019, although on this occasion only from the animal manure and bare fallow treatments. 

3.3.2 Parameterization and calibration 

The model was simultaneously calibrated against data from the bare fallow and animal manure treatments using 

the measurements of average soil bulk density and SOC concentrations in the uppermost 20 cm of soil, as well as 360 
the microporosity estimated from soil water retention curves, assuming a value for the maximum pore diameter of 

micropores of 5 µm (equivalent to a pressure head ψmic/mes of -600 cm). A factor of 0.5 (Pribyl, 2010) was used to 

convert simulated SOM to measured SOC concentrations. We simulated a soil profile consisting of five soil layers, 
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each initially 4.5 cm in thickness. The model equations were solved explicitly by Euler integration at was run with 

an annual time step. and aA warmspin-up phase of 5000 years with constant root-derived OM input was included 365 
to initialize the four SOM pools at a steady-state condition. During the 63-year experimental period, annual average 

OM inputs from roots and above-ground crop residues were used in the model. Following Kätterer et al. (2011), 

these were calculated for each treatment from annual yield data and the crop-specific root allocation coefficients 

reported by Bolinder et al. (2007). The root-derived input of OM to the simulated soil profile was calculated from 

an assumed root distribution estimated with a Michaelis-Menten-type function (Kätterer et al., 2011) and 370 
distributed uniformly among the soil layers. The organic amendments (8 t OM ha-1 every other year in both the 

animal and green manure treatments) were assumed to be uniformly distributed within the 20 cm depth of soil 

hand dug by hand. This means that some of this added OM eventually may becomes incorporated into the subsoil 

below 20 cm (i.e. the depth of digging), if soil layer thicknesses increase (and bulk density decreases) due to an 

increase in SOM concentration (see equation 12).  375 

Based on the results of the sensitivity analysis and model calibration against the synthetic data, we decided to 

calibrate only four parameters, namely the ones that we expected to be clearly identifiable: the input of organic 

matter during the warmspin-up period, the fraction of micropores in the textural pore region Ftextmic(textmic), the OM 

retention coefficient ε, and the first-order rate coefficient for microbially-processed organic matter, ko (Table 3). 

Values for φmac and fagg were estimated using equation 1920 from non-linear regression between bulk densities and 380 

SOM concentrations assuming a value of φmin of 0.35 cm3 cm-3 (Nimmo, 2013) and including data from all three 

of the treatments (i.e. bare fallow, animal and green manure; Figure 45). Similarly, van Genuchten´s n was fixed 

to a value (= 1.073) obtained from a simultaneous fit of equation 28 27 to the water retention data measured in 

2019 in the fallow and animal manure treatments. The remaining parameters were determined a priori, because 

they were less well identified in the calibration against the synthetic data. Given that the micropore region 385 

comprises pores smaller than 5 µm in diameter, we set the physical protection factor Fprot to 0.1, a value which lies 

within the range observed in the experiments described (e.g.by Kravchenko et al., (2015). Following Andrén and 

Kätterer (1997), we assumed ky = 0.8 year-1. Estimating the mixing coefficient kmix is problematic because it is 

highly sensitive for all target outputs (Ttable 1) but not identifiable by calibration (Figure 67). From preliminary 

simulations, we also concluded that kmix must be set to a much smaller value in the warmspin-up period than during 390 
the 63-year experimental period in order to avoid obtaining unrealistically large calibrated estimates of the OM 

input prior to the experiment. A smaller kmix value during the warmspin-up period presumably reflects the crop 

rotation practiced at the site prior to the experiment, which included frequent grass leys, so that the soil was tilled 

much less often. For the sake of simplicity, we set kmix to zero during the warmspin-up period and to 0.05 year-1 

during the experiment. This gave a calibrated value of the OM input during the warmspin-up period (0.0064 g cm-395 
2 year-1; Table 34) that is similar to the root OM input estimated for the green manure and animal manure plots 

during the experiment (0.0061 and 0.0071 g cm-2 year-1 respectively). 

The calibration method was the same as described earlier for the synthetic data set. The calibrated model was then 

applied to the green manure treatment by running a forward simulation using the calibrated parameter values and 

the treatment-specific OM inputs. Again, a warmspin-up period of 5000 years was run in order to bring the SOM 400 
pools and total organic matter concentration to an initial steady-state condition. The goodness-of-fit of the model 

simulations was evaluated by three criteria, i.e. the Pearson correlation coefficient r, the root mean squared error 

RMSE and the mean absolute error MAE (equations 289 to 301). While r is a measure of the strength of the 
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relationship between the observations and simulations with a value of 1 showing a perfect positive linear 

relationship and a value of -1 showing a perfect negative linear relationship, RMSE and MAE measure the average 405 
magnitude of the error between observations and simulations. Both of them vary from 0 to ∞ with smaller values 

representing a better agreement. However, for the RMSE the errors are squared before averaging, which gives 

comparatively greater weight to larger errors. 

  

𝑟𝑟 =  𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦,𝑦𝑦�)
𝜎𝜎𝑦𝑦𝜎𝜎𝑦𝑦�

                                  (289) 410 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �1
𝑛𝑛

 ∑ 𝑒𝑒𝑖𝑖2𝑛𝑛
𝑖𝑖=1                                         (2930) 

𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑛𝑛

 ∑ |𝑒𝑒𝑖𝑖|𝑛𝑛
𝑖𝑖=1                                                        (301) 

where 𝑦𝑦 and 𝑦𝑦� represent the observations and simulation results, respectively, cov is the covariance, 𝜎𝜎𝑦𝑦 ands 𝜎𝜎𝑦𝑦�  

are the standard deviations of 𝑦𝑦 and 𝑦𝑦�, 𝑒𝑒 is the model error, i.e., 𝑦𝑦 −  𝑦𝑦�, and 𝑛𝑛 is the number of observations. The 

analyses were carried out with R (version 3.5.1, R Core Team 2018) using the openxlsx (Walker, 2019) and plyr 415 
(Wickham, 2011) packages. 

Figure 7 8 and Table 4 5 show that the calibrated model accurately matched the trends observed in soil organic 

carbon in the bare fallow and animal manure treatments. The data suggests that the soil bulk density increased in 

the bare fallow treatment during the experiment, whereas it decreased in the animal manure treatment. These trends 

were also reasonably well described by the model (Figure 78, Table 45). As the soil organic carbon content was 420 
accurately simulated, the somewhat poorer match sometimes found between the model predictions of bulk density 

and the measurements reflects to a large extent the unexplained variation in the relationship between γb and fsom 

(equation 1920). In this respect, it is likely that the macroporosity, and therefore bulk density, at the time of 

sampling in autumn may vary from year to year depending on the way the topsoil was dug and the soil conditions 

at the time of cultivation. Kätterer et al. (2011) found that the elevation of the soil surface in the plots treated with 425 
animal manure was 2.6 cm higher relative to the bare fallow plots in 2009. In comparison, the model predicted a 

difference in the elevation of the soil surface of 2.7 cm between the two treatments in the same year (2009). The 

optimized values of the four calibrated parameters (Table 34) are very well constrained and also appear reasonable. 

The calibrated value of Ftextmic(mictext) (i.e. the fraction of textural pores smaller than 5 µm) was 0.85 (Table 34). 

Calculations with the Arya and Heitman (2015) model based on particle size distribution data from the site 430 
(Kirchmann et al., 1994) give a predicted value for Ftextmic(mictext) of 0.9, which is in excellent agreement with the 

estimate from model calibration. 

Figure 8 9 shows a comparison of the water retention curves measured in 1997 and 2019 and the corresponding 

model predictions using equations 276 and 278, alongside the measurements utilized as an initial condition in 

1956. The model accurately matched the data in 2019 for both treatments (Figure 89). However, although the 435 
shapes of the water retention curves measured in 1997 were also successfully reproduced, the measured matrix 

porosity differed significantly between the treatments in 1997 and this difference could not be matched by the 

model (Figure 89). It is unclear whether this discrepancy can be attributed solely to model error. Spatial variability 

in the field may also have played a significant role, since only four replicate core samples were taken in 1997. 
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Regardless of the reason for the discrepancy, the results suggest that it should be a reasonable assumption to hold 440 
the parameter n in van Genuchten’s (1980) equation constant in dynamic models of soil matrix hydraulic 

properties. Figure 8 9 shows that whilst n is fixed, van Genuchten´s (1980) α increased in the manure treatment, 

reflecting an improvement in structure, and decreased in the bare fallow, indicating structural degradation. The 

soil microporosity apparently decreased during the experiment in both treatments, while the mesoporosity 

remained largely unchanged in the fallow plots and only increased slightly in the manured treatment (Figures 7 8 445 
and 89). The model simulations suggest some possible explanations for these results, which are surprising at first 

sight: in the case of the bare fallow plots with no OM input, we might expect physical protection to lead to a slower 

decline in the organic matter stock in the micropore region compared with the mesopore region (and thus an 

increase in the proportion of micropores). However, the bare fallow soil was tilled every year. The simulation 

results (Figure 910) suggest that this leads to a homogenization of the OM distribution in soil, with a net transfer 450 
of OM from the micropore region to the mesopores at a rate that exceeds the difference in decomposition rates 

between the pore regions. In the case of the manured plots, the stock of OM in the micropore region decreases in 

the model as a result of the significant increase in tillage intensity at the onset of the experiment, despite the large 

increase in the OM input, as the manure is input solely to the mesopore region (Figure 910). Furthermore, a 

successively smaller proportion of the root OM is added to the micropores as the aggregation mesopore volume 455 
increases (equation 3). 

3.3.3 Model testing using data from the green manure treatment 

The model predictions for the green manure treatment tended to underestimate bulk density, whilst clearly 

overestimating SOC concentrations (Figure 1011). The model predicted a steady increase in SOC throughout the 

experiment, which was not observed in the field. As the animal and green manure treatments only differ slightly 460 
in the amount of C provided by roots and straw, the significant difference in SOC concentrations must be related 

to differences in the quality of the organic amendments. We therefore re-calibrated ε using the data from the green 

manure treatment, keeping all other parameters fixed at the values obtained from the calibration against the other 

two treatments. The resulting calibrated value for ε was 0.14, which significantly improved the fit of the model to 

the data for both SOC and bulk density (Figure 1011, Table 45). The difference in the elevation of the soil surface 465 
between the green manure plots and the bare fallow plots measured by Kätterer et al. (2011) in 2009 (= 1.4 cm) 

was also accurately simulated by the model (= 1.6 cm). The smaller value of ε in the green manure treatment 

implies that less of the supplied OM is retained in the soil compared to the organic matter added to the soil as 

animal manure. This finding is supported by several previous studies that have analyzed data from this experiment 

with different approaches (e.g. Witter, 1996; Paustian et al., 1992; Hyvönen et al., 1996; Andrén and Kätterer, 470 
1997; Herrmann 2003). Many studies have shown that the quantity and quality of organic amendments can strongly 

affect SOC turnover rates by altering the biomass, composition and activity of the soil microbial community (e.g. 

Blagodatskaya and Kuzyakov, 2008; Dignac et al., 2017). Herrmann et al. (2014) showed that, despite similar 

levels of microbial activity measured by heat dissipation, the soil from the green manure treatment had a 

significantly larger CO2 production for the same energy input than the soil from the plots receiving animal manure.  475 

4 Discussion and Cconclusions and perspectives 

We presented a new model that describes for the first time the dynamic two-way interactions between SOM, soil 

pore space structure and soil physical properties. This model should prove useful as a research tool to explore 



15 
 

mechanistic understanding of soil structure controls on SOM decomposition and stabilization. With the 

increasingly widespread application of non-destructive experimental techniques such as microCT tomography, it 480 
seems probable that more data on the mutual interactions of soil structure and SOM will become available that 

could be used to test and parameterize the model. In this study, we tested the model against data taken from plots 

with contrasting OM inputs in a long-term field trial at Ultuna, Sweden. In a bare fallow treatment, the bulk density 

increased and soil profile thickness decreased as the SOC concentration decreased during the experiment, while 

the opposite trends were observed in plots amended with animal manure. Small changes were also detected during 485 
the experiment in the matrix pore size distribution (i.e. the shape of soil water retention curve). Our relatively 

simple model concept to couple organic matter storage and turnover with soil pore space structure was able to 

satisfactorily simulate these changes in SOC stocks and soil properties resulting from the contrasting OM inputs.  

A form of the simple two-pool ICBM model (Wutzler and Reichstein, 2013) is obtained if the interactions between 

organic matter and soil structure are removed from our model. Successful applications of the ICBM model to the 490 
data from the Ultuna frame trial have already been published by Juston et al. (2010) for data available until 2007 

and by Poeplau et al. (2015) for data until 2013. Although we do not show the results here, ICBM matches the 

SOC data until 2019 for the manure and bare fallow treatments almost as well as the model described here (RMSE 

values are slightly larger than those shown in Table 5), albeit with different parameter values: the retention 

efficiency ε is similar (0.35 vs. 0.37) but ko is much smaller (0.015 vs. 0.036 year-1), since physical protection is 495 

not modelled explicitly., However, in principle, for the same parameterization, the predictions of our model must 

diverge from those of ICBM for treatments with contrasting organic matter input rates. This is because ICBM is 

strictly a first-order kinetic model, such that steady-state soil organic matter contents are linearly dependent on the 

input. In contrast, although not shown here, the extended model incorporating soil structure-OM interactions does 

not show a linear response to organic matter inputs and this non-linearity becomes stronger as the mixing between 500 
the pore regions becomes weaker. Furthermore, even though it may be possible to satisfactorily calibrate a simple 

OM model such as ICBM to time-series of OM measurements at one particular site, a model that explicitly 

incorporates soil structure-OM feedbacks has many important advantages. For example, it enables simulation of 

the effects of soil structure and physical protection on OM turnover in contrasting soil types (e.g. sand vs. clay) 

explicitly and directly from measured particle size distributions, without having to resort to re-calibrating model 505 
parameters describing OM turnover for each soil, as was done, for example, by Poeplau et al. (2015). In principle, 

our model also has a much broader range of potential management applications. For example, it could be used to 

simulate the effects of contrasting tillage systems on SOC dynamics, as well as effects of faunal bioturbation on 

OM stabilization. 

The model currently neglects some processes that may be important in determining the long-term storage of 510 
organic carbon in soil under changing environmental conditions, such as the interactions of organic carbon with 

mineral phases in soil and the regulation of decomposition rates by both abiotic factors (i.e. soil temperature and 

moisture) as well as the biomass, community composition and activity of microbial populations (Dignac et al., 

2017). Moreover, organic matter inputs to the macropores either by root in-growth (Pankhurst et al., 2002) or the 

incorporation of surface litter by earthworms (e.g. Don et al., 2008) and its subsequent turnover are not considered 515 
in the model. Extending the model to account for these processes would be feasible, but it would require more 

comprehensive data to ensure effective and reliable results from model calibration. The model described here could 

also be further developed towards a more complete coupled model of soil structure dynamics and soil processes 
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by accounting for the dynamic effects of other physical (e.g. tillage/traffic, swelling/shrinkage) and biological 

processes (e.g. root growth/decay and faunal activity) on soil pore space properties and OM turnover. It should 520 
also be worthwhile to incorporate our model approach into more comprehensive models of the soil-crop system 

that integrate descriptions of hydrological processes, carbon and nutrient cycling and crop growth. Such a next-

generation soil-crop modelling tool should prove useful in supporting a wide range of analyses related to the long-

term effects of land use and climate change on SOM dynamics, soil hydrological processes and crop production.  

Acknowledgments 525 
This work was funded by the Swedish Research Council for Sustainable Development (FORMAS) in the project 

“Soil structure and soil degradation: improved model tools to meet sustainable development goals under climate 

and land use change” (grant number 2018-02319). 

References 

 530 

Adams, W. A. 1973. The effect of organic matter on the bulk and true densities of some uncultivated podzolic 

soils. Journal of Soil Science, 24(1), 10-17. 

Ahrens, B., Braakhekke, M., Guggenberger, G., Schrumpf, M., Reichstein, M. 2015. Contribution of sorption, 

DOC transport and microbial interactions to the 14C age of a soil organic carbon profile: Insights from a 

calibrated process model. Soil Biology and Biochemistry, 88, 390-402. 535 

Andrén, O., Kätterer, T. 1997. ICBM: the introductory carbon balance model for exploration of soil carbon 

balances. Ecological Applications, 7, 1226-1236. 

Angst, Š., Mueller, C., Cajthaml, T., Angst, G., Lhotáková, Z., Bartuška, M., Špaldoňová, A., Frouz, J. 2017. 

Stabilization of soil organic matter by earthworms is connected with physical protection rather than with 

chemical changes of organic matter. Geoderma, 289, 29-35. 540 

Arya, L., Leij, F., van Genuchten, M., Shouse, P. 1999. Scaling parameter to predict the soil water characteristic 

from particle-size distribution data. Soil Science Society of America Journal, 63, 510-519. 

Arya, L., Heitman, J. 2015. A non-empirical method for computing pore radii and soil water characteristics from 

particle-size distribution. Soil Science Society of America Journal, 79, 1537–1544.  

Assouline S., Or, D. 2013. Conceptual and parametric representation of soil hydraulic properties: a review. Vadose 545 

Zone Journal, doi:10.2136/vzj2013.07.0121 

 

Balesdent, J., Chenu, C., Balabane, M. 2000. Relationship of soil organic matter dynamics to physical protection 

and tillage. Soil and Tillage Research, 53, 215-230.  



17 
 

Barré, P., Eglin, T., Christensen, B., Ciais, P., Houot, S., Kätterer, T., van Oort, F., Peylin, P., Poulton, P., 550 

Romanenkov, V., Chenu, C. 2010. Quantifying and isolating stable organic carbon using long-term bare fallow 

experiments. Biogeochemistry, 7, 3839-3850. 

Beven, K. 2006. A manifesto for the equifinality thesis. Journal of Hydrology, 320, 18-36. 

Blagodatskaya, E., Kuzyakov, Y. 2008. Mechanisms of real and apparent priming effects and their dependence on 

soil microbial biomass and community structure: critical review. Biology and Fertility of Soils, 45, 115-131. 555 

Boivin, P., Schäffer, B., Sturny, W. 2009. Quantifying the relationship between soil organic carbon and soil 

physical properties using shrinkage modelling. European Journal of Soil Science, 60, 265-275. 

Bolinder M., Janzen, H., Gregorich, E., Angers, D., vandenBygaart, A. 2007. An approach for estimating net 

primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agriculture, 

Ecosystems and Environment, 118, 29-42. 560 

Bradford, M. 2016. Managing uncertainty in soil carbon feedbacks to climate change. Nature Climate Change, 6, 

751-758. 

Bucka, F., Kölbl, A., Uteau, D., Peth, S., Kögel-Knabner, I. 2019. Organic matter input determines structure 

development and aggregate formation in artificial soils. Geoderma, 354, 113881. 

Chevallier, T., Blanchart, E., Albrecht, A., Feller, C. 2004. The physical protection of soil organic carbon in 565 

aggregates: a mechanism of carbon storage in a Vertisol under pasture and market gardening (Martinique, West 

Indies). Agriculture, Ecosystems and Environment, 103, 375-387. 

Cosentino, D., Chenu, C., Le Bissonnais, Y. 2006. Aggregate stability and microbial community dynamics under 

drying-wetting cycles in a silt loam soil. Soil Biology Biochemistry, 38, 2053 – 2062.  

Dignac, M-F., Derrien, D., Barré, P., Barot, S., Cécillon, L., Chenu, C., Chevallier, T., Freschet, G., Garnier, P., 570 

Guenet, B., Hedde, M., Klumpp, K., Lashermes, G., Maron, P-A., Nunan, N., Roumet, C., Basile-Doelsch, I. 

2017.  Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. 

Agronomy and Sustainable Development, 37:14. 

Don, A., Steinberg, B., Schöning, I., Pritsch, K., Joschko, M., Gleixner, G., Schulze, E. 2008. Organic carbon 

sequestration in earthworm burrows. Soil Biology and Biochemistry, 40, 1803-1812. 575 

Dungait, J., Hopkins, D., Gregory, A., Whitmore, A. 2012. Soil organic matter turnover is governed by 

accessibility not recalcitrance. Global Change Biology, 18, 1781-1796. 

Durner, W. 1994. Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resources 

Research, 30, 211-223. 



18 
 

Ekschmitt, K., Kandeler, E., Poll, C., Brune, A., Buscot, F., Friedrich, M., Gleixner, G., Hartmann, A., Kästner, 580 

M., Marhan, S., Miltner, A., Scheu, S., Wolters, V. 2008. Soil-carbon preservation through habitat constraints 

and biological limitations on decomposer activity. Journal of Soil Science and Plant Nutrition, 171, 27-35. 

Emerson, W., McGarry, D. 2003. Organic carbon and soil porosity. Australian Journal of Soil Research, 41, 107-

118. 

Falloon, P., Smith, P. 2000. Modelling refractory soil organic matter. Biology and Fertility of Soils, 30, 388–398. 585 

Federer, C., Turcotte, D., Smith, C. 1993. The organic fraction–bulk density relationship and the expression of 

nutrient content in forest soils.  Canadian Journal of Forest Research, 23, 1026-1032.  

Feeney, D., Crawford, J., Daniell, T., Hallett, P., Nunan, N., Ritz, K., Rivers, M., Young, I. 2006. Three-

dimensional microorganization of the soil-root-microbe system. Microbial Ecology, 52, 151-158. 

Fies, J.-C., Stengel, P. 1981. Densité texturale de sols naturels I. – Méthode de mesure. Agronomie, 1, 651-658. 590 

Gerzabek, M., Pichlmayer, F., Kirchmann, H., Haberhauer, G. 1997. The response of organic matter to manure 

amendments in a long-term experiment at Ultuna, Sweden. European Journal of Soil Science, 48, 273-282.  

Görres, J., Savin, M., Amador, J. 2001. Soil micropore structure and carbon mineralization in burrows and casts 

of an anecic earthworm (Lumbricus terrestris). Soil Biology and Biochemistry, 33, 1881-1887. 

Hassink, J., Bouwman, L., Zwart, K., Bloem, J., Brussaard, L. 1993. Relationships between soil texture, physical 595 

protection of organic matter, soil biota, and C and N mineralization in grassland soils. Geoderma, 57, 105-

128. 

Haynes, R., Naidu, R., 1998. Influence of lime, fertiliser and manure applications on soil organic matter content 

and soil physical conditions: a review. Nutrient Cycling in Agroecosystems, 51, 123-137. 

Henryson, K., Sundberg, C., Kätterer, T., Hansson, P-A. 2018. Accounting for long-term soil fertility effects when 600 

assessing the climate impact of crop cultivation. Agricultural Systems, 164, 185-192. 

Herrmann, A.M. 2003. Predicting nitrogen mineralization from soil organic matter – a chimera? Doctoral Thesis. 

Swedish University of Agricultural Sciences, Uppsala, Sweden. ISSN 1401-6249, ISBN 91-576-6468-4. 

Herrmann, A.M., Witter, E. 2008. Predictors of gross N mineralization and immobilization during decomposition 

of stabilized organic matter in agricultural soil. European Journal of Soil Science, 59, 653 – 664.  605 

Herrmann, A.M., Coucheney, E., Nunan, N. 2014. Isothermal microcalorimetry provides new insight into 

terrestrial carbon cycling. Environmental Science and Technology, 48, 4344-4352.  

Hudson, B. 1994. Soil organic matter and available water capacity. Journal of Soil and Water Conservation, 49, 

189-194. 



19 
 

Hyvönen, R., Ågren, G.I., Andrén, O. 1996. Modelling long-term carbon and nitrogen dynamics in an arable soil 610 

receiving organic matter. Ecological Applications, 6, 1345 – 1354. 

Jarvis, N.J., Forkman, J., Koestel, J., Kätterer, Larsbo, M., Taylor, A. 2017. Long-term effects of grass-clover leys 

on the structure of a silt loam soil in a cold climate. Agriculture, Ecosystems and Environment, 247, 319-328. 

Johannes A., Matter, A., Schulin, R., Weisskopf, P., Baveye, P., Boivin, P. 2017. Optimal organic carbon values 

for soil structure quality of arable soils. Does clay content matter? Geoderma, 302, 14-21.  615 

Juston, J., Andrén, O., Kätterer, T., Jansson, P-E. 2010. Uncertainty analyses for calibrating a soil carbon balance 

model to agricultural field trial data in Sweden and Kenya. Ecological Modelling, 221, 1880-1888. 

Kätterer, T., Bolinder, M., Andrén, O., Kirchmann, H., Menichetti, L. 2011. Roots contribute more to refractory 

soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agriculture, 

Ecosystems and Environment, 141, 184-192.  620 

Kirchmann, H., Persson, J., Carlgren, K. 1994. The Ultuna long-term soil organic matter experiment, 1956–1991. 

Department of Soil Sciences, Reports and Dissertations 17, Swedish University of Agricultural Sciences, 

Uppsala, Sweden. 

Kirchmann, H., Gerzabek, M. 1999.  Relationship between soil organic matter and micropores in a long-term 

experiment at Ultuna, Sweden. Journal of Plant Nutrition and Soil Science, 162, 493-498. 625 

Kravchenko, A., Negassa, W., Guber, A., Rivers, M. 2015. Protection of soil carbon within macro-aggregates 

depends on intra-aggregate pore characteristics. Scientific Reports, 5: 16261 DO: 10.1038/srep 16261.   

Kravchenko, A., Guber, A. 2017. Soil pores and their contributions to soil carbon processes. Geoderma, 287, 31-

39. 

Kuka, K., Franko, U., Rühlmann, J. 2007. Modelling the impact of pore space distribution on carbon turnover. 630 

Ecological Modelling, 208, 295-306. 

Lal, R. 2007. Carbon management in agricultural soils. Mitigation and Adaptation Strategies for global change, 

12, 303-322.  

Lal, R. 2013. Intensive agriculture and the soil carbon pool. Journal of Crop Improvement, 27, 735-751. 

Larsbo, M., Roulier, S., Stenemo, F., Kasteel, R., Jarvis, N. 2005. An improved dual-permeability model of water 635 

flow and solute transport in the vadose zone. Vadose Zone Journal, 4, 398-406. 

Larsbo, M., Koestel, J., Kätterer, T., Jarvis, N. 2016. Preferential transport in macropores is reduced by soil organic 

carbon. Vadose Zone Journal, doi:10.2136/vzj2016.03.0021.  

Lehmann J., Kleber, M. 2015. The contentious nature of soil organic matter. Nature, 528, 60-68. 



20 
 

Libohova, Z., Seybold, C., Wysocki, D., Wills, S., Schoeneberger, P., Williams, C., Lindbo, D., Stott, D., Owens, 640 

P. 2018. Reevaluating the effects of soil organic matter and other properties on available water-holding capacity 

using the National Cooperative Soil Survey Characterization Database. Journal of Soil and Water 

Conservation, 73, 411-421. 

Loveland, P., Webb, J. 2003. Is there a critical level of organic matter in the agricultural soils of temperate regions: 

a review. Soil and Tillage Research, 70, 1-18. 645 

Luo, Z., Wang, E., Sun, O. 2017. Uncertain future soil carbon dynamics under global change predicted by models 

constrained by total carbon measurements. Ecological Applications, 27, 1001-1009.   

Martin, A. 1991. Short- and long-term effects of the endogeic earthworm Millsonia anomala 

(Omodeo)(Megascolecidae, Oligochaeta) of tropical savannas, on soil organic matter. Biology and Fertility of 

Soils, 11, 234-238. 650 

Minasny, B., McBratney, A. 2018. Limited effect of organic matter on soil available water capacity. European 

Journal of Soil Science, 69, 39-47. 

Nimmo, J. 2013. Porosity and pore size distribution. Reference module in earth systems and environmental 

Sciences, Elsevier, 27-Sep-13. doi: 10.1016/B978-0-12-409548-9.05265-9. 

Nunan, N., Leloup, J., Ruamps, L.S., Pouteau, V., Chenu, C. 2017. Effects of habitat constraints on soil microbial 655 

community function. Scientific Reports, 7, 4280.  

Pankhurst, C., Pierret, A., Hawke, B., Kirby, J. 2002. Microbiological and chemical properties of soil associated 

with macropores at different depths in a red-duplex soil in NSW Australia. Plant and Soil, 238, 11-20. 

Paustian, K., Parton, W., Persson, J. 1992. Modeling soil organic-matter in organic-amended and nitrogen-

fertilized long-term plots. Soil Science Society of America Journal, 56, 476-488. 660 

Poeplau, C., Kätterer, T., Bolinder, M., Börjesson, G., Berti, A., Lugato, E. 2015. Low stabilization of aboveground 

crop residue carbon in sandy soils of Swedish long-term experiments. Geoderma, 237-238, 246-255. 

Powell, M. 2009. The BOBYQA algorithm for bound constrained optimization without derivatives (Report). 

http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf. 

Pribyl, D. 2010. A critical review of the conventional SOC to SOM conversion factor. Geoderma 156, 75-83. 665 

Quigley, M., Negassa, W., Guber, A., Rivers, M., Kravchenko, A. 2018. Influence of pore characteristics on the 

fate and distribution of newly added carbon. Front. Environ. Sci. 6:51. doi: 10.3389/fenvs.2018.00051 

R Core Team 2018. R: A language and environment for statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria. https://www.R-project.org/. 



21 
 

Rabot E., Wiesmeier, M., Schlüter, S., Vogel, H-J. 2018. Soil structure as an indicator of soil functions: a review. 670 

Geoderma, 314, 122-137. 

Rawls, W., Pachepsky, Y., Ritchie, J., Sobecki, T., Bloodworth, H. 2003. Effect of soil organic carbon on soil 

water retention. Geoderma, 116, 61-76. 

Rickson, J., Deeks, L., Graves, A., Harris, J., Kibblewhite, M., Sakrabani, R. 2015. Input constraints to food 

production: the impact of soil degradation. Food Security, 7, 351-364. 675 

Ruamps, L.S., Nunan, N., Chenu, C. 2011. Microbial biogeography at the soil pore scale. Soil Biology and 

Biochemistry, 43, 280-286.  

Ruehlmann, J., Körschens, M. 2009. Calculating the effect of soil organic matter concentration on soil bulk 

density. Soil Science Society of America Journal, 73, 876-885. 

Sanderman, J., Hengl, T., Fiske, G. 2017. Soil carbon debt of 12,000 years of human land use. Proc. Natl. Acad. 680 

Sci. USA. 114, 9575-9580. 

Segoli, S., De Gryze, S., Dou, F., Lee, J., Post, W., Denef, K., Six, J. 2013. AggModel: a soil organic matter model 

with measurable pools for use in incubation studies. Ecological Modelling, 263, 1-9. 

Sierra, C., Malghani, S., Müller, M. 2015. Model structure and parameter identification of soil organic matter 

models. Soil Biology and Biochemistry, 90, 197-203. 685 

Souza, I., Almeida, L., Jesus, G., Kleber, M., Silva, I. 2017. The mechanisms of organic carbon protection and 

dynamics of C-saturation in Oxisols vary with particle-size distribution. European Journal of Soil Science, 68, 

726-739.  

Stamati, F., Nikolaidis, N., Banwart, S., Blum, W. 2013. A coupled carbon, aggregation, and structure turnover 

(CAST) model for topsoils. Geoderma, 211-212, 51-64. 690 

Stewart, V.I., Adams, W.A., Abdulla, H.H. 1970. Quantitative pedological studies on soils derived from Silurian 

mudstones. II. The relationship between stone content and the apparent density of the fine Earth. Journal of 

Soil Science, 21(2), 242 – 247. 

Strong, D., de Wever, H., Merckx, R., Recous, S. 2004. Spatial location of carbon decomposition in the soil pore 

system. European Journal of Soil Science, 55, 739-750.   695 

Tisdall, J.M., Oades, J.M. 1982. Organic matter and water stable aggregates in soils. Journal of Soil Science, 33, 

141 – 163. 

Toosi, E., Kravchenko, A., Guber, A., Rivers, M. 2017. Pore characteristics regulate priming and fate of carbon 

from plant residue. Soil Biology and Biochemistry, 113, 219-230. 



22 
 

Tranter, G., Minasny, B., McBratney, A., Murphy, B., McKenzie, N., Grundy, M., Brough, D. 2007. Building and 700 

testing conceptual and empirical models for predicting soil bulk density. Soil Use and Management, 23, 437-

443. 

van Genuchten, M. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated Soils. 

Soil Science Society of America Journal, 44, 892-898. 

Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M., van Genuchten, M. 2010. Using 705 

pedotransfer functions to estimate the van Genuchten-Mualem soil hydraulic properties: a review. Vadose Zone 

Journal, 9, 795-820. 

Vogel, H-J., Weller, U., Schlüter, S. 2010. Quantification of soil structure based on Minkowski functions. 

Computers and Geosciences, 36, 1236-1245.  

Walker, A. 2019. Openxlsx: Read, Write and Edit XLSX Files. P package version 4.1.0.1. https://CRAN.R-710 

prject.org/package=openxlsx. 

Wickham, H. 2011. The Split-Allpy-Combine Strategy for Data Analysis. Journal of Statistical Software, 40(1), 1 

– 29. http://www.jstatsoft.org/v40/i01/. 

Wiklert, P., Andersson, S., Weidow, B. 1983. Studier av markprofiler i svenska åkerjordar. En 

faktasammanställning. Del I. Ultunajordar. Report 132, Dept. Soil Sciences, Division of Agricultural 715 

Hydrotechnics, Swedish University of Agricultural Sciences.  

Witter, E. 1996. Soil C balance in a long-term field experiment in relation to the size of the microbial biomass. 

Biol Fertil Soils, 23, 33 – 37.  

Wösten, H., Pachepsky, Y., Rawls, W. 2001. Pedotransfer functions: bridging the gap between available basic soil 

data and missing soil hydraulic characteristics. Journal of Hydrology, 251, 123-150. 720 

Wutzler, T., Reichstein, M. 2013. Priming and substrate quality interactions in soil organic matter models. 

Biogeosciences, 10, 2089-2103.  

Yoon, S., Gimenéz, D. 2012. Entropy characterization of soil pore systems derived from soil-water retention 

curves. Soil Science, 177, 361-368. 

Young, I., Crawford, J., Rappoldt, C. 2001. New methods and models for characterising structural heterogeneity 725 

of soil. Soil and Tillage Research, 61, 33–45. 

Young, I., Crawford, J. 2004. Interactions and self-organization in the soil-microbe complex. Science, 304, 1634-

1637. 

http://www.jstatsoft.org/v40/i01/


23 
 

Yu, L., Ahrens, B., Wutzler, T., Schrumpf, M., Zaehle, S. 2020.  Jena Soil Model (JSM v1.0; revision 1934): a 

microbial soil organic carbon model integrated with nitrogen and phosphorus processes. Geoscientific Model 730 

Development, 13, 783-803. 



24 
 

Table 1. Sampled parameter ranges and Spearman rank partial correlation coefficients (r) between parameters and 
target outputs. Values marked in bold show a significant correlation (p < 0.01). fsom = soil organic matter concentration, 
γb = bulk density, fmic = fraction of micropores. 735 

Parameter Sampled range 
Partial correlation coefficients, r 

fsom γb fmic 
 

1st order rate coefficient, ky [year-1] 0.1 – 1.0 -0.54 0.37 -0.10 
1st order rate coefficient, ko [year-1] 0.01 – 0.05 -0.82 0.70 0.32 
Physical protection factor, Fprot [-] 0.05 – 0.20 -0.46 0.28 -0.08 
OM Retention coefficient, ε [-] 0.1 – 0.5 0.92 -0.82 -0.30 
Mixing coefficient, kmix [year-1] 0 – 0.2 -0.68 0.50 -0.60 
Fraction of textural micropores, Fftext(mic) [-] 0.5 – 0.9 0.24 -0.16 0.96 
Density of mineral matter, γmin [g cm-3] 2.6 – 2.7 -0.09 0.37 0.01 
Density of organic matter, γsom [g cm-3] 1.1 – 1.4 -0.03 0.33 -0.01 
Minimum porosity, φmin [cm3 cm-3] 0.3 – 0.4 0.162 -0.85 0.02 
Aggregation factor, fagg [-] 2 – 4 0.0 -0.50 0.02 
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Table 2. Parameter values used to generate the synthetic data and the sampled range in the model calibration. 

Parameters Value used for data generation 
(true value) 

Sampled range during 
calibration 

1st order rate coefficient, ky [year-1] 0.40 0.1 – 1.0 
1st order rate coefficient, ko [year-1] 0.02 0.005 – 0.1 
Mixing coefficient, kmix [year-1] 0.05 0 – 0.3 
Microbial efficiency, ε [-] 0.3 0.1 – 0.6 
Physical protection factor, Fprot [-] 0.3 0.05 – 1.0 
Fraction of textural micropores, Ftext(mic) [-] 0.5 0.2 – 0.8 
Density of mineral matter, γmin [g cm-3] 2.7  
Density of organic matter, γsom [g cm-3] 1.2  
Minimum layer thickness, Δz(min) [cm] 16  
Minimum porosity, φmin [cm3 cm-3] 0.4a)/0.41b)  
Aggregation factor, fagg [-] 5.0a)/4.92b)  
a) used for data generation, b) estimated by regression (Figure 4) and fixed during calibration 

740 
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Table 3. Correlation matrix for parameter estimates for the 36 best parameter sets of 100 calibration runs against 
synthetic data for soil bulk density, SOC and microporosity (Figure 6). Values highlighted in bold show a significant 
correlation (p < 0.01). 

 kmix ky ε ko Fprot Ftext(mic) 

kmix 1      

ky 0.50 1     

ε 0.27 0.69 1    

ko 0.59 0.95 0.81 1   

Fprot -0.74 -0.87 -0.49 -0.91 1  

Ftext(mic) 0.57 -0.28 -0.13 -0.17 0.06 1 
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Table 34. Fixed parameters and range of parameter values included in the calibration, as well as the final parameter 745 
estimates after calibration. The range of the best-fit parameter values for the calibration runs with goal function values 
no more than 5% larger than the value for the best simulation (n = 85) is given within parenthesis. 

Parameters Fixed value Sampled 
range Calibrated value 

1st order rate coefficient, ky [year-1] 0.80a)   
1st order rate coefficient, ko [year-1]  0.01 – 0.1 0.036 (0.031 – 0.039) 
Mixing coefficient, kmix [year-1] 0.05   
OM Retention coefficient, ε [-]  0.2 – 0.7 0.37 (0.35 – 0.39) 
Physical protection factor, Fprot [-] 0.1b)   
Fraction of textural micropores, Ftext(mic)  0.5 – 0.9 0.85 (0.84 – 0.87) 
Density of mineral matter, γmin [g cm-3] 2.7   
Density of organic matter, γsom [g cm-3] 1.2   
Minimum layer thickness, Δz(min) [cm] 4   
Minimum porosity, φmin [cm3 cm-3] 0.35c)   
Macroporosity, φmac [cm3 cm-3] 0.152d)   
Aggregation factor, fagg [-] 2.46d)   
OM input warmspin-up [g cm-2 year-1]  0.005 – 0.009 0.0064 (0.0061 – 0.0066) 

a) Andrén and Kätterer (1997), b) Kravchenko et al. (2015), c) Nimmo (2013), d) Figure 4 
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Table 45. Goodness of fit of the model simulations to observed bulk density and soil organic carbon concentration. r = 750 
correlation coefficient. RMSE = root mean squared error. MAE = mean absolute error. 

 
Parameter 

r RMSE MAE 

C
al

ib
ra

tio
n 

Fallow 
Bulk density [g cm-3] -0.20 0.05 0.04 
Soil organic carbon [kg kg-1] 0.95 0.0005 0.0004 
 Animal manure 
Bulk density [g cm-3] 0.99 0.04 0.04 
Soil organic carbon [kg kg-1] 0.89 0.0009 0.0007  

 V
al

id
at

io
n 

 Green manure (ε = 0.37) 
Bulk density [g cm-3] 0.94 0.08 0.07 
Soil organic carbon [kg kg-1] 0.04 0.004 0.004 
 Green manure (ε = 0.14) 
Bulk density [g cm-3] 0.98 0.06 0.05 
Soil organic carbon [kg kg-1] 0.37 0.0008 0.0007 
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Figure 1. Schematic illustration of the conceptual model with the soil pore space comprising macropores (A), 755 
mesopores (thin lines, B) and micropores (dotted regions, C) and with two qualities of organic matter: particulate 
organic matter (POM e.g. decaying roots; green lines, D), and microbially-processed organic matter (blue circles, 
E), both of which are stored either in contact only with micropores (and therefore partially protected from 
decomposition) or in contact with mesopores. 

760 
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Figure 2. Schematic illustration of pore volumes and pore classes in the model (for explanation of symbols see 
text). In this example, macroporosity has been neglected and the total pore space is comprised of 80 % textural 
pores and 20 % aggregation pores induced by soil organic matter, with a maximum micropore diameter of 10 µm.  765 



 

 

Figure 3. Schematic diagram of the structure of the organic matter model showing storages and flows. For 
explanations of symbols see the text in connection with equations (1) to (6).  



 

Figure 4. Equation 1920 fitted to data from three Swedish field sites (Ultuna data taken from Kirchmann et al., 
1994, Gerzabek et al., 1997, Kirchmann and Gerzabek, 1999 and Kätterer et al., 2011; Måtteby data taken from 
Larsbo et al., 2016, with the soil under grass; Offer data taken from Jarvis et al., 2017; ‘harrowed’ soil had been 
ploughed and harrowed (samples were taken at 2-6 cm depth), ‘ploughed’ soil was only ploughed (samples were 
taken at 13-17 cm depth). Data used in this study is highlighted in red (fallow, animal manure and green manure). 
Soil organic matter content was estimated from soil organic carbon by multiplying by 2 (Pribyl, 2010). Equation 
1920 was fitted by non-linear least-squares regression assuming ‘a priori’ that γm = 2.7 g cm-3, γo = 1.2 g cm-3 and 
ø𝑚𝑚𝑚𝑚𝑚𝑚  = 0.35 cm3 cm-3.  
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Figure 5.   Plots of equation 19 for contrasting values of the aggregation factor, fagg, with γm = 2.7 g cm-3, γo = 1.2 
g cm-3 ø𝑚𝑚𝑚𝑚𝑚𝑚  = 0.1 cm3 cm-3 and ø𝑚𝑚𝑚𝑚𝑚𝑚  = 0.35 cm3 cm-3.  
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Figure 56. Synthetic data (symbols; bars show standard deviations) for microporosity, bulk density and soil 
organic matter concentration and model simulations (lines) after calibration.  
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Figure 67. Cumulative frequency distributions of parameter estimates for the 36 best parameter sets of 100 
calibration runs against synthetic data for soil bulk density, SOC and microporosity. The grey lines mark the true 
values used to generate the synthetic data. 
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Figure 78. Observed (symbols; bars show standard deviations) and simulated (lines) microporosity [cm3 cm-3], 
bulk density [g cm-3] and soil organic carbon concentration [kg kg-1] for the fallow and animal manure treatments.  



 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 89. Observed (symbols; bars show standard deviations) and simulated (dashed and dotted lines) soil water 
retention curves in the fallow and animal manure treatments using equations 267 and 278. The left panel shows 
the measurements taken in 1997 and the right panel the measurements taken in 2019. The measurements used as 
the initial condition in 1956 are also shown, together with a fitted curve. Van Genuchten’s n was fixed at 1.073 
for all water retention curves.   
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Figure 910. Simulated temporal development of young undecomposed (Y) and older microbially-processed (O) 
organic matter [kg m-2] stored in meso- and microporous regions in the bare fallow (left) and manure (right) 
treatment. 5 
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Figure 1011. Observed (symbols; bars show standard deviations) and simulated (lines) microporosity [cm3 cm-3], 
bulk density [g cm-3] and soil organic carbon concentration [kg kg-1] for the green manure treatment for two 
different values of the OM retention coefficient, ε.  
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Supplementary material 

Table S1. List of variables and their symbols used in the model description. 

Symbol Description Unit 

fagg aggregation factor m3 m-3 

fsom soil organic matter concentration kg kg-1 

Fprot physical protection factor - 

Ftext(mic) proportion of microporous textural pore space - 

Ir below-ground inputs of organic matter kg m-2 year-1 

Im above-ground inputs of organic matter kg m-2 year-1 

kmix rate coefficient for proportion of organic matter that is mixed annually year-1 

kY first-order rate constants for the decomposition of young organic matter year-1 

kO first-order rate constants for the decomposition of older organic matter year-1 

Ms(m) mass of mineral matter kg m-2 

Ms(o) total mass of organic matter kg m-2 

MY(mes) pool of young organic matter in mesoporous soil regions kg m-2 

MY(mic) pool of young organic matter in microporous soil regions kg m-2 

MO(mes) pool of older organic matter in mesoporous soil regions kg m-2 

MO(mic) pool of older organic matter in microporous soil regions kg m-2 

TY source-sink term for the mixing of young organic matter between micropores and 
mesopores  

kg m-2 year-1 

TO source-sink term for the mixing of older organic matter between micropores and 
mesopores 

kg m-2 year-1 

Vt total soil volume m3 

Vt(min) minimum soil volume m3 

Vs volume of solids m3 

Vs(o) volume of organic matter m3 

Vs(m) volume of mineral matter m3 

Vp total pore volume m3 

Vtext textural pore volume m3 

Vmac macropore volume m3 

Vagg aggregation pore volume m3 

Vagg(mic) volume of aggregation micropores m3 

Vtext(mic) volume of textural micropores m3 

α, n shape parameters reflecting the pore size distribution cm-1, - 

Axs cross-sectional area (= 1) m2 

γb soil bulk density kg m-3 

γo organic matter density kg m-3 

γm mineral matter density kg m-3 

ε organic matter retention coefficient - 

ϕ porosity m3 m-3 
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ϕmac macroporosity m3 m-3 

ϕmes mesoporosity m3 m-3 

ϕmic microporosity m3 m-3 

ϕmin minimum matrix porosity m3 m-3 

ϕmat matrix porosity m3 m-3 

ψ soil water pressure head cm 

ψmic/mes pressure head defining the size of the largest micropore in soil cm 

θ soil water content m3 m-3 

∆z thickness of soil layer m 
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Responses to the Editor 

Please, carefully revise your manuscript, specifically with regard to the follwing points:  

(i) please, include a detailed discussion of the advantages of the model as pointed out by both revieer 
1 and 2, 

Response: Yes, we have done so. We extended the discussion of the advantages of our model in the 
final section of the paper. 

(ii) I agree with reviewer 2 that the model description can be improved. The model description should 
also be accessible to modellers outside the immediate area of reserach and other scientists interested 
in SOM turnover. 

Response: The model description now uses sub-headings to structure the text in a better way. We have 
also improved the clarity of the explanations and given a much fuller discussion of the aggregation 
factor, as requested by referee #1, including an illustrative new figure. This figure also enabled us to 
answer one of the interesting questions raised by referee #3. We have also added a new table 
containing a list of all variables and symbols used in the model description (supplementary material, 
Table S1).  

We now feel very confident that the model description should be accessible and understandable for 
all researchers in the biogeosciences. 

(iii) as reviewer 3 pointed out, the older literature must be better included in your manuscript. 

Response: Yes, we have now included the older literature in the manuscript. 
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Responses to referee #1 

The study contributes a new model on the dynamical between feedback soil organic matter (SOM) 
decomposition and soil aggregate structure. Like other models it employs the concept that the addition 
of low-density organic matter modifies both, the soil layer thickness, porosity, and the bulk density, but 
is the first study to my knowledge to explicitly discuss this feedback. It explicitly models retardation of 
SOM decomposition by aggregation and associated micropores. The approach is demonstrated using a 
simple parsimonious SOM model at pedon scale with a sensitivity analysis and a model calibration to 
a long-term field study. It will be a welcome contribution to the SOM modeling community. I enjoyed 
reading the manuscript. It is well written and the logical flow is clear to me. 

Response: We would like to thank Dr. Wutzler for his kind comments and for his constructive 
suggestions for improving the paper.  

The study could be made stronger by including a simulation/calibration without the feedback and 
comparing the improvements between the two versions.  

Response: See our response to the next comment below 

General comments  

I missed a discussion on implications and results on whether the presented feedback is important for 
understanding or prediction of SOM dynamics or model structure. The authors showed that the 
relatively simple model could already predict differences in SOM and soil structure by different inputs. 
However, to what extent could this also be modeled without SOM influencing the soil structure? 
Although the paper holds enough new insights to be published, I encourage the authors to take the extra 
work to compare to a model version where the feedback is switched off. For example by calibrating 
time-constant bulk densities and parameters to the three input-scenarios. 

Response: We have now run ICBM against the SOC data for the manure and bare fallow treatments and 
it performs almost as well as the model described in our paper (RMSE’s are slightly larger than those 
shown in Table 5), albeit with different parameter values: the retention efficiency is similar (0.35 vs. 
0.37) but ko is much smaller (0.015 vs. 0.036 year-1), since physical protection is not modelled explicitly. 
However, even if a simpler OM model such as ICBM can be calibrated reasonably well to time-series 
of OM measurements at one site, our model that explicitly incorporates soil structure-OM feedbacks has 
many important advantages. This is because it enables simulations of the effects of soil structure and 
physical protection on OM turnover in contrasting soil types (e.g. sand vs. clay) explicitly and directly 
from measured particle size distributions, without having to resort to re-calibrating model parameters 
describing OM turnover for each soil, as was done, for example, by Poeplau et al. (Geoderma 237/238, 
246-255). In principle, our model also has a much broader range of potential management applications. 
For example, it could be used to simulate the effects of contrasting tillage systems on SOC dynamics, 
as well as the effects of faunal bioturbation on OM stabilization. We would also like to emphasize here 
that in discussing the importance of accounting for soil structure effects on SOM storage in simulation 
models, we should not ignore “the other side of the coin”, namely the importance of SOM for soil 
structure. We feel that the inclusion in our model of the effects of SOM on porosity, pore size distribution 
and soil water retention, is a very important advance compared to other models, because it enables 
straightforward links to models of soil hydrology, plant growth and therefore OM inputs to soil. This 
kind of dynamic soil-plant model would encompass, for the first time, a complete description of all the 
physical feedback mechanisms determining organic C sequestration in soil.  
We expanded our discussion of these important issues. 

The conclusions currently read more like a discussion. They could be sharpened to what readers should 
"take home" for their work from this study. What are the most important parameters and feedbacks that 
you think they need to consider in their experiments and studies?  
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Response: Yes, we modified this section. In fact, in order to meet some of the other comments and 
suggestions from Dr. Wutzler and referee #2, we can see the need to include a short discussion section 
in the paper  

There are already models that let SOM decomposition affect soil structure. For example in the model of 
Ahrens et al. 2015 (see also Yu 2020 eq. S28a) SOM dynamics affects bulk soil density and soil volume 
and this in turn affects modeled concentrations, changes in soil volume, and transport processes. They 
applied the same concept of Federer 1993 as in the current manuscript, but incorporated many more 
processes so that this feedback was not explicitly discussed. The present manuscript additionally 
partitions micro-and mesoporosity and models protection by aggregation. A little comparison in the 
discussion or introduction would be nice. 

Response: We did include a comparison of our model with several previous models in the Introduction, 
but we had missed that Ahrens et al. and Yu et al. also model the effects SOM on bulk density (as Dr. 
Wutzler writes, this aspect of their model was not prominently discussed in the cited papers). We 
included a reference to Ahrens et al. and Yu et al..  
Dr. Wutzler notes that in addition to the physical protection of SOM afforded by soil structure, we also 
model the effects of SOM on pore size distribution and water retention. As mentioned earlier, we 
consider that this is an important advance, because it enables subsequent links to models of soil water 
flow and plant growth. We emphasized this aspect of the model in more detail. 

P4L103: The authors argue that macropores probably are only a minor balance of SOM balance. 
Contrary, some researchers think, that macropores are a hot spot of SOM turnover and together with 
the rhizosphere are the most important places to study. Especially for systems with active earth worms 
this has been shown (e.g. Don et al. 2008). 

Response: It would be possible to extend the model to deal with C inputs to the macropore region, for 
example by root in-growth or the exploitation of surface litter by earthworms, although this would 
increase model complexity and introduce new parameters. We agree that this is something that should 
be explored in the future. We added some text on this in the final section (Discussion and Conclusions). 

eq. 7 and 11 seem to both add volume and additional pore space with addition of OM. In an alternative 
mind model putting dissolved organic matter or root exudates into soil would partly fill up existing 
pores. Please, add some explanation of assumptions to this part.  

Response: Yes, this is an interesting question, which goes to the heart of the model concept. Adding a 
mass of OM must increase the volume of OM, but it could either increase or decrease the pore volume 
and thus the total volume of the soil. The parameter that determines this is fagg (what we call the 
aggregation factor). If the addition of OM resulted in a net decrease of the pore volume, then fagg would 
take a negative value (the minimum value fagg could take is -1, if the added OM completely filled existing 
pore space, as Dr. Wutzler suggests it could). However, we can see from the data (see Figure 4) that fagg 
∼ 2, in other words, a volume of OM creates twice its own volume of pores. There are several 
mechanisms and processes (both biological and physical) underlying the generation of aggregation pore 
space, which would be difficult to model separately, so our model makes no attempt to do so. The only 
assumption underlying the model is the linear relationship between aggregation pore space and OM, 
something which is strongly supported by experimental evidence (see text at lines 104 – 106).  We added 
some more explanatory text on this.       

I miss a paragraph how the model was integrated in time. I assume an explicit time (Euler forward) step 
much lower than the 5 years of distance between observations.  

Response: Yes, it was an explicit numerical solution with Euler integration and an annual time step. We 
added this missing information to the text.  

How did you track the changes in soil depth (eq. 12) in the comparison to data?  
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Response: This was already explained in the paper. We simulated five soil layers, with variable thickness 
according to equation 12 (lines 351/352) and the difference in the total profile depth between the two 
treatments was compared with the difference in the soil surface elevation measured in 2009 (lines 
336/337).  

Minor comments.  

The discussion at p3L55 argues about soil structure affecting SOM dynamics. If one could show that it 
is not only affecting fast pools, then this argument could be made even stronger to affecting SOM stocks 
and soil carbon sequestration.  

Response: Yes, true. We feel that the experiments discussed at lines 64-66 (and other similar 
experiments) give very strong evidence for the protective effect of soil structure on slow OM pools.   

The font sizes in the figures are often very small, which makes it difficult to read the print-version. 

Response: Thanks for the hint. We increased the font size of the figures. 

eq.5 and 6: Why is there a factor of 1/2?  

Response: It follows from the definition of kmix as the intensity of mixing of the stored OM in the two 
pore classes at an annual time scale. It gives perfect mixing for kmix = 1 year-1. 

Please, check consistency of mathematical symbols. E.g. delta.z_min is sometimes written with min as 
subscript and sometimes with parenthesis (Table 1) denoting density gamma_o and gamma_m or 
gamma_org and gamma_min. F_text_mic or F_mic_text (fig. 6). 

Response: Thanks for pointing this out. We corrected these inconsistencies. 

p6L165: Parameter f_agg is introduced here. To my reading its quite an important parameter. I 
recommend explaining it (here or somewhere) in more detail. Does it correspond to the porosity of the 
volume occupied by organic matter?  

Response: Not exactly, although fagg is related to the porosity of organic matter, see equation 24 (please 
note that there has a typo in equation 24: φmac should replace φmin. We fixed this in the revised paper). 
fagg is simply the slope of the linear relationship that is assumed between the volumes of aggregation 
pore space and OM. We added some more explanation to the paper at line 174. We discussed the 
correspondence of the parameters of the Federer et al. (1993) model with our more fundamental 
derivation of essentially the same model at lines 217 – 234.   

eq 21-24: please, use a different symbols at the left hand side than in (19) and (20) to denote the 
quantities to use assumption of f_som = 0 r f_som = 1.  

Response: Thanks for the hint – we adapted the symbols. 

Sect 3.2: Given the 5 years interval of SOM measurements the non-identifyability of the fast turnover 
pool is expected. Could you think of additional observations or sub-experiments that could inform the 
shorter time scale?  

Response: Incubation experiments would be needed to quantify the dynamics of the young pool at 
shorter time scales. However, these kinds of experiments are usually conducted under controlled 
conditions in terms of water content and temperature, which makes it difficult to transfer the results to 
the field. Another approach would be to study the degradation of organic matter using litterbags 
(containing, for example, above-ground harvest residues). However, in the treatments that do not receive 
organic material, it can be assumed that the young pool consists of roots and rhizodeposition. Since it is 
difficult to quantify the amount of C that enters the soil via roots, it is also difficult to quantify its 
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degradation. We are not aware that these kinds of experiments have been carried out for the Ultuna 
frame trial.  
 
Sect 3.2. The mixing ratio was quite influential in Table 1. I assume in the identifiability analysis it 
correlated strongly with other parameters -which ones? 

Response: Yes, kmix correlated strongly with ky, ko, Fprot and Ftext(mic). We added a table with this 
information (see the new Table 3). 

Could this lead to potential model simplifications? 

Response: In some model applications, possibly yes, but not if the users are interested in the influence 
of tillage or earthworm bioturbation on C sequestration    

P11L335: "root litter input was distributed uniformly across depth". What do you expect to be the effect 
of distribution root litter input with an exponentially decreasing profile? How do you treat partitioning 
of given total root input to the modeled top soil and the non-modeled lower depth? 

Response: In the ploughed (and sampled) horizon relevant to this study, there would be no effect at all, 
because of tillage mixing. Input to the topsoil was distributed uniformly because we assume efficient 
mixing by tillage. The non-modelled lower depth is not relevant to this paper.  

Fig 1: The dotted regions were not visible in my printout. Please adapt the pattern.  

Response: We replaced the dotted pattern by blank regions. 

Fig 2: The placing of the braces confused me. Vor micropores its at the maximum pore diameter for 
mesopores the lower boundary of the upper brace coincides with the blue line. To my understanding it 
should instead coincide with the red line at the upper diameter.  

Response: We checked the figure and it is OK. We don’t really understand this comment 

Fig 3: Cannot read the subscripts in this figure. Please, adjust the font sizes. (Also in the other figures)  

Response: We adjusted the font sizes of Figure 3 and the other figures as well. 

Fig 8: I had to search for the difference between left and right panel. Please describe in the legend or 
make the font of the years 1997 or 2019 more prominent.  

Response: We added a title to both panels stating the respective year. We also added the information to 
the figure caption. 

Fig 9: Figure headings (bare fallow, manure) in addition to the legend would help the reader.  

Response: Thanks for the comment – we added headings to Figure 10 (former Figure 9) and also adjust 
the font size of the legend. 
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Responses to referee #2 

In this work, the authors propose a new framework to model soil organic matter turnover, which 
includes a two-way coupling between SOM storage and soil porosity. The model considers four pools 
of organic matter, with the dynamics described by four coupled differential equations. The novelty 
consists in using additional pools to divide the organic matter between micropore and mesopore soil 
regions, each one characterized by its own fluxes and decomposition rates. In my opinion such a model 
indeed can bring new insights about the dynamical feedback between soil physical properties and SOM 
decomposition, and can be an important contribution to the field. Although I find the paper interesting, 
I have some concerns. In particular I would have appreciated a more detailed discussion of the 
advantages of this new model. My recommendation is publication of this manuscript subject to a 
revision based on comments listed below. 
 
Response: We appreciate the positive feedback of reviewer#2. We included some more text on the 
advantages of this model compared to models that do not include interactions with soil physical 
properties in a final discussion and conclusions section 
 
1 - I find that the paper is in general well written, but the section with the description of the model is 
very confusing and needs to be improved. I would suggest to first write the full model including the 
feedback on porosity, and only afterward to follow with all the necessary derivations.  
 
Response: Thanks for the suggestion, which we have considered carefully. However, after trying out 
different options, we decided we would like to keep the current structure of the model description 
and derivation, which we are convinced will be easier to follow and understand for the reader. We 
think the model derivation is already clearly presented. However, meeting some of the changes 
requested by referee #1 and referee #3 should lead to further improvements in clarity. 
 
Also, it is not clear by looking at the equations which parameters are kept constant, one has always to 
search in the text.  
 
Response: Tables 1, 2 and 4 give information on the parameters that were kept constant and those 
that were varied in the sensitivity analysis and in the calibrations.  
 
One solution is to use upper case for functions and lower case for constants.  
 
Response: We are not sure we understand this suggestion, but the difference between parameters 
and functions is apparent from the equations themselves.   
 
Please also double check the notation, for example the density of mineral matter is ngamma_m on pg.6 
and ngamma_min in all tables. 
 
Response: Thanks for the comment. We corrected this inconsistency (and also similar ones for the 
density of organic matter and the minimum layer thickness). We have double-checked the notation 
and cannot find any other errors. 
 
2 - The abstract states that the model successfully reproduces the soil water retention curves. I find this 
statement too strong due to the discrepancy of the curves for the year 1997. 
 
Response: Yes, we modified this sentence to make it clear that the model only successfully matched 
the water retention measurements obtained at the end of the experimental period in 2019.  
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3 - I would like to see an extended discussion on the k_mix and F_prot, since these parameters are at 
the core of the discussed feedback. For large values of k_mix and F_prot nsim 1 the soil structure 
properties have to become less important to the dynamics of SOM turnover. Could the authors 
comment on this transition to the regime where the soil porosity becomes less relevant for the model 
outcome?  
 
Response: Yes, this is correct. We included a brief discussion of this in the revised paper  
 
I would also appreciate a short comment on the choice of the sampled range for the sensitivity analysis 
(and also the choices for calibration). 
 
Response: For the sensitivity analysis, we justified the choice of sampled ranges at lines 244 – 249: The 
sampled ranges for calibration were based on previous experience with SOM models and some trial 
and error. The defined ranges for calibration could in theory influence the outcome of the calibration 
procedure if there are local minima in the goal function. However, we found that increasing the ranges 
shown in Table 3 had no impact on the results. 
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Responses to referee #3 

Meurer and colleagues describe a modified version of the ICBM model which is intended to describe a 
feedback between SOC formation and decomposition and its effects on bulk density and pore size 
distribution. While the premise of the study is very interesting it falls short in proving that the feedback 
between micropore space and SOC decomposition is needed to describe SOC dynamics.  

Response: We would like to thank the referee for his valuable feedback. The paper improved as a 
result. 

I would ask the authors to clarify and work on the following points:  

- Please do a more thorough literature research: Before Federer et al. (1993) a couple authors have 
used equations similar to the Federer one, maybe even your Equation 20 (Adams, 1973; Rawls, 1983). 
These are just two examples - probably you can work your way backwards from here. Tranter et al. 
(2007) provide a good overview of the literature and show how soil texture affect mineral soil bulk 
density.  

Response: Thank you. Yes, Federer et al. were not the first to apply the model. We added this relevant 
literature in the text where currently we only mention Federer et al.. 

- It would be interesting for the reader to see how much of bulk density changes is due to the difference 
in density between minerals and soil organic matter (mass effect), and how much due to changes in 
porosity (difference in porosity between minerals and soil organic matter?).  

Response: Yes, this is an interesting question. We interpret the second part of this sentence (“changes 
in porosity”) to mean the effects of aggregation. This question can be answered by analyzing equation 
20. We added a figure to the paper based on this equation showing how the relationship between bulk 
density and organic matter concentration varies with different values of fagg (the aggregation factor). 
The curve for fagg=0 (i.e. no aggregation) shows that the different densities of organic and mineral 
matter have only a minor effect. Aggregation dominates the effects of organic matter on bulk density. 
We can mention here that that the simpler version of this bulk density model previously published 
does not allow for this kind of analysis, since it does not distinguish between these two effects. 

- Figure 7 suggests that the microporosity effect is minimal and the increase/decrease in bulk density 
is solely driven by the decrease/increase in SOC.  

Response: In this model application, all the parameters in equation 20 (for calculating bulk density) are 
considered as constants except for the organic matter content, so yes, the increase/decrease in bulk 
density is indeed solely driven by the decrease/increase in SOM. 

- Please provide some numbers how important SOC changes are for changes in microporosity. 

Response: Equation 25 shows how the time-varying SOC content and the (constant) soil textural pore 
space affect microporosity. The results of the sensitivity analysis suggest that the balance between 
microporosity and mesoporosity is most strongly determined by soil texture, which certainly agrees 
with past empirical experience. This was already discussed at lines 252 – 255. 

- You set F_prot a priori based on literature values. I think you have to provide more background to the 
reader how they were derived. SOC is then decomposing at a speed of 10 percent in micropores. Is this 
well constrained by experiments?  

Response: This value is based on a study published by Kravchenko et al. (2015) in which they used X-
ray tomography to show that the decomposition rates of intra-aggregate particulate SOM were 3 – 15 
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times faster in the presence of connected networks of aerated soil pores > 13 µm in diameter than in 
the absence of such pores (see Introduction ll. 55 – 57). We chose the value for Fprot based on this 
range. This was mentioned in the text at lines 349 – 351 and also in Table 3. Clearly, more experiments 
of this kind will help to better constrain this parameter value in the future. We discussed this at lines 
441 – 444. 

- You use the term ‘warm-up’. Please correct to spin-up.  

Response: We changed “warm-up” to “spin-up”. 

-Please provide a complete list with all symbols and abbreviations. The reader can get lost in the 
amount of equations otherwise. 

Response: We added a list with symbols to the supplementary material. 


