
1 
 

Modelling dynamic interactions between soil structure and the 

storage and turnover of soil organic matter 

Katharina Hildegard Elisabeth Meurer1; Claire Chenu2; Elsa Coucheney1; Anke Marianne 

Herrmann1; Thomas Keller1,3; Thomas Kätterer4; David Nimblad Svensson1; Nicholas Jarvis1 

1 Swedish University of Agricultural Sciences, Department of Soil & Environment, SE-750 07 Uppsala, Sweden 5 
2 AgroParisTech, UMR Ecosys INRA-AgroParisTech, Université Paris-Saclay, F-78850 Thiverval-Grignon, France 
3 Agroscope, Department of Agroecology & Environment, CH-8046 Zürich, Switzerland 
4 Swedish University of Agricultural Sciences, Department of Ecology, SE-750 05 Uppsala, Sweden 

Correspondence to: K. H. E. Meurer katharina.meurer@slu.se  



2 
 

Abstract 10 

Models of soil organic carbon (SOC) storage and turnover can be useful tools to analyze the effects of soil and 

crop management practices and climate change on soil organic carbon stocks. The aggregated structure of soil is 

known to protect SOC from decomposition, and thus influence the potential for long-term sequestration. In turn, 

the turnover and storage of SOC affects soil aggregation, physical and hydraulic properties and the productive 

capacity of soil. These two-way interactions have not yet been explicitly considered in modelling approaches. In 15 

this study, we present and describe a new model of the dynamic feedbacks between SOM storage and soil physical 

properties (porosity, pore size distribution, bulk density and layer thickness). A sensitivity analysis was first 

performed to understand the behaviour of the model. The identifiability of model parameters was then investigated 

by calibrating the model against a synthetic data set. This analysis revealed that it would not be possible to 

unequivocally estimate all of the model parameters from the kind of data usually available in field trials. Based on 20 

this information, the model was tested against measurements of bulk density and SOC concentration, as well as 

limited data on soil water retention and soil surface elevation, made during 63 years in a field trial located near 

Uppsala (Sweden) in three treatments with different OM inputs (bare fallow, animal and green manure). The model 

was able to accurately reproduce the changes in SOC, soil bulk density and surface elevation observed in the field 

as well as soil water retention curves measured at the end of the experimental period in 2019 in two of the 25 

treatments. Treatment-specific variations in SOC dynamics caused by differences in OM input quality could be 

simulated very well by modifying the value for the OM retention coefficient ε (0.37 for animal manure and 0.14 

for green manure). The model approach presented here may prove useful for management purposes, for example, 

in an analysis of carbon sequestration or soil degradation under land use and climate change. 

1 Introduction 30 

As a consequence of intensive cultivation, most agricultural soils have lost ca. 25–75 % of their antecedent store 

of SOC (Lal, 2013; Sanderman et al., 2017). Apart from contributing to the increase in atmospheric CO2, this has 

also degraded the inherent physical quality and productivity of soil (e.g. Lal, 2007; Rickson et al., 2015; Henryson 

et al., 2018). This is because many important soil physical and hydraulic (e.g. water retention and hydraulic 

conductivity) properties are strongly influenced by soil organic matter (SOM). For example, SOM increases 35 

porosity and reduces soil bulk density (e.g. Haynes and Naidu, 1998; Ruehlmann and Körschens, 2009; Jarvis et 

al., 2017). This is partly because the density of organic matter is less than that of soil minerals, but more 

importantly, it is a consequence of the aggregated soil structure induced by the microbial decomposition of fresh 

organic matter (Tisdall and Oades, 1982; Young and Crawford, 2004; Cosentino et al., 2006; Feeney et al., 2006; 

Bucka et al., 2019). Changes in the SOM content may also affect the pore size distribution, although the magnitude 40 

of these effects across different ranges of pore diameter is still a matter of some controversy (e.g. Hudson, 1994; 

Rawls et al., 2003; Loveland and Webb, 2003; Minasny and McBratney 2018; Libohova et al., 2018).  

The relationship between SOM and soil pore space properties can be characterized as a dynamic two-way 

interaction. This is because, in addition to the effects of SOM on soil pore size distribution and porosity, 

decomposition rates of SOM are reduced within microporous regions of soil that are poorly aerated and where the 45 

carbon is physically much less accessible to microorganisms (e.g. Ekschmitt et al., 2008; Dungait et al., 2012; 

Lehmann and Kleber, 2015). Whereas sorption interactions with mineral surfaces are probably the dominant 

mechanisms protecting SOM from decomposition in coarse-textured soils, the additional physical protection 
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afforded by microporous regions of the soil may lead to an enhanced long-term storage of SOM in structured fine-

textured soils (e.g. Hassink et al., 1993; Chevallier et al., 2004; Souza et al., 2017; Dignac et al., 2017). Thus, the 50 

turnover of both particulate and soluble SOM has been shown to depend on its location in soil pore networks of 

different diameter and connectivity and with contrasting microbial communities (e.g. Strong et al., 2004; Ruamps 

et al., 2011; Nunan et al., 2017). Recent studies using novel X-ray imaging techniques have also provided 

additional insights into how the soil pore space architecture regulates the physical protection of SOM in structured 

soil (Kravchenko and Guber, 2017). For example, Kravchenko et al. (2015) showed that the decomposition rates 55 

of intra-aggregate particulate SOM were 3 to 15 times faster in the presence of connected networks of aerated soil 

pores > 13 m in diameter than in the absence of such pores. Toosi et al. (2017) showed that plant residues 

decomposed more slowly in soil microcosms dominated by pores 5-10 m in diameter than in those containing a 

significant proportion of pores > 30 m in diameter. Quigley et al. (2018) showed that pores 40–90 μm in size 

were associated with a fast influx of fresh carbon followed by its rapid decomposition, whereas soil pores < 40 μm 60 

in diameter were associated with reduced rates of carbon decomposition. From the foregoing, it follows that the 

turnover of SOM will be significantly affected by any physical or biological mixing process which transfers SOM 

between different pore regions in soil. For example, soil tillage may promote decomposition by exposing SOM 

that was previously effectively protected from microbial attack within microporous regions of the soil (e.g. 

Balesdent et al., 2000; Chevallier et al., 2004). Physical protection of SOM is also affected by the mixing resulting 65 

from the ingestion and casting of soil by earthworms (e.g. Martin, 1991; Görres et al. 2001; Angst et al., 2017).  

Some widely-used models of SOM turnover and storage attempt to implicitly account for the effects of chemical 

and physical protection by introducing a stable or inert pool (e.g. Falloon and Smith, 2000; Barré et al., 2010). 

Other models have also been proposed that explicitly predict the effects of soil structure on SOM storage and 

turnover by making use of the concept of soil micro- and macro-aggegrates (e.g. Stamati et al., 2013; Segoli et al., 70 

2013). An alternative approach would be to define soil structure in terms of the soil pore space. The advantage of 

this is that it allows a straightforward coupling to models of flow and transport processes in soil (e.g. Young et al., 

2001; Rabot et al., 2018). From a mathematical point of view, soil structure can be concisely described by the 

volume and connectivity of solids and pore space and the surface area and curvature of their interface, all expressed 

as a function of pore diameter (Vogel et al. 2010). Of these metrics, we focus here on the pore size distribution 75 

and its integral the total porosity, since these properties underlie widely-used soil hydrological models based on 

Richards’ equation. Incorporating such a pore-space based approach to the interactions between SOM and soil 

structure into a soil-crop model would enable explicit recognition of the feedback links that exist between SOM 

dynamics, soil hydrological processes and plant growth (Henryson et al., 2018). Kuka et al. (2007) earlier proposed 

a pore-based model of SOM turnover (CIPS), although they did not account for any feedbacks to soil physical 80 

properties and hydraulic functions.  

Here, we propose and test a new model that describes the dynamic two-way interactions between SOM storage 

and turnover, soil structure and soil physical properties. We first performed a sensitivity analysis of the proposed 

model and also investigated parameter identifiability using a synthetic data set (e.g. Luo et al., 2017). This was 

done because the data usually available from field experiments for testing models of SOM storage and turnover 85 

may be insufficient to uniquely identify the parameters of even the simplest models (Juston et al., 2010; Luo et al., 

2017). Such problems of parameter ‘non-identifiability’ or ‘equifinality’ (Beven, 2006) may introduce 

considerable uncertainties into model predictions under changing agro-environmental conditions (e.g. Sierra et al., 
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2015; Bradford, 2016; Luo et al., 2017). Making use of the results of this sensitivity and uncertainty analysis, we 

calibrated the model against field data obtained from two treatments (bare fallow, animal manure) at the Ultuna 90 

long-term frame trial in Uppsala, Sweden, using measurements of the temporal changes in SOC concentrations 

and bulk density and limited data on the soil pore size distribution derived from water retention curves, as well as 

surface elevation. As a further test, we also compared predictions of the calibrated model with independent 

observations made in a green manure treatment in the same experiment. 

2 Description of the model  95 

2.1 Conceptual model 

The model describes the dynamic two-way interactions between SOM storage and turnover and soil porosity and 

pore size distribution. A simple conceptual model is adopted to capture how the soil pore space changes as a result 

of changes in soil organic matter concentration (Figures 1 and 2). A list of all variables and their symbols can be 

found in Table S1 in the supplementary material. We consider that the total pore volume, Vp, comprises the sum 100 

of a constant textural pore volume, Vtext, defined as the minimum value of the pore volume found in a purely 

mineral soil matrix without SOM (e.g. Fies and Stengel, 1981; Yoon and Gimenéz, 2012) and a dynamic structural 

pore volume comprising both macropores, Vmac, and an aggregation pore volume, Vagg, generated as a consequence 

of the microbial turnover of OM  The biological processes underlying the generation of aggregation pore space 

(Dignac et al., 2017), would be difficult to model individually in a mechanistic way, so we make no attempt to do 105 

so in our model. Instead, in our model approach, which is based on the dynamics of soil pore space, “aggregation” 

is simply defined as the additional pore space in soil associated with the presence of organic matter. Based on 

empirical knowledge, we assume a linear relationship between this aggregation pore volume, Vagg, and the volume 

of soil organic matter (e.g. Emerson and McGarry, 2003; Boivin et al., 2009; Johannes et al., 2017). Thus, 

individual soil “aggregates” are not considered as explicit entities in this model. In addition to classifying the soil 110 

pore space in terms of its origin, the model also considers three pore size classes (Figures 1 and 2). In addition to 

macropores the soil matrix porosity is partitioned into mesopores and micropores. 

The model currently neglects storage of SOM in macropores because we expect that SOM per se would have little 

direct influence on the properties of soil macropore networks (e.g. Larsbo et al., 2016; Jarvis et al., 2017), but also 

because it would most likely be a minor component of the long-term SOM balance. The pore size distribution in 115 

the soil matrix influences SOM storage and turnover in the model in two ways: firstly, the mineralization rate of 

SOM in microporous regions is reduced due to physical protection. Secondly, the partitioning of OM inputs 

derived from plant roots between the two pore classes is determined by their relative volumes, in an attempt to 

mimic in a simple way how changes in soil structure affect the spatial distribution of root proliferation in soil. 

SOM is transferred between the two pore size classes using a simple mixing concept to reflect the homogenizing 120 

effects of soil tillage and faunal bioturbation. In this sense, the model has some conceptual similarities to the dual-

pore region models that are commonly used to quantify the effects of soil structure on water flow and solute 

transport (e.g. Larsbo et al., 2005).  

2.2 Soil organic matter storage and turnover  

Four pools of organic matter (kg OM m-2) are considered in the model, comprising two types (qualities) of organic 125 

matter stored in the two pore regions of the soil matrix (Figures 1 to 3): the model tracks two pools of young 
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undecomposed organic matter, one stored in parts of the soil in contact with well-aerated mesopore networks and 

the other stored in microporous soil regions (MY(mes) and MY(mic) respectively). Likewise, the model accounts for 

two pools of older microbially-processed organic matter, stored in the mesoporous and microporous regions of 

soil respectively (MO(mes) and MO(mic)). Both types of organic matter are transferred between the two pore regions 130 

by bio-physical mixing processes, such as tillage and bioturbation. The SOM fluxes and rates of change of storage 

in the four pools of organic matter in the model are given by a modified version of the ICBM model (Andrén and 

Kätterer, 1997; Wutzler and Reichstein, 2013) extended to account for organic matter storage in two pore regions: 

 

𝑑𝑀𝑌(𝑚𝑒𝑠)

𝑑𝑡
= 𝐼𝑚 + (

𝜙𝑚𝑒𝑠

𝜙𝑚𝑒𝑠+𝜙𝑚𝑖𝑐
) 𝐼𝑟 − 𝑘𝑌𝑀𝑌(𝑚𝑒𝑠) + 𝑇𝑌        (1) 135 

𝑑𝑀𝑂(𝑚𝑒𝑠)

𝑑𝑡
= (𝜀 𝑘𝑌𝑀𝑌(𝑚𝑒𝑠)) − ((1 − 𝜀) 𝑘𝑂𝑀𝑂(𝑚𝑒𝑠)) + 𝑇𝑂        (2) 

𝑑𝑀𝑌(𝑚𝑖𝑐)

𝑑𝑡
= (

𝜙𝑚𝑖𝑐

𝜙𝑚𝑒𝑠+𝜙𝑚𝑖𝑐
) 𝐼𝑟 − 𝑘𝑌𝐹𝑝𝑟𝑜𝑡𝑀𝑌(𝑚𝑖𝑐) − 𝑇𝑌        (3) 

𝑑𝑀𝑂(𝑚𝑖𝑐)

𝑑𝑡
= (𝜀 𝑘𝑌𝐹𝑝𝑟𝑜𝑡𝑀𝑌(𝑚𝑖𝑐)) − ((1 − 𝜀) 𝑘𝑂𝐹𝑝𝑟𝑜𝑡𝑀𝑂(𝑚𝑖𝑐)) − 𝑇𝑂         (4) 

where mic and mes are micro- and mesoporosity (m3 m-3), kY and kO are the first-order rate constants for the 

decomposition of fresh and microbially-processed organic matter (year-1), Fprot is a response factor (-) varying 140 

from zero to unity that reduces decomposition in the micropore region to reflect a degree of physical protection,  

is an OM retention coefficient varying from zero to unity (-),and Ir and Im are the below-ground (root residues and 

exudates) and above-ground (litter and organic amendments e.g. manure) inputs of organic matter (kg m-2 year-1). 

It can be seen from equations 1 and 3 that the model assumes that root-derived organic matter is added to the 

microporous and mesoporous regions in proportion to their volumes, while above-ground litter and organic 145 

amendments are added solely to the mesopore region. Finally, TY and TO are source-sink terms (kg m-2 year-1) for 

the exchange of organic matter (e.g. by tillage or earthworm bioturbation) between the two pore classes given by: 

TY = 𝑘𝑚𝑖𝑥 (
𝑀𝑌(𝑚𝑖𝑐)−𝑀𝑌(𝑚𝑒𝑠)

2
)  (5) 

TO = 𝑘𝑚𝑖𝑥 (
𝑀𝑂(𝑚𝑖𝑐)−𝑀𝑂(𝑚𝑒𝑠)

2
)  (6) 

where kmix is a rate coefficient (year-1) determining how much of the stored organic matter is mixed annually, 150 

varying between zero (no mixing) and unity (complete mixing on an annual time scale). It should be apparent from 

equations 1 – 6 that the effects of soil structure on SOM turnover become weaker as kmix and/or Fprot tend to unity. 

2.3 Soil physical properties  

The model of SOM turnover and storage described by equations 1 to 6 above considers how the soil pore space 

influences SOM dynamics. We now derive a simple model of the feedback effects of SOM on porosity and pore 155 

size distribution. Our starting point is the fundamental phase relation for the total soil volume, Vt (m3): 

𝑉𝑡 = 𝑉𝑠 + 𝑉𝑝 = 𝑉𝑠(𝑜) + 𝑉𝑠(𝑚) + 𝑉𝑝 = {𝐴𝑥𝑠 (
𝑀𝑠(𝑜)

𝛾𝑜
+

𝑀𝑠(𝑚)

𝛾𝑚
) + 𝑉𝑝} (7)     
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where Vs, Vs(o), Vs(m) and Vp are the volumes (m3) of solids, organic matter, mineral matter and pore space, o and 

m are the densities (kg m-3) of organic and mineral matter, Axs is a nominal cross-sectional area in the soil (= 1 m2), 

Ms(m) is the mass of mineral matter (kg m-2) and Ms(o) is the total mass of organic matter (kg OM m-2) given by:  160 

𝑀𝑠(𝑜) = 𝑀𝑌(𝑚𝑒𝑠) + 𝑀𝑂(𝑚𝑒𝑠)+ 𝑀𝑌(𝑚𝑖𝑐) + 𝑀𝑂(𝑚𝑖𝑐) (8) 

The mineral mass, Ms(m), in equation 7 is assumed constant and is obtained from user-defined values of a minimum 

matrix porosity, min (m3 m-3), and thickness of the soil layer, zmin (m), corresponding to the theoretical minimum 

soil volume, Vt(min) (m3) attained when Ms(o) = 0: 

𝑀𝑠(𝑚) = Δ𝑧𝑚𝑖𝑛𝛾𝑚(1 − 𝜙𝑚𝑖𝑛) (9) 165 

𝑉𝑡(𝑚𝑖𝑛) = 𝐴𝑥𝑠 Δ𝑧𝑚𝑖𝑛 (10) 

The volume of organic matter, Vs(o), and thus the total soil volume Vt, in equation 7 naturally changes as the stored 

mass of soil organic matter, Ms(o), changes. The total soil volume is also affected by changes in the dynamic soil 

pore volume, which comprises macropores, Vmac, as well as aggregation pore space, Vagg, induced by microbial 

activity, whereas the textural pore volume linked to soil mineral matter, Vtext, (see Figure 2) remains constant. For 170 

the sake of simplicity, we assume here that the soil macroporosity is also constant, such that Vmac is maintained 

proportional to the total soil volume. With these assumptions, the total pore volume, Vp, is given by: 

𝑉𝑝 = 𝑉𝑎𝑔𝑔 + 𝑉𝑡𝑒𝑥𝑡 + 𝑉𝑚𝑎𝑐 = 𝐴𝑥𝑠 {𝑓𝑎𝑔𝑔 (
𝑀𝑠(𝑜)

𝛾𝑜
) + Δ𝑧𝑚𝑖𝑛𝜙𝑚𝑖𝑛 + Δ𝑧 𝜙𝑚𝑎𝑐}     (11) 

where fagg is an aggregation factor (m3 pore space m-3 organic matter) defined as the slope of the linear relationship 

assumed between the volume of aggregation pore space, Vagg, and the volume of organic matter, Vs(o), mac is the 175 

macroporosity (m3 m-3), z is the layer thickness (m). The constant volume of textural pores, Vtext (m3), is obtained 

by combining equations 7, 9 and 10 with Ms(o) = 0.  

Temporal variations in Vs(o) and Vp induce changes in the total soil volume (and therefore the soil layer thickness), 

porosity and bulk density. Combining equations 7, 9 and 11, gives the soil layer thickness as:  

Δ𝑧 =
𝑉𝑡

𝐴𝑥𝑠
=

{(1+𝑓𝑎𝑔𝑔)(
𝑀𝑠(𝑜) 

𝛾𝑜
)}+Δ𝑧𝑚𝑖𝑛

1−𝜙𝑚𝑎𝑐
 (12) 180 

and the matrix porosity, mat (m3 m-3), total porosity,  (m3 m-3), and soil bulk density, b (kg m-3), as: 

𝜙𝑚𝑎𝑡 =
𝑉𝑎𝑔𝑔+𝑉𝑡𝑒𝑥𝑡

𝑉𝑡
=

{𝑓𝑎𝑔𝑔(
𝑀𝑠(𝑜)

𝛾𝑜
)}+{Δ𝑧𝑚𝑖𝑛𝜙𝑚𝑖𝑛}

Δ𝑧
 (13) 

𝜙 =
𝑉𝑎𝑔𝑔+𝑉𝑡𝑒𝑥𝑡+𝑉𝑚𝑎𝑐

𝑉𝑡
= 𝜙𝑚𝑎𝑡 + 𝜙𝑚𝑎𝑐  (14) 

𝛾𝑏 =
𝑀𝑠(𝑜)+𝑀𝑠(𝑚)

𝑉𝑡
=

𝑀𝑠(𝑜)+(Δ𝑧𝑚𝑖𝑛𝛾𝑚(1−𝜙𝑚𝑖𝑛))

Δ𝑧
 (15) 

It is also helpful to derive expressions for porosity and bulk density as functions of the soil organic matter 185 

concentration, fsom (kg kg-1), rather than of Ms(o), since fsom is more often measured in the field. By definition: 
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𝑓𝑠𝑜𝑚 =
𝑀𝑠(𝑜)

𝑀𝑠(𝑜)+𝑀𝑠(𝑚)
 (16) 

Combining equations 9 and 16 gives: 

𝑀𝑠(𝑜) =
𝑓𝑠𝑜𝑚 Δ𝑧𝑚𝑖𝑛  𝛾𝑚 (1−𝜙𝑚𝑖𝑛)

1−𝑓𝑠𝑜𝑚
 (17) 

Substituting equation 17 into equations 13 – 15 and simplifying leads to expressions for the matrix porosity and 190 

the soil bulk density: 

𝜙𝑚𝑎𝑡 =
[{(

𝑓𝑠𝑜𝑚
𝛾𝑜

) 𝑓𝑎𝑔𝑔+(
𝜙𝑚𝑖𝑛(1−𝑓𝑠𝑜𝑚)

𝛾𝑚(1−𝜙𝑚𝑖𝑛)
)}(1−𝜙𝑚𝑎𝑐)]

{(
𝑓𝑠𝑜𝑚

𝛾𝑜
)(1+𝑓𝑎𝑔𝑔)}+(

1−𝑓𝑠𝑜𝑚
 𝛾𝑚(1−𝜙𝑚𝑖𝑛)

)
 (18) 

𝛾𝑏 =
1−𝜙𝑚𝑎𝑐

{(
𝑓𝑠𝑜𝑚

𝛾𝑜
)(1+𝑓𝑎𝑔𝑔)}+(

1−𝑓𝑠𝑜𝑚
 𝛾𝑚(1−𝜙𝑚𝑖𝑛)

)
 (19) 

In the absence of other governing processes, equations 14, 18 and 19 enable the identification of upper and lower 

limits of porosity and bulk density that occur at limit SOM concentrations of zero (i.e. a purely mineral soil) and 195 

unity (i.e. organic soils). Setting fsom to zero defines the maximum and minimum values of bulk density and porosity 

respectively as: 

𝛾𝑏(𝑓𝑠𝑜𝑚=0) = 𝛾𝑚(1 − 𝜙𝑚𝑖𝑛)(1 − 𝜙𝑚𝑎𝑐) (20) 

𝜙(𝑓𝑠𝑜𝑚=0) = 𝜙𝑚𝑖𝑛 + 𝜙𝑚𝑎𝑐  (1 − 𝜙𝑚𝑖𝑛) (21) 

Conversely, bulk density and porosity attain minimum and maximum values respectively in an organic soil when 200 

𝑓𝑠𝑜𝑚 = 1 kg kg-1, such that: 

𝛾𝑏(𝑓𝑠𝑜𝑚=1) =
𝛾𝑜(1−𝜙𝑚𝑎𝑐)

1+𝑓𝑎𝑔𝑔
 (22) 

𝜙(𝑓𝑠𝑜𝑚=1) = (
𝑓𝑎𝑔𝑔

1+𝑓𝑎𝑔𝑔
) (1 − 𝜙𝑚𝑎𝑐) + 𝜙𝑚𝑎𝑐  (23) 

Finally, the matrix porosity, mat, is partitioned between micro- and mesoporosity: 

𝜙𝑚𝑖𝑐 =
𝑉𝑎𝑔𝑔(𝑚𝑖𝑐)+𝑉𝑡𝑒𝑥𝑡(𝑚𝑖𝑐)

𝑉𝑡
=

{𝑓𝑎𝑔𝑔 (
(𝑀𝑌(𝑚𝑖𝑐)+𝑀𝑂(𝑚𝑖𝑐))

𝛾𝑜
)}+{𝐹𝑡𝑒𝑥𝑡(𝑚𝑖𝑐)Δ𝑧𝑚𝑖𝑛𝜙𝑚𝑖𝑛}

Δ𝑧
      (24) 205 

𝜙𝑚𝑒𝑠 = 𝜙𝑚𝑎𝑡 − 𝜙𝑚𝑖𝑐  (25) 

where Vagg(mic) and Vtext(mic) are the volumes (m3) of aggregation and textural micropores respectively (see Figure 

2) and Ftext(mic) represents the proportion (-) of the textural pore space that comprises micropores. It should be 

feasible to estimate Ftext(mic) from data on soil texture, since pore and particle size distributions are similar in the 

absence of structural pores (e.g. Arya et al., 1999; Yoon and Gimenéz, 2012; Arya and Heitman, 2015). 210 

The model described by equation 19 was first derived by Stewart et al. (1970), albeit in a simpler form in which 

macroporosity is neglected and o and fagg are lumped into one parameter, the bulk density of a purely organic soil 

given by equation 22 with mac=0. This simple model has been shown to accurately represent the observed 
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relationships between organic matter concentration and bulk density in forest soils in Wales (Stewart et al., 1970; 

Adams, 1973) and north-eastern U.S.A (Federer et al., 1993) and agricultural soils in Australia (Tranter et al., 215 

2007). More recently, this function has been incorporated into the Jena model (Ahrens et al., 2015; Yu et al., 2020). 

The validity of the extended model approach presented here, which explicitly incorporates macroporosity and soil 

aggregation is confirmed by Figure 4, which shows that equation 19 gives reasonably good fits to measurements 

of bulk density and organic matter concentration made at three agricultural field sites in Sweden, including the 

Ultuna frame trial.  220 

Figure 5 shows the relationship between bulk density and organic matter concentration predicted by equation 19 

for values of fagg lying between zero and four. A comparison of the curves for values of fagg similar to those obtained 

in the model fitting to the data (ca. 2-4, see Figure 4) with that for fagg = 0 (i.e. when no additional pore space is 

generated due to the presence of organic matter) demonstrates that aggregation dominates the effects of organic 

matter on soil bulk density, while the different densities of organic and mineral matter (o and m) only have a 225 

minor effect. It should be noted that the composition of OM sources may affect the extent of soil aggregation 

generated by microbial activity (e.g. Bucka et al., 2019). In this respect, each of the four OM pools could have 

been characterized by a different value of the aggregation factor. However, we have assumed here that the two 

qualities of organic matter modify the pore space to the same extent in both the micropore and mesopore regions, 

so that only a single aggregation factor, fagg, is required in the model. As we will see later, this is because 230 

unequivocal parameterization of a more detailed model would be difficult to achieve, given the amount and kinds 

of data normally available from field experiments. Alternatively, a model of intermediate complexity can be 

envisaged in which fagg would take different values in micropore and mesopore regions. Such a model would only 

introduce one additional parameter compared with the simplest case assumed here, but even this modest increase 

in complexity could cause difficulties with parameter identifiability. 235 

2.4 Soil hydraulic properties 

Equations 13, 24 and 25 describe a partitioning of the matrix pore space into two size classes as a dynamic function 

of soil organic matter storage. This partitioning can also be used to estimate continuous model functions for soil 

hydraulic properties (water retention, hydraulic conductivity) to enable a straightforward coupling to hydrological 

models based on Richards’ equation. Most commonly used models of soil water retention employ two shape 240 

parameters to characterize the pore size distribution. Thus, one requirement of this approach is that one of these 

two parameters must be assumed to remain constant. We illustrate this approach taking the widely used van 

Genuchten (1980) equation as an example. If residual water is negligible, the water content  (m3 m-3) is given by: 

𝜃 = 𝜙𝑚𝑎𝑡(1 + |𝛼 𝜓|𝑛)
1

𝑛
−1

 (26) 

where  (cm) is the soil water pressure head and  (cm-1) and n (-) are shape parameters that reflect the pore size 245 

distribution. We assume that n can be held constant, since it is known to be strongly determined by soil texture 

(e.g. Wösten et al., 2001; Vereecken et al., 2010), while  is allowed to vary, as it is more influenced by the nature 

of the structural pore space in soil (Assouline and Or, 2013). In this case,  (cm-1) is given by: 

𝛼 =

[(
𝜙𝑚𝑖𝑐
𝜙𝑚𝑎𝑡

)
−

𝑛
𝑛−1

−1]

1/𝑛

|𝜓𝑚𝑖𝑐/𝑚𝑒𝑠|
 (27) 
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where mic/mes is a fixed user-defined pressure head (cm) defining the size of the largest micropore in soil. This 250 

model only considers the two pore size classes comprising matrix porosity. However, it is possible to extend this 

model to account for macropores by making use of dual-porosity concepts (Durner, 1994; Larsbo et al., 2005). 

3 Application of the model 

3.1 Sensitivity analysis 

We performed a Monte Carlo sensitivity analysis to better understand the behaviour of this new model. We ran 255 

500 simulations with parameter values obtained by Latin hypercube sampling from uniform distributions. The 

simulations were run for 2000 years to make the outputs independent of the assumed initial conditions. Organic 

matter was added solely from below-ground residues at a rate (0.02 g cm-2 year-1) that gave a final organic matter 

concentration of 0.03 kg kg-1 for the mean simulation. The sensitivity of the model parameters was quantified by 

Spearman rank partial correlation coefficients for three target output variables: the final values of bulk density, γb, 260 

soil organic matter concentration, fsom, and the micropore fraction of the matrix porosity, fmic (=mic/mat), as a 

measure to characterize the soil pore size distribution (see equation 27). Parameter ranges of Fprot and Ftext(mic) (0.05 

< Fprot < 0.2; 0.5 < Ftext(mic) < 0.9; see Table 1) were selected to represent a well-structured loamy to fine-textured 

soil, assuming a maximum pore size of the micropores of 5 µm (i.e. mic/mes = -600 cm). Our analysis focuses on 

matrix pore space properties and SOM, so the macroporosity was fixed at a constant value in these simulations. 265 

The sampled ranges for the remaining model parameters shown in Table 1 were selected to approximately match 

their expected variations based on previous modelling experience. 

The partial rank correlation coefficients are shown in Table 1. Not surprisingly, the organic matter concentration 

fsom was most affected by parameters regulating SOM turnover, especially the OM retention coefficient, ε, and the 

first-order rate coefficient for the microbially-processed OM pool, ko. As expected, the physical protection factor, 270 

Fprot, was also highly significantly (and negatively) correlated with fsom. Parameters controlling organic matter 

turnover also strongly affected the simulated bulk density, γb, along with soil physical parameters, especially the 

aggregation factor, fagg, and the minimum (i.e. textural) porosity, min. The pore size distribution, as expressed by 

the fraction of micropores, fmic, was most sensitive to changes in the micropore fraction of the textural pore space, 

Ftext(mic) (Table 1). This is encouraging because it is well known that soil texture exerts the most important control 275 

on the pore size distribution in soil. The fraction of micropores was also highly significantly (and negatively) 

correlated with the mixing coefficient, kmix, presumably because this mixing transferred root-derived OM from 

micropores to mesopores. This is also the reason why the bulk density, γb, and fsom are also strongly correlated with 

kmix (Table 1), given that OM decomposition rates differ between the pore regions. 

3.2 Parameter identifiability 280 

The fact that model parameters are sensitive does not imply that they will be identifiable in a calibration procedure, 

since their effects on the target outputs may be correlated (e.g. Luo et al., 2017). We therefore investigated the 

identifiability of the model parameters using synthetic data generated by 50-year forward simulations of the model 

for two scenarios with different OM inputs: a bare fallow scenario with no OM inputs and a scenario with a 

constant OM input of 0.06 g cm-2 year-1. As initial conditions, the organic matter pools were set to values in 285 

equilibrium with a constant OM input of 0.02 g cm-2 year-1 giving an initial fsom of 0.03 kg kg-1. Simulated bulk 

density, γb, soil organic matter concentration, fsom, and the soil microporosity, mic, were used as target output 
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variables in the calibration. The SOM concentration was assumed to have been sampled every 5th year, while data 

for bulk density and microporosity were assumed to be available only at the start of the experiment and on two 

subsequent occasions (after 20 and 50 years). Errors were added to the model simulated values for all three target 290 

output variables to represent measurement and sampling uncertainties due to spatial variability. We calculated 

these errors assuming 10 replicates per sampling occasion and normally distributed errors with a coefficient of 

variation of 10 %. The parameter values used to generate the synthetic data are listed in Table 2. 

The model was calibrated against the synthetic data using the Powell conjugate gradient method (Powell, 2009) 

within given parameter ranges defined by minimum and maximum values (Table 2) and using the sum of squared 295 

errors as the goal function. The analysis was repeated 100 times for different initial starting values for the 

parameters in order to assess the uniqueness of the optimized parameter estimates. Two relatively insensitive 

parameters, 𝛾𝑜 and 𝛾𝑚 (Table 1), were assumed to be known and fixed at their true values (Table 2). Two further 

parameters were excluded from the calibration, namely the aggregation factor, fagg, and minimum porosity, min. 

Instead, they were fixed a priori by non-linear least squares regression on the synthetic data generated for bulk 300 

density and fsom using equation 19 (with mac = 0) and known values of 𝛾𝑜 and 𝛾𝑚 (Table 2). Optimized parameter 

sets with goal function values less than 10 % larger than the global optimum (n = 36) were considered acceptable 

(Beven, 2006). Figure 6 shows that the best simulation with the calibrated model closely matched the synthetic 

data for bulk density, SOM and microporosity. Nevertheless, only three of the six parameters (ε, ko and Ftext(mic)) 

were identifiable, with values for the 36 best parameter sets limited to narrow ranges around the true values (Figure 305 

7). This was not the case for the three remaining parameters: optimized values of kmix and ky covered almost the 

whole tested range, while optimized Fprot values were restricted to roughly half of the sampled range (Figure 7). 

As can be seen in Table 3, the mixing coefficient kmix correlated strongly with ky, ko, Fprot, and Ftext(mic), but not with 

ε. The strongest correlations were found between the rate constants ky and ko (r = 0.95) and ko and Fprot (r = -0.91). 

A strong correlation was also found between ε and ky, ko and Fprot. 310 

3.3 Model evaluation with data from a long-term field trial 

3.3.1 Field measurements at the Ultuna frame trial  

The model was tested against data from the Ultuna long-term soil organic matter experiment at Uppsala, Sweden 

(59.82°N, 17.65°E) (Kirchmann et al., 1994; Witter, 1996; Herrmann and Witter, 2008; Kätterer et al., 2011). The 

climate is cold temperate and sub-humid with an annual mean air temperature of 6.3 °C and a mean annual 315 

precipitation of 554 mm (1981-2014). The experiment was started in 1956 at the Swedish University of 

Agricultural Sciences in order to investigate the long-term effects of mineral N fertilizers and different organic 

amendments on crop yields, soil organic matter concentrations and soil physical properties. The soil texture in the 

uppermost 20 cm is clay loam (37 % clay, 41 % silt and 22 % sand).  

Of the 15 treatments included in the experiment, three were chosen for model testing: a bare soil treatment (bare 320 

fallow) that has received neither mineral N fertilizer nor any organic amendments since the beginning of the 

experiment and two other treatments receiving no mineral N fertilizer but 4 t ha-1 C as organic amendments every 

second year in the form of green manure and animal manure, respectively. All three treatments receive P and K 

fertilizer (20 and 38 kg ha-1 yr-1) and are annually dug by hand, with the organic amendments mixed into the soil 

to a depth of 20 cm. The organic amendments were added irregularly at the beginning of the experiment i.e. in 325 
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1956, 1960 and 1963, but have since been supplied every second year. Maize has been grown exclusively on all 

the cropped plots since 2000. Before 2000, the crop rotation included a sequence of barley, oats, beets (excluded 

after 1966) and occasionally rape. Samples for the measurement of SOC were taken after harvest of the crops 

every second year. The three selected treatments show contrasting temporal trends in SOC during the 63 years of 

the experiment. While SOC concentrations have decreased steadily in the bare fallow treatment, they are still 330 

increasing in the plots fertilized with animal manure. Addition of green manure led to a slight increase in SOC 

concentrations during the first 10-15 years of the experiment, followed by a period of approximately steady-state 

conditions and then a slight decline in SOC concentrations on the most recent sampling occasions. Soil bulk density 

was measured occasionally, i.e. in 1956, 1975 and 1991 (Kirchmann et al., 1994), 1993 (Gerzabek et al., 1997), 

1997 (Kirchmann and Gerzabek, 1999), 2009 (Kätterer et al., 2011) and in 2019 (this study). Kätterer et al. (2011) 335 

also reported measurements of relative surface elevation in 2009, which we utilize as additional validation data. 

Of the three treatments, the bare fallow plots show the largest bulk densities and the animal manure treatments the 

smallest. Information on the soil pore size distribution was provided by water retention curves measured on 

samples taken in the uppermost 10 cm of soil on three different sampling occasions. As soil water retention was 

not measured at the start of the experiment, we made use of measurements made in 1969 (13 years later) on samples 340 

taken from just outside the experimental plots (Wiklert et al., 1983) to initialize the model. Soil water retention 

was also measured on four replicate undisturbed core samples taken from the three treatments in 1997, 41 years 

after the start of the experiment (Kirchmann and Gerzabek, 1999) and on eight replicate samples taken in 2019, 

although on this occasion only from the animal manure and bare fallow treatments. 

3.3.2 Parameterization and calibration 345 

The model was simultaneously calibrated against data from the bare fallow and animal manure treatments using 

the measurements of average soil bulk density and SOC concentrations in the uppermost 20 cm of soil, as well as 

the microporosity estimated from soil water retention curves, assuming a value for the maximum pore diameter of 

micropores of 5 m (equivalent to a pressure head mic/mes of -600 cm). A factor of 0.5 (Pribyl, 2010) was used to 

convert simulated SOM to measured SOC concentrations. We simulated a soil profile consisting of five soil layers, 350 

each initially 4.5 cm in thickness. The model equations were solved explicitly by Euler integration at an annual 

time step. A spin-up phase of 5000 years with constant root-derived OM input was included to initialize the four 

SOM pools at a steady-state condition. During the 63-year experimental period, annual average OM inputs from 

roots and above-ground crop residues were used in the model. Following Kätterer et al. (2011), these were 

calculated for each treatment from annual yield data and the crop-specific root allocation coefficients reported by 355 

Bolinder et al. (2007). The root-derived input of OM to the simulated soil profile was calculated from an assumed 

root distribution estimated with a Michaelis-Menten-type function (Kätterer et al., 2011) and distributed uniformly 

among the soil layers. The organic amendments (8 t OM ha-1 every other year in both the animal and green manure 

treatments) were assumed to be uniformly distributed within the 20 cm depth of soil hand dug by hand. This means 

that some of this added OM becomes incorporated into the subsoil below 20 cm (i.e. the depth of digging), if soil 360 

layer thicknesses increase (and bulk density decreases) due to an increase in SOM concentration (see equation 12).  

Based on the results of the sensitivity analysis and model calibration against the synthetic data, we decided to 

calibrate only four parameters, namely the ones that we expected to be clearly identifiable: the input of organic 

matter during the spin-up period, the fraction of micropores in the textural pore region Ftext(mic), the OM retention 
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coefficient ε, and the first-order rate coefficient for microbially-processed organic matter, ko (Table 4). Values for 365 

mac and fagg were estimated using equation 19 from non-linear regression between bulk densities and SOM 

concentrations assuming a value of min of 0.35 cm3 cm-3 (Nimmo, 2013) and including data from all three of the 

treatments (i.e. bare fallow, animal and green manure; Figure 4). Similarly, van Genuchten´s n was fixed to a value 

(= 1.073) obtained from a simultaneous fit of equation 26 to the water retention data measured in 2019 in the 

fallow and animal manure treatments. The remaining parameters were determined a priori, because they were less 370 

well identified in the calibration against the synthetic data. Given that the micropore region comprises pores 

smaller than 5 m in diameter, we set the physical protection factor Fprot to 0.1, a value which lies within the range 

observed in the experiments described by Kravchenko et al. (2015). Following Andrén and Kätterer (1997), we 

assumed ky = 0.8 year-1. Estimating the mixing coefficient kmix is problematic because it is highly sensitive for all 

target outputs (Table 1) but not identifiable by calibration (Figure 7). From preliminary simulations, we also 375 

concluded that kmix must be set to a much smaller value in the spin-up period than during the 63-year experimental 

period in order to avoid obtaining unrealistically large calibrated estimates of the OM input prior to the experiment. 

A smaller kmix value during the spin-up period presumably reflects the crop rotation practiced at the site prior to 

the experiment, which included frequent grass leys, so that the soil was tilled less often. For the sake of simplicity, 

we set kmix to zero during the spin-up period and to 0.05 year-1 during the experiment. This gave a calibrated value 380 

of the OM input during the spin-up period (0.0064 g cm-2 year-1; Table 4) that is similar to the root OM input 

estimated for the green manure and animal manure plots during the experiment (0.0061 and 0.0071 g cm-2 year-1 

respectively). 

The calibration method was the same as described earlier for the synthetic data set. The calibrated model was then 

applied to the green manure treatment by running a forward simulation using the calibrated parameter values and 385 

the treatment-specific OM inputs. Again, a spin-up period of 5000 years was run in order to bring the SOM pools 

and total organic matter concentration to an initial steady-state condition. The goodness-of-fit of the model 

simulations was evaluated by three criteria, i.e. the Pearson correlation coefficient r, the root mean squared error 

RMSE and the mean absolute error MAE (equations 28 to 30). While r is a measure of the strength of the 

relationship between the observations and simulations with a value of 1 showing a perfect positive linear 390 

relationship and a value of -1 showing a perfect negative linear relationship, RMSE and MAE measure the average 

magnitude of the error between observations and simulations. Both of them vary from zero to unity with smaller 

values representing a better agreement. However, for the RMSE the errors are squared before averaging, which 

gives comparatively greater weight to larger errors. 

  395 

𝑟 =  
𝑐𝑜𝑣(𝑦,�̂�)

𝜎𝑦𝜎�̂�
                                  (28) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑ 𝑒𝑖

2𝑛
𝑖=1                                         (29) 

𝑀𝐴𝐸 =  
1

𝑛
 ∑ |𝑒𝑖|

𝑛
𝑖=1                                                        (30) 

where 𝑦 and �̂� represent the observations and simulation results, respectively, cov is the covariance, 𝜎𝑦 ands 𝜎�̂� 

are the standard deviations of 𝑦 and �̂�, 𝑒 is the model error, i.e., 𝑦 − �̂�, and 𝑛 is the number of observations. The 400 
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analyses were carried out with R (version 3.5.1, R Core Team 2018) using the openxlsx (Walker, 2019) and plyr 

(Wickham, 2011) packages. 

Figure 8 and Table 5 show that the calibrated model accurately matched the trends observed in soil organic carbon 

in the bare fallow and animal manure treatments. The data suggests that the soil bulk density increased in the bare 

fallow treatment during the experiment, whereas it decreased in the animal manure treatment. These trends were 405 

also reasonably well described by the model (Figure 8, Table 5). As the soil organic carbon content was accurately 

simulated, the somewhat poorer match sometimes found between the model predictions of bulk density and the 

measurements reflects to a large extent the unexplained variation in the relationship between b and fsom (equation 

19). In this respect, it is likely that the macroporosity, and therefore bulk density, at the time of sampling in autumn 

may vary from year to year depending on the way the topsoil was dug and the soil conditions at the time of 410 

cultivation. Kätterer et al. (2011) found that the elevation of the soil surface in the plots treated with animal manure 

was 2.6 cm higher relative to the bare fallow plots in 2009. In comparison, the model predicted a difference in the 

elevation of the soil surface of 2.7 cm between the two treatments in the same year (2009). The optimized values 

of the four calibrated parameters (Table 4) are very well constrained and also appear reasonable. The calibrated 

value of Ftext(mic) (i.e. the fraction of textural pores smaller than 5 m) was 0.85 (Table 4). Calculations with the 415 

Arya and Heitman (2015) model based on particle size distribution data from the site (Kirchmann et al., 1994) 

give a predicted value for Ftext(mic) of 0.9, which is in excellent agreement with the estimate from model calibration. 

Figure 9 shows a comparison of the water retention curves measured in 1997 and 2019 and the corresponding 

model predictions using equations 26 and 27, alongside the measurements utilized as an initial condition in 1956. 

The model accurately matched the data in 2019 for both treatments (Figure 9). However, although the shapes of 420 

the water retention curves measured in 1997 were also successfully reproduced, the measured matrix porosity 

differed significantly between the treatments in 1997 and this difference could not be matched by the model (Figure 

9). It is unclear whether this discrepancy can be attributed solely to model error. Spatial variability in the field may 

also have played a significant role, since only four replicate core samples were taken in 1997. Regardless of the 

reason for the discrepancy, the results suggest that it should be a reasonable assumption to hold the parameter n in 425 

van Genuchten’s (1980) equation constant in dynamic models of soil matrix hydraulic properties. Figure 9 shows 

that whilst n is fixed, van Genuchten´s (1980) α increased in the manure treatment, reflecting an improvement in 

structure, and decreased in the bare fallow, indicating structural degradation. The soil microporosity apparently 

decreased during the experiment in both treatments, while the mesoporosity remained largely unchanged in the 

fallow plots and only increased slightly in the manured treatment (Figures 8 and 9). The model simulations suggest 430 

some possible explanations for these results, which are surprising at first sight: in the case of the bare fallow plots 

with no OM input, we might expect physical protection to lead to a slower decline in the organic matter stock in 

the micropore region compared with the mesopore region (and thus an increase in the proportion of micropores). 

However, the bare fallow soil was tilled every year. The simulation results (Figure 10) suggest that this leads to a 

homogenization of the OM distribution in soil, with a net transfer of OM from the micropore region to the 435 

mesopores at a rate that exceeds the difference in decomposition rates between the pore regions. In the case of the 

manured plots, the stock of OM in the micropore region decreases in the model as a result of the significant increase 

in tillage intensity at the onset of the experiment, despite the large increase in the OM input, as the manure is input 

solely to the mesopore region (Figure 10). Furthermore, a successively smaller proportion of the root OM is added 

to the micropores as the aggregation mesopore volume increases (equation 3). 440 
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3.3.3 Model testing using data from the green manure treatment 

The model predictions for the green manure treatment tended to underestimate bulk density, whilst clearly 

overestimating SOC concentrations (Figure 11). The model predicted a steady increase in SOC throughout the 

experiment, which was not observed in the field. As the animal and green manure treatments only differ slightly 

in the amount of C provided by roots and straw, the significant difference in SOC concentrations must be related 445 

to differences in the quality of the organic amendments. We therefore re-calibrated ε using the data from the green 

manure treatment, keeping all other parameters fixed at the values obtained from the calibration against the other 

two treatments. The resulting calibrated value for ε was 0.14, which significantly improved the fit of the model to 

the data for both SOC and bulk density (Figure 11, Table 5). The difference in the elevation of the soil surface 

between the green manure plots and the bare fallow plots measured by Kätterer et al. (2011) in 2009 (= 1.4 cm) 450 

was also accurately simulated by the model (= 1.6 cm). The smaller value of ε in the green manure treatment 

implies that less of the supplied OM is retained in the soil compared to the organic matter added to the soil as 

animal manure. This finding is supported by several previous studies that have analyzed data from this experiment 

with different approaches (e.g. Witter, 1996; Paustian et al., 1992; Hyvönen et al., 1996; Andrén and Kätterer, 

1997; Herrmann, 2003). Many studies have shown that the quantity and quality of organic amendments can 455 

strongly affect SOC turnover rates by altering the biomass, composition and activity of the soil microbial 

community (e.g. Blagodatskaya and Kuzyakov, 2008; Dignac et al., 2017). Herrmann et al. (2014) showed that, 

despite similar levels of microbial activity measured by heat dissipation, the soil from the green manure treatment 

had a significantly larger CO2 production for the same energy input than the soil from the plots receiving animal 

manure.  460 

4 Discussion and conclusions 

We presented a new model that describes for the first time the dynamic two-way interactions between SOM, soil 

pore space structure and soil physical properties. In this study, we tested the model against data taken from plots 

with contrasting OM inputs in a long-term field trial at Ultuna, Sweden. In a bare fallow treatment, the bulk density 

increased and soil profile thickness decreased as the SOC concentration decreased during the experiment, while 465 

the opposite trends were observed in plots amended with animal manure. Small changes were also detected during 

the experiment in the matrix pore size distribution (i.e. the shape of soil water retention curve). Our relatively 

simple model concept to couple organic matter storage and turnover with soil pore space structure was able to 

satisfactorily simulate these changes in SOC stocks and soil properties resulting from the contrasting OM inputs.  

A form of the simple two-pool ICBM model (Wutzler and Reichstein, 2013) is obtained if the interactions between 470 

organic matter and soil structure are removed from our model. Successful applications of the ICBM model to the 

data from the Ultuna frame trial have already been published by Juston et al. (2010) for data available until 2007 

and by Poeplau et al. (2015) for data until 2013. Although we do not show the results here, ICBM matches the 

SOC data until 2019 for the manure and bare fallow treatments almost as well as the model described here (RMSE 

values are slightly larger than those shown in Table 5), albeit with different parameter values: the retention 475 

efficiency  is similar (0.35 vs. 0.37) but ko is much smaller (0.015 vs. 0.036 year-1), since physical protection is 

not modelled explicitly. However, in principle, for the same parameterization, the predictions of our model must 

diverge from those of ICBM for treatments with contrasting organic matter input rates. This is because ICBM is 

strictly a first-order kinetic model, such that steady-state soil organic matter contents are linearly dependent on the 
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input. In contrast, in a similar way to earlier models based on concepts of carbon saturation (e.g. Hassink and 480 

Whitmore, 1997; Stewart et al., 2007), the extended model described and tested here, which explicitly incorporates 

two-way soil structure-SOM interactions, does not show such a linear response. This non-linearity of response of 

steady-state OM contents to OM inputs becomes stronger as the mixing between the pore regions becomes weaker.  

Even though it may be possible to satisfactorily calibrate a simple OM model such as ICBM to time-series of OM 

measurements at one particular site, a model that explicitly incorporates soil structure-OM feedbacks has some 485 

important advantages. For example, it potentially enables direct (“forward”) simulations of the effects of soil 

structure and physical protection on OM turnover in contrasting soil types (e.g. sand vs. clay), without having to 

resort to re-calibrating model parameters describing OM turnover for each soil, as was done, for example, by 

Poeplau et al. (2015). In our model, some of the key parameters controlling physical protection can, in principle, 

be determined “a priori” from measurements. Thus, ømin and fagg can be derived from paired data on soil organic 490 

matter contents and bulk density (equation 19), while Ftext(mic) can be calculated from particle size distributions 

(e.g. Arya and Heitman, 2015). In principle, our model also has a broader range of potential management 

applications. For example, it could be used to simulate the effects of contrasting tillage systems or faunal 

bioturbation on SOM dynamics and sequestration potential. 

The model currently neglects some processes that may be important in determining the long-term storage of 495 

organic carbon in soil under changing environmental conditions, such as the interactions of organic carbon with 

mineral phases in soil and the regulation of decomposition rates by both abiotic factors (i.e. soil temperature and 

moisture) as well as the biomass, community composition and activity of microbial populations (Dignac et al., 

2017). Moreover, organic matter inputs to the macropores either by root in-growth (Pankhurst et al., 2002) or the 

incorporation of surface litter by earthworms (e.g. Don et al., 2008) and its subsequent turnover are not considered 500 

in the model. Extending the model to account for these processes would be feasible, but it would require more 

comprehensive data to ensure effective and reliable results from model calibration. The model described here could 

also be further developed towards a more complete coupled model of soil structure dynamics and soil processes 

by accounting for the dynamic effects of other physical (e.g. tillage/traffic, swelling/shrinkage) and biological 

processes (e.g. root growth/decay and faunal activity) on soil pore space properties and OM turnover. It should 505 

also be worthwhile to incorporate our model approach into more comprehensive models of the soil-crop system 

that integrate descriptions of hydrological processes, carbon and nutrient cycling and crop growth. Such a next-

generation soil-crop modelling tool should prove useful in supporting a wide range of analyses related to the long-

term effects of land use and climate change on SOM dynamics, soil hydrological processes and crop production.  
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Table 1. Sampled parameter ranges and Spearman rank partial correlation coefficients (r) between parameters and 

target outputs. Values marked in bold show a significant correlation (p < 0.01). fsom = soil organic matter concentration, 

γb = bulk density, fmic = fraction of micropores. 

Parameter Sampled range 

Partial correlation coefficients, r 

fsom b fmic 

 

1st order rate coefficient, ky [year-1] 0.1 – 1.0 -0.54 0.37 -0.10 

1st order rate coefficient, ko [year-1] 0.01 – 0.05 -0.82 0.70 0.32 

Physical protection factor, Fprot [-] 0.05 – 0.20 -0.46 0.28 -0.08 

OM Retention coefficient, ε [-] 0.1 – 0.5 0.92 -0.82 -0.30 

Mixing coefficient, kmix [year-1] 0 – 0.2 -0.68 0.50 -0.60 

Fraction of textural micropores, Ftext(mic) [-] 0.5 – 0.9 0.24 -0.16 0.96 

Density of mineral matter, γm [g cm-3] 2.6 – 2.7 -0.09 0.37 0.01 

Density of organic matter, γo [g cm-3] 1.1 – 1.4 -0.03 0.33 -0.01 

Minimum porosity, min [cm3 cm-3] 0.3 – 0.4 0.162 -0.85 0.02 

Aggregation factor, fagg [-] 2 – 4 0.0 -0.50 0.02 

 

725 
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Table 2. Parameter values used to generate the synthetic data and the sampled range in the model calibration. 

Parameters 
Value used for data generation 

(true value) 

Sampled range during 

calibration 

1st order rate coefficient, ky [year-1] 0.40 0.1 – 1.0 

1st order rate coefficient, ko [year-1] 0.02 0.005 – 0.1 

Mixing coefficient, kmix [year-1] 0.05 0 – 0.3 

Microbial efficiency, ε [-] 0.3 0.1 – 0.6 

Physical protection factor, Fprot [-] 0.3 0.05 – 1.0 

Fraction of textural micropores, Ftext(mic) [-] 0.5 0.2 – 0.8 

Density of mineral matter, γm [g cm-3] 2.7  

Density of organic matter, γo [g cm-3] 1.2  

Minimum layer thickness, Δz(min) [cm] 16  

Minimum porosity, min [cm3 cm-3] 0.4a)/0.41b)  

Aggregation factor, fagg [-] 5.0a)/4.92b)  
a) used for data generation, b) estimated by regression (Figure 4) and fixed during calibration 
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Table 3. Correlation matrix for parameter estimates for the 36 best parameter sets of 100 calibration runs against 

synthetic data for soil bulk density, SOC and microporosity (Figure 6). Values highlighted in bold show a significant 730 
correlation (p < 0.01). 

 kmix ky ε ko Fprot Ftext(mic) 

kmix 1      

ky 0.50 1     

ε 0.27 0.69 1    

ko 0.59 0.95 0.81 1   

Fprot -0.74 -0.87 -0.49 -0.91 1  

Ftext(mic) 0.57 -0.28 -0.13 -0.17 0.06 1 
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Table 4. Fixed parameters and range of parameter values included in the calibration, as well as the final parameter 

estimates after calibration. The range of the best-fit parameter values for the calibration runs with goal function values 

no more than 5% larger than the value for the best simulation (n = 85) is given within parenthesis. 735 

Parameters Fixed value 
Sampled 

range 
Calibrated value 

1st order rate coefficient, ky [year-1] 0.80a)   

1st order rate coefficient, ko [year-1]  0.01 – 0.1 0.036 (0.031 – 0.039) 

Mixing coefficient, kmix [year-1] 0.05   

OM Retention coefficient, ε [-]  0.2 – 0.7 0.37 (0.35 – 0.39) 

Physical protection factor, Fprot [-] 0.1b)   

Fraction of textural micropores, Ftext(mic)  0.5 – 0.9 0.85 (0.84 – 0.87) 

Density of mineral matter, γm [g cm-3] 2.7   

Density of organic matter, γo [g cm-3] 1.2   

Minimum layer thickness, Δz(min) [cm] 4   

Minimum porosity, min [cm3 cm-3] 0.35c)   

Macroporosity, mac [cm3 cm-3] 0.152d)   

Aggregation factor, fagg [-] 2.46d)   

OM input spin-up [g cm-2 year-1]  0.005 – 0.009 0.0064 (0.0061 – 0.0066) 
a) Andrén and Kätterer (1997), b) Kravchenko et al. (2015), c) Nimmo (2013), d) Figure 4 
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Table 5. Goodness of fit of the model simulations to observed bulk density and soil organic carbon concentration. r = 

correlation coefficient. RMSE = root mean squared error. MAE = mean absolute error. 

 
Parameter 

r RMSE MAE 

C
al

ib
ra

ti
o

n
 

Fallow 

Bulk density [g cm-3] -0.20 0.05 0.04 

Soil organic carbon [kg kg-1] 0.95 0.0005 0.0004 

 Animal manure 

Bulk density [g cm-3] 0.99 0.04 0.04 

Soil organic carbon [kg kg-1] 0.89 0.0009 0.0007  

 V
al

id
at

io
n

 

 Green manure (ε = 0.37) 

Bulk density [g cm-3] 0.94 0.08 0.07 

Soil organic carbon [kg kg-1] 0.04 0.004 0.004 

 Green manure (ε = 0.14) 

Bulk density [g cm-3] 0.98 0.06 0.05 

Soil organic carbon [kg kg-1] 0.37 0.0008 0.0007 

 740 
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Figure 1. Schematic illustration of the conceptual model with the soil pore space comprising macropores (A), 

mesopores (thin lines, B) and micropores (C) and with two qualities of organic matter: particulate organic matter 

(POM e.g. decaying roots; green lines, D), and microbially-processed organic matter (blue circles, E), both of 745 
which are stored either in contact only with micropores (and therefore partially protected from decomposition) or 

in contact with mesopores. 
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Figure 2. Schematic illustration of pore volumes and pore classes in the model (for explanation of symbols see 750 
text). In this example, macroporosity has been neglected and the total pore space is comprised of 80 % textural 

pores and 20 % aggregation pores induced by soil organic matter, with a maximum micropore diameter of 10 µm.  



  

Figure 3. Schematic diagram of the structure of the organic matter model showing storages and flows. For 

explanations of symbols see the text in connection with equations (1) to (6).  



 

Figure 4. Equation 19 fitted to data from three Swedish field sites (Ultuna data taken from Kirchmann et al., 1994, 

Gerzabek et al., 1997, Kirchmann and Gerzabek, 1999 and Kätterer et al., 2011; Måtteby data taken from Larsbo 

et al., 2016, with the soil under grass; Offer data taken from Jarvis et al., 2017; ‘harrowed’ soil had been ploughed 

and harrowed (samples were taken at 2-6 cm depth), ‘ploughed’ soil was only ploughed (samples were taken at 

13-17 cm depth). Data used in this study is highlighted in red (fallow, animal manure and green manure). Soil 

organic matter content was estimated from soil organic carbon by multiplying by 2 (Pribyl, 2010). Equation 19 

was fitted by non-linear least-squares regression assuming ‘a priori’ that m = 2.7 g cm-3, o = 1.2 g cm-3 and ø𝑚𝑖𝑛  

= 0.35 cm3 cm-3.  
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Figure 5.   Plots of equation 19 for contrasting values of the aggregation factor, fagg, with m = 2.7 g cm-3, o = 1.2 

g cm-3 ø𝑚𝑎𝑐  = 0.1 cm3 cm-3 and ø𝑚𝑖𝑛  = 0.35 cm3 cm-3.  
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Figure 6. Synthetic data (symbols; bars show standard deviations) for microporosity, bulk density and soil organic 

matter concentration and model simulations (lines) after calibration.  
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Figure 7. Cumulative frequency distributions of parameter estimates for the 36 best parameter sets of 100 

calibration runs against synthetic data for soil bulk density, SOC and microporosity. The grey lines mark the true 

values used to generate the synthetic data. 
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Figure 8. Observed (symbols; bars show standard deviations) and simulated (lines) microporosity [cm3 cm-3], bulk 

density [g cm-3] and soil organic carbon concentration [kg kg-1] for the fallow and animal manure treatments.  



 

 

 

 
 

Figure 9. Observed (symbols; bars show standard deviations) and simulated (dashed and dotted lines) soil water 

retention curves in the fallow and animal manure treatments using equations 26 and 27. The left panel shows the 

measurements taken in 1997 and the right panel the measurements taken in 2019. The measurements used as the 

initial condition in 1956 are also shown, together with a fitted curve. Van Genuchten’s n was fixed at 1.073 for 

all water retention curves.   
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Figure 10. Simulated temporal development of young undecomposed (Y) and older microbially-processed (O) 

organic matter [kg m-2] stored in meso- and microporous regions in the bare fallow (left) and manure (right) 

treatment. 5 
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Figure 11. Observed (symbols; bars show standard deviations) and simulated (lines) microporosity [cm3 cm-3], 

bulk density [g cm-3] and soil organic carbon concentration [kg kg-1] for the green manure treatment for two 

different values of the OM retention coefficient, ε.  

 


