Responses to Reviewer 1

We thank the reviewer for the constructive comments and suggestions which will be very helpful as we
revise the manuscript. Below the complete reviewer comments are shown along with detailed responses
to each comment (reviewer comments in black, responses in blue font)

Review:

Dear Editor, I read with great interest this manuscript related to the application of an optimization procedure
combining satellite and BGC-Argo floats measurements with a biogeochemical model of the Gulf of
Mexico. The manuscript is well organized and provides important insight to improve model
parameterizations combining state-of the-art sensors data-streams. I found particularly important the results
showing the importance of combining chlorophyll and bbp measured by BGCArgo to optimize the model
in terms of POC and export. In my opinion it is also important the results that, to a large extent, the
optimization procedure carried out on the 1D model can be translated to the 3D model implementation.
Therefore, I suggest the publication of this manuscript after minor revisions reported below. My comments
are indented in blue.

Minor revisions
Response: We would like to thank the reviewer for the positive assessment and constructive comments.

1. Introduction
Pg2 line 45. because the number of parameters increases exponentially with the number of state variables
(Denman, 2003).

I would expect a polynomial [quadratic] not an exponential increase of the parameter number vs state
variable number. In fact, Denman (2003) provides a polynomial formula for the increase of fluxes vs state
variables and elaborates the estimate of increase of parameters basing on this formula.

Response: Thanks for noting this. We will revise as suggested.

Pg3 lines 68-70. This is especially problematic in oligotrophic regions where the maximum chlorophyll
concentration (referred as the deep chlorophyll maximum, DCM) is pronounced near the base of the
euphotic zone because of photo-acclimation (Cullen, 2015; Fennel and Boss, 2003).

Could Authors explain better what they mean? In general DCM can appear in mathematical terms even
without photo-acclimation (e.g. Varela et al. 1994, Ryabov and Blasius 2008). I suggest Authors to be more
specific on this point. Nonetheless, the effect of photo-acclimation mentioned here could produce an
enhancement of the DCM feature [already explainable by mechanisms other than photo-acclimation] and
could be particularly important for the specific area of the GoM.

References

Varela, R. A., A. Cruzado, and Joaquin Tintoré. "A simulation analysis of various biological and physical
factors influencing the deep-chlorophyll maximum structure in oligotrophic areas." Journal of Marine
Systems 5.2 (1994): 143-157.

Ryabov, Alexei B., and Bernd Blasius. "Population growth and persistence in a heterogeneous environment:
the role of diffusion and advection." Mathematical Modelling of Natural Phenomena3.3 (2008): 42-86.

Response: Here we are referring to the fact that in oligotrophic regions where the deep chlorophyll
maximum is pronounced and located relatively deep in the water column, satellite data of surface
chlorophyll are insufficient for characterizing the vertically inhomogenous chlorophyll structure.



Furthermore, in general in the ocean, DCMs are maxima in chlorophyll but not biomass. Typically, there
is no biomass maximum associated with the DCM, it is merely an artifact of photoacclimation acting on
the exponentially declining light field. This is especially obvious in oligotrophic regions. While it might be
true that a biomass maximum coincident with the DCM can be created in mathematical equations as the
reviewer suggests (e.g. this is true in an NPDZ model that does not account for photoacclimation), this does
not accurately reflect reality.

In our revised manuscript, we would like to make both of these points clearer.

2. Study Region

I would suggest Authors to add information about the recirculation times of the GoM waters with respect
to the Atlantic Ocean boundary conditions (BC), this would give an idea on the relevance of the BC in the
experiments.

Response: The recirculation times of the open Gulf is relatively long (certainly much longer than our
simulation), but we are not aware of a study that specifically looks at this question. We feel that a discussion
of recirculation times is well outside of the intended scope of our manuscript. Our treatment of the boundary
conditions is consistent with previous modeling studies with the same or a slightly modified version of the
same model (Xue et al. 2013, 2016, Yu et al. 2019), hence we are reasonably confident in our set-up.

Xue, Z., He, R., Fennel, K., Cai, W.-J., Lohrenz, S., Huang, W.-J., Tian, H., Ren, W., and Zang, Z.:
Modeling pCO, variability in the Gulf of Mexico, Biogeosciences, 13, 4359-4377. 2016.

Xue, Z., He, R., Fennel, K., Cai, W.-J., Lohrenz, S., and Hopkinson, C., Modeling ocean circulation and
biogeochemical variability in the Gulf of Mexico, Biogeosciences, 10, 7219-7234, doi:10.5194/bg-10-
7219-2013. 2013.

Yu, L., Fennel, K., Wang, B., Laurent, A., Thompson, K. R., and Shay, L. K.: Evaluation of nonidentical
versus identical twin approaches for observation impact assessments: an ensemble-Kalman-filter-based

ocean assimilation application for the Gulf of Mexico, Ocean Science, 15, 1801-1814,
https://doi.org/10.5194/0s-15-1801-2019, 2019

Moreover it would be interesting to know what are the observed dominant plankton species, or plankton
functional types, in the open-ocean part of GoM [pico-phytoplankton and flagellates?]. This could be useful
to figure out the implications of the choice of considering one phytoplankton in the model when compared
to data.

Response: We chose a one-phytoplankton model because it is simple and thus more likely that the model
parameters can be constrained by the limited observations available. If we were using a more complex
model, there would be more uncertain parameters making model optimization much more difficult. In
addition, this relatively simple model has been successfully used to study the biogeochemical variabilities
(Xue et al., 2013) and CO; air-sea fluxes (Xue et al., 2016) in the Gulf of Mexico. The same model has also
been used for a number of studies of hypoxia generation in the northern Gulf of Mexico (e.g. Fennel et al.
2011, Yu et al. 2015, Laurent et al. 2017, 2018, GrofB3e et al. 2019). While we agree with the reviewer that
analyses of model complexity are important and interesting, such a discussion is outside of the intended
scope of this manuscript. There are dedicated publications on this (e.g. Kuhn et al. 2019). We believe we
are making a novel contribution on a different important topic in this manuscript.

Fennel, K., Hetland, R., Feng, Y., and DiMarco, S.: A coupled physical-biological model of the Northern
Gulf of Mexico shelf: model description, validation and analysis of phytoplankton variability,
Biogeosciences, 8, 1881-1899, https://doi.org/10.5194/bg-8-1881-2011, 2011.



Grofle, F., Fennel, K., & Laurent, A.: Quantifying the relative importance of riverine and open-ocean
nitrogen sources for hypoxia formation in the northern Gulf of Mexico. Journal of Geophysical Research:
Oceans, 124. https://doi.org/10.1029/2019JC015230. 2019.

Kuhn, A. Fennel, K.: Evaluating ecosystem model complexity for the northwest North Atlantic through
surrogate-based optimization, Ocean Modelling, https://doi.org/10.1016/j.ocemod.2019.101437, 2019.

Laurent, A., K. Fennel, W.-J. Cai,W.-J. Huang, L. Barbero, and R. Wanninkhof: Eutrophication- induced
acidification of coastal waters in the northern Gulf of Mexico: Insights into origin and processes from a
coupled physical-biogeochemical model, Geophys. Res. Lett., 44, 946-956, doi:10.1002/2016GL071881.
2017.

Laurent, A., Fennel, K., Ko, D. S., & Lehrter, J.: Climate change projected to exacerbate impacts of coastal
eutrophication in the northern Gulf of Mexico. Journal of Geophysical Research: Oceans, 123, 3408—3426.
https://doi.org/10.1002/2017JC013583. 2018.

Xue, Z., He, R., Fennel, K., Cai, W.-J., Lohrenz, S., and Hopkinson, C.: Modeling ocean circulation and
biogeochemical wvariability in the Gulf of Mexico, Biogeosciences, 10, 7219-7234,
https://doi.org/10.5194/bg-10-7219-2013, 2013.

Xue, Z., He, R., Fennel, K., Cai, W.-J., Lohrenz, S., Huang, W.-J., Tian, H., Ren, W., and Zang, Z.:
Modeling pCO2 variability in the Gulf of Mexico, Biogeosciences, 13, 4359-4377,
https://doi.org/10.5194/bg-13-4359-2016, 2016.

Yu, L., Fennel, K., Laurent, A., Murrell, M. C., and Lehrter, J. C.: Numerical analysis of the primary
processes controlling oxygen dynamics on the Louisiana shelf, Biogeosciences, 12, 2063-2076,
https://doi.org/10.5194/bg-12-2063-2015, 2015.

3. Methods

3.1. Biological observations

Pg 5 lines21-22 SeaWiFS (Sea-viewing Wide Field-of-view Sensor), MODIS (Moderate resolution
Imaging Spectroradiometer), and MERIS (medium-spectral resolution imaging spectrometer) products.
What about VIIRS? Is it included in the database?, please check.

Response: We checked and confirmed that indeed VIIRS is included in the database. We will correct it in
our revised manuscript and thank the reviewer for pointing this out.

Pg 5 line 26 and particulate backscattering

Pg 5 lines 31-32 Satellite estimates were therefore corrected following the regression equation shown in
Figure S2a (Figure Slc).

Pg 6 lines 45-48 The bbp700 from the floats is weakly correlated with the satellite estimates (R?>=0.11) and
generally lower by a factor of ~0.45 than the satellite estimates (Figure S2b). The bbp700 profiles were
therefore multiplied by 2.2 before being converted to bbp470 following the equ. 1.

In one case Authors consider the BGC-Argo the ground truth (Pg 5 lines 31-32) in the other Authors correct
BGC-Argo with respect to satellite data (Pg 6 lines 45-48). The procedure seems a bit circular, could
Authors explain better this part?

Pg 6 line 44 extent



Response: Chlorophyll and backscatter, regardless of whether they are obtained by satellite or in-situ
sensors, are proxy measurements. That means they have to be converted and calibrated before they can be
used. Here the BGC-Argo floats provided measurements of chlorophyll fluorescence and the volume
scattering function at a centroid angle of 140° and a wavelength of 700nm (3(140°,700nm) m™ st™), i.e.
a measure of backscatter. The conversion from fluorescence into chlorophyll concentration was based on
the sensor manufacturer’s calibration. The conversion into bbp700 was performed by us following Green
et al. (2014) and by cross-calibration against existing relationships with POC and phytoplankton biomass
(Martinez-Vicente et al., 2013; Rasse et al., 2017). The resulting concentrations of phytoplankton biomass
and POC as well as the ratio of chlorophyll to phytoplankton biomass are reasonable (please see figures 4
and 10). We will include a more in-depth explanation of this process in our revised manuscript.

Green, R. E., Bower, A. S. and Lugo-Fernandez, A.: First Autonomous Bio-Optical Profiling Float in the
Gulf of Mexico Reveals Dynamic Biogeochemistry in Deep Waters, PLoS ONE, 9(7), 1-9,
doi:10.1371/journal.pone.0101658, 2014.

Martinez-Vicente, V., Dall’Olmo, G., Tarran, G., Boss, E. and Sathyendranath, S.: Optical backscattering
is correlated with phytoplankton carbon across the Atlantic Ocean, Geophysical Research Letters, 40,
1154-1158, doi:10.1002/grl.50252, 2013.

Rasse, R., Dall’Olmo, G., Graff, J., Westberry, T. K., van Dongen-Vogels, V. and Behrenfeld, M. J.:
Evaluating Optical Proxies of Particulate Organic Carbon across the Surface Atlantic Ocean, Frontiers in
Marine Science, 4(November), 1-18, doi:10.3389/fmars.2017.00367, 2017.

3.2. 3D Model description
Pg 7 lines 74-75 Medium-Range Weather Forecast ERA-Interim product with a horizontal resolution of
0.1250 (ECMWEF reanalysis, https://www.ecmwf.int/en/forecasts/datasets/reanalysisdatasets/era-interim).

The resolution reported in the link above for ERA-Interim is 80 km this does not match with the 0.125°
(~12 km) reported in the manuscript, could Authors double check?

Response: The resolution of ~80 km is the model grid resolution used by the ERA-Interim’s atmospheric
model and reanalysis system. However, they also provide their dataset for download in higher (e.g. 0.125°)
or coarser resolutions (e.g. 3°) which the original data are interpolated onto. We used the higher-resolution
data set as stated in the manuscript.

3.3. 1D Model description

Pg8 line 10-12. The 1D model, which is similar to that used by Lagman et al. (2014) and Kuhn et al. (2015),
covers the upper 200 m of the ocean with a vertical resolution of 5 m and is configured at one location in
the central Gulf (see Figure 1).

Authors should add some comment about the choice of 5 m vertical resolution. What is the 3D model
vertical resolution in the same region of the GoM? Why not taking 1 m resolution that probably is the vertical
resolution of data acquired by BGC-Argo floats?

Response: There are two main reasons why we chose 5 m. First, the vertical resolution in our BGC-Argo
floats is 4-6 meters in the upper 200 m. Second, a 5-m vertical resolution in the 1D model keeps the
computational cost reasonable. As stated in sections 3.4 and 3.5 of the manuscript, one parameter
optimization experiment ran 36,000 model simulations (30 simulations/generation * 300 generations*4
replications). It took us about one day to run a single parameter optimization experiment and we performed
13 1D optimization experiments in total (A1-A4, B1-B4, C1-C5). This is in addition to all the 3D model
runs we performed.



We are confident the vertical resolution is appropriate because we performed sensitivity tests using different
vertical resolutions including 10 m, 5 m, 3 m, and 1 m in optimization C4. As shown in Figures 1 and 2
below, the choice of vertical resolution has little impact on model results except for minor jumps in the
DCM depth (Figure 1e) and DCM magnitude (Figure 2) when a vertical resolution of 10 m is used.

The 3D model had 36 terrain-following sigma levels with refined resolution near the surface and bottom
layers. The vertical resolution in the 3D model varied from a few meters near the surface to ~50 m near the
depth of 200 m around the 1D site.

In our revised manuscript, we will add comments on the 1D model’s vertical resolution as suggested.
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Figure 1. The simulated annual cycle of surface chlorophyll (a), vertically integrated chlorophyll (b),
vertically integrated phytoplankton (c), vertically integrated POC(d), and the depth (e) and magnitude (f)
of the DCM by using different vertical resolutions.

| vRes=10m vRes=5m vRes=3m vRes=1m ‘
0 0 0
-20 - 1 -20 - 1 -20 ¢
-40 1 -40 - 1 -40 ¢
-60 1 -60 - 1 -60
- -80r = -80r = -80t
E E £
£ -100 + £ -100 ¢ £ -100 +
o o o3
(0] (0] 9]
o -120 © -120 © -120
-140 q -140 1 -140 +
-160 1 -160 | 1 -160
-180 1 -180 1 -180
(a) (b)
-200 ! -200 ! - ! -200 . ! :
0 0.5 1 0 0.1 02 03 04 0 20 40 60 80
Chl (mg m-3) Phy (mmol N m-3) POC (mg C m3)

Figure 2. The simulated vertical profiles of chlorophyll, phytoplankton, and POC by using different
vertical resolutions.



Pg9 line 13-15. A higher diffusion coefficient ( Kz =max(H*MLD /400,10))is applied in the turbulent
surface layer and a lower diffusion coefficient (Kz> =K 4/2) is assigned to the quiescent bottom layer.

What is the unit of measure of K1,2, please add this information in the text. If it is m2/s it seems very high,
because even with Hyip = 0 — Kz =10 — KZ2 =5. Please, add also unit of measure of Hyrp, meters?

Response: The units of Kz; and Kz, are m*/day. The unit of Hyrp is in meters. We will add the units as
suggested in our revised manuscript.

3.4. Parameter optimization method
Pg 11 line 63. and n is the number of base-test pairs including

I suggest to use consisting rather than including that in my opinion is confusing. In fact n accounts exactly
to what specified (i.e. base —test pairs etc etc ) and not more.

Response: We will revise it as suggested.

The range of variability of Wphy spans many orders of magnitude and it is the most sensitive parameter,
could Author comment on that?

Response: The range of sinking speeds for organic matter is large, because pico-plankton sink very slowly,
if at all, while large detrital aggregates can sink very fast. We used the same range for all sinking speed in
the optimization, as reported in Table 1 (for Wphy, WSdet, WLdet), although the speeds for Phy will be in
the lower range of the bracket, speeds for SDet in the middle range, and speeds for Ldet in the upper range.

3.5. Parameter optimization experiments

Pg 11 line 69-71. For the parameter optimization of the 1D model, satellite chlorophyll within a 3'3 pixel
(12 km"12 km area) around the 1D station and climatological monthly averages of the profiles from the
bio-optical floats were used.

Did you considered all the BGC-Argo data available or only the ones near the virtual mooring of your 1D
experiment? How you decided the BGC-Argo float to include in the optimization procedure?

Response: We used all BGC-Argo data by averaging all profiles into climatological monthly bins. We did
this because 1) the BGC-Argo profiles were sparsely distributed in the Gulf of Mexico and there were few
profiles around the 1D site, and 2) the deep Gulf of Mexico is quite homogenous horizontally.

In the revised manuscript, we will state this more clearly.

Pg 11 line 81-84. Prior tests have shown that the available observations cannot simultaneously constrain
the sinking rates of small and large detritus (wSDet and wLDet)Therefore, a constant ratio of 0.1 between
these two parameters (wSDet =0.1 wLDet) was imposed and only one of the two was optimized.

I suggest Authors to be clearer: I cannot get why the two parameters cannot be constrained. In general, after
you completed your optimization procedure you could perturb the parameter 0.1 (ratio between WsDet and
WilDet) to see if it corresponds to a minimum for your metrics F(p) or if there are better values other than
0.1. Or the system is unstable if you don’t take 0.1? Please explain.

Response: These two parameters cannot be constrained simultaneously because they can compensate each
other: an increase in one parameter can be counteracted by a decrease in the other. This is a well-known
and much discussed issue in the parameter optimization literature. Basically, there is no information in the
available observations that allows to distinguish between the two. Including both parameters in the
optimization will degrade the model’s predictive skill. To solve this problem, one can either introduce more
independent observations or prior knowledge by, e.g. fixing these parameters to their prior values or
defining a link between these parameters. Generally, and also in this case, observations are insufficient to



constrain all parameters and prior knowledge about the parameters has to be included. This is the common
approach to address the underdetermination problem of parameter optimization in biological models.

In this study, the ratio of 0.1 was selected based on the prior values of the two parameters. Perturbing and
estimating the ratio between two sinking velocities are equivalent to letting both parameters (wSDet and
wLDet) into optimization and may degrade model’s predictive skills. Without additional information about
the depth distribution of Sdet and Ldet, which is not available, the ratio cannot be constrained.

The underdetermination problem and the practice of incorporating prior knowledges is also discussed on
P20, L10-28 of our original manuscript.

Pg 12 line 92 please remove and from the equation.

Response: We will revise it as suggested.

4. Optimization of 1D models
General question: how you define the DCM depth in the presented analyses?

Response: In this study, the DCM depth was defined as the depth where the subsurface chlorophyll is at
its maximum. We will include the definition of DCM depth in our revised manuscript.

4.1. Observations and base case

Pg 12. Lines 107-109. Unlike the surface chlorophyll, the vertically integrated chlorophyll as well as the
phytoplankton and POC over the upper 200 m tend to be more constant with much less seasonality (Figure
3b-d).

This statement refers to observation? Please specify. Is it possible to add the error bar to the dots of Figure
3 as in the case of Figure 4?

Response: Yes, we are referring to observations which are represented by black dots. We will clarify this
in our revised manuscript and add the error bar in Figure 3 as suggested.

Pg 12 line 14 in June and gradual shoaling after July (Figure 3e), reflecting the seasonality of the solar
radiation.

With the term reflecting Authors mean that there is direct causality or correlation?

Response: We think that there is direct causality between the shoaling of DCM depth and solar radiation.
In the oligotrophic regions, the DCM is strongly determined by photoacclimation (Cullen, 2015; Fennel
and Boss, 2003). Previous studies based on BGC-Argo floats also suggest that the DCM is mainly light
driven and located at the level of a particular isolume (e.g. Mignot et al., 2014; Xing et al., 2018). In our
case, with the decrease of solar radiation after July, these isolumes and the DCM would therefore become
shallower.

Cullen, J. J.: Subsurface Chlorophyll Maximum Layers : Enduring Enigma or Mystery Solved ?, Annual
Review of Marine Science, 7, 207-239, doi:10.1146/annurev-marine-010213-135111, 2015.

Fennel, K. and Boss, E.: Subsurface maxima of phytoplankton and chlorophyll : Steady-state solutions from
a simple model, Limnology and Oceanography, 48(4), 1521-1534, 2003.

Mignot, A., Claustre, H., Uitz, J., Poteau, A., D’Ortenzio, F. and Xing, X.: Understanding the seasonal
dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: A
Bio-Argo float investigation, Global Biogeochemical Cycles, 28(8), 1-21, doi:10.1002/2013GB004781,
2014.



Xing, X., Qiu, G., Boss, E., & Wang, H. Temporal and vertical variations of particulate and dissolved
optical properties in the South China Sea. Journal of Geophysical Research: Oceans, 124.
https://doi.org/10.1029/2018JC014880. 2019.

Pg 13 line 18 However, it fails to reproduce the deepening of the DCM in June

This deepening is related to a physical process (change in some environmental regulating factor) or to a
biogeochemical process?

Response: This deepening is a result of both physical and biological processes. Firstly, as stated in the
reply to the last comment, the increase of solar radiation would make the DCM deeper. Secondly, as the
water column becomes more stratified in summer, chlorophyll concentrations in the upper layer will be
lower as a result of nutrient limitation, which in turn increases light penetration through the water column
and thus causing the DCM to deepen.

4.2. Results of the optimizations

4.2.1 Model-data misfits

4.2.2 Experiment A

Pg 13 line 41-42 The optimal parameter sets (A4, B2, and C4), which are selected based on casespecific
misfit from these three groups, will be used in subsequent analyses ...

Why Authors decide to use B2 rather than B4 that show a smaller total misfit? Is it better to take a realization
with better case-specific misfit or better total misfit?

Response: Firstly, experiments in group B represent the scenario where we only have chlorophyll
observations. In that case, we would have no idea about the model misfit for other variables except
chlorophyll or the total misfit. Secondly, the case-specific misfit was the criterion that the parameter
optimization procedure used to choose the best half population while “killing” the other half. Hence, using
B2 rather than B4 as the optimal parameter sets makes sense.

We discussed the choice of B2 in our original manuscript. In realistic parameter optimization applications
where only chl and no other observation are available the B2 optimization would be chosen. Revealing this
weakness due to insufficient observations can help us to better understand the additional value of BGC-
Argo floats and provide some scientific guidance for future parameter optimization studies. This is really
the point we are trying to make here.

4.2.3 Experiment B

Pg 14 line 47-49 However, the vertical structure of chlorophyll deteriorates relative to the base case (Figure
4a) because of inappropriate estimates of the initial slope (0=0.0101; see table 2) and the maximum ratio
of chlorophyll to carbon (Bmax=0.0191; see table 2).

If Authors can judge a-priori that the values for o and Omax resulting from the optimization are not
appropriate, why they didn’t consider different parameter ranges in the optimization procedure from the
beginning, excluding bad values?

Response: Firstly, we have no prior knowledge of these parameters in the Gulf of Mexico and that is why
we run parameter optimization to estimate their values. Our comments on these two parameters here were
based on the results of our parameter optimization experiments.

Secondly, we feel these two parameters were inappropriate after we compared model results with vertical
profiles of chlorophyll and phytoplankton. Since experiment A was designed to represent the scenario
where only satellite observations are available, adding the information obtained from the BGC-Argo floats
data into experiment A would not be a fair comparison to the other experiments and violate our assumptions
of the experiment A.



Pg 14 lines 57-59. A straightforward interpretation is that the addition of subsurface observations
reduces the model’s degrees of freedom to fit one single observation type (surface chlorophyll).

Does this imply that a model with more parameters (e.g. more phytoplankton species) would fit better?

Response: Here we mean that the addition of subsurface observations yields more constraints on our
biological model because the model should fit both surface and subsurface observations simultaneously.

With respect to reviewer’s comment, it tends to be true but not always. However, the better fit is often the
result of overfitting rather than a true improvement in predictive skill. It is of utmost importance to avoid
overfitting. The increased number of parameters in more complex models may increase the risk of
degrading model’s predictive skills.

Pg15 line 70 In contrast to the observations where detritus dominates POC ...
What observation? Please add reference.

Response: Here we referred to our BGC-Argo floats shown in Figure 4. We will include reference in our
revised manuscript as suggested.

4.2.4 Experiment C
Pg 15 lines 76-78 As shown in Figure 4a, the annually averaged depth of DCM of 80 m coincides with the
observed DCM, primarily because experiment reproduces the deepening of the DCM in summer.

Interesting. Can Authors explain if there is a specific parameter/mechanism that controls this dynamical
deepening of the DCM? Or it is a complex combination of parameters values generating this emergent

property?

Response: As we mentioned above, the deepening of the DCM in the summer resulted from a combination
of increased solar radiation and decreased light attenuation in the upper layer. Since the different
experiments here used the same inputs of solar radiation, the deepening of the DCM in experiment C must
be a result of changes in parameter values which can influence chlorophyll concentrations and hence light
attenuation in the upper layer. To illustrate this, we performed sensitivity simulations where we used the
optimal parameters from experiment C but set each optimized parameter, one at a time, to its prior value.
As shown in Figure 3, the optimization induced changes in large detritus remineralization rate (rzp), half-
saturation for NH4 uptake (Knu4), and large detritus sinking velocity (wrp.;) can have large impacts on
chlorophyll concentrations and the depth of DCM.
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Figure 3: Vertical distributions of simulated chlorophyll from different sensitivity tests.

5. 3D biogeochemical model

Could Author explain better the manual correction described at pg 17 lines 24-25? If they consider the
corrected values more realistic why they didn’t narrowed the parameter variability range in the optimization
experiment? Or the 1D vs 3D implementations do not allow this?

For example, is there a simple explanation for the need to set KNH4 to 0.01 in the 3D experiments? It would
be useful for readers interested in applying this methodology in other areas.

Response: We did manual modifications because when the resulting parameters were directly applied, the
model-data agreement in 3D models was not as well as in 1D models in some respects, but the most
important features were well preserved. In experiment C, chlorophyll concentrations in the upper layer of
3D model were lower than the 1D model and farther away from observations. This might be a result of
differences between 1D and 3D models and has been also reported in other studies (e.g. Kane et al., 2011;
Hoshiba et al., 2018). However, the depth of the DCM and the non-zero POC concentrations at 200 m with
appropriate contributions from each component were well preserved. We therefore did some tests manually
by tuning one or two parameters and final set the KNH4 to 0.01 in order to have a better agreement with
respect to observations. All of these modifications were based on our tests.

In our case, although the 1D parameter sets could not be used in 3D models directly, they were sufficient
to reproduce the main features as in 1D models and largely simplified the following subjective tuning of
3D models by limiting the number of parameters to be adjusted. We will include some discussion in our
revised manuscript.

Kane, A., Moulin, C., Thiria, S., Bopp, L., Berrada, M., Tagliabue, A., Crépon, M., Aumont, O. and Badran,
F.: Improving the parameters of a global ocean biogeochemical model via variational assimilation of in situ
data at five time series stations, Journal of Geophysical Research: Oceans, 116, 1-14,
doi:10.1029/2009JC006005, 2011.

Hoshiba, Y., Hirata, T., Shigemitsu, M., Nakano, H., Hashioka, T., Masuda, Y. and Yamanaka, Y.:
Biological data assimilation for parameter estimation of a phytoplankton functional type model for the
western North Pacific, Ocean Science, 14, 371-386, doi:10.5194/0s-14-371-2018, 2018.

It would be useful to know how the PP from the model is computed: integrating down till the bottom,
considering thee MLD?

Response: The primary production in the 3D models was integrated down to 200 m, consistent with the
primary production obtained from the 1D models. There is not enough available light below 200 m for
photosynthesis to occur, therefore cutting off at 200 m yields the same values of integrated primary
production as integration down to the seafloor would. As suggested, we will state this in our revised
manuscript.

6. Discussion

6.1 Trade-offs between different observations for parameter optimization

In this section Authors use a number of times the following terms poorly constrained, weakly constrained
and unconstrained, un-optimized fields, not optimized but well defined. Some definitions can be grasped
from section 3.5. In my opinion it would make things more simple to have the formal definition of these
terms and to know if, in same cases, they are equivalent/synonym.



Response: The poorly constrained and weakly constrained parameters are synonymous, meaning that they
cannot be constrained in confidence. In our study, it can be simply understood that their estimates were
inappropriate. The unconstrained and un-optimized fields are equivalent meaning that they were not
included in the parameter optimization procedure. The not-optimized but well-defined parameters are those
parameters which were not included in the parameter optimization but their prior values were coincidently
reasonable. As suggested, we will try to simplify the language and include these definitions in our revised
manuscript.

Pg 21 lines 36-42 Although this cross-validation at different times and locations may give some indication
of overfitting, it cannot determine whether the model reproduces observation through wrong mechanisms
because a small misfit of cross-validation can be caused by missing validations of key variables or fluxes,
e.g. ignorance of phytoplankton and PP in the experiment B, while a large misfit can be a result of the
intrinsic heterogeneity of biological parameters in different times (Mattern et al., 2012) and locations
(Kidston et al., 2011), e.g. underestimation of coastal surface chlorophyll in the experiment C.

In my opinion the sentence above is not very easy to follow, could Authors simplify?
Response: As suggested, we will revise these sentences into:

However, even when cross-validation at different times and locations produces large misfits, we cannot
conclude that the models reproduce observations through wrong mechanisms. This is because the large
misfit can be a result of intrinsic heterogeneity of biological parameters at different times (Mattern et al.,
2012) and locations (Kidston et al., 2011).

Pg21 lines 54-55 On the other hand, counter examples exist where the 3D simulations outperform the 1D
model (Hoshiba et al., 2018).

Could Authors explain better this sentence? Outperform with respect to what aspect?

Response: Here we mean that applying parameters obtained from 1D models could result in worse or better
fitness in 3D models. For instance, Hoshiba et al. 2018 performed parameter optimization by 1D models
and applied the resulting parameters in 3D models. As a result, the 3D model had better fitness than the 1D
model with respect to vertical profiles of phytoplankton and nitrate (please see their section 3.4 and Figure
10a,b). As suggested, we will clarify this in our revised manuscript.
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