

Interactive comment on "Assessing the value of BGC Argo profiles versus ocean colour observations for biogeochemical model optimization in the Gulf of Mexico" by Bin Wang et al.

Peter Strutton (Referee)

peter.strutton@utas.edu.au

Received and published: 22 May 2020

This is a very useful contribution that explains the benefit that models can derive from the incorporation of satellite and BGC-Argo observations. The paper is timely and clearly written. I recommend publication after minor revisions.

Specific comments: The introduction is comprehensive. It could be shortened a bit (the 3rd and 5th paragraphs could mostly be removed) but this is not essential.

Methods switch between present and past tense. Also not a big deal, just disconcerting

C1

for the reader.

P6 L48: Here and in subsequent equations/text I'm a bit confused. The float and satellite measure bbp700 and bbp670 respectively. So why are we now talking about bbp470? And what is meant by 'validated bbp470'?

P6 Eq 2 and 3: What are the units of the terms on the LHS? Please be more specific about what 'Phytoplankton' is. I think it's phytoplankton N.

P11 L69: Here and in section 3.1, the temporal resolution of the satellite data is not specified. I also think a bit more information here would be useful. How are monthly climatologies of the float profiles created? What distance from the 1D site is considered? Maybe this is described elsewhere and I missed it, but I see the other reviewer asked something similar.

P14-15: In the sub-section headings, it wouldn't hurt to remind us what experiments A, B and C are. That is 'satellite only' etc.

Figures 3 and 8: Why not just put the parameter labels on the y axes?

For the 3D case, I think it's correct to say that Figure 8 is an average of all model grid cells where the water depth is >1000m. That's a pretty big area. Yes, it's reasonably uniformly low chlorophyll, so one could make the case that this encompasses a contiguous bio-region. But why not choose a smaller box in the middle of the deep part of the basin, and perhaps one from the shelf, to illustrate the model performance? I suspect the latter will not perform as well, but that would still be interesting to know.

The results proceed in a logical fashion through the different experiments, 1D and 3D. The presentation of the results is clear and concise.

In a paper like this, readers will likely be looking for a clear recommendation: Which of the three options should they choose? I think the conclusions do a good job of summarising the recommendations and the figures represent what's lost if it's not possible to implement the best case scenario.

Interactive comment on Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-137, 2020.

СЗ