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Abstract. Biogeochemical ocean models are useful tools but subject to uncertainties arising from simplifications, inaccurate

parameterization of processes, and poorly known model parameters. Parameter optimization is a standard method for ad-

dressing the latter but typically cannot constrain all biogeochemical parameters because of insufficient observations. Here we

assess the trade-offs between satellite observations of ocean colour and biogeochemical (BGC) Argo profiles, and the benefits

of combining both observation types, for optimizing biogeochemical parameters in a model of the Gulf of Mexico. A suite5

of optimization experiments is carried out using different combinations of satellite chlorophyll and profile measurements of

chlorophyll, phytoplankton biomass, and particulate organic carbon (POC) from autonomous floats. As parameter optimiza-

tion in 3D models is computationally expensive, we optimize the parameters in a 1D model version, and then perform 3D

simulations using these parameters. We show first that the use of optimal 1D parameters, with a few modifications, improves

the skill of the 3D model. Parameters that are only optimized with respect to surface chlorophyll cannot reproduce subsurface10

distributions of biological fields. Adding profiles of chlorophyll in the parameter optimization yields significant improvements

for surface and subsurface chlorophyll but does not accurately capture subsurface phytoplankton and POC distributions be-

cause the parameter for the maximum ratio of chlorophyll to phytoplankton carbon is not well constrained in that case. Using

all available observations leads to significant improvements of both observed (chlorophyll, phytoplankton, and POC) and un-

observed (e.g. primary production) variables. Our results highlight the significant benefits of BGC Argo measurements for15

biogeochemical parameter optimization and model calibration.

1 Introduction

Oceanic primary production forms the basis of the marine food web and fuels the biological pump, which contributes to

the sequestration of atmospheric CO2 in the ocean’s interior thus mitigating global warming. An accurate quantification of

primary production and biological carbon export is therefore important for our understanding of the marine carbon cycle and20

for predicting how carbon cycling and marine ecosystems will interact with climate change.

Direct observations of primary production and export flux are relatively sparse because of the cost and effort involved

in measuring these fluxes. Numerical models can complement sparse observations. Well validated and calibrated models are
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useful tools for hindcasting and nowcasting past and present biogeochemical fluxes and are the most common tool for projecting

future changes.

In recent years, many biogeochemical models with different complexities have been developed to study ocean biogeochemi-

cal processes. Regardless of their complexities, the performance of these models is highly dependent on the appropriate choice

of model parameter values (e.g. maximum growth, grazing and mortality rates), most of which are poorly known. A standard5

method for choosing these parameters is optimization, a process by which the misfit between model results and available ob-

servations is minimized by iteratively varying parameters (Matear, 1995; Prunet et al., 1996b, a; Fennel et al., 2011; Friedrichs

et al., 2007; Kuhn et al., 2015, 2018). However, even formal optimization typically cannot constrain all biogeochemical pa-

rameters (i.e. provide optimal parameter estimates with relatively small uncertainties) because of insufficient information in

the available observations (Matear, 1995; Fennel et al., 2001; Ward et al., 2010; Bagniewski et al., 2011). For example, Matear10

(1995) used a so-called simulated annealing algorithm to optimize three different ecosystem models and found that even for

the simplest nutrient-phytoplankton-zooplankton model, not all independent parameters could be constrained well, leaving

the others with large uncertainty ranges. A more recent study reported that the lack of zooplankton observations led to poor

accuracy of the optimized zooplankton-related parameters when using a suite of Lagrangian-based observations during the

North Atlantic spring bloom (Bagniewski et al., 2011). A broader suite of observation types should be favourable to parameter15

optimization although complications can arise. For example, when optimizing a suite of 1D models for the Mid-Atlantic Bight,

the use of satellite POC observations in addition to satellite chlorophyll did not yield further improvements in model-data fit

but degraded the representation of chlorophyll (Xiao and Friedrichs, 2014a).

Typically surface ocean chlorophyll from satellite is the main source of observations for model validation (e.g., Doney et al.,

2009; Gomez et al., 2018; Lehmann et al., 2009) and parameter optimization (Prunet et al., 1996b; Xiao and Friedrichs, 2014a,20

b), supplemented by other observation types as available. However, satellites only see the ocean surface and do not resolve the

vertical distribution of chlorophyll. This is especially problematic in oligotrophic regions where the deep chlorophyll maxi-

mum (DCM) is relatively deep and hardly observed by the satellite (Cullen, 2015; Fennel and Boss, 2003). In addition, although

chlorophyll has long been used as a proxy of phytoplankton biomass and to estimate primary production based on some as-

sumptions (Behrenfeld and Falkowski, 1997), it is not a direct measure of carbon-based phytoplankton biomass. The ratio of25

chlorophyll-to-phytoplankton carbon varies by at least an order of magnitude due to physiological responses of phytoplank-

ton to their ambient environment (e.g. nutrients, light, and temperature) (Cullen, 2015; Fennel and Boss, 2003; Geider, 1987).

Changes in chlorophyll may result from physiologically induced modifications of the chlorophyll-to-phytoplankton ratio rather

than actual changes of phytoplankton biomass (Fommervault et al., 2017; Mignot et al., 2014). Satellite surface chlorophyll

alone is therefore likely insufficient for model validation and for constraining biogeochemical models via parameter optimiza-30

tion.

Recent advances in autonomous platforms and sensors have opened opportunities for simultaneous measurement of several

biological and chemical properties throughout the upper ocean with high resolution, over broad spatial scales and for sustained

periods (Roemmich et al., 2019). In particular, the biogeochemical (BGC) Argo program (Roemmich et al., 2019; Group,

2016) will provide temporally evolving 3D information on biogeochemical variability at previously unobserved scales. Here35
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we assess to what degree observations of chlorophyll fluorescence and particle backscatter from Argo profiles improve the

prospects of optimizing a biogeochemical model for the Gulf of Mexico.

Since the high computational cost and storage demands of 3D models make direct application of most parameter optimization

techniques difficult (but see Mattern et al., 2012; Mattern and Edwards, 2017; Tjiputra et al., 2007, for exceptions), they are

typically applied in computationally efficient 1D models before using the resulting parameters in 3D version (e.g. Hoshiba5

et al., 2018; Kane et al., 2011; Kuhn and Fennel, 2019; Schartau and Oschlies, 2003). We follow the latter approach here.

The main objective of this study is to assess the added value of bio-optical profile information from Argo floats for biogeo-

chemical model optimization in the Gulf of Mexico. We first examine the feasibility of improving the 3D model by applying

the optimal parameters from 1D model optimizations with some minor manual modifications. We find that the gains from the

1D optimizations transfer to the 3D version. Then, by using different combinations of satellite and float observations we show10

that parameters optimized with respect to satellite data cannot reproduce subsurface distributions unless the float observations

(i.e. chlorophyll, phytoplankton, and POC) are also used.

2 Study region

The Gulf of Mexico (GOM) is a semi-enclosed marginal sea (Figure 1) which is characterized by eutrophic coastal waters

on the northern shelf and an oligotrophic deep ocean. The high productivity in the northern coastal region is fueled by large15

nutrient and freshwater inputs from the Mississippi and Atchafalaya Rivers. The large nutrient load and strong stratification

driven by Mississippi and Atchafalaya River inputs lead to summer hypoxia and ocean acidification in bottom waters on the

northern shelf (Laurent et al., 2017; Yu et al., 2015), but nutrient export across the shelf break into the open Gulf is minor (Xue

et al., 2013).

The deep ocean of the GOM is oligotrophic. Previous satellite-based studies have revealed a clear seasonal cycle in surface20

chlorophyll with highest concentrations in winter and lowest in summer (Martínez-López and Zavala-Hidalgo, 2009; Muller-

Karger et al., 1991, 2015). Thanks to advances in autonomous profiling technology, recent studies based on simultaneous

measurements of subsurface chlorophyll and backscatter have demonstrated that the seasonal variability of surface chlorophyll

might be a result of the vertical redistribution of subsurface chlorophyll and/or physiological response to solar radiation of

phytoplankton (Fommervault et al., 2017; Green et al., 2014).25

3 Methods

3.1 Biological observations

Monthly averaged satellite chlorophyll from the Ocean-Colour Climate Change Initiative project (OC-CCI, http://www.oceancolour.

com/) with a spatial resolution of 4 km from 2010 to 2015 was used for model validation and parameter optimization. These

data were provided by the European Space Agency (ESA), which produced a set of validated and error-characterised global30

ocean-color products by merging SeaWiFS (Sea-viewing Wide Field-of-view Sensor), MODIS (Moderate-resolution Imag-
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Figure 1. Model bathymetry (unit: m) with trajectories of six bio-optical floats (small colored dots and lines) which were operated in the Gulf

of Mexico from 2011 to 2015. The location of the 1D model is denoted by the large orange dot. The north and south black boxes represent

the Mississippi Delta and the central gulf, respectively to show comparisons of surface chlorophyll in Figure S5.

ing Spectroradiometer), MERIS (medium-spectral resolution imaging spectrometer), and VIIRS (Visible Infrared Imaging

Radiometer Suite) products.

In addition to the satellite-based measurements, bio-optical measurements from six autonomous profiling floats were used

(Figure 1), which were deployed by the Bureau of Ocean Energy Management (BOEM) and operated in the deep GOM from

2011 to 2015. These floats were equipped with a CTD and bio-optical sensors to collect biweekly profiles of temperature,5

salinity, chlorophyll, and backscatter at 700 nm (bbp700 (m−1)) from the surface to 1000 m depth (see Fommervault et al.,

2017; Green et al., 2014, for more details). Chlorophyll was derived from fluorescence based on the sensor manufacturer’s

calibrations and compared with the satellite estimates of surface chlorophyll. While the surface chlorophyll measurements
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from the floats and the satellite estimates both showed a typical seasonal cycle and were highly correlated (R2=0.74; see

Figures S1 and S2a in the Supplement), the satellite underestimated the float-measured chlorophyll concentrations in winter

(Figure S1c). Satellite estimates were therefore corrected following the regression equation shown in Figure S2a.

The backscatter sensor carried by the floats provided the volume scattering function at a centroid angle of 140◦ and a

wave length of 700 nm (β(140◦,700nm)m−1sr−1). The profiles were filtered (Briggs et al., 2011) to remove spikes and then5

converted into bbp700 following Green et al. (2014). After that, profiles of bbp700 were converted into bbp470 based on a

power law (Boss and Haëntjens, 2016) to obtain the phytoplankton (mmol N m−3) and POC (mg C m−3) estimates:

bbp(λ1) =
(λ1
λ2

)−γ
bbp(λ2), (1)

Phy = 30100× (bbp470− 76× 10−5)
1

12× 6.625
, (2)10

log10(POC) = 1.22× log10(bbp470)+5.15. (3)

where λ1 and λ2 represented the measured wavelength, and γ was estimated as 0.78 based on the global measurements. The

relationships for phytoplankton (Martinez-Vicente et al., 2013, equ. 2) and POC (Rasse et al., 2017, equ. 3) were obtained from

a data set for the Atlantic Ocean that covered a wide range of oceanographic regimes from eutrophic to oligotrophic ecosystems.15

The scale factors of 12 and 6.625 in equ. 2 represented the molecular weight of carbon and the Redfield ratio to convert

phytoplankton concentrations from mg C m−3 to mmol N m−3. The intercept 76×10−5 in equ. 2 represented the background

backscatter of nonalgal detritus, which based on Behrenfeld et al. (2005) was the backscatter value when chlorophyll was

zero. However, in this study, the most majority (87%) of bbp470 in the upper 200m was below the intercept and the resulting

phytoplankton concentrations were therefore close to zero, which is unrealistic in the Gulf of Mexico. Therefore, the satellite20

estimate of bbp670 from OC-CCI was converted into bbp700 and compared with the float measurements. Compared to surface

chlorophyll, surface bbp700 has a less distinct seasonal cycle (Figure S3). For example, the coefficient of variation, defined as

the ratio between standard deviation and mean to show the extend of variability, is much lower for bbp700 (0.09 and 0.07 for

floats and satellite, respectively) than for chlorophyll (0.31 and 0.26 for floats and satellite, respectively). The float bbp700 is

weakly correlated with the satellite estimates (R2=0.11) and generally lower by a factor of ∼0.45 than the satellite estimates25

(Figure S2b). The bbp700 profiles were therefore multiplied by 2.2 before being converted to bbp470. As a result, the mean

value of the bbp470 (88× 10−5 m−1) is close to the intercept in equ. 2 when chlorophyll went to zero. Furthermore, the

resulting concentrations of phytoplankton biomass and POC as well as the ratio of chlorophyll to phytoplankton biomass are

reasonable (please see figures 4 and 10). This gave us confidence in our conversion process for float backscatter and our choice

of empirical equations relating backscatter to phytoplankton and POC.30
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3.2 3D model description

The physical model was configured based on Regional Ocean Modeling System (Haidvogel et al., 2008, ROMS, https://www.

myroms.org) for the Gulf of Mexico (Figure 1). The model has a horizontal resolution of 6∼7 km and 36 terrain-following

sigma layers with refined resolution near the surface and bottom. The model solved the horizontal and vertical advection of

tracers using the Multidimensional positive definitive advection transport algorithm (MPDATA, Smolarkiewicz and Margolin,5

1998). Horizontal viscosity and diffusivity were parameterized by a Smagorinsky-type formula (Smagorinsky, 1963), and

vertical turbulent mixing was calculated by the Mellor-Yamada 2.5-level closure scheme (Mellor and Yamada, 1982). Bottom

friction was specified by a logarithmic drag formulation with a bottom roughness of 0.02 m. The model was forced by 3-hourly

surface heat and freshwater fluxes, 6-hourly air temperature, sea level pressure and relative humidity, and 10-m winds from the

European Centre for Medium-Range Weather Forecast ERA-Interim product with a horizontal resolution of 0.125◦ (ECMWF10

reanalysis, https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim). A bulk parameterization was applied

to calculate the surface net heat fluxes and wind stress. The model was one-way nested inside the 1/12◦ data-assimilative global

HYCOM/NCODA (https://www.hycom.org). Tidal constitutes were neglected in the model.

The biogeochemical model used a 7-component model (Fennel et al., 2006) to simulate the nitrogen cycle in the water

column. The model described the dynamics of two species of dissolved inorganic nitrogen (nitrate, NO3, and ammonium,15

NH4), one function of phytoplankton (Phy), chlorophyll (Chl) as a separate state variable which allowed photo-acclimation

based on the model of Geider et al. (1997), one function of zooplankton (Zoo), and two pools of detritus (i.e. small suspended

detritus, SDeN, and large fast-sinking detritus, LDeN). Water-sediment interactions were simplified by an instantaneous rem-

ineralization parameterization, where detritus sinking out of water column immediately resulted in a corresponding influx of

ammonium into the bottom layer. Detailed descriptions of the model equations can be found in Fennel et al. (2006) and Laurent20

et al. (2017). The biological model parameters are listed in Table 1.

The model received freshwater, nutrients (NO3 and NH4) and organic matter inputs from major rivers along the Gulf coast.

Freshwater and nutrients from the Mississippi and Atchafalaya rivers were prescribed based on the daily measurements by

the US Geological Survey river gauges. River particulate organic nitrogen (PON) was assigned to the small detritus pool and

determined as the difference between total Kjeldahl nitrogen and ammonium (Fennel et al., 2011). Other rivers utilized the25

climatological estimates of freshwater, nutrients, and PON as in Xue et al. (2013).

Initial and open boundary conditions for NO3 were specified by applying an empirical relationship between NO3 and

temperature, derived from the World Ocean Atlas (WOA; Figure S4a), that was applied to the temperature fields from HY-

COM/NCODA. Analogously, empirical relationships between chlorophyll and density (Figure S4b), phytoplankton and den-

sity (Figure S4c), and POC and density (Figure S4d) were obtained from the median profiles of the bio-optical floats and used30

to derive initial and boundary conditions for these variables. Zooplankton and small detritus were assumed to amount to 10% of

phytoplankton biomass and the remaining fractions of POC attributed to large detritus. Sensitivity tests showed that changing

these allocations had little impact on our model results.
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Table 1. Initial values and ranges of primary parameters used in the biogeochemical model

Descriptions (unit) Symbol Value Range

Radiation threshold for nitrification (W m−2) I0 0.0095a 0.005b-0.01b

Half-saturation radiation for nitrification (W m−2) kI 0.1a 0.01b-0.5b

Maximum nitrification rate (day−1) nmax 0.2c 0.01b-0.35b

Phytoplankton growth at 0◦C (Dimensionless) µ0 0.69a 0.1b-3.0b

Initial slope of P-I curve (mg C(mg Chl W m−2day)−1) α 0.125a 0.007a-0.13a

Half-saturation for NO3 uptake (mmol N m−3) kNO3 0.5a 0.007a-1.5a

Half-saturation for NH4 uptake (mmol N m−3) kNH4 0.5a 0.007a-1.5a

Phytoplankton mortality (day−1) mp 0.075 0.01b-0.2b

Aggregation parameter (day−1) τ 0.1 0.01b-25b

Maximum chlorophyll to carbon ratio (mg Chl mg C−1) θmax 0.0535c 0.005a-0.15b

Phytoplankton sinking velocity (m day−1) wPhy 0.1a 0.009a-25a

Maximum grazing rate (day−1) gmax 0.6a 0.1b-4b

Half-saturation for phytoplankton ingestion ((mmol N m−3)2) kp 0.5 0.01b-3.5a

Zooplankton assimilation efficiency (Dimensionless) β 0.75a 0.25b-0.75b

Zooplankton basal metabolism (day−1) lBM 0.01 0.01b-0.15b

Zooplankton specific excretion (day−1) lE 0.1a 0.05b-0.35b

Zooplankton mortality (day−1) mZ 0.2 0.02b-0.35b

Small detritus remineralization (day−1) rSD 0.3c 0.005b-0.25a

Large detritus remineralization (day−1) rLD 0.1 0.005b-0.25a

Small detritus sinking velocity (m day−1) wSDet 0.1a 0.009a-25a

Large detritus sinking velocity (m day−1) wLDet 1a 0.009a-25a

a Fennel et al. (2006); b Kuhn et al. (2018); c Yu et al. (2015)

A 6-year (5 January 2010 – 31 December 2015) hindcast was performed that included the period of operation of the bio-

optical floats. The first year was considered model spin-up and the next five years are discussed.

3.3 1D model description

As optimizing a 3D biogeochemical model is computationally expensive, it was more practical to perform the optimization

using a reduced-order model surrogate. A surrogate can be a coarser resolution model, a simplified model, or a reduced-5

dimension model. In this study, a 1D model was used to optimize the biological parameters of the 3D model. This approach

has been successfully used previously (Hoshiba et al., 2018; Kane et al., 2011; Oschlies and Schartau, 2005).

The 1D model, which is similar to that used by Lagman et al. (2014) and Kuhn et al. (2015), covered the upper 200 m of

the ocean with a vertical resolution of 5 m and was configured at one location in the open Gulf (see Figure 1). This relatively

fine vertical resolution was used because it was close to that of our BGC-Argo floats (4∼6m in upper 200m) and was much10
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higher than the 3D model whose vertical resolution varies from a few meters near the surface to about 50 m near at 200 m

depth around the 1D station. In the vertical direction, the water column was divided into two layers: the turbulent surface layer

and a quiescent layer below. A higher diffusion coefficient (KZ1 =max(H2
MLD/400,10), in unit of m2 day−1) was applied

in the turbulent surface layer and a lower diffusion coefficient (KZ2 =KZ1/2) was assigned to the quiescent bottom layer.

The interface between these two layers was determined by the mixed layer depth (HMLD, in unit of m), defined as the depth5

where the temperature was 5◦C lower than at the surface, and was obtained from daily outputs of the 3D model. The model

was integrated in time using the Crank-Nicolson scheme for vertical turbulent mixing and an implicit time-stepping scheme

for the biogeochemical tracers, which were treated identically to the 3D model. Some of the biogeochemical parameterizations

required input of temperature and solar radiation, which were also taken from the 3D model. As the 1D model did not consider

horizontal and vertical advection, NO3 below 100 m was nudged to that from the 3D base simulation with a nudging time scale10

of 20 days. The 1D model was run for the year 2010 repeatedly for three cycles, with the first two were model spin-up and the

last annual cycle used to calculate the misfit between model and observations.

3.4 Parameter optimization method

The evolutionary algorithm described by Kuhn et al. (2015, 2018) was used to search for optimal model parameters by mini-

mizing the misfit between model and observations. The misfit was measured by the following cost function:15

F (−→p ) =
V∑
v=1

Fv(
−→p ), (4)

Fv(
−→p ) = 1

Nvσ2
v

Nv∑
i=1

(ŷi,v − yi,v(−→p ))2. (5)

where −→p represented the parameters vector, V was the number of different observation types, Nv was the number of ob-

servations for each variable, Fv(−→p ) was the misfit for observation type v measured as the mean-square difference between20

observations (ŷ) and corresponding model estimates (y(−→p )). The cost function Fv(−→p ) was normalized by the standard devia-

tion of each variable type (σv) in order to remove the effect of different units.

The algorithm is inspired by the rules of natural selection. Following Kuhn et al. (2015), an initial parameter population of

30 parameter vectors was randomly generated within a predefined range of parameters (see Table 1). The model was evaluated

for each parameter vector and the resulting cost function was calculated. For this initial generation and each of the following25

generations, the half of the population with the lower misfit survived into the next generation. The other half was regenerated

through a recombination of survivors in a process analogous to genetic crossover. In addition, each newly generated popu-

lation was subject to random mutations by multiplying the parameter values by a random value between 0 and 2. Parameter

values exceeding the predefined range were replaced by their corresponding minimum or maximum limits to avoid unrealistic

values. The above procedure was performed iteratively for 300 generations to reach the minimum of the cost function, which30

corresponded to the optimal parameter set.
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Previous parameter optimization studies have shown that it is difficult to constrain all model parameters even for very simple

ecosystem models because the information content of available observations is typically insufficient (Matear, 1995; Fennel

et al., 2001; Ward et al., 2010). Here we conducted sensitivity tests to identify the parameters that were most sensitive to the

available observations and chose a subset of these to be optimized. In the base case, all parameters were at their initial guess

values obtained from the previous literature and some initial tuning (Table 1). Then the test cases were run multiple times by5

incrementally changing one parameter at a time to be the minimum, the first, second and third quartile, and the maximum of

its corresponding range while setting the other parameters to their initial guess value (Table 1). The sensitivity was measured

as the sum of a normalized absolute difference between the base case (yBase) and the test case (yTest)

Q(y,−→p ) = 1

m

m∑
i=1

1

n

n∑
j=1

|yBase− yTest|
yBase

(6)

where m is the number of parameter increments (here 5) and n is the number of base-test pairs consisting of all 1D model grid10

cells throughout the whole simulation period for all variables to be compared.

Results of the sensitivity analysis are shown in Figure 2, where parameters are ranked by sensitivity with respect to chloro-

phyll (Figure 2a) and the sum of chlorophyll, phytoplankton, and POC (Figure 2b). POC is the sum of phytoplankton, zoo-

plankton, and small and large detritus.

3.5 Parameter optimization experiments15

For the parameter optimization of the 1D model, satellite chlorophyll within a 3×3 pixel (12 km×12 km area) around the

1D station and monthly climatological profiles from the BGC-Argo floats were used. For the climatological profiles, all float

profiles in the Gulf were averaged because the deep Gulf of Mexico is homogenous horizontally and only few profiles were

available in the immediate vicinity of the 1D station.

To assess the effects of the optimization with respect to the different observation types, we conducted three groups of ex-20

periments in which (A) surface satellite chlorophyll only, (B) surface satellite chlorophyll and float profiles of chlorophyll,

and (C) surface satellite chlorophyll and float profiles of chlorophyll, phytoplankton, and POC were used. For each of these

three groups, four to five optimizations were conducted starting with the three most sensitive parameters and then adding one

more parameter at a time (Table 2) guided by the sensitivity analysis with respect to observed variables they used. Specifically,

groups A and B were based on the sensitivity analysis with respect to chlorophyll, while group C was based on sensitivity25

analysis with respect to the sum of chlorophyll, phytoplankton, and POC. Each optimization was replicated four times. The

optimization with smallest model-data misfit within each group was then used. Prior tests have shown that the available obser-

vations cannot simultaneously constrain the sinking rates of small and large detritus (wSDet and wLDet) because an increase in

one parameter can be counteracted by a decrease in the other. Therefore, a constant ratio of 0.1 between these two parameters

(wSDet = 0.1×wLDet) was imposed based on their prior values and only one of the two was optimized. In groups A and B,30

the aggregation parameter τ was fixed at 0.05 because prior tests generated unreasonably high values for this parameter.

We report two different metrics of misfits for these groups of experiments. The first metric, which we refer to as the case-

specific cost function value, is based on the optimized observations in a given experiment and was minimized by the optimiza-
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Figure 2. Parameter sensitivities (unit: dimensionless) with respect to (a) chlorophyll and (b) the sum of chlorophyll, phytoplankton, and

POC.

tion algorithm, i.e.

FA(
−→p ) = FsurfCHL(

−→p ), (7)

FB(
−→p ) = FsurfCHL(

−→p )+FCHL(
−→p ), (8)

5

FC(
−→p ) = FsurfCHL(

−→p )+FCHL(
−→p )+FPhy(

−→p )+FPOC(
−→p ). (9)
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Table 2. The best fit of parameter set for each optimization experiment. Dashed lines represent these parameters are not included in the

parameter optimization and use their prior values. The optimal optimization A4, B2, and C4 which are further discussed and are denoted

simply as experiment A, B, and C are highlighted as bold.

wPhy mP kNH4 τ θmax α wLDet

1D model

Base 0.1000 0.0750 0.5000 0.1000 0.0535 0.1250 1.000

A1 0.0608 0.0100 1.5000 – – – –

A2 0.6863 0.0100 0.0195 – 0.0169 – –

A3 1.6567 0.1978 0.1004 – 0.0250 0.0219 –

A4 0.9468 0.0737 0.2454 – 0.0191 0.0101 4.9694

3D model A 0.9468 0.0737 0.0100 – 0.0191 0.0101 4.9694

1D model

B1 0.2863 0.0983 1.5000 – – – –

B2 0.4217 0.0130 0.0300 – 0.0158 – –

B3 2.1016 0.0176 1.5000 – 0.0346 0.0079 –

B4 0.0009 0.0100 1.5000 – 0.0361 0.0405 8.3514

3D model B 0.4217 0.0130 0.0100 – 0.0158 – –

wPhy rLD mP τ kNH4 wLDet θmax

1D model

Base 0.1000 0.1000 0.0750 0.1000 0.5000 1.0000 0.0535

C1 1.9231 0.2500 0.1805 – – – –

C2 0.9755 0.2500 0.0100 1.1402 – – –

C3 0.4071 0.0630 0.0100 1.8531 0.0070 – –

C4 0.0090 0.0050 0.0634 0.0995 0.0431 5.6623 –

C5 0.0090 0.2245 0.0100 0.6451 1.5000 2.5202 0.0614

3D model C 0.0090 0.0050 0.0634 0.0500 0.0100 5.6623 –

However, the models with lower case-specific misfit do not necessarily have better predictive skill in reproducing the un-

optimized observations because of the so-called overfitting problem, e.g. the model might be tuned to reproduce optimized

observations through wrong mechanisms (Friedrichs et al., 2006). To account for this, a second metric referred to as the total

misfit is given by equ. 9. For group C, the second metric is the same as the case-specific cost function. For groups A and B, the

total misfit metric allows us to assess improvements in the model’s predictive skill to represent unoptimized fields.5

4 Optimization of 1D models

4.1 Observations and base case

To provide context for the evaluation of our optimization experiments, the observations and the base case will be described

first. As shown in Figure 3a, the observed surface chlorophyll shows a clear seasonality with the high concentrations in winter
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Figure 3. Annual cycle of surface chlorophyll (a), vertically integrated chlorophyll (b), vertically integrated phytoplankton (c), vertically

integrated POC (d), and the depth (e) and magnitude (f) of the DCM from observations (black dots with error bars), the Base case (black

lines), the experiment A (orange lines; only satellite surface chlorophyll is used), B (yellow lines; satellite surface chlorophyll and float

profiles of chlorophyll are used), and C (blue lines; all available observations are used). Chlorophyll, phytoplankton, and POC are integrated

over the top 200 m. Black error bars represent the interquartile range of observations.

and low concentrations in summer. In the base case, the simulated surface chlorophyll fits observations well. Unlike the surface

chlorophyll, the observed integrated chlorophyll as well as the phytoplankton and POC over the upper 200 m tend to be more

constant with much less seasonality (Figure 3b-d). This has been reported by Fommervault et al. (2017) who attributed the

seasonality of surface chlorophyll to the vertical redistributions of subsurface chlorophyll and/or photoacclimation, rather than

real changes in biomass.5
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Figure 4. Observed (black dots with error bars) and simulated (colored lines) vertical profiles of chlorophyll, phytoplankton, and POC. Black

errors represent the interquartile range of observations. The solid and dashed black lines in panel a represent the median values of mixed

layer depth from July and December.

The DCM is a ubiquitous phenomenon in the oligotrophic regions and can form independently of the biomass maximum

(Cullen, 2015; Fennel and Boss, 2003). In this study, we define the DCM depth as where the maximum of subsurface chloro-

phyll is. Observations detect a predominant DCM at around 60-100m depth throughout the whole year, with a sharp deepening

in June and gradual shoaling after July (Figure 3e), reflecting the seasonality of the solar radiation. Unlike the large variability

in the depth of the DCM, its magnitude is relatively constant at around 0.62 mg m−3 (Figure 3f). In the annually averaged5

profiles, the observed DCM is located at about 80 m depth with a concentration of 0.52 mg m−3 (Figure 4a). The base case

succeeds in reproducing the DCM at 65±7m depth. However, it fails to reproduce the deepening of the DCM in June and

the simulated annually averaged depth of DCM is shallower by about 15 m than the observed. The simulated magnitude of

the DCM is about 2-fold larger than the observed (Figure 3f and Figure 4a) and hence the base case generally overestimates

vertically integrated chlorophyll (Figure 3b).10
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Figure 5. The case-specific cost function values (a-c) and total misfits (d) of the base case and the different optimizations.

With respect to phytoplankton and POC, the observed maximum concentration occurs at about 60 m depth, which is 20 m

above the DCM (Figure 4b-c). The observed vertical distributions of phytoplankton and POC are not well captured by the base

case. For example, phytoplankton and POC in the upper layer are overestimated with the model-data discrepancies exceeding

the variability of the observations (Figure 4b-c). As a result, the base case yields an overall overestimation of the vertically

integrated phytoplankton and POC (Figure 3c-d).5

Figure 4b also shows that both observed and simulated phytoplankton approach zero at about 160 m depth. Unlike phyto-

plankton, the observations show that the POC concentrations are 19 mg C m−3 at about 200 m depth because of the existence

of detritus, or zooplankton, or both (Figure 4b, c). However, the base case fails to reproduce this non-zero POC concentrations,

indicating that the model might be underestimating the carbon export fluxes at 200 m.

4.2 Results of the optimizations10

4.2.1 Model-data misfits

The case-specific cost function values and total misfits for the different 1D optimizations are shown in Figure 5. Not surpris-

ingly, all optimizations result in a reduction of the case-specific cost function values. The extent of the reductions depends on
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the specific subset of parameters that were optimized. However, the total misfits are not reduced in all optimizations. Optimiza-

tions A1 and A2 lead to slightly larger total misfits than the base case and optimization B2 leads to a significantly larger total

misfit. The smallest total cost function values are achieved in A4, B4, and C4, i.e. in the experiments where a larger subset

of parameters was optimized (6 parameters). The optimal parameter sets (A4, B2, and C4), which are selected based on case-

specific misfit from these three groups, will be used in subsequent analyses and hereafter are denoted simply as experiment A,5

experiment B, and experiment C. Further comparisons are presented below to assess the impact of the different combinations

of observations.

4.2.2 Experiment A: Satellite chlorophyll only

The optimal parameters (Table 2) from experiment A yield a 58% reduction in the misfit for surface chlorophyll (Figure

5d). However, the vertical structure of chlorophyll deteriorates relative to the base case (Figure 4a) because of inappropriate10

estimates of the initial slope (α= 0.0101; see table 2) and the maximum ratio of chlorophyll to carbon (θmax = 0.0191; see

table 2). The annually averaged depth of the DCM is lifted up to around 30±10m and the magnitude of DCM strongly decreases

(Figure 3a, 4b). Similar to chlorophyll, these deteriorations also manifest in the vertical phytoplankton and POC distributions

(Figure 4b-c). As a result, experiment A underestimates vertically integrated chlorophyll, phytoplankton, and POC (Fig. 3b-d).

4.2.3 Experiment B: Satellite chlorophyll and chlorophyll profiles15

Due to the addition of observed chlorophyll profiles to the optimization in experiment B, the misfits for surface and subsurface

chlorophyll decrease relative to the base case (Figure 5d), but the reduction in the misfit for surface chlorophyll (38%) is smaller

than that in experiment A (58%). A straightforward interpretation is that the addition of subsurface observations reduces the

model’s degrees of freedom to fit one single observation type (surface chlorophyll). The vertical profile of chlorophyll is

reproduced better in experiment B than in the base case and experiment A in that the magnitude of the DCM is closer to the20

observations, although the DCM depth is still too shallow, on average by about 20 m (Figure 4a). The improvement in the

vertical chlorophyll structure results in a better model-data fit of vertically integrated chlorophyll (Figure 3b).

Despite the improvements in chlorophyll, the vertical profiles of phytoplankton and POC exhibit a marked deterioration

relative to the base case and experiment A (Figure 4b-c) because the parameter optimization underestimates the maximum

chlorophyll-to-carbon ratio (θmax = 0.0158; see table 2). Experiment B leads to an overestimation of phytoplankton and POC25

relative to the base case with misfits roughly 2.7 and 1.6 times larger than those of the base case, respectively (Figure 5d).

Although experiment B reproduces the non-zero POC concentrations at about 200 m depth, the proportion of phytoplankton in

the POC pool is incorrect. In contrast to the observations where the phytoplankton’s contribution is neglectable (Figure 4), the

simulated POC at 200 m is dominated by phytoplankton (49%).
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4.2.4 Experiment C: All available observations

Incorporating all observations (i.e. surface chlorophyll and profiles of chlorophyll, phytoplankton, and POC) in experiment C

improves the model-data misfits for almost all aspects except for surface chlorophyll (Figure 3). Although a slight increase in

the misfit occurs for the surface chlorophyll (∼5%), the total misfit is reduced by 75% compared to the base case. As shown

in Figure 4a, the annually averaged depth of DCM of 80 m coincides with the observed DCM, primarily because experiment5

C reproduces the deepening of the DCM in summer. The magnitude of the DCM is also decreased relative to the base case

but remains higher than the observed. Phytoplankton and POC profiles exhibit only minor deviations from the observations

(Figure 4b-c). Importantly, experiment C reproduces the non-zero POC concentrations at 200 m. In contrast to experiment B,

phytoplankton in experiment C drops to zero at about 160 m and POC is dominated by detritus (85%), which is more consistent

with the observations.10

4.3 Simulated carbon fluxes

Annually averaged carbon fluxes within the upper 200 m are shown for each experiment in Figure 6. The primary production

in the base case amounts to 0.78 g C m−2 day−1, of which 37% is consumed by zooplankton, and the remaining 63% flows

into detritus pools through sloppy feeding, mortality, and aggregation of phytoplankton. As for the production of detritus,

contributions from the phytoplankton and zooplankton pools account for 70% and 30%, respectively. Most of the produced15

detritus is recycled into the nutrient pool fueling recycled primary production, and only a small fraction is removed from

the upper layer through gravitational sinking. As a result, carbon export, which is estimated as the sum of sinking fluxes by

phytoplankton and detritus, is only 0.00032 g C m−2 day−1 and accounts for 0.04% of primary production.

Due to the underestimation of phytoplankton in experiment A, primary production is reduced to 0.21 g C m−2 day−1 in

that case. All other fluxes in the top 200 m decrease relative to the base case as well, except for the export flux which increases20

to about 0.8% of primary production. This relative increase in export is the result of larger sinking rates of phytoplankton and

detritus (wPhy = 0.95, wLDet = 4.97; see table 2) than those used in the base case.

In contrast to experiment A, experiment B yields an increase of primary production relative to the base case. The proportion

of the grazing flux to primary production and the contribution of zooplankton to the production of detritus also increase to

about 59% and 52%, respectively. Unlike in the other three experiments, carbon export in experiment B is dominated by the25

sinking of phytoplankton, reflecting its large contribution to POC at 200 m. Although the simulated POC concentration at 200

m is very close to the observations, the relative contributions of phytoplankton, zooplankton, and detritus are problematic and

likely do not result in a better estimation of carbon export (in this case 0.3% of primary production).

In experiment C, primary production is 0.30 g C m−2 day−1 with 24% flowing to zooplankton. The mortality of zooplankton

causes a flux of 0.047 g C m−2 day−1 to detritus, which accounts for 17% of the production of detritus. Finally, about 24%30

of primary production is removed from the upper 200 m through gravitational sinking. The simulated export ratio of 24% is

within the wide range of reported export ratios, from 6% to 43%, at 120 m depth in the Gulf of Mexico (see Table 3 of Hung

et al., 2010). Despite the high degree of uncertainty that exists when estimating export ratios (e.g., the global mean export ratio
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Figure 6. Annually averaged carbon fluxes integrated over the upper 200 m (unit: g C m−2 day−1) for the base case (a) and optimized ex-

periments A, B, and C. The N, P, Z, and D stand for the pools of nutrient, phytoplankton, zooplankton, and the sum of small and large detritus,

respectively. The thickness of arrows scales with the magnitude of fluxes. Dashed arrows represent fluxes lower than 0.01 g C m−2 day−1.

varies from ∼10% (Henson et al., 2012; Lima et al., 2014; Siegel et al., 2014) to ∼20% (Henson et al., 2015; Laws et al.,

2000)), it is obvious that only experiment C reproduced an export ratio of a reasonable magnitude. A more detailed validation

of primary production and export fluxes will be presented in the following sections.

5 3D biogeochemical model

The optimal parameter sets from the 1D optimizations of A, B, and C were applied in the 3D model for the whole GOM for five5

years (2011-2015). The performance of the 3D model can be regarded as a cross-validation of the parameters optimized in 1D

at different times and locations. It is possible that the optimization algorithm has modified parameters to compensate for biases

between 1D and 3D simulations, e.g. the absence of advection in 1D model as well as the differences in the model domain,

model period, and model resolution, that degrades the 3D model performance (Kane et al., 2011). Indeed, directly applying the
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Figure 7. Spatial distributions of the annual mean chlorophyll in the surface layer from the satellite (OC-CCI) climatology (2011-2015) and

the different model versions. The gray contours mark the bathymetric depths of 200 and 1000 m.

optimal parameter sets from 1D version to the 3D model yields lower model-data agreement than the 1D counterpart but well

preserves the most important features. For instance, when the resulting parameters are used in the experiment C, chlorophyll

concentrations in the upper layer were lower in the 3D model and farther away from the observations. However, the DCM

depth and the non-zero POC concentrations at 200 m with appropriate contributions from each component are well reproduced

in the 3D model. We therefore performed a few manual tests and made the following modifications to the optimized parameters5

to bring the model-data agreement of 3D model in better alignment with that of 1D version (Table 2): the half-saturation for

NH4 uptake (kNH4) was decreased to 0.01 in experiment B and C, and the aggregation parameter (τ ) was decreased to 0.05 in

the experiment C.

18



5.1 Spatial patterns of surface chlorophyll

First, the annual climatological surface chlorophyll from satellite and model are compared from 2011 to 2015. The satellite

estimates show high chlorophyll in the coastal regions and low chlorophyll in the deep ocean (Figure 7a). This spatial pattern of

surface chlorophyll is well reproduced in all simulations except in the experiment A which even fails to reproduce the relatively

high chlorophyll near the Mississippi-Atchafalaya river systems because of the high sinking rate of phytoplankton (wPhy =5

0.95; see Table 2). The largest model-data differences occur in the coastal regions, where all simulations underestimate the

observed surface chlorophyll. Since all BGC-Argo floats operated in the deep ocean (Figure 1) and the parameter optimization

is performed at one central station without any influence from coastal environments, only the model results in the deep ocean

(depth > 1000 m) will be considered in the following discussion.

5.2 Subsurface distributions10

Figure 8 shows the seasonal cycles of surface chlorophyll as well as the vertically integrated chlorophyll, phytoplankton,

and POC within the deep ocean (depth>1000 m). Analogous to the 1D models, chlorophyll, phytoplankton, and POC were

integrated over the upper 200 m. Here again the whole deep ocean was averaged because it is homogenous horizontally. In

addition, we compare surface chlorophyll with satellite estimates in two sub-regions from the Mississippi Delta and the central

Gulf in Figure S5.15

Comparisons of vertical profiles between observations and model results are given in Figure 9. In general, the main features

in the 3D models are very similar to those in 1D. Experiment A cannot constrain the vertical profiles of chlorophyll because of

the inappropriate estimation of initial slope (α), experiment B overestimates phytoplankton and its contribution to POC since

the maximum ratio of chlorophyll to carbon (θmax) is weakly constrained, and experiment C shows significant improvements

in the model-data agreement.20

Additional comparisons of the chlorophyll-to-carbon ratio, primary production, and carbon export fluxes from 1D and 3D

models with observations are given in Figure 10. The chlorophyll-to-carbon ratio is estimated as the vertically integrated

chlorophyll divided by phytoplankton in the upper 200 m (Figure 10a). As an important indicator of phytoplankton physiologi-

cal status (Geider, 1987), the observed chlorophyll-to-carbon ratio varies considerably in response to the ambient environment.

In general, the ratios derived from the 3D models are lower than their corresponding 1D values, but the differences are still25

within the range of variability. Without utilizing the observations of phytoplankton and POC, experiments A and B in both 1D

and 3D versions underestimate the chlorophyll-to-carbon ratio. In experiment C, the simulated chlorophyll-to-carbon ratios

from 1D and 3D are in good agreement with the observations although the observed variability is underestimated.

For reference, satellite-based primary production (PP) is provided by two algorithms, the Vertically Generalized Production

Model (VGPM, Behrenfeld and Falkowski, 1997) and the Carbon-based Productivity Model (CbPM, Westberry et al., 2008).30

As shown in Figure 10b, satellite-based PP differs depending on the algorithm applied. PP results from all 3D simulations

which were integrated down to 200 m are qualitatively similar to the 1D simulations. Experiment C provides the best estimates

of PP when compared to satellite-based estimates from VGPM and CbPM, both in 1D and 3D.
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Figure 8. Observed and simulated seasonal cycles of surface chlorophyll (a), vertically integrated chlorophyll (b), vertically integrated

phytoplankton (c), and vertically integrated POC (d) from each 3D models. Solid lines represent the median values over the deep ocean of

GOM (depth>1000m). Error bars and shades show the 25% and 75% percentiles. Chlorophyll, phytoplankton, and POC are integrated over

the top 200m.

The base case and experiments A and B yield carbon export fluxes smaller by one to two orders of magnitude than experiment

C. Thus, only experiment C from the 1D and 3D models are shown in Figure 10c in comparison to observations from sediment

traps (see supplementary material). The carbon export fluxes at 200 m from the 1D and 3D are similar in magnitude although

the 1D model yields higher fluxes and larger variability. Despite the scarcity of carbon export observations in the GOM, the
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Figure 9. Observed and simulated vertical profiles of chlorophyll, phytoplankton, and POC from each 3D models.

model estimates are within the range of observations down to ∼1,600 m and capture the observed declining trend of carbon

export with depth.

In summary, all the results above demonstrate the feasibilities of using the locally optimized parameters from the 1D model

to improve the 3D simulation. In addition, by incorporating all available observations (i.e. surface chlorophyll from satellite

estimates, profiles of chlorophyll, phytoplankton, and POC from bio-optical floats), experiment C can not only simulate the5

biogeochemical processes well in the upper 200 m, but also reproduce the carbon export flux and its associated attenuation in

the deep ocean (200-1600m) of the GOM.
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Figure 10. Comparisons of the chlorophyll to carbon ratio (a), primary production (b), and carbon export fluxes (c) between the 1D and 3D

models.

6 Discussion

6.1 Trade-offs between different observations for parameter optimization

The results of the optimization experiments vary dramatically depending on how many observation types are used. Using

only satellite surface chlorophyll in experiment A succeeds in reducing the misfits of surface chlorophyll, but at the expense

of the vertical structure since the predominant DCM disappears in experiment A. Satellite surface chlorophyll alone cannot5

constrain several vital parameters, including the initial slope of the productivity-irradiance curve (α) and the maximum ratio of

chlorophyll to carbon (θmax), with confidence. This result highlights the importance of subsurface observations for parameter

optimization and similarly for model validation.

The floats provide valuable subsurface observations, but chlorophyll profiles alone are not sufficient for parameter optimiza-

tion. In experiment B, the addition of chlorophyll profiles leads to significant improvements in vertical chlorophyll distribu-10

tions; however, the profiles of phytoplankton and POC deteriorate largely because the maximum ratio of chlorophyll to carbon

(θmax) is poorly constrained. Using estimates of phytoplankton biomass and POC derived from backscatter measurements

in experiment C yields the best estimation of plankton-related state variables and carbon fluxes (i.e. primary production and

carbon export). Only in this experiment do the improvements obtained from observations in the upper 200 m extend to the deep

ocean as reflected in the improved carbon export estimates below 1,000 m.15
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It should be noted, however, that degradation of unoptimized variables did not occur in all optimizations within experiments

A and B. In some cases, the unoptimized fields were improved. For example, the A2 optimization yields a 69% reduction

in the misfit for subsurface chlorophyll (Figure 5d) and large improvements of chlorophyll profiles (Figure S6a) even though

no observations of subsurface chlorophyll are used. Another example is that B1 optimization improves simulations of phyto-

plankton and POC (Figure 5d and Figure S6b-c) through the correlations between the observed chlorophyll and phytoplankton5

(R2 = 0.69) and POC (R2 = 0.69). Similar findings have been reported in Prunet et al. (1996a) where the improvements of

chlorophyll profiles within the mixed layer were obtained by using surface chlorophyll in a 1D model. In a more recent study

by Xiao and Friedrichs (2014a) where satellite data was used subsurface fields were improved in addition to surface fields.

In optimizations A2 and B1, the improvement in unoptimized fields occurred because the poorly constrained parameters

were not optimized but well defined coincidently (α= 0.125 in the optimization A2 and θmax = 0.0535 in the optimization10

B1; see table 2). Including the poorly constrained parameters into the parameter optimization can return a lower misfit with

respect to the observations used in optimization but increases the risk of overfitting and reduces the model’s predictive skill,

i.e. the ability to simulate unoptimized observations and those collected at different locations and times. This is consistent

with previous studies (Friedrichs et al., 2006, 2007; Ward et al., 2010). For example, Friedrichs et al. (2006) optimized three

ecosystem models of different complexities against three seasons of observations and the resulting parameters were used to15

quantify the predictive skill for the fourth season. Cross-validation showed that exclusion of the poorly constrained parameters

from the optimization increased the predictive skill.

Although prior knowledge of the parameters allows one to exclude those poorly constrained ones from the optimization and

thus can prevent degradation in unoptimized variables, most parameters are poorly known. Thus, the ultimate resolution of

this issue should be to increase availability of observations so that more parameters can be constrained with confidence. In20

addition, even if the poorly constrained parameters are well-known, a lack of observations hampers our ability to recognize

improvements in the model’s predictive skill and hence may prevent us from identifying the optimal solutions. For example,

without the observations of phytoplankton and POC, we could not have known that optimization B1 improved simulations of

phytoplankton and POC, let alone that the optimization B1 was a better solution than the optimization B2 (the experiment B)

in terms of the lower total misfit as shown in Figure 5d.25

It has been suggested that when performing a parameter optimization, not only parameter values but also parameter un-

certainties should be taken into account (Fennel et al., 2001; Ward et al., 2010; Bagniewski et al., 2011). The parameter

uncertainties can be assessed by performing an uncertainty analysis (Fennel et al., 2001; Prunet et al., 1996b, a), replicating the

parameter optimization (Ward et al., 2010), and cross-validating the resulting parameters (Xiao and Friedrichs, 2014a). In this

study, a cross-validation of the parameters was conducted by evaluating the model’s predictive skill with respect to different30

variables, times, and locations. However, even when cross-validation at different times and locations produces large misfits, we

cannot conclude that the models reproduce observations through wrong mechanisms. This is because the large misfit can be a

result of intrinsic heterogeneity of biological parameters at different times (Mattern et al., 2012) and locations (Kidston et al.,

2011). Therefore, it is important to evaluate the predictive skill of unoptimized variables.
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Collectively, the discussion above highlights the values of BGC float data for parameter optimization and model validation,

not only because of their high spatio-temporal coverage but also their ability to measure multiple properties simultaneously.

6.2 Feasibilities of applying the local optimized parameters to 3D models

As the high computational cost makes direct optimization for a 3D biogeochemical model impractical, we performed parameter

optimizations first in a 1D surrogate model with the same biogeochemical component as the 3D model. However, there are5

some difficulties in porting the locally optimized parameters to the basin-scale model.

Firstly, the 1D model necessarily neglects advection and inevitably differs from the 3D model, e.g. in model domain and

model resolution. The optimized parameters from the 1D model may have been adjusted to compensate for biases between 1D

and 3D models and, as a result, this may degrade the 3D simulations (Kane et al., 2011). Although counter examples also exist

where the 3D simulations outperform the 1D models with respect to vertical profiles of phytoplankton and nitrate (Hoshiba10

et al., 2018), some manual modifications might be necessary before the optimal 1D parameters can be applied in the 3D model.

In this study, despite some degradations in 3D simulations, the benefits of the 1D optimization were mostly preserved in the

3D simulations. This greatly simplified the following subjective tuning of the 3D model by limiting the number of parameters

that needed to be adjusted and confirmed the feasibility of improving the 3D model by optimizing a 1D surrogate.

Secondly, the spatial heterogeneity of parameters (e.g. Kuhn and Fennel, 2019) is another issue that influences the portability15

of parameters from 1D to 3D models. For example, the underestimation of surface chlorophyll in the coastal regions may result

from the contrasting ecosystem functioning between coastal regions and deep ocean, whereby the highly productive continental

shelf in the northern GOM is fueled by the large nutrient load from the Mississippi and Atchafalaya river systems with primary

production being as high as 4 g C m−2 day−1 near the Mississippi river delta (Fennel et al., 2011), while the deep ocean

is oligotrophic and nutrient limited with the primary production ranging from 0.2 to 0.5 g C m−2 day−1 (see Figure 10).20

In some studies, the parameter optimization has been performed at several contrasting stations with a goal of using different

parameter sets in different regions of the 3D model (Hoshiba et al., 2018). In other studies different stations were optimized

simultaneously to obtain one single optimized parameter set (Kane et al., 2011; Oschlies and Schartau, 2005; Schartau and

Oschlies, 2003). Such parameters compromise the misfit in each single station but take account into all stations and can often

yield an overall better simulation of all these stations as shown by e.g. Kuhn and Fennel (2019) .25

7 Conclusions

In this study, we have performed parameter optimization for a 1D biogeochemical model and then used the resulting parameters

with a few modifications to generate simulations with a corresponding 3D model in the GOM. Three experiments have been

conducted by using different combinations of observations (surface chlorophyll from satellite estimates, vertical profiles of

chlorophyll, phytoplankton biomass and POC from BGC Argo floats) in order to examine the trade-offs between the different30

observations for parameter optimization. Two misfit metrics have been defined using the case-specific misfit and the total misfit

to measure the models’ abilities to reproduce the optimized and unoptimized observations.
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Model results show that satellite surface chlorophyll alone cannot reproduce well the vertical structures in a biogeochemical

model unless profile observations are used in addition. BGC Argo floats are an excellent platform for obtaining such observa-

tions at high spatio-temporal coverage and for a relatively broad suite of parameters. Only adding chlorophyll profiles is not

sufficient because they fail to constrain the ratio of chlorophyll to phytoplankton, but the addition of backscatter, which allows

estimation of phytoplankton biomass and POC, enables us to constrain the subsurface carbon state variables and reproduce5

well PP and carbon export fluxes to below1000 m depth. Finally, our 3D model was improved and reproduced similar results

as the 1D version, which is promising for the application of parameter optimization.
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