
 1 

Assessing the value of BGC Argo profiles versus ocean colour observations for 1 

biogeochemical model optimization in the Gulf of Mexico 2 

Bin Wang1, Katja Fennel1, Liuqian Yu1,2, Christopher Gordon1 3 

1Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada 4 
2Department of Mathematics, The Hong Kong University of Science and Technology, Kowloon, Hong 5 

Kong 6 

Correspondence to: Bin Wang (Bin.Wang@dal.ca) 7 

Abstract. Biogeochemical ocean models are useful tools subject to uncertainties arising from 8 

simplifications, inaccurate parameterization of processes, and poorly known model parameters. Parameter 9 

optimization is a standard method for addressing the latter but typically cannot constrain all 10 

biogeochemical parameters because of insufficient observations. Here we assess the trade-offs between 11 

satellite observations of ocean colour and biogeochemical (BGC) Argo profiles, and the benefits of 12 

combining both observation types, for optimizing biogeochemical parameters in a model of the Gulf of 13 

Mexico. A suite of optimization experiments is carried out using different combinations of satellite 14 

chlorophyll and profile measurements of chlorophyll, phytoplankton biomass, and particulate organic 15 

carbon (POC) from autonomous floats. As parameter optimization in 3D models is computationally 16 

expensive, we optimize the parameters in a 1D model version, and then perform 3D simulations using 17 

these parameters. We show first that the use of parameters optimized in 1D improves the skill of the 3D 18 

model. Parameters that are only optimized with respect to surface chlorophyll cannot reproduce 19 

subsurface distributions of biological fields. Adding profiles of chlorophyll in the parameter optimization 20 

yields significant improvements for surface and subsurface chlorophyll but does not accurately capture 21 

subsurface phytoplankton and POC distributions because the parameter for the maximum ratio of 22 

chlorophyll to phytoplankton carbon is not well constrained in that case. Using all available observations 23 

leads to significant improvements of both observed (chlorophyll, phytoplankton, and POC) and 24 

unobserved variables (e.g. primary production). Our results highlight the significant benefits of BGC 25 

Argo measurements for biogeochemical parameter optimization and model calibration. 26 
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1. Introduction 27 

    Oceanic primary production forms the basis of the marine food web and fuels the biological pump, 28 

which contributes to the sequestration of atmospheric CO2 in the ocean’s interior thus mitigating global 29 

warming. An accurate quantification of primary production and biological carbon export is therefore 30 

important for our understanding of the marine carbon cycle and for predicting how carbon cycling and 31 

marine ecosystems will interact with climate change. 32 

 Direct observations of primary production and export flux are relatively sparse because of the cost 33 

and effort involved in measuring these fluxes. Numerical models can complement sparse observations. 34 

Well validated and calibrated models are useful tools for hindcasting and nowcasting past and present 35 

biogeochemical fluxes and are the most common tool for projecting future changes.  36 

In recent years, many biogeochemical models with different complexities, ranging from three to more 37 

than thirty biological state variables, have been developed to study ocean biogeochemical processes. 38 

Regardless of their complexities, the performance of these models is highly dependent on the appropriate 39 

choice of model parameter values (e.g. maximum growth, grazing and mortality rates), most of which are 40 

poorly known. Some parameter choices are informed by laboratory experiments (e.g. light and nutrient 41 

dependence of phytoplankton growth), although isolated cultures in the lab may not be representative of 42 

the behavior of natural communities. Other parameters cannot be directly determined (e.g. mortality 43 

rates). Choosing appropriate parameter values becomes more challenging as model complexity grows 44 

because the number of parameters increases exponentially with the number of state variables (Denman, 45 

2003). 46 

A standard method for addressing the problem of poorly known model parameters is parameter 47 

optimization, a process by which the misfit between model results and available observations is 48 

minimized by iteratively varying parameters (Matear, 1995; Prunet et al., 1996a, 1996b; Fennel et al., 49 

2001; Friedrichs et al., 2007; Kuhn et al., 2015, 2018). However, even formal optimization typically 50 

cannot constrain all biogeochemical parameters (i.e. provide optimal parameter estimates with relatively 51 

small uncertainties) because of insufficient information in the available observations (Matear, 1995; 52 

Fennel et al., 2001; Ward et al., 2010; Bagniewski et al., 2011). For example, Matear (1995) used a so-53 
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called simulated annealing algorithm to optimize three different ecosystem models and found that even 54 

for the simplest nutrient-phytoplankton-zooplankton model, not all independent parameters could be 55 

constrained well, leaving the others with large uncertainty ranges. A more recent study reported that the 56 

lack of zooplankton observations led to poor accuracy of the optimized zooplankton-related parameters 57 

when using a suite of Lagrangian-based observations during the North Atlantic spring bloom (Bagniewski 58 

et al., 2011). A broader suite of observation types should be favourable to parameter optimization although 59 

complications can arise. For example, when optimizing a suite of 1D models for the Mid-Atlantic Bight, 60 

the use of satellite POC observations in addition to satellite chlorophyll did not yield further 61 

improvements in model-data fit but degraded the representation of chlorophyll (Xiao and Friedrichs, 62 

2014a). 63 

Typically surface ocean chlorophyll from satellite is the main source of observations for model 64 

validation (e.g. Doney et al., 2009; Gomez et al., 2018; Lehmann et al., 2009) and parameter optimization 65 

(Prunet et al., 1996a; Xiao and Friedrichs, 2014a, 2014b), supplemented by other observation types as 66 

available. However, satellites only see the ocean surface and do not resolve the vertical distribution of 67 

chlorophyll. This is especially problematic in oligotrophic regions where the maximum chlorophyll 68 

concentration (referred as the deep chlorophyll maximum, DCM) is pronounced near the base of the 69 

euphotic zone because of photoacclimation (Cullen, 2015; Fennel and Boss, 2003). In addition, although 70 

chlorophyll has long been used as a proxy of phytoplankton biomass and to estimate primary production 71 

based on some assumptions (Behrenfeld and Falkowski, 1997), it is not a direct measure of carbon-based 72 

phytoplankton biomass. The ratio of chlorophyll-to-phytoplankton carbon varies by at least an order of 73 

magnitude due to physiological responses of phytoplankton to their ambient environment (e.g. nutrients, 74 

light, and temperature) (Cullen, 2015; Fennel and Boss, 2003; Geider, 1987). Thus, changes in 75 

chlorophyll may result from physiologically induced modifications of the chlorophyll-to-phytoplankton 76 

ratio rather than actual changes of phytoplankton biomass (Fommervault et al., 2017; Mignot et al., 2014). 77 

Satellite surface chlorophyll alone is therefore likely insufficient for model validation and for constraining 78 

biogeochemical models via parameter optimization. 79 

Recent advances in autonomous platforms and sensors have opened opportunities for simultaneous 80 
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measurement of several biological and chemical properties throughout the upper ocean with high 81 

resolution, over broad spatial scales and for sustained periods (Roemmich et al., 2019). In particular, the 82 

biogeochemical (BGC) Argo program (Johnson and Claustre, 2016; Roemmich et al., 2019) will provide 83 

temporally evolving 3D information on biogeochemical variability at previously unobserved scales. Here 84 

we assess to what degree observations of chlorophyll fluorescence and particle backscatter from Argo 85 

profiles improve the prospects of optimizing a biogeochemical model for the Gulf of Mexico.  86 

Since the high computational cost and storage demands of 3D models make direct application of 87 

most parameter optimization techniques difficult (but see Mattern et al., 2012; Mattern and Edwards, 88 

2017; Tjiputra et al., 2007 for exceptions), they are typically applied in computationally efficient 1D 89 

models before using the resulting parameters in 3D version (e.g. Hoshiba et al., 2018; Kane et al., 2011; 90 

Kuhn and Fennel, 2019; Schartau and Oschlies, 2003). We follow the latter approach here. 91 

The main objective of this study is to assess the added value of bio-optical profile information from 92 

Argo floats for biogeochemical model optimization in the Gulf of Mexico. We first examine the feasibility 93 

of improving the 3D model by applying the optimal parameters from 1D model optimizations. We find 94 

that the gains from the 1D optimizations transfer to the 3D version. Then, by using different combinations 95 

of satellite and float observations we show that parameters optimized with respect to satellite data cannot 96 

reproduce subsurface distributions unless the float observations (i.e. chlorophyll, phytoplankton, and POC) 97 

are also used.  98 

2. Study region 99 

The Gulf of Mexico (GOM) is a semi-enclosed marginal sea (Figure 1) which is characterized by 100 

eutrophic coastal waters on the northern shelf and an oligotrophic deep ocean. The high productivity in 101 

the northern coastal region is fueled by large nutrient and freshwater inputs from the Mississippi and 102 

Atchafalaya Rivers. The large nutrient load and strong stratification driven by Mississippi and 103 

Atchafalaya River inputs lead to summer hypoxia and ocean acidification in bottom waters on the 104 

northern shelf (Laurent et al., 2017; Yu et al., 2015), but nutrient export across the shelf break into the 105 

open Gulf is minor (Xue et al., 2013). 106 
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The deep ocean of the GOM is oligotrophic. Previous satellite-based studies have revealed a clear 107 

seasonal cycle in surface chlorophyll with highest concentrations in winter and lowest in summer 108 

(Martínez-López and Zavala-Hidalgo, 2009; Muller-Karger et al., 1991, 2015). Thanks to advances in 109 

autonomous profiling technology, recent studies based on simultaneous measurements of subsurface 110 

chlorophyll and backscatter have demonstrated that the seasonal variability of surface chlorophyll might 111 

be a result of the vertical redistribution of subsurface chlorophyll and/or physiological response to solar 112 

radiation of phytoplankton (Fommervault et al., 2017; Green et al., 2014). 113 

3. Methods 114 

3.1. Biological observations 115 

Satellite-derived chlorophyll from the Ocean-Colour Climate Change Initiative project (OC-CCI, 116 

https://www.oceancolour.org) with a spatial resolution of 4 km from 2010 to 2015 is used for model 117 

validation and parameter optimization. These data were provided by the European Space Agency (ESA), 118 

which produced a set of validated and error-characterised global ocean-color products by merging 119 

SeaWiFS (Sea-viewing Wide Field-of-view Sensor), MODIS (Moderate-resolution Imaging 120 

Spectroradiometer), and MERIS (medium-spectral resolution imaging spectrometer) products.  121 

In addition to the satellite-based measurements, bio-optical measurements from six autonomous 122 

profiling floats are used (Figure 1), which were deployed by the Bureau of Ocean Energy Management 123 

(BOEM) and operated in the deep GOM from 2011 to 2015. These floats were equipped with a CTD and 124 

bio-optical sensors to collect biweekly profiles of temperature, salinity, chlorophyll fluorescence, and 125 

backscatter at 700 nm (bbp700 (m-1)) from the surface to 1000 m depth (see Fommervault et al., 2017 126 

and Green et al., 2014 for more details). Chlorophyll was derived from fluorescence based on the sensor 127 

manufacturer’s calibrations and cross-validated with the satellite estimates of surface chlorophyll. While 128 

the surface chlorophyll measurements from the floats and the satellite estimates both show a typical 129 

seasonal cycle and are highly correlated (R2=0.74; see Figures S1 and S2a in the Supplement), the satellite 130 

underestimates the float-measured chlorophyll concentrations in winter (Figure S1c). Satellite estimates 131 

were therefore corrected following the regression equation shown in Figure S2a (Figure S1c). 132 

The backscatter sensor carried by the floats provides the volume scattering function at a centroid 133 
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angle of 140o and a wave length of 700 nm (𝛽(140&, 700𝑛𝑚) m-1 sr-1) (Green et al., 2014). The profiles 134 

were filtered following Briggs et al. (2011) to remove spikes. To cross-validate the float-measured bbp700 135 

with the satellite estimates, the bbp670 from OC-CCI was firstly converted to bbp700 through a power 136 

law (Boss and Haëntjens, 2016): 137 

 138 

𝑏𝑏𝑝(𝜆1) = 0
𝜆1
𝜆22

34

𝑏𝑏𝑝(𝜆2),																																																							(1) 139 

 140 

where 𝜆1 and 𝜆2 represent the measured wavelength, and 𝛾 was estimated as 0.78 based on the global 141 

measurements. Compared to surface chlorophyll, surface bbp700 has a less distinct seasonal cycle (Figure 142 

S3). For example, the coefficient of variation, defined as the ratio between standard deviation and mean 143 

to show the extend of variability, is much lower for bbp700 (0.09 and 0.07 for floats and satellite, 144 

respectively) than for chlorophyll (0.31 and 0.26 for floats and satellite, respectively). The bbp700 from 145 

the floats is weakly correlated with the satellite estimates (R2=0.11) and generally lower by a factor of 146 

~0.45 than the satellite estimates (Figure S2b). The bbp700 profiles were therefore multiplied by 2.2 147 

before being converted to bbp470 following the equ. 1. 148 

Profiles of phytoplankton and POC were derived from the validated bbp470 profiles based on the 149 

following empirical relationships 150 

 151 

𝑃ℎ𝑦 = 30100 × (𝑏𝑏𝑝470− 76 × 103>)
1

12 × 6.625,																															(2) 152 

 153 

𝑙𝑜𝑔10(𝑃𝑂𝐶) = 1.22 × 𝑙𝑜𝑔10(𝑏𝑏𝑝470) + 5.15.																																				(3) 154 

 155 

The relationships for phytoplankton (Martinez-Vicente et al., 2013; equ. 2) and POC (Rasse et al., 2017; 156 

equ. 3) were obtained from a data set for the Atlantic Ocean that covers a wide range of oceanographic 157 

regimes from eutrophic to oligotrophic ecosystems. The scale factors of 12 and 6.625 in equ. 2 represent 158 
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the molecular weight of carbon and the Redfield ratio to convert phytoplankton concentrations from mg 159 

C m-3 to mmol N m-3. According to Behrenfeld et al. (2005), the intercept 76 × 103> in equ. 2 represents 160 

the background backscatter of nonalgal detritus. In this study, both chlorophyll and phytoplankton 161 

approach zero when bbp470 is 76 × 103> m-1, implying that the use of equ. 2 is appropriate. 162 

3.2. 3D model description  163 

    The physical model is configured based on Regional Ocean Modeling System (Haidvogel et al., 164 

2008; ROMS, https://www.myroms.org) for the Gulf of Mexico (Figure 1). The model has a horizontal 165 

resolution of 6~7 km and 36 terrain-following sigma layers with refined resolution near the surface and 166 

bottom. The model solves for the horizontal and vertical advection of tracers using the Multidimensional 167 

positive definitive advection transport algorithm (MPDATA, Smolarkiewicz and Margolin 1998). 168 

Horizontal viscosity and diffusivity are parameterized by a Smagorinsky-type formula (Smagorinsky, 169 

1963), and vertical turbulent mixing is calculated by the Mellor-Yamada 2.5-level closure scheme (Mellor 170 

and Yamada, 1982). Bottom friction is specified by a logarithmic drag formulation with a bottom 171 

roughness of 0.02 m. The model is forced by 3-hourly surface heat and freshwater fluxes, 6-hourly air 172 

temperature, sea level pressure and relative humidity, and 10-m winds from the European Centre for 173 

Medium-Range Weather Forecast ERA-Interim product with a horizontal resolution of 0.125o (ECMWF 174 

reanalysis, https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim). A bulk 175 

parameterization is applied to calculate the surface net heat fluxes and wind stress. The model is one-way 176 

nested inside the 1/12o data-assimilative global HYCOM/NCODA (https://www.hycom.org). Tidal 177 

constitutes are neglected in the model.  178 

    The biogeochemical model uses a 7-component model (Fennel et al., 2006) to simulate the nitrogen 179 

cycle in the water column. The model describes the dynamics of two species of dissolved inorganic 180 

nitrogen (nitrate, NO3, and ammonium, NH4), one function of phytoplankton (Phy), chlorophyll (Chl) as 181 

a separate state variable which allows photo-acclimation based on the model of (Geider et al., 1997), one 182 

function of zooplankton (Zoo), and two pools of detritus (i.e. small suspended detritus, SDeN, and large 183 

fast-sinking detritus, LDeN). Water-sediment interactions are simplified by an instantaneous 184 

remineralization parameterization, where detritus sinking out of water column immediately results in a 185 
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corresponding influx of ammonium into the bottom layer. Detailed descriptions of the model equations 186 

can be found in Fennel et al. (2006). The biological model parameters are listed in Table 1.  187 

 The model receives freshwater, nutrients (NO3 and NH4) and organic matter inputs from major rivers 188 

along the Gulf coast. Freshwater and nutrients from the Mississippi and Atchafalaya rivers are prescribed 189 

based on the daily measurements by the US Geological Survey river gauges. River particulate organic 190 

nitrogen (PON) is assigned to the small detritus pool and determined as the difference between total 191 

Kjeldahl nitrogen and ammonium (Fennel et al., 2011). Other rivers utilize the climatological estimates 192 

of freshwater, nutrients, and PON as in Xue et al. (2013). 193 

Initial and open boundary conditions for NO3 are specified by applying an empirical relationship 194 

between NO3 and temperature, derived from the World Ocean Atlas (WOA; Figure S4a), that is applied 195 

to the temperature fields from HYCOM/NCODA. Analogously, empirical relationships between 196 

chlorophyll and density (Figure S4b), phytoplankton and density (Figure S4c), and POC and density 197 

(Figure S4d) were obtained from the median profiles of the bio-optical floats and used to derive initial 198 

and boundary conditions for these variables. Zooplankton and small detritus were assumed to amount to 199 

10% of phytoplankton biomass and the remaining fractions of POC attributed to large detritus.   200 

A 6-year (5 January 2010 – 31 December 2015) hindcast was performed that includes the period of 201 

operation of the bio-optical floats. The first year is considered model spin-up and the next five years will 202 

be discussed. 203 

3.3. 1D model description 204 

As optimizing a 3D biogeochemical model is computationally expensive, it is more practical to 205 

perform the optimization using a reduced-order model surrogate. A surrogate can be a coarser resolution 206 

model, a simplified model, or a reduced-dimension model. In this study, a 1D model is used to optimize 207 

the biological parameters of the 3D model. This approach has been successfully used previously (Hoshiba 208 

et al., 2018; Kane et al., 2011; Oschlies and Schartau, 2005). 209 

The 1D model, which is similar to that used by Lagman et al. (2014) and Kuhn et al. (2015), covers 210 

the upper 200 m of the ocean with a vertical resolution of 5 m and is configured at one location in the 211 

central Gulf (see Figure 1). In the vertical direction, the water column is divided into two layers: the 212 
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turbulent surface layer and a quiescent layer below. A higher diffusion coefficient ( 𝐾HI =213 

max(𝐻NOPQ /400,10))is applied in the turbulent surface layer and a lower diffusion coefficient (𝐾HQ =214 

𝐾HI/2) is assigned to the quiescent bottom layer. The interface between these two layers is determined 215 

by the mixed layer depth (𝐻NOP), defined as the depth where the temperature is 5oC lower than at the 216 

surface, and was obtained from a simulation of the 3D model. The model is integrated in time using the 217 

Crank-Nicolson scheme for vertical turbulent mixing and an implicit time-stepping scheme for the 218 

biogeochemical tracers, which are treated identically to the 3D model. Some of the biogeochemical 219 

parameterizations require input of temperature and solar radiation, which are also taken from the 3D 220 

model. As the 1D model does not consider horizontal and vertical advection, NO3 below 100 m is nudged 221 

to that from the 3D base simulation with a nudging time scale of 20 days. The model is run for the year 222 

2010 repeatedly for three cycles, with the first two are model spin-up and the last annual cycle used to 223 

calculate the misfit between model and observations. 224 

3.4. Parameter optimization method 225 

     The evolutionary algorithm described by Kuhn et al. (2015, 2018) is used to search for optimal 226 

model parameters by minimizing the misfit between model and observations. The misfit is measured by 227 

the following cost function: 228 

 229 

F(𝑝) = 	UFV(𝑝),
W

VXI

																																																																			(4) 230 

 231 

FV(𝑝) =
1

𝑁V𝜎VQ
U[𝑦\],V − 𝑦],V(𝑝)^

Q
_`

]XI

,																																																		(5) 232 

 233 

where 𝑝 represents the parameters vector, V is the number of different observation types, 𝑁V is the 234 

number of observations for each variable, FV(𝑝) is the misfit for observation type v measured as the 235 

mean-square difference between observations (𝑦\) and corresponding model estimates (𝑦(𝑝)). The cost 236 
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function FV(𝑝) is normalized by the standard deviation of each variable type (𝜎V) in order to remove the 237 

effect of different units. 238 

The algorithm is inspired by the rules of natural selection. Following Kuhn et al. (2015), an initial 239 

parameter population of 30 parameter vectors is randomly generated within a predefined range of 240 

parameters (see Table 1). The model is evaluated for each parameter vector and the resulting cost function 241 

is calculated. For this initial generation and each of the following generations, the half of the population 242 

with the lower misfit survives into the next generation. The other half is regenerated through a 243 

recombination of survivors in a process analogous to genetic crossover. In addition, each newly generated 244 

population is subject to random mutations by multiplying the parameter values by a random value 245 

between 0 and 2. Parameter values exceeding the predefined range are replaced by their corresponding 246 

minimum or maximum limits to avoid unrealistic values. The above procedure is performed iteratively 247 

for 300 generations to reach the minimum of the cost function, which corresponds to the optimal 248 

parameter set. 249 

Previous parameter optimization studies have shown that it is difficult to constrain all model 250 

parameters even for very simple ecosystem models because the information content of available 251 

observations is typically insufficient (Matear, 1995; Fennel et al., 2001; Ward et al., 2010). Here we 252 

conducted sensitivity tests to identify the parameters that are most sensitive to the available observations 253 

and chose a subset of these to be optimized. In the base case, all parameters were at their initial guess 254 

values obtained from the previous literature and some initial tuning. Then the test cases were run multiple 255 

times by incrementally changing one parameter at a time to be the minimum, the first, second and third 256 

quartile, and the maximum of its corresponding range while setting the other parameters to their initial 257 

guess value (Table 1). The sensitivity was measured as the sum of a normalized absolute difference 258 

between the base case (𝑦abcd) and the test case (𝑦edcf)  259 

 260 

𝑄(𝑦, 𝑝) =
1
𝑚U

1
𝑛U

|𝑦abcd − 𝑦edcf|
𝑦abcd

i

jXI

k

]XI

																																															(6) 261 

 262 
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where m is the number of parameter increments (here 5) and n is the number of base-test pairs including 263 

all 1D model grid cells throughout the whole simulation period for all variables to be compared.  264 

Results of the sensitivity analysis are shown in Figure 2, where parameters are ranked by sensitivity 265 

with respect to chlorophyll (Figure 2a) and the sum of chlorophyll, phytoplankton, and POC (Figure 2b). 266 

POC is the sum of phytoplankton, zooplankton, and small and large detritus. 267 

3.5. Parameter optimization experiments 268 

    For the parameter optimization of the 1D model, satellite chlorophyll within a 3´3 pixel (12 km´12 269 

km area) around the 1D station and climatological monthly averages of the profiles from the bio-optical 270 

floats were used. 271 

To assess the effects of the optimization with respect to the different observation types, we conducted 272 

three groups of experiments in which (A) surface satellite chlorophyll only, (B) surface satellite 273 

chlorophyll and float profiles of chlorophyll, and (C) surface satellite chlorophyll and float profiles of 274 

chlorophyll, phytoplankton, and POC were used. For each of these three groups, four to five optimizations 275 

were conducted starting with the three most sensitive parameters and then adding one more parameter at 276 

a time (Table 2) guided by the sensitivity analysis with respect to observed variables they used. 277 

Specifically, groups A and B were based on the sensitivity analysis with respect to chlorophyll, while 278 

group C was based on sensitivity analysis with respect to the sum of chlorophyll, phytoplankton, and 279 

POC. Each optimization was replicated four times. The optimization with smallest model-data misfit 280 

within each group was then used. Prior tests have shown that the available observations cannot 281 

simultaneously constrain the sinking rates of small and large detritus (wSDet and wLDet). Therefore, a 282 

constant ratio of 0.1 between these two parameters (wSDet =0.1´wLDet) was imposed and only one of the 283 

two was optimized. In groups A and B, the aggregation parameter τ was fixed at 0.05 because prior tests 284 

generated unreasonably high values for this parameter.  285 

We report two different metrics of misfits for these groups of experiments. The first metric, which 286 

we refer to as the case-specific cost function value, is based on the optimized observations in a given 287 

experiment and is minimized by the optimization algorithm, i.e. 288 

 289 
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Fl(𝑝) = 	FmnopqrO(𝑝),																																																																(8)	290 

	291 

Fa(𝑝) = 	FmnopqrO(𝑝) + FqrO(𝑝), 𝑎𝑛𝑑																																																						(9)	292 

	293 

Fq(𝑝) = 	FmnopqrO(𝑝) + FqrO(𝑝) + Fwxy(𝑝) + Fwzq(𝑝).																																	(10)	294 

	295 

However, the models with lower case-specific misfit does not necessarily have better predictive skill in 296 

reproducing the unoptimized observations because of the so-called overfitting problem, e.g. the model 297 

may be tuned to reproduce optimized observations through wrong mechanisms (Friedrichs et al., 2006). 298 

To account for this, a second metric referred to as the total misfit is given by equ. 10. For group C, the 299 

second metric is the same as the case-specific cost function. For groups A and B, the total misfit metric 300 

allows us to assess improvements in the model’s predictive skill to represent unoptimized fields. 301 

4. Optimization of 1D models 302 

4.1. Observations and base case 303 

     To provide context for the evaluation of our optimization experiments, the observations and the 304 

base case will be described first. As shown in Figure 3a, the observed surface chlorophyll shows a clear 305 

seasonality with the high concentrations in winter and low concentrations in summer. In the base case, 306 

the simulated surface chlorophyll fits observations well. Unlike the surface chlorophyll, the vertically 307 

integrated chlorophyll as well as the phytoplankton and POC over the upper 200 m tend to be more 308 

constant with much less seasonality (Figure 3b-d). This has been reported by Fommervault et al. (2017) 309 

who attributed the seasonality of surface chlorophyll to the vertical redistributions of subsurface 310 

chlorophyll and/or photoacclimation, rather than real changes in biomass. 311 

    The DCM is a ubiquitous phenomenon in the oligotrophic regions (Cullen, 2015). Observations 312 

detect a predominant DCM at around 60-100m depth throughout the whole year, with a sharp deepening 313 

in June and gradual shoaling after July (Figure 3e), reflecting the seasonality of the solar radiation. Unlike 314 

the large variability in the depth of the DCM, its magnitude is relatively constant at around 0.62 mg m-3 315 

(Figure 3f). In the annually averaged profiles, the observed DCM is located at about 80 m depth with a 316 
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concentration of 0.52 mg m-3 (Figure 4a). The base case succeeds in reproducing the DCM at 65±7m 317 

depth. However, it fails to reproduce the deepening of the DCM in June and the simulated annually 318 

averaged depth of DCM is shallower by about 15 m than the observed. The simulated magnitude of the 319 

DCM is about 2-fold larger than the observed (Figure 3f and Figure 4a) and hence the base case generally 320 

overestimates vertically integrated chlorophyll (Figure 3b). 321 

    With respect to phytoplankton and POC, the observed maximum concentration occurs at about 60 322 

m depth, which is 20 m above the DCM (Figure 4b-c). The observed vertical distributions of 323 

phytoplankton and POC are not well captured by the base case. For example, phytoplankton and POC in 324 

the upper layer are overestimated with the model-data discrepancies exceeding the variability of the 325 

observations (Figure 4b-c). As a result, the base case yields an overall overestimation of the vertically 326 

integrated phytoplankton and POC (Figure 3c-d). 327 

     Figure 4b also shows that both observed and simulated phytoplankton approach zero at about 160 328 

m depth. Unlike phytoplankton, the observations show that the POC concentrations are 19 mg C m-3 at 329 

about 200 m depth because of the existence of detritus (Figure 4c). However, the base case fails to 330 

reproduce this non-zero POC concentrations, indicating that the model might be underestimating the 331 

carbon export fluxes at 200 m. 332 

4.2. Results of the optimizations 333 

4.2.1. Model-data misfits 334 

   The case-specific cost function values and total misfits for the different 1D optimizations are shown 335 

in Figure 5. Not surprisingly, all optimizations result in a reduction of the case-specific cost function 336 

values. The extent of the reductions depends on the specific subset of parameters that were optimized. 337 

However, the total misfits are not reduced in all optimizations. Optimizations A1 and A2 lead to slightly 338 

larger total misfits than the base case and optimization B2 leads to a significantly larger total misfit. The 339 

smallest total cost function values are achieved in A4, B4, and C4, i.e. in the experiments where a larger 340 

subset of parameters was optimized (6 parameters). The optimal parameter sets (A4, B2, and C4), which 341 

are selected based on case-specific misfit from these three groups, will be used in subsequent analyses 342 
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and hereafter are denoted simply as experiment A, experiment B, and experiment C. Further comparisons 343 

are presented below to assess the impact of the different combinations of observations.  344 

4.2.2. Experiment A 345 

The optimal parameters from experiment A yield a 58% reduction in the misfit for surface 346 

chlorophyll (Figure 5d). However, the vertical structure of chlorophyll deteriorates relative to the base 347 

case (Figure 4a) because of inappropriate estimates of the initial slope (α=0.0101; see table 2) and the 348 

maximum ratio of chlorophyll to carbon (θmax=0.0191; see table 2). The annually averaged depth of the 349 

DCM is lifted up to around 30±10m and the magnitude of DCM strongly decreases (Figure 3a, 4b). 350 

Similar to chlorophyll, these deteriorations also manifest in the vertical phytoplankton and POC 351 

distributions (Figure 4b-c). As a result, experiment A underestimates vertically integrated chlorophyll, 352 

phytoplankton, and POC (Fig. 3b-d).  353 

4.2.3. Experiment B 354 

 Due to the addition of observed chlorophyll profiles to the optimization in experiment B, the misfits 355 

for surface and subsurface chlorophyll decrease relative to the base case (Figure 5d), but the reduction in 356 

the misfit for surface chlorophyll (38%) is smaller than that in experiment A (58%). A straightforward 357 

interpretation is that the addition of subsurface observations reduces the model’s degrees of freedom to 358 

fit one single observation type (surface chlorophyll). The vertical profile of chlorophyll is reproduced 359 

better in experiment B than in the base case and experiment A in that the magnitude of the DCM is closer 360 

to the observations, although the DCM depth is still too shallow, on average by about 20 m (Figure 4a). 361 

The improvement in the vertical chlorophyll structure results in a better model-data fit of vertically 362 

integrated chlorophyll (Figure 3b). 363 

Despite the improvements in chlorophyll, the vertical profiles of phytoplankton and POC exhibit a 364 

marked deterioration relative to the base case and experiment A (Figure 4b-c) because the parameter 365 

optimization underestimates the maximum chlorophyll-to-carbon ratio (θmax =0.0158; see table 2). 366 

Experiment B leads to an overestimation of phytoplankton and POC relative to the base case with misfits 367 

roughly 2.7 and 1.6 times larger than those of the base case, respectively (Figure 5d). Although 368 

experiment B reproduces the non-zero POC concentrations at about 200 m depth, the proportion of 369 
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phytoplankton in the POC pool is incorrect. In contrast to the observations where detritus dominates POC, 370 

the simulated POC at 200 m is dominated by phytoplankton (49%) followed by zooplankton (39%). 371 

4.2.4. Experiment C 372 

Incorporating all observations (i.e. surface chlorophyll and profiles of chlorophyll, phytoplankton, 373 

and POC) in experiment C improves the model-data misfits for almost all aspects except for surface 374 

chlorophyll (Figure 3). Although a slight increase in the misfit occurs for the surface chlorophyll (~5%), 375 

the total misfit is reduced by 75% compared to the base case. As shown in Figure 4a, the annually 376 

averaged depth of DCM of 80 m coincides with the observed DCM, primarily because experiment C 377 

reproduces the deepening of the DCM in summer. The magnitude of the DCM is also decreased relative 378 

to the base case but remains higher than the observed. Phytoplankton and POC profiles exhibit only minor 379 

deviations from the observations (Figure 4b-c). Importantly, experiment C reproduces the non-zero POC 380 

concentrations at 200 m. In contrast to experiment B, phytoplankton in experiment C drops to zero at 381 

about 160 m and POC is dominated by detritus (85%), which is more consistent with the observations. 382 

4.3. Simulated carbon fluxes 383 

Annually averaged carbon fluxes within the upper 200 m are shown for each experiment in Figure 384 

6. The primary production in the base case amounts to 0.78 g C m-2 day-1, of which 37% is consumed by 385 

zooplankton, and the remaining 63% flows into detritus pools through sloppy feeding, mortality, and 386 

aggregation of phytoplankton. As for the production of detritus, contributions from the phytoplankton 387 

and zooplankton pools account for 70% and 30%, respectively. Most of the produced detritus is recycled 388 

into the nutrient pool fueling recycled primary production, and only a small fraction is removed from the 389 

upper layer through gravitational sinking. As a result, carbon export, which is estimated as the sum of 390 

sinking fluxes by phytoplankton and detritus, is only 0.00032 g C m-2 day-1 and accounts for 0.04% of 391 

primary production. 392 

Due to the underestimation of phytoplankton in experiment A, primary production is reduced to 0.21 393 

g C m-2 day-1 in that case. All other fluxes in the top 200 m decrease relative to the base case as well, 394 

except for the export flux which increases to about 0.8% of primary production. This relative increase in 395 

export is the result of larger sinking rates of phytoplankton and detritus (wPhy=0.95, wLDet =4.97; see table 396 
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2) than those used in the base case. 397 

In contrast to experiment A, experiment B yields an increase of primary production relative to the 398 

base case. The proportion of the grazing flux to primary production and the contribution of zooplankton 399 

to the production of detritus also increase to about 59% and 52%, respectively. Unlike in the other three 400 

experiments, carbon export in experiment B is dominated by the sinking of phytoplankton, reflecting its 401 

large contribution to POC at 200 m. Although the simulated POC concentration at 200 m is very close to 402 

the observations, the relative contributions of phytoplankton, zooplankton, and detritus are problematic 403 

and likely do not result in a better estimation of carbon export (in this case 0.3% of primary production). 404 

In experiment C, primary production is 0.30 g C m-2 day-1 with 24% flowing to zooplankton. The 405 

mortality of zooplankton causes a flux of 0.047 g C m-2 day-1 to detritus, which accounts for 17% of the 406 

production of detritus. Finally, about 24% of primary production is removed from the upper 200 m 407 

through gravitational sinking. The simulated export ratio of 24% is within the wide range of reported 408 

export ratios, from 6% to 43%, at 120 m depth in the Gulf of Mexico (see Table 3 of Hung et al., 2010). 409 

Despite the high degree of uncertainty that exists when estimating export ratios (e.g., the global mean 410 

export ratio varies from ~10% (Henson et al., 2012; Lima et al., 2014; Siegel et al., 2014) to ~20% 411 

(Henson et al., 2015; Laws et al., 2000)), it is obvious that only experiment C reproduced an export ratio 412 

of a reasonable magnitude. A more detailed validation of primary production and export fluxes will be 413 

presented in the following sections.  414 

5. 3D biogeochemical model 415 

The optimal parameter sets from the 1D optimizations of A, B, and C were applied in the 3D model 416 

for the whole GOM for five years (2011-2015). The performance of the 3D model can be regarded as a 417 

cross-validation of the parameters optimized in 1D at different times and locations. It is possible that the 418 

optimization algorithm has modified parameters to compensate for biases in the 1D simulations, e.g. the 419 

absence of horizontal and vertical advection or the simplification of vertical diffusion, that degrades the 420 

3D model performance. Indeed, directly applying the optimal parameter sets from 1D version to the 3D 421 

model yields lower model-data agreement than the 1D counterpart and the following modifications to the 422 

optimized parameters were made manually to bring the model-data agreement of 3D model in better 423 
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alignment with that of 1D version: the half-saturation for NH4 uptake (kNH4) was decreased to 0.01 in 424 

experiment B and C, and the aggregation parameter (τ) was decreased to 0.05 in the experiment C. 425 

5.1. Spatial patterns of surface chlorophyll 426 

First, the annual climatological surface chlorophyll from satellite and model are compared from 2011 427 

to 2015. The satellite estimates show high chlorophyll in the coastal regions and low chlorophyll in the 428 

deep ocean (Figure 7a). This spatial pattern of surface chlorophyll is well reproduced in all simulations 429 

except in the experiment A which even fails to reproduce the relatively high chlorophyll near the 430 

Mississippi-Atchafalaya river systems because of the high sinking rate of phytoplankton (wPhy=0.95; see 431 

Table 2). The largest model-data differences occur in the coastal regions, where all simulations 432 

underestimate the observed surface chlorophyll because parameter optimization is only performed at one 433 

station located in the deep ocean without considering the coastal environments. Based on this and the fact 434 

that the floats operated in the deep ocean (Figure 1), only the model results in the deep ocean (depth > 435 

1000 m) will be considered in the following discussion. 436 

5.2. Subsurface distributions 437 

Figure 8 shows the seasonal cycles of surface chlorophyll as well as the vertically integrated 438 

chlorophyll, phytoplankton, and POC within the deep ocean (depth>1000 m). Analogous to the 1D 439 

models, chlorophyll, phytoplankton, and POC are integrated over the upper 200 m. Comparisons of 440 

vertical profiles between observations and model results are given in Figure 9. In general, the main 441 

features in the 3D models are very similar to those in 1D. Experiment A cannot constrain the vertical 442 

profiles of chlorophyll because of the inappropriate estimation of initial slope (α), experiment B 443 

overestimates phytoplankton and its contribution to POC since the maximum ratio of chlorophyll to 444 

carbon (θmax) is weakly constrained, and experiment C shows significant improvements in the model-data 445 

agreement. However, there are some differences between the 1D and 3D models. For example, the base 446 

case of the 1D model overestimates the magnitude while underestimating the depth of the observed DCM. 447 

Experiment B and C best improve the magnitude and depth of DCM, respectively. In contrast, in the 3D 448 

model the vertical profile of chlorophyll and the magnitude of the DCM in the base case are already very 449 

close to the observations and neither of the optimizations yield further improvement. These differences 450 
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between the 1D and 3D models might be a result of different spatio-temporal scales between the two 451 

model versions, or the simplifications of physical processes in the 1D model. 452 

We have also compared the chlorophyll-to-carbon ratio, primary production, and carbon export 453 

fluxes from 1D and 3D models with observations (Figure 10). The chlorophyll-to-carbon ratio is 454 

estimated as the vertically integrated chlorophyll divided by the phytoplankton in the upper 200 m (Figure 455 

10a). As an important indicator of phytoplankton physiological status (Geider, 1987), the observed 456 

chlorophyll-to-carbon ratio varies considerably in response to the ambient environment. In general, the 457 

ratios derived from the 3D models are lower than their corresponding 1D values, but the differences are 458 

still within the range of variability. Without utilizing the observations of phytoplankton and POC, 459 

experiments A and B in both 1D and 3D versions underestimate the chlorophyll-to-carbon ratio. In 460 

experiment C, the simulated chlorophyll-to-carbon ratios from 1D and 3D are in good agreement with the 461 

observations although the observed variability is underestimated.  462 

For reference, satellite-based primary production (PP) is provided by two algorithms, the Vertically 463 

Generalized Production Model (VGPM, Behrenfeld and Falkowski 1997) and the Carbon-based 464 

Productivity Model (CbPM, Westberry et al. 2008). As shown in Figure 10b, satellite-based PP differs 465 

depending on the algorithm applied. PP results from all 3D simulations are qualitatively similar to the 1D 466 

simulations. Experiment C provides the best estimates of PP when compared to satellite-based estimates 467 

from VGPM and CbPM, both in 1D and 3D. 468 

The base case and experiments A and B yield carbon export fluxes smaller by one to two orders of 469 

magnitude than experiment C. Thus, only experiment C from the 1D and 3D models are shown in Figure 470 

10b in comparison to observations from sediment traps (see supplementary material). The carbon export 471 

fluxes at 200 m from the 1D and 3D are similar in magnitude although the 1D model yields higher fluxes 472 

and larger variability. Despite the scarcity of carbon export observations in the GOM, the model estimates 473 

are within the range of observations down to ~1,600 m and capture the observed declining trend of carbon 474 

export with depth. 475 

In summary, all the results above demonstrate the feasibilities of using the locally optimized 476 

parameters from the 1D model to improve the 3D simulation. In addition, by incorporating all available 477 
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observations (i.e. surface chlorophyll from satellite estimates, profiles of chlorophyll, phytoplankton, and 478 

POC from bio-optical floats), experiment C cannot only simulate the biogeochemical processes well in 479 

the upper 200 m, but also reproduce the carbon export flux and its associated attenuation in the deep ocean 480 

(200-1600m) of the GOM.  481 

6. Discussion 482 

6.1.  Trade-offs between different observations for parameter optimization 483 

The results of the optimization experiments vary dramatically depending on how many observation 484 

types are used. Using only satellite surface chlorophyll in experiment A succeeds in reducing the misfits 485 

of surface chlorophyll, but at the expense of the vertical structure since the predominant DCM disappears 486 

in experiment A. Satellite surface chlorophyll alone cannot constrain several vital parameters, including 487 

the initial slope of the productivity-irradiance curve (α) and the maximum ratio of chlorophyll to carbon 488 

(θmax), with confidence. This result highlights the importance of subsurface observations for parameter 489 

optimization and similarly for model validation.  490 

The floats provide valuable subsurface observations, but chlorophyll profiles alone are not sufficient 491 

for parameter optimization. In experiment B, the addition of chlorophyll profiles leads to significant 492 

improvements in vertical chlorophyll distributions; however, the profiles of phytoplankton and POC 493 

deteriorate largely because the maximum ratio of chlorophyll to carbon (θmax) is weakly constrained. 494 

Using estimates of phytoplankton biomass and POC derived from backscatter measurements in 495 

experiment C yields the best estimation of plankton-related state variables and carbon fluxes (i.e. primary 496 

production and carbon export). Only in this experiment do the improvements obtained from observations 497 

in the upper 200 m extend to the deep ocean as reflected in the improved carbon export estimates below 498 

1,000 m. 499 

It should be noted, however, that degradation of unoptimized variables did not occur in all 500 

optimizations within experiments A and B. In some cases, the unoptimized fields were improved. For 501 

example, the A2 optimization yields a 69% reduction in the misfit for subsurface chlorophyll (Figure 5d) 502 

and large improvements of chlorophyll profiles (Figure S5a) even though no observations of subsurface 503 

chlorophyll are used. Another example is that B1 optimization improves simulations of phytoplankton 504 
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and POC (Figure 5d and Figure S5b-c) through the correlations between the observed chlorophyll and 505 

phytoplankton (r2 = 0.69) and POC (r2 = 0.69). Similar findings have been reported in Prunet et al. (1996b) 506 

where the improvements of chlorophyll profiles within the mixed layer were obtained by using surface 507 

chlorophyll in a 1D model. In a more recent study by Xiao and Friedrichs (2014a) where satellite data 508 

was used subsurface fields were improved in addition to surface fields.  509 

In optimizations A2 and B1, the improvement in unoptimized fields occurred because the poorly 510 

constrained parameters were not optimized but well defined (α = 0.125 in the optimization A2 and θmax= 511 

0.0535 in the optimization B1; see table 2). Including the unconstrained parameters into the parameter 512 

optimization can return a lower misfit with respect to the observations used in optimization but increases 513 

the risk of overfitting and reduces the model’s predictive skill, i.e. the ability to simulate unoptimized 514 

observations and those collected at different locations and times. This is consistent with previous studies 515 

(Friedrichs et al., 2006, 2007; Ward et al., 2010). For example, Friedrichs et al. (2006) optimized three 516 

ecosystem models of different complexities against three seasons of observations and the resulting 517 

parameters were used to quantify the predictive skill for the fourth season. Cross-validation showed that 518 

exclusion of the poorly constrained parameters from the optimization increased the predictive skill. 519 

Although prior knowledge of the parameters allows one to exclude those poorly constrained ones 520 

from the optimization and thus can prevent degradation in unoptimized variables, most parameters are 521 

poorly known. Thus, the ultimate resolution of this issue should be to increase availability of observations 522 

so that more parameters can be constrained with confidence. In addition, even if the unconstrained 523 

parameters are well-known, a lack of observations hampers our ability to recognize improvements in the 524 

model’s predictive skill and hence may prevent us from identifying the optimal solutions. For example, 525 

without the observations of phytoplankton and POC, we could not have known that optimization B1 526 

improved simulations of phytoplankton and POC, let alone that the optimization B1 was a better solution 527 

than the optimization B2 (the experiment B) in terms of the lower total misfit as shown in Figure 5d.  528 

It has been suggested that when performing a parameter optimization, not only parameter values but 529 

also parameter uncertainties should be taken into account (Fennel et al., 2001; Ward et al., 2010; 530 

Bagniewski et al., 2011). The parameter uncertainties can be assessed by performing an uncertainty 531 
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analysis (Fennel et al., 2001; Prunet et al., 1996a, 1996b), replicating the parameter optimization (Ward 532 

et al., 2010), and cross-validating the resulting parameters (Xiao and Friedrichs, 2014a). In this study, a 533 

cross-validation of the parameters was conducted by evaluating the model’s predictive skill with respect 534 

to different variables, times, and locations. Although this cross-validation at different times and locations 535 

may give some indication of overfitting, it cannot determine whether the model reproduces observations 536 

through wrong mechanisms because a small misfit of cross-validation can be caused by missing 537 

validations of key variables or fluxes, e.g. ignorance of phytoplankton and PP in the experiment B, while 538 

a large misfit can be a result of the intrinsic heterogeneity of biological parameters in different times 539 

(Mattern et al., 2012) and locations (Kidston et al., 2011), e.g. underestimation of coastal surface 540 

chlorophyll in the experiment C. Therefore, it is important to evaluate the predictive skill of unoptimized 541 

variables.  542 

Collectively, the discussion above highlights the values of BGC float data for parameter optimization 543 

and model validation, not only because of their high spatio-temporal coverage but also their ability to 544 

measure multiple properties simultaneously.   545 

6.2. Feasibilities of applying the local optimized parameters to 3D models 546 

As the high computational cost makes direct optimization for a 3D biogeochemical model 547 

impractical, we performed parameter optimizations first in a 1D surrogate model with the same 548 

biogeochemical component as the 3D model. However, there are some difficulties in porting the locally 549 

optimized parameters to the basin-scale model. Firstly, the 1D model necessarily neglects horizontal 550 

advection, which can result in differences between the 1D and 3D models. On the one hand, the optimized 551 

parameters from the 1D model may have been adjusted to compensate for biases in the biological 552 

properties caused by neglecting advection and, as a result, this may degrade the 3D simulations (Kane et 553 

al., 2011). On the other hand, counter examples exist where the 3D simulations outperform the 1D models 554 

(Hoshiba et al., 2018). Secondly, the spatial heterogeneity of parameters (e.g., Kuhn and Fennel 2019) is 555 

another issue that influences the portability of parameters from 1D to 3D models. In some studies, the 556 

parameter optimization has been performed at several contrasting stations with the goal of using different 557 

parameter sets in different regions of the 3D model (Hoshiba et al., 2018). In other studies different 558 
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stations were optimized simultaneously to obtain one single optimized parameter set (Kane et al., 2011; 559 

Oschlies and Schartau, 2005; Schartau and Oschlies, 2003). Such parameters compromise the misfit in 560 

each single station but take account into all stations and can often yield an overall better simulation of all 561 

these stations as shown by Kuhn and Fennel (2019).  562 

In our study, the similarities in general features between the 1D and 3D models confirm the 563 

portability of the resulting parameters in the deep ocean of the GOM while the underestimation of surface 564 

chlorophyll in the coastal regions may result from the contrasting ecosystem functioning between coastal 565 

regions and deep ocean. For example, the highly productive continental shelf in the northern GOM is 566 

fueled by the large nutrient load from the Mississippi and Atchafalaya river systems with primary 567 

production being as high as 4 g C m-2 day-1 near the Mississippi river delta (Fennel et al., 2011), while 568 

the deep ocean is oligotrophic and nutrient limited with the primary production ranging from 0.2 to 0.5 g 569 

C m-2 day-1 (see Figure 10).  570 

7. Conclusions 571 

  In this study, we have performed parameter optimization for a 1D biogeochemical model and then 572 

used the resulting parameters to generate simulations with a corresponding 3D model in the GOM. Three 573 

experiments have been conducted by using different combinations of observations (surface chlorophyll 574 

from satellite estimates, vertical profiles of chlorophyll, phytoplankton biomass and POC from BGC Argo 575 

floats) in order to examine the trade-offs between the different observations for parameter optimization. 576 

Two misfit metrics have been defined using the case-specific misfit and the total misfit to measure the 577 

models’ abilities to reproduce the optimized and unoptimized observations. 578 

Model results show that satellite surface chlorophyll alone cannot reproduce well the vertical 579 

structures in a biogeochemical model unless profile observations are used in addition. BGC Argo floats 580 

are an excellent platform for obtaining such observations at high spatio-temporal coverage and for a 581 

relatively broad suite of parameters. Only adding chlorophyll profiles is not sufficient because it fails to 582 

constrain the ratio of chlorophyll to phytoplankton, but the addition of backscatter, which allows 583 

estimation of phytoplankton biomass and POC, enables us to constrain the subsurface carbon state 584 

variables and reproduce well PP and carbon export fluxes to below1000 m depth. Finally, our 3D model 585 
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was improved and reproduced similar results as the 1D version, which is promising for the application of 586 

parameter optimization. 587 

 588 

Code and data availability: The ROMS model code can be accessed at http://www.myroms.com (last 589 

access: 16 June 2016). HYCOM data can be downloaded at http://tds.hycom.org/thredds/dodsC/datasets 590 

(last access: 16 August 2018). Profiling data from the BGC-Argo floats are available at the National 591 

Oceanographic Data Center (NOAA), https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:159562 592 

(Hamilton and Leidos, 2017) 593 
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 827 

 828 

Table list 829 

Table 1. Initial values and ranges of primary parameters used in the biogeochemical model 830 

Descriptions (unit) Symbol Value Range 

Radiation threshold for nitrification (W m-2) I0 0.0095a 0.005b-0.01b 

Half-saturation radiation for nitrification (W m-2) kI 0.1a 0.01b-0.5b 

Maximum nitrification rate (day-1) nmax 0.2c 0.01b-0.35b 

Phytoplankton growth at 0 oC (Dimensionless) µ0 0.69a 0.1b-3.0b 

Initial slope of P-I curve (mg_C (mg_Chl W m-2 day)-1) α 0.125a 0.007a-0.13a 

Half-saturation for NO3 uptake (mmol_N m-3) kNO3 0.5a 0.007a-1.5a 

Half-saturation for NH4 uptake (mmol_N m-3) kNH4 0.5a 0.007a-1.5a 

Phytoplankton mortality (day-1) mP 0.075 0.01b-0.2b 

Aggregation parameter (day-1) τ 0.1 0.01b-25b 

Maximum chlorophyll to carbon ratio (mg_Chl mg_C-1) θmax 0.0535c 0.005a-0.15b 

Phytoplankton sinking velocity (m day-1) wPhy 0.1a 0.009a-25a 

Maximum grazing rate (day-1) gmax 0.6a 0.1b-4b 

Half-saturation for phytoplankton ingestion ((mmol_N m-3)2) kP 0.5 0.01b-3.5a 

Zooplankton assimilation efficiency (Dimensionless) β 0.75a 0.25b-0.75b 

Zooplankton basal metabolism (day-1) lBM 0.01 0.01b-0.15b 

Zooplankton specific excretion (day-1) lE 0.1a 0.05b-0.35b 

Zooplankton mortality (day-1) mZ 0.2 0.02b-0.35b 

Small detritus remineralization (day-1) rSD 0.3c 0.005b-0.25a 

Large detritus remineralization (day-1) rLD 0.1 0.005b-0.25a 

Small detritus sinking velocity (m day-1) wSDet 0.1a 0.009a-25a 

Large detritus sinking velocity (m day-1) wLDet 1a 0.009a-25a 

a Fennel et al. (2006); b Kuhn et al. (2018); c Yu et al. (2015) 831 
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 832 

 833 

Table 2. The best fit of parameter set for each experiment 834 

 wPhy mP kNH4 τ θmax α wLDet 

Base  0.1000 0.0750 0.5000 0.1000 0.0535 0.1250 1.000 

A1 0.0608 0.0100 1.5000 -- -- -- -- 

A2 0.6863 0.0100 0.0195 -- 0.0169 -- -- 

A3 1.6567 0.1978 0.1004 -- 0.0250 0.0219 -- 

A4 0.9468 0.0737 0.2454 -- 0.0191 0.0101 4.9694 

B1 0.2863 0.0983 1.5000 -- -- -- -- 

B2 0.4217 0.0130 0.0300 -- 0.0158 -- -- 

B3 2.1016 0.0176 1.5000 -- 0.0346 0.0079 -- 

B4 0.0090 0.0100 1.5000 -- 0.0361 0.0405 8.3514 

 wPhy rLD mP τ kNH4 wLDet θmax 

Base 0.1000 0.1000 0.0750 0.1000 0.5000 1.0000 0.0535 

C1 1.9231 0.2500 0.1805 -- -- -- -- 

C2 0.9755 0.2500 0.0100 1.1402 -- -- -- 

C3 0.4071 0.0630 0.0100 1.8531 0.0070 -- -- 

C4 0.0090 0.0050 0.0634 0.0995 0.0431 5.6623 -- 

C5 0.0090 0.2245 0.0100 0.6451 1.5000 2.5202 0.0614 

 835 

 836 

 837 

 838 

 839 

 840 
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 842 

 843 

Figure captions 844 

 845 

 846 

Figure 1. Model bathymetry (unit: m) with trajectories of six bio-optical floats (small colored dots and 847 

lines) which operated in the Gulf of Mexico from 2011 to 2015. The location of the 1D model is denoted 848 

by the large orange dot. 849 
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 850 
Figure 2. Parameter sensitivities (unit: dimensionless) with respect to (a) chlorophyll and (b) the sum of 851 

chlorophyll, phytoplankton, and POC. 852 

 853 

 854 
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 855 
Figure 3. Observed (black dots) and simulated (colored lines) annual cycle of surface chlorophyll (a), 856 

vertically integrated chlorophyll (b), vertically integrated phytoplankton (c), vertically integrated POC 857 

(d), and the depth (e) and magnitude (f) of the DCM. Chlorophyll, phytoplankton, zooplankton, and POC 858 

are integrated over the top 200 m. 859 

 860 

 861 

https://doi.org/10.5194/bg-2020-137
Preprint. Discussion started: 24 April 2020
c© Author(s) 2020. CC BY 4.0 License.



 37 

 862 

Figure 4. Observed (black dots with error bars) and simulated (colored lines) vertical profiles of 863 

chlorophyll, phytoplankton, and POC. 864 
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 865 
Figure 5. The case-specific cost function values (a-c) and total misfits (d) of the base case and the 866 

different optimizations.  867 
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 868 
Figure 6. Annually averaged carbon fluxes integrated over the upper 200 m (unit: g C m-2 day-1) for the 869 

base case (a) and optimized experiments A, B, and C. The N, P, Z, and D stand for the pools of nutrient, 870 

phytoplankton, zooplankton, and the sum of small and large detritus, respectively. The thickness of arrows 871 

scales with the magnitude of fluxes. Dashed arrows represent fluxes lower than 0.01 g C m-2 day-1. 872 
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 874 

Figure 7. Spatial distributions of the annual mean chlorophyll in the surface layer from the satellite (OC-875 

CCI) climatology (2011-2015) and the different model versions. The gray contours mark the bathymetric 876 

depths of 200 and 1000 m. 877 
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 879 
Figure 8. Observed and simulated seasonal cycles of surface chlorophyll (a), vertically integrated 880 

chlorophyll (b), vertically integrated phytoplankton (c), and vertically integrated POC (d) from each 3D 881 

models. Solid lines represent the median values over the deep ocean of GOM (depth>1000m). Error bars 882 

and shades show the 25% and 75% percentiles. Chlorophyll, phytoplankton, and POC are integrated over 883 

the top 200m. 884 
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 885 

Figure 9. Observed and simulated vertical profiles of chlorophyll, phytoplankton, and POC from each 886 

3D models.  887 

 888 
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 889 

Figure 10. Comparisons of the chlorophyll to carbon ratio (a), primary production (b), and carbon export 890 

fluxes (c) between the 1D and 3D models. 891 

 892 
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