
Summary of Major Changes

� Fig. 1e: Added scatter plot of R2 for nH2O–Z C fits vs R2 for nO2–Z C fits
for all possible combinations of basis species with three amino acids, H2O
and O2 to illustrate the criteria for choosing basis species.

� Removed the rQEC derivation (residual-corrected values of nH2O); now
values of nH2O are taken directly from the QEC basis species (glutamine,
glutamic acid, cysteine, H2O, O2). This change affects the scale and ap-
pearance of the plots but does not alter the findings, except to point out
that negative slopes on these plots are associated with the background
correlation between nH2O and Z C for amino acids.

� To visualize the background correlation between nH2O and Z C, guidelines
parallel to the fit for amino acids have been added to the plots in Figs. 3,
5, and 6.

� Added Figure 2 with schematic of Z C and nH2O calculations.

� Redrew Fig. 7 to plot (a) time or (b) type of solute on horizontal axis.

Point-by-point Response to Anonymous Referee #1

Dick et al. have mined the biomolecular literature to show that
the composition of proteins in microorganisms reflect the salinity of
their environments. In particular, their results provide evidence that
the stoichiometric hydration state of amino acids is lower in many
saline settings than in freshwater environments. The authors use
metagenomes, metatranscriptomes and proteomes of individual or-
ganisms resulting from environmental and laboratory studies. Their
method of analysis includes a rather novel technique – they assess
the difference in the stoichiometric hydration state (n H2O) of the-
oretical formation reactions for the amino acids in different proteins
(measured or inferred from metagenomes). These formation reactions
are familiar to those who carry out geochemical modeling, though the
choice of basis species is unusual. These formation reactions are famil-
iar to those who carry out geochemical modeling, though the choice
of basis species is unusual. H2O is used as a basis species in addition
to O2 and three amino acids (glutamine, glutamic acid and cysteine).

The manuscript has been revised to show the reasons for this choice of basis
species more clearly; in particular, Figure 1 now includes a plot comparing all
possible choices of basis species that were considered within our constraints.

To help make sense of their results, the authors also compute and
compare values of the oxidation state of carbon in amino acids/proteins
as well as their hydropathicities and isoelectric points. Ultimately, the
authors seek to show a quantitative relationship between the compo-
sition of organisms (their biomolecules) and their environments.
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Thank you for the thorough review and constructive suggestions. We re-
spond to each point below.

Because this work used techniques that are well known in one field
(geochemical modeling) and applies them to another (biomolecular
sequence analysis), it would be most helpful if the authors showed
an example of the differing stoichiometric hydrations state of two
proteins. Maybe this wouldn’t work too well in a figure, but per-
haps some combination of a table and schematic would go a long way
towards explaining their methods.

Added Figure 2: Schematic of nH2O and Z C calculations for one protein.
The selected protein is chicken lysozyme (UniProt ID: LYSC CHICK), which
should be familiar to most protein chemists as it is historically one of the most
extensively characterized proteins in the laboratory. The schematic represents
the amino acid composition, chemical formula, and numerical results for this
protein. It should be clear that the specific result depends on the amino acid
composition of the protein, so we have included only one protein for clarity..

The title of Table 1 should spell out what rQEC is – especially
since it is conceptually and acronymically very close to QEC.

The rQEC derivation was so named because it involved “residual-corrected”
values of nH2O obtained from the QEC basis species (glutamine, glutamic acid,
cysteine, H2O, O2). We have removed the rQEC derivation from the revised
manuscript and instead just use the coefficients from the QEC basis species
without modification (see below).

Some clarification is needed concerning the calculation of rQEC.
In Table 1, the value of n H2O for alanine is 0.369. The example for
calculating n H2O using the QEC formulation for alanine is 0.6. The
correction noted in the caption for Fig. 1 to transform QEC to rQEC
is 0.355. My calculator says that 0.6-0.355 = 0.245, not 0.369. Please
explain.

The rQEC derivation was made in two steps: (1) computing the residuals
of the linear fits between nH2O (from the QEC basis species) and Z C; (2) sub-
tracting a constant from the residuals. Step 1 can be thought of as a baseline
or residual correction and Step 2 as a recentering operation. Therefore, the
calculation for alanine is not 0.6 – 0.355, but rather [the residual between the
fitted line and 0.6] – 0.355.

The criteria we consider in choosing the basis species are that (1) nH2O of
amino acids should have very little correlation with Z C, (2) nO2 of amino acids
should be strongly correlated with Z C, and (3) the basis species should represent
metabolites with high network connectivity.

The derivation of rQEC was meant to “fine-tune” the QEC basis species in
order to satisfy criterion (1) above, but we realize in retrospect that this deriva-
tion is not theoretically justified, since rQEC loses the important quality that
nH2O should directly quantify the stoichiometry of thermodynamic components
(basis species) in overall chemical reactions.

We have added a new panel to Figure 1 that shows the R2 values for nH2O–
Z C and nO2–Z C fits for all possible combinations of three amino acids with H2O
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and O2. QEC is in the lower right corner of this plot and is nearly optimal.
Although some other sets of basis species have even lower R2 values for nH2O–
Z C fits, and slightly higher R2 values for nO2–Z C fits, they consist of amino
acids (e.g. tryptophan and tyrosine) that are not central metabolites. On the
other hand, glutamine and glutamic acid are more desirable because of their
major roles in metabolism (criterion #3 above). Therefore, QEC appears to be
the most reasonable choice of all the basis species we considered here.

We note, however, that QEC still carries a small negative correlation between
nH2O and Z C for amino acids. In the revised manuscript, we do not attempt to
remove this background correlation, as was done previously with rQEC. Instead,
we revised the description of Fig. 3 [emphasis indicates added text]:

The trends of carbon oxidation state described above are visible in the scatter
plot in Fig. 3, with an added dimension: stoichiometric hydration state. The
guidelines in this plot are parallel to the nH2O–Z C trend for amino acids (Fig.
2); their slope represents the background correlation between nH2O and Z C that
is inherent in the stoichiometric analysis. Sample data for Bison Pool and
the submarine vents are distributed parallel to these guidelines. Therefore, the
decrease of nH2O along these redox gradients can be attributed to the background
correlation in the stoichiometric analysis, and the differences between samples
within each dataset are specifically associated with changes in carbon oxidation
state and not stoichiometric hydration state. This is an expected outcome, as
the redox gradients considered here do not have large changes in salinity. . . .

Lines 195-196: The authors here refer to 8 amino acids by their
three-letter abbreviations, but in Table 1 and in the naming of their
basis species (QEC), they refer to amino acids by their one-letter
abbreviations. Is there a particular reason for this difference?

The three-letter abbreviations seem more fitting for a sentence structure, but
the one-letter abbreviations save space in the table and are more appropriate
for forming acronyms. For consistency we have changed this sentence to use the
one-letter abbreviations.

It seems like the text on lines 226-227 could be better represented
by an equation. This would make it easier to look back on how the
stoichiometric hydration state was calculated.

The equations for computing nH2O and Z C from amino acid composition
have been added here.

Section 3.5 needs more explanation. The title of this section sug-
gests that it’s about organisms containing the Nif gene, and the au-
thors get around to talking about these organisms, but some expla-
nation is needed about why this gene was used as a filter for which
proteomes to select (data availability?). Also, start this section with
‘what’ and ‘why’, then tell us the ‘how’. It starts with ‘how,’ making
it hard to follow.

Added at the beginning of this paragraph: “[what ] In a separate study,
Poudel et al. (2018) used carbon oxidation state as a metric for comparing pro-
teomes of organisms containing the nitrogenase gene (Nif). [why ] The evolution
of these organisms is associated with rising atmospheric oxygen through geolog-
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ical history. In order to replicate their results, ...” [how : rest of the paragraph]
Section 3.6 The authors should state explicitly if they did or did

not take into account how temperature effects values of the isoelectric
point. The same goes for using GRAVY. Amino acid pKa’s and the
permittivity of water certainly change with temperature.

Added: “The pK values used for calculating pI (Bjellqvist et al., 1993, 1994)
and transfer free energies used in the derivation of the GRAVY scale (Kyte and
Doolittle, 1982) correspond to 25 °C and 1 bar and no attempt was made here
to account for the temperature effects on these properties.”

Section 3.7 Is the sum of the 100 subsamples equivalent to ∼50,000
amino acids for each sample? Then what is the typical subsample
density?

No, each subsample (not the sum of them) has ca. 50,000 amino acids.
Reworded this as: “The number of sequences included in each subsample was
chosen to give a total length closest to 50,000 amino acids on average.” Also
added these lines: “The subsample density, or number of sequences included in
each sample, depends on the average length of the metagenomic or metatran-
scriptomic sequences and is listed in Tables S1 and S2. This number ranges
from 251 for the dataset with the highest mean protein fragment length (199.1;
metagenome of hot-spring source of Bison Pool) to 1696 for the dataset with the
lowest mean protein fragment length (29.5; metatranscriptome of site GS684 in
the Baltic Sea).”

The beginning of Section 4.2, like in other parts of the manuscript,
starts out with ‘how’, but should lead with what the section is all
about. For instance, this paragraph should start by saying that the
stoichiometric hydration state of proteins can be determined by more
factors than just salinity. Instead, it starts with “Metagenomic and
metatranscriptomic data for different filter size fractions are available
for the Baltic Sea.” This topic sentence does not reveal to the reader
what this section is about and it fails to capture the point of the
analyses described in the section.

Inserted a new “topic paragraph” for this section including the recommended
topic sentence [emphasized text moved from Conclusion as also recommended]:
“The stoichiometric hydration state of proteins can be influenced by factors
other than just salinity. Previous authors have observed large differences be-
tween free-living and particle-associated microbial communities, which may be
due in part to anoxic conditions arising from limited diffusion in particles (Si-
mon et al., 2014). As described below, we found a trend of relatively low nH2O

in particles compared to free-living fractions in both the Baltic Sea and Amazon
River. This effect is probably associated with phylogenetic differences among the
size fractions, but reduced accessibility to bulk water may be a contributing fac-
tor. Further support for the possible influence of physical accessibility is reduced
nH2O in the interior compared to upper layers of the Guerrero Negro microbial
mat.”

Line 291 notes the “0.1–0.8 mm size fraction,” but what this means
isn’t explained until the next section. Either explain it where it first

4

https://doi.org/10.1002/elps.11501401163
https://doi.org/10.1002/elps.1150150171
https://doi.org/10.1016/0022-2836(82)90515-0
https://doi.org/10.1016/0022-2836(82)90515-0
https://doi.org/10.3389/fmicb.2014.00466
https://doi.org/10.3389/fmicb.2014.00466


appears or direct the reader to where it is explained. In general, the
authors should be careful what they mean. When a filter fraction is
noted, this could mean the DNA collected from the filtrate or that
which doesn’t pass through.

Added emphasized text: “For the Baltic Sea metagenomes and metatran-
scriptomes, the 0.1–0.8 mm and 0.8–3.0 mm size fractions of particles that don’t
pass through the filter, which are used for subsequent DNA extraction and se-
quencing, represent free living bacteria, while the 3.0–200 mm fraction contains
particle-associated bacteria with average larger genome sizes and greater in-
ferred metabolic and regulatory capacity (Dupont et al., 2014).”

Perhaps an explanation for why values of n H2O in the Rodriguez-
Brito et al., 2010 data set do not follow the expected trend is that
fish nurseries are extremely nutrient rich and the associated microbial
communities may not be responding as they would in a typical natural
system that is less persistently copiotrophic.

Added: “Specifically, the microbial communities in the aquaculture ponds
may not be responding as they would in a typical natural system that is less
nutrient-rich.”

Also added this text after the analysis of the differentially expressed proteins
in laboratory experiments: “The large negative shift of ∆nH2O associated with
most organic solutes compared to NaCl lends support to the notion that high
organic loading could contribute to the relatively low nH2O of protein sequences
from metagenomes of freshwater aquaculture ponds (Fig. 6b).”

See also the related response to Referee #2; the suggestion was made that
the lower nH2O could be associated with a greater abundance of heterotrophs
(due to input of organic compounds), as noted previously in this paper for
heterotroph-rich zones in other systems (Bison Pool, Guerrero Negro microbial
mat).

Many of the sentence in the Section 5 (Conclusions) should be
the first sentence of the sections whose results they summarize. This
would make following the text in these sections more straightforward.
Tell the reader the result, then explain the supporting evidence.

We have applied this recommendation by moving the summary about par-
ticle size to the beginning of the “Multifactorial hydration effects” section (see
above) and the summary about laboratory experiments to the “Compositional
analysis of differentially expressed proteins” section (see below). The remainder
of the Conclusion has been revised to give a concise summary and synthesis.

Lines 371-372 – this lead sentence begins to summarize the para-
graph, but then wanders away. It seems that the authors should
simply note that in addition to spatial changes in salinity, there are
temporal effects to changes that also merit study/consideration.

We have replaced the first two sentences of this paragraph with the topic sen-
tence taken from the Conclusion: “While biomolecular data for environmental
salinity gradients reflect phylogenetic differences and evolution, laboratory ex-
periments provide information on the physiological effects of osmotic conditions
on protein expression in particular organisms.” Note that this lead paragraph
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also alludes to temporal effects (“dynamic process”), but the section also in-
cludes data on different solutes and other experiments not specifically dealing
with time-course changes, so the whole section is introduced with “physiological
effects of osmotic conditions on protein expression in particular organisms”.

Figure 1 – what is the difference between the blue-fuzz-halo and
black rectangular/square shapes in panels e, f, h and i? I’m guessing
that this is due to the large number of proteins in whole proteomes,
but why the difference in symbols? Same question for Fig. 5.

According to the documentation for the “smoothScatter” function in R, the
blue colors are a “smoothed color density representation of a scatterplot” and
the black symbols are points in the low-density region, which can be used to
identify outliers. These plots have been removed from Fig. 1 in the revision;
likewise, the former Fig. 5 has been removed because it did not add much to
the paper. (These scatter plots showed whole-proteome data for human and
E. coli, which are not directly relevant to the environmental salinity gradients
considered here.)

Figure 2. The caption says that the abbreviations and data sources
for panel (a) are given in Fig 2. They are not.

Thanks for pointing this out; the abbreviations and data sources are now
given here. In addition, an outline has been added to the point for proteomes
from Nif-A organisms to indicate that they tend to occupy more oxidized envi-
ronments compared to the other nitrogenase-bearing organisms (Poudel et al.,
2018).

Panel (b) should be remade. The symbols differ in color, fill and
direction, but the caption only notes what the directional difference
means. Also, though I see that this plot is made at the same scale as
panel (a), the result is a lot of white space and a bunch of cramped
symbols connected by slightly different line styles. I’ve enlarged it on
my external monitor and it’s still hard to make sense of it.

Panel (b) has been made less crowded by splitting the data into two panels
(surface samples: panel b; deeper samples: panel c) and the scale was adjusted
to remove white space.

Figure 3. It would be helpful if there was something like “–>
salinity” along the x-axis.

Added “� higher salinity �” to the axis label.
Figure 4. Is the difference between the open and closed symbols

in panels a, b, d and e that the open ones represent lower salinity
samples and the closed ones higher salinity ones? If so, please state
in the caption.

Yes, the open symbols represent river samples (lower salinity) and the closed
ones represent plume samples (higher salinity). The words “river” and “plume”
have been added to the legend to make this clear.

Figure 7. color coding time series data in panels c and e would be
quite helpful. It should be noted somewhere in Table 2 that the ID
and associated information are relevant to Figure 8.
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The figure has been redrawn so that log(time, minutes) is now on the hori-
zontal axis. This makes the multiple time series experiments easy to distinguish
from each other. Color and symbol shape are used here to represent the pro-
teomics experiments.

Table 2 and former Fig. 8 for halophiles have been removed. Now the data
for protein expression in halophiles under hyperosmotic stress are highlighted
in Fig. 7 (red triangles) and are referenced in Fig. S3.

The supplemental figures in S1 and S2 need captions.
Added captions:
Figure S1: Transcriptomics data for non-halophilic bacteria in hyperosmotic

stress experiments. The plots show median differences of compositional metrics,
GRAVY, and pI for proteins coded by the differentially expressed genes, [. . . ]

Figure S2: Proteomics data for non-halophilic bacteria in hyperosmotic
stress experiments. The plots show median differences of compositional metrics,
GRAVY, and pI for the differentially expressed proteins, [. . . ]

Figure S3: Proteomics data for halophilic archaea in osmotic stress experi-
ments. For completeness, data for both hyperosmotic (circles) and hypoosmotic
(squares) experiments, which are reported together in the proteomics studies,
are shown here, but only hyperosmotic stress data are used in the manuscript.
The plots show median differences of compositional metrics, GRAVY, and pI
for the differentially expressed proteins, [. . . ]

[. . . all captions . . . ] i.e. median value for all up-regulated proteins minus
median value for all down-regulated proteins in each dataset. Data sources, in-
dicated by letters, are described in the following table and footnotes. Reference
keys in the table, derived from the first letters of the authors’ surnames and
publication year, correspond to file names used for the datasets in the canprot
package.

Other Changes

� Proteomes of Nif-bearing organisms are now made using RefSeq release
201 of July 2020, updated from release 95 of July 2019. The update
decreases the number of matching organisms slightly (Nif-A: down 2 to
155; Nif-B: down 1 to 68), but does not noticeably alter the calculated Z C

and nH2O shown in Fig. 3.

� List specific proteins used for comparison of GRAVY and pI calcula-
tions with ProtParam (UniProt IDs: LYSC CHICK, RNAS1 BOVIN,
AMYA PYRFU).

� Removed human and E. coli proteome plots (panels formerly in Fig. 2
and former Fig. 5).

� An additional bacterial proteomics dataset for hyperosmotic stress was
included (Huang et al., 2018 referenced in Figure S2).
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� Removed table (former Table 2) and plots (former Fig. 8) for halophile
protein expression datasets. The halophile proteomics data for hyperos-
motic stress are now shown in Fig. 7, and Figure S3 has been added to
give references for the data. Hypoosmotic stress experiments are no longer
analyzed in the manuscript, but are included in Figure S3 for complete-
ness.

� Added reference that urea permeates cells and is not hypertonic (Burg et
al., 2007).
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Point-by-point Response to Anonymous Referee #2

In general, I found the paper to be another interesting read from
the primary author. However, as a microbiologist that is interested
in understanding how energy availability and demand affect the dis-
tribution of microorganisms and their evolution, I would appreciate
seeing a more robust effort to link the thermodynamics way of think-
ing (as presented here) to physiological process or mechanism that
could then be used to gauge why such patterns may exist. More or
less, I think this is a missed opportunity that, if executed effectively,
could elevate the utility of this paper and this way of thinking. Thus,
I strongly suggest the authors attempt to explain their observations
at a level that makes sense to the more biologically oriented reader.
As I was reading this, I could not help but think to myself how any
one or several observations made sense from the level of phenotype
and natural selection. The authors might consider asking themselves
this same question and then speculating where possible to make this
body of work a greater utility for the community.

Thank you for your detailed attention to the concepts and analysis in our
paper and your suggestions for improving the work. We respond to the main
critiques below:

1) a more robust effort to link the thermodynamics way of thinking
(as presented here) to physiological process or mechanism

This is an ongoing challenge. An obstacle (which could also be seen as a
“missed opportunity”) is that the thermodynamic way of thinking deals with
energetic differences between two states of a system; without further (i.e. extra-
thermodynamic) constraints, it is not possible to explicitly deal with underlying
mechanisms in a thermodynamic model. This paper does not attempt to build
such a thermodynamic model, but uses thermodynamics as a guiding concept.
A major application of thermodynamics in geochemistry is to describe and pre-
dict compositional changes in a system, e.g. the distribution of aqueous species
and mineral phases with different chemical formulas. The aim of this paper is
to develop a framework for describing compositional changes in geobiochemical
systems, and one of the first challenges is to recognize that the most appropriate
descriptive variables are probably different from inorganic geochemical systems.
We present our conceptual arguments that oxidation and hydration state should
be considered as primary variables, develop metrics that quantify them, and use
the metagenomic data to explore how these metrics respond to environmental
gradients of salinity and redox conditions. Clearly, this is far from the sophis-
ticated applications of thermodynamics in geochemistry, but it serves as a step
toward a broader appreciation that compositional changes are not random, but
are aligned with environmental conditions. That should motivate the develop-
ment of more rigorous thermodynamic models in future studies.

As a partial response to the request for a more mechanistic understanding,
it can be noted that Fig. 7 has been redrawn to place time on the horizontal
axis. With this change, it should be more apparent that the chemical composi-
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tion of the differentially expressed proteins changes dynamically in laboratory
experiments.

2) I strongly suggest the authors attempt to explain their obser-
vations at a level that makes sense to the more biologically oriented
reader.

The paper uses some technical language from physical chemistry and thermo-
dynamics by necessity, and these technical terms are defined when introduced.
These concepts are used to quantitatively analyze metagenomic datasets that
are chosen to represent well-known regional gradients. The analysis of labo-
ratory data includes protein expression in response to salt and osmotic shock.
Therefore, the core of the paper is concerned with biological phenomena in an
environmental context. The mixing of biological data and physicochemical met-
rics is what makes this paper unique; removing the quantitative language would
eliminate its main contribution.

We note that the entire section on “Conceptual background” was added in
a previous revision (before submission to this journal) to make the paper more
accessible to biologists. The paragraphs here deal with issues about intracellular
conditions, amino acid composition, distinction with polymerization reactions,
selection for structural stability of proteins, other variables like temperature and
pH, and relation of the basis species to biosynthetic mechanisms. However, our
intention is not to write a theoretical paper but rather to present a coherent
set of data analyses to convince the reader that compositional differences of
proteins have a basic significance in geobiochemical systems.

3) I could not help but think to myself how any one or several
observations made sense from the level of phenotype and natural
selection. The authors might consider asking themselves this same
question and then speculating where possible to make this body of
work a greater utility for the community.

We believe that the analysis of laboratory experiments of protein expression
in salt and osmotic conditions does provide basic information about the effects
of the environment on the observable characteristics of cells. Admittedly, this is
only one aspect of the phenotype, and other types of experiments could be con-
sidered, like gene expression, metabolomes, and metabolic fluxes, but analysis
of those types of data is out of the scope of this paper.

A relevant finding from a paper in preparation is that the stoichiometric
hydration state of differentially expressed proteins is strongly decreased in 3D
(tissue-like) compared to 2D (monolayer) culture conditions of eukaryotic cells
(Dick, 2020). The lower nH2O in 3D culture has some similarity to the observa-
tion in this study that metagenome-inferred proteins in particles tend to have
lower hydration state compared to free-living fractions. These responses could
plausibly be associated with lower water accessibility in the interiors of particles
in environmental samples and in spheroids in 3D cell culture.

Regarding the evolutionary implications, another paper is in early prepara-
tion that shows the hydration and oxidation state computed for whole proteomes
of phylogenetic groups predicted from the RefSeq database. This tree-like view
of the chemical composition no doubt would help solidify the relevance of the
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physicochemical concepts used here to biological systems. That is being de-
veloped for a separate paper with its own set of data analysis of microbial
community composition and it is too early to cite the results in this paper.

The following list of minor comments is meant to further improve
this work: Line 1: For the average reader – what is the connection
between thermodynamics and environmental variation. Lead in with
this first.

Added text in Abstract: “Prediction of the direction of change of a system
under specified environmental conditions is one reason for the widespread utility
of thermodynamic models in geochemistry.”

Line 8: Replace “behave” with something more valid. The metric
does not correlate for XXX in hypersaline environments. . .

Changed “behave” to “respond”.
Line 15: Communities do not adapt, populations of individuals do.
Changed “communities” to “populations”.
Line 26: I would not call this complementary but rather an inter-

related approach since selection (imposed as an argument in previous
paragraph) can and should act on the energetic demand of protein
synthesis.

Changed “complementary” to “interrelated”.
Line 39-40: What about the authors own work on the communities

inhabiting the out flow channel at Bison Pool, Yellowstone?
Added references and reworded the sentence for better context: “The oxi-

dation state of proteins as well as lipids has been shown to be associated with
oxidation-reduction (redox) gradients in a hot spring (Dick and Shock, 2011;
Boyer et al., 2020), but so far energetic models have not been broadly adopted
as a tool for relating metagenomic and geochemical data.”

Line 44-45: While I don’t disagree with this assumption, at least
as a first order constraint, it would be useful to relate to the reader
why this assumption is made. Perhaps to avoid this confusion, the
authors move this statement to below where they describe and justify
their approach.

This sentence has been moved down to the second point in the “Concep-
tual background” section, following the reference about missing hydrogen and
oxidation state in stoichiometric models (Karl and Grabowski, 2017).

Line 58-62: This paragraph seems out of place. I suggest moving
the discussion of what you did previously up in the introduction and
add the last sentence of this paragraph to the end of the preceding
paragraph.

The statement of previous work and what’s new in this study has been moved
up to the position of the former Lines 44-45 mentioned in the previous comment.
The long-term research goal has been removed, because it doesn’t seem to fit
anywhere now.

Line 67: alternatives to what?
Each area of concern is summarized here as “X or Y”, which seems consis-

tent with the dictionary’s definition of an alternative as “a choice between two
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things”. To avoid confusion, this has been reworded as “six areas of concern
summarized as: 1) . . . 2) . . . . . . ”

Line 305-310: I don’t understand the reasoning here? Why did
eukaryotes start to become important in these systems? Are there
actually eukaryotes in these systems? The authors have the data to
evaluate this and should evaluate it to see if the logic makes sense.

This has been removed in the revision. The comparison of the average stoi-
chiometric hydration state of human proteins with E. coli and the metagenomic
data analyzed in this study provided preliminary support for the concept of
a lower nH2O in eukaryotes, but a more targeted data analysis is needed to
strengthen this claim. Also note that the human and E. coli proteomes have
been removed in the revised description of the choice of basis species (Fig. 1).

Line 315: Why would heterotroph proteomes have a lower hydra-
tion state?

There might be something basically different about their metabolic pathways
in terms of water requirements at the biochemical level. Apart from E. coli,
there probably are not many existing metabolic models that could be used
to test this speculation. Added sentence: “A better understanding of these
trends would require more extensive phylogenetically resolved comparisons of
the compositional differences as well as biochemical (or computational) analyses
of water fluxes in metabolic pathways.”

Line 315-317: is there an argument to be made about why a major
evolutionary transition favors a shift from higher to lower dehydration
state? i.e., is this an adaptive feature that allows the latter to compete
with the former from an evolutionary perspective?

This is certainly a valid question, but we are unable to provide a convincing
mechanistic reason for why lower hydration state might offer a selective advan-
tage. Perhaps it should be considered not as adaptation but as physical con-
straint, similar in a way to Gould and Lewontin (1979)’s spandrels. Structures
that are physically durable, such as macromolecular complexes in organelles or
larger assemblages like tissues, might be those that are relatively dry. Physical
dryness (i.e. lower water content) could be a selective force for lower stoichio-
metric hydration state of biomolecules, but the latter by itself may have no
fitness advantage.

If lower nH2O turned out to characterize some evolutionary transitions, it
would seem to be consistent with the postulate that “ontogeny recapitulates
phylogeny” and the observation that progressive loss of water occurs in animal
development through the stages of embryo, fetus, birth and growth (Moulton,
1923).

[These ideas are rather speculative, and don’t specifically deal with the (non-
eukaryotic) metagenomes that are analyzed here, so haven’t been added to the
text.]

Line 325: is it possible that diffusion limitation makes H2O less
available to cells living nearer to a particle surface? Again, an expla-
nation for what the observations might mean is warranted.

Particles likely provide opportunities for some amount of physical separation
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from the bulk aqueous phase; it’s harder to pin down the molecular mechanisms.
Added: “Together with the lower nH2O for proteins inferred from metagenomes
and metatranscriptomes in the larger size fractions from Baltic Sea samples,
this could reflect a lower availability of H2O to organisms living near the particle
surface due to physical separation from the bulk aqueous phase and associated
diffusion limitation or lower water activity (Wang et al., 2003).”

Line 350: proteins in metagenomes
Changed “plume metagenomes” to “proteins in plume metagenomes”.
Line 360: Could this be due to aquaculture and introduction of

more organic compounds/waste and its selection of heterotrophic
taxa, that as stated earlier in the paper, tend to host proteomes
with a lower hydration state

This seems very reasonable. Added: “The microbial communities in the
aquaculture ponds may not be responding as they would in a typical natural
system that is less nutrient-rich. As noted above for putative heterotroph-
rich zones in other systems, the lower stoichiometric hydration state could be
associated with the enrichment of heterotrophic taxa, in this case due to the
addition of organic compounds to the aquaculture ponds.”

See also the response to Referee #1 and the revised discussion of the analysis
of differentially expressed proteins: “The negative shift of ∆nH2O associated with
most organic solutes compared to NaCl lends support to the notion that high
organic loading could contribute to the relatively low nH2O of protein sequences
from metagenomes of freshwater aquaculture systems.”
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Abstract. Prediction of the direction of change of a system under specified environmental conditions is one reason for the

widespread utility of thermodynamic models in geochemistry. However, thermodynamic influences on the chemical com-

positions of proteins in nature have remained enigmatic despite much work that demonstrates the impact of environmental

conditions on amino acid frequencies. Here, we present evidence that the dehydrating effect of salinity is detectable as chem-

ical differences in protein sequences inferred from 1) metagenomes and metatranscriptomes in regional salinity gradients and5

2) differential gene and protein expression in microbial cells under hyperosmotic stress. The stoichiometric hydration state

(nH2O), derived from the number of water molecules in theoretical reactions to form proteins from a particular set of basis

species (glutamine, glutamic acid, cysteine, O2, H2O), decreases along salinity gradients including the Baltic Sea and Ama-

zon River and ocean plume and in particle-associated compared to free-living fractions. However, the proposed metric does

not behaverespond as expected for hypersaline environments. Analysis of data compiled for hyperosmotic stress experiments10

under controlled laboratory conditions shows that differentially expressed proteins, as well as proteins coded by differentially

expressed transcripts, are on average shifted toward lower nH2O. Notably, the dehydration effect is stronger for most organic

solutes compared to NaCl. This new method of compositional analysis can be used to identify possible thermodynamic effects

in the distribution of proteins along chemical gradients at a range of scales from biofilmsmicrobial mats to oceans.

1 Introduction15

How microbial communitiespopulations adapt to environmental gradients is a major challenge at the intersection of geo-

chemistry, microbiology, and biochemistry. Patterns of amino acid usage in proteins are important indicators of microbial

adaptation, and amino acid composition at the genome level is well known to depend on growth temperature (Zeldovich et al.,

2007). Furthermore, measures of evolutionary distance and community composition based on protein sequences predicted from

metagenomic sequencing are strongly associated with environmental temperature and pH (Alsop et al., 2014). It is widely ac-20

knowledged that the effect of amino acid substitutions on the structural stability of proteins is a major factor affecting amino

acid usage in thermophiles (Sterner and Liebl, 2001; Zeldovich et al., 2007). Similarly, a large body of work has demonstrated

amino acid signatures associated with proteins from halophilic organisms (Kunin et al., 2008; Paul et al., 2008; Oren, 2013;

1
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Boyd et al., 2014). The most common interpretation of these trends is that particular amino acid substitutions are selected

through evolution to increase the stability and solubility of the folded conformation and enhance other structural properties25

such as flexibility (Paul et al., 2008).

An complementaryinterrelated approach to interpreting patterns of amino acid composition is based on the energetics of

amino acid synthesis. Energetic costs in terms of ATP requirements have been used to model protein expression levels in

bacterial and yeast cells (Akashi and Gojobori, 2002; Wagner, 2005). Although ATP demands depend on environmental condi-

tions (Akashi and Gojobori, 2002), a limitation of ATP-based models is that they are derived for specific biosynthetic pathways,30

such as whether cells are grown in respiratory or fermentative (i.e. aerobic or anaerobic) conditions (Wagner, 2005). A differ-

ent class of models, based on thermodynamic analysis of the overall Gibbs energy of reactions to synthesize metabolites from

inorganic precursors, quantifies the energetics of the reactions in terms of temperature, pressure, and chemical activities of all

the species in the reactions, including those that define pH and oxidation-reduction potential (Shock et al., 2010). Notably,

the overall energeticsGibbs energies for amino acid synthesis become more favorable, but to a different extent for each amino35

acid, between cold, oxidizing seawater and hot, reducing hydrothermal solution (Amend and Shock, 1998). A recent systems

biology study demonstrates tradeoffs between Gibbs energy of alternative pathways for amino acid synthesis and cofactor use

efficiency (which affects ATP costs) in the model organism Escherichia coli and suggests that pathway thermodynamics play a

role in thermophilic adaptation (Du et al., 2018). NeverthelessThe oxidation state of proteins as well as lipids has been shown

to be associated with oxidation-reduction (redox) gradients in a hot spring (Dick and Shock, 2011; Boyer et al., 2020), but so40

far energetic models have not made much headway inbeen broadly adopted as a tool for relating metagenomic and geochem-

ical data. This may be because few studies have asked whether specific changes in the chemical composition of biomolecules

reflect specific environmental conditions.

To help close this gap, here we use compositional analysis of protein sequences to identify chemical signatures of two types

of environmental conditions: redox and salinity gradients. Because redox reactions are inherent in many aspects of metabolism,45

while hydration and dehydration reactions are essential for the synthesis of biomacromolecules (Braakman and Smith, 2013),

our approach is shaped by the assumption that O2 and H2O are two primary components that link environmental conditions

to the energetics of biomolecular synthesis.In a previous study (Dick et al., 2019), we compared one broad class of geochem-

ical conditions (redox gradients) with one compositional metric for proteins (carbon oxidation state). Here, we expand the

geobiochemical framework to two dimensions by considering another set of environments (salinity gradients) and another50

compositional metric (stoichiometric hydration state). Thermodynamic considerations predict that redox gradients supply a

driving force for changes in the oxidation state of biomolecules (similar reasoning applies to the oxygen content of proteins;

Acquisti et al., 2007), while salinity gradients, through the dehydrating potential associated with osmotic effects, exert a force

that selectively alters the hydration state of biomolecules.

To test these predictions, we used two compositional metrics, the carbon oxidation state (ZC) and stoichiometric hydration55

state (nH2O). ZC is computed from the chemical formulas of organic molecules, and takes values between the extremes of -4

for CH4 and +4 for CO2, although the range for particular classes of biomolecules is much smaller (Amend et al., 2013).

nH2O is derived from the number of water molecules in theoretical formation reactions of proteins from basis species (Dick,
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2016, 2017). Through the compositional analysis of representative metagenomic and metatranscriptomic datasets, we show

that ZC and nH2O are most closely aligned with environmental redox and salinity gradients, respectively. These findings apply60

to freshwater and marine environments, but trends for hypersaline environments deviate from the thermodynamic predictions,

most likely due to evolutionary optimizations of hydrophobicity and isoelectric point to stabilize the structures of proteins in

halophilic organisms.

In a previous study (Dick et al., 2019), we compared one broad class of geochemical conditions (redox gradients) with one

compositional metric for proteins (carbon oxidation state). Here, we expand the geobiochemical framework to two dimensions65

by considering another set of environments (salinity gradients) and another compositional metric (stoichiometric hydration

state). A long-term research goal is to extend this framework to as many dimensions as there are thermodynamic components

plus temperature and pressure.

2 Conceptual background

In this study we use compositional analysis to uncover environmental imprints in protein sequences. Analysis of compositional70

data is used by geochemists to study processes such as water-rock interaction and ore deposition, and is often one of the first

steps in constructing thermodynamic models, but its application to living systems is relatively uncommon. Therefore, it is

important to describe the conceptual basis for our methods. To do this, we identified six areas of concern posedsummarized

as alternatives: 1) intracellular or environmental conditions, 2) amino acids or atoms, 3) condensation or theoretical formation

reactions, 4) chemical composition or conformational stability, 5) oxidation and hydration state or temperature and pH, and 6)75

mathematical or biosynthetic models.

A first concern is that intracellular conditions are maintained within physiological ranges, so the influence of external con-

ditions on the composition of microbial biomolecules may be limited. However, cell membranes are permeable to uncharged

species such as hydrogen (Slonczewski et al., 2009), supporting the argument that the oxidation state of the cytoplasm, and

therefore the energetics of metabolic reactions, are influenced by the external environment (Poudel et al., 2018; Canovas and80

Shock, 2020). Likewise, oxygen diffuses rapidly through lipid membranes, depending on their composition and structure, and

rates of diffusion increase with temperature (Möller et al., 2016). Cell membranes are also permeable to water (Record et al.,

1998). For E. coli, which grows most rapidly at about 0.3 OsM (osmolarity), increasing the extracellular osmotic strength

from 0.1 to 1.0 OsM [(approximately the osmotic concentration of seawater; BioNumbers BNID 100802 (Milo et al., 2010)])

reduces the amount of free cytoplasmic water by more than half (Record et al., 1998). Halophiles, which thrive at even higher85

salinities, accumulate inorganic salts or organic solutes to maintain osmotic balance with the environment (Garner and Burg,

1994; Oren, 2013). The result is that, with few exceptions, intracellular conditions must be isosmotic with the environment,

or somewhat higher to maintain turgor pressure (Gunde-Cimerman et al., 2018). Water activity is lower in more concentrated

solutions, and intracellular water activity estimated from freezing point and cell composition data closely follows that of the

growth medium, but is often offset to lower values (Chirife et al., 1981), perhaps due to macromolecular crowding effects (Gar-90
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ner and Burg, 1994). In other wordsTo summarize, high osmotic strength causes a decrease in hydration potential, measured

as water activity, both outside and inside cells.

This brief review suggests that oxidation and hydration potentials in cell interiors, at least under experimental conditions, are

influenced by, but not equal to, environmental conditions. Ideally, we would like to compare the compositions of biomolecules

to conditions actually measured inside cells or in the immediate surroundings of cells, but these measurements are generally95

not available for microbial communities in their natural environments, so we make comparisons with large-scale geochemical

gradients, except for different layers of the Guerrero Negro microbial mat, where metagenomic and chemical data are available

on the scale of millimeters.

Second, previous authors have emphasized the importance of changes in elemental stoichiometry – that is, atomic compo-

sition – and not only amino acid composition in the molecular evolution of proteins (Baudouin-Cornu et al., 2001). Although100

stoichiometric predictions are amenable to experimental tests, such as the long-term evolution of EscherichiaE. coli in the lab-

oratory (Turner et al., 2017), the omission of a major bioelement, hydrogen, and the oxidation state of organic matter from most

stoichiometric models (Karl and Grabowski, 2017) means that there are also significant opportunities for theory development.

Because redox reactions are inherent in many aspects of metabolism, while hydration and dehydration reactions are essential

for the synthesis of biomacromolecules (Braakman and Smith, 2013), our approach is shaped by the assumption that O2 and105

H2O are two primary components that link environmental conditions to the energetics of biomolecular synthesis.

The third point follows from the previous one. The polymerization of amino acids is a condensation reaction that releases

one H2O per bond formed, independent of the particular amino acids that are involved. By contrast, our analysis depends

crucially on the concept of a “formation reaction”, which in the thermodynamic literature represents the composition of a

chemical species, either in terms of elements (Warn and Peters, 1996), or in terms of other species (May and Rowland, 2018).110

When these other species are restricted in number to the minimum needed to represent the composition of all possible species

in the system, they constitute a set of “basis species”, which can be thought of as the building blocks of the system, similar to

the concept of thermodynamic components (Anderson, 2005). Therefore, a formation reaction from basis species is a mass-

balanced, but non-unique, stoichiometric representation of the chemical composition of the protein. This type of reaction in

general does not correspond to amino acid biosynthesis or polymerization, so to avoid confusion, we refer to these formation115

reactions as “theoretical formation reactions”; the number of water molecules in the theoretical formation reactions, normalized

by the protein length, is the “stoichiometric hydration state”.

From a mechanistic standpoint, an analysis using any set of basis species is inadequate, since the number of basis species

(five, corresponding to the elements C, H, N, O, and S) is smaller than the number of biochemical precursors and inorganic

species that are actually involved in amino acid synthesis (Du et al., 2018). The use of O2, H2O, and other basis species120

to represent the composition of proteins reflects the hypothesis that they are conjugate to thermodynamically meaningful

descriptive variables (specifically, chemical potentials) even if they are not directly involved in the biosynthetic mechanisms

for amino acids. The projection of amino acid composition (20-D) into the compositional space represented by basis species (5-

D) is a type of dimensionality reduction, but the variables are chosen based on a physicochemical hypothesis, unlike principal

components analysis (PCA) or other unsupervised methods, where the projection is determined by the data.125
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A fourth concern is that this analysis is based on the hypothesis that thermodynamic forces affect the chemical compositions

of proteins over evolutionary time, which is different from the more common hypothesis of optimization of structural stability.

Thermodynamic models define the “cost” of a protein as a function of not only amino acid composition but also environmental

conditions. Conceptually, this follows from Le Chatelier’s principle, in that increasing the chemical activity of a reactant (on

the left-hand side of a reaction) drives the reaction toward the products., orStated in more general terms, that the overall130

Gibbs energy of a reaction depends on the activities of species in the reaction (Shock et al., 2010; Amend and LaRowe,

2019). Consider two proteins with different amino acid compositions, and therefore also different chemical compositions

and theoretical formation reactions, which should be normalized by the number of residues in order to compare proteins of

different length. The formation of the protein with more water as a reactant is theoretically favored by increasing the water

activity, whereas the formation of the protein with more oxygen as a reactant is favored by increasing the oxygen activity. The135

water and oxygen activity are thermodynamic measures of hydration and oxidation potential and can be converted to other

scales, such as oxidation-reduction potential (ORP).

This reasoning provides the theoretical justification for using chemical composition as an indicator of molecular adaptation

to specific environmental conditions, but does not replace interpretations based on structural considerations. Halophilic organ-

isms exhibit well-documented patterns of amino acid usage, including lower hydrophobicity and higher abundance of acidic140

residues, that impart greater stability, solubility, and flexibility of proteins (Paul et al., 2008). These adaptations are reflected in

lower values of the GRAVY hydrophobicity scale (Paul et al., 2008; Boyd et al., 2014) and/or isoelectric point of proteins (pI)

(Oren, 2013). In Sect. 4.3 and 4.4, we compare the compositional metrics with GRAVY and pI for the same datasets.

Fifth, temperature, pH, and other environmental parameters besides redox and salinity might influence the oxidation and

hydration state of proteins. For instance, the redox gradients in hydrothermal systems are also temperature gradients, due to145

the mixing of seawater and hydrothermal fluid, and we have not attempted to disentangle the effects of temperature and redox

conditions. However, our previous analysis of other redox gradients, including stratified hypersaline lakes, indicates that carbon

oxidation state of biomolecules can vary even in systems where temperature changes are much smaller (Dick et al., 2019). It

is an axiomatic statement that changes in oxidation state can be associated with one thermodynamic component of a system;

our objective in the present study is to explore the differences between this and one other component, represented by hydration150

state. Future work should also account for the effects of pH and temperature, which is possible using thermodynamic models

for proteins (Dick and Shock, 2011).

Finally, it should be noted that the basis species used in the stoichiometric analysis are chosen primarily for mathematical

convenience, not because of evolutionary or biosynthetic requirements. The basis species we use for deriving the stoichiometric

hydration state of proteins are cysteine, glutamine, glutamic acid, O2, and H2O (designated “QEC”). The primary reason for155

choosing theseThe main criterion we consider for the choice of basis species is to reduce the covariation between the metrics for

oxidation and hydration state; that covariation is, which arises as a mathematical consequence of projecting the atomic formulas

of proteins into a particular compositional space, and may not reflect meaningful differences of chemical composition. There

is nothing implied by the choice of basis species about evolutionary or biosynthetic mechanisms, and any set of basis species

is thermodynamically valid, as long as they are the minimum number needed to represent the chemical composition of all the160
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species in the system (Anderson, 2005). However, it is most convenient to select basis species that correspond to the controlling

variables of the system. The QEC basis species has a biological rationale since glutamine and glutamic acid are often identified

as highly abundant metabolites and have been characterized as “nodal point” metabolites (Walsh et al., 2018). OtherAdditional

considerations are described in Sect. 3.2.

3 Methods165

3.1 Carbon oxidation state

The most common metric used in geochemistry for the oxidation state of organic molecules is the average oxidation state of

carbon (ZC), which also goes by other names such as nominal oxidation state of carbon (NOSC) (LaRowe and Van Cappellen,

2011). This quantity measures the average degree of oxidation of carbon atoms in organic molecules. For a protein for which

the primary sequence has the chemical formula CcHhNnOoSs, the value of ZC can be calculated from (Dick and Shock, 2011;170

Dick, 2014)

ZC =
−h+3n+2o+2s

c
(1)

The derivation of Eq. (1) is based on the relative electronegativities of the elements, expressed as oxidation numbers (e.g.

Kauffman, 1986; Minkiewicz et al., 2018). When bonded to carbon, H is assigned an oxidation number of +1, and N, O, and S

have oxidation numbers of -3, -2, and -2. Eq. (1) gives the remaining charge that must be present on each C atom, on average,175

to satisfy overall neutrality. Because of the relatively simple structures of amino acids and the primary structure of proteins,

in which N, O, and S are bonded to only H and C, it is possible to calculate the average oxidation state of carbon using Eq.

(1). However, this equation is not necessarily valid for other classes of organic molecules or some types of post-translational

modifications of proteins, including the formation of disulfide bonds. An important relation given by inherent in Eq. (1) is the

redox neutrality of hydration and dehydration reactions; any pair of hypothetical (or real) proteins whose formulas differ only180

by some amount of H2O have identical equal carbon oxidation states.

3.2 Choice of basis species: theoretical considerations

A major premise of this study is that oxidation state and hydration state are two primary variables in geobiochemical systems.

Accordingly, when choosing the basis species that can be combined to make the proteins, O2 and H2O are the only fixed

requirements. This leaves three basis species that when combined with each other and with O2 and H2O must be able to give185

any possible formula written as CcHhNnOoSs. Note again We reiterate that this analysis refers to the chemical formulas of

polypeptide sequences, that is, the primary structure of proteins, not post-translational modifications or H2O molecules in the

hydration shell of folded proteins.

Eq. (1) is derived from electronegativity relations and therefore allows the calculation of the carbon oxidation state from

a given chemical formula, independent of any chemical reactions. In contrast, there is no way to count the number of H2O190

molecules in a chemical formula; H2O appears only in chemical reactions. But it is important to note that any particular reaction
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that involves only H2O is redox-neutral. On the other hand, the coefficient of O2 in redox reactions is closely related to the

number of electrons transferred. Let us consider the 20 protein-forming amino acids as a baseline for compositional analysis;

the numbers of H2O and O2 in the formation reactions of the amino acids from a particular set of basis species are denoted

by nH2O and nO2 . The choice of basis species in our study is guided by the dual objectives that 1) nH2O of amino acids should195

have very little correlation with ZC and 2) nO2 of amino acids should be strongly correlated with ZC. It should be emphasized

that these are not criteria for “correctness”, since basis species, like thermodynamic components, only have to be the minimum

number needed to represent the chemical composition of all the species that can be formed from them (Anderson, 2005).

Instead, basis species selected using these conditions yield a convenient mathematical projection of elemental composition;

that is, nearly horizontal or vertical trends on nH2O–ZC scatterplots for proteins from environmental gradients specifically reflect200

changes in oxidation state or hydration state, respectively.Extrapolation of this principle to the general case gives the criterion

that a metric for hydration state should be disconnected from redox effects. In other words, when applied to a population of

target molecules, such as all the proteins in a genome, the correlation between metrics for oxidation state and hydration state

should be minimized.

Accordingly, we aim to find a projection of the elemental composition of primary protein sequences that clearly separates205

ZC and the stoichiometric number of H2O. There are no thermodynamic restrictions on the choice of basis species, but An

additional consideration is that a biologically meaningful set of basis species is likely to comprise metabolites that have high

network connectivity, that is, are involved in reactions with many other metabolites. Reactions involving glutamine and glu-

tamic acid, or its ionized form, glutamate, are major steps of nitrogen metabolism (Morowitz, 1999; DeBerardinis and Cheng,

2010), and these amino acids have been characterized as “nodal point” metabolites (Walsh et al., 2018). Either methionine or210

cysteine would provide the sulfur required for the system, but cysteine is relevant as a constituent of the glutathione molecule,

which has important roles in cellular redox chemistry (Walsh et al., 2018). These considerations support the proposal of the

amino acids glutamine, glutamic acid, and cysteine (collectively abbreviated QEC) together with O2 and H2O as a biologically

relevant set of basis species for describing the chemical compositions of proteins (Dick, 2016). These three amino acids are

among the top eight amino acids ranked by number of reactions in a metabolic model for EscherichiaE. coli (Feist et al., 2007)215

(GluE: 52, SerS: 25, AspD: 23, GlnQ: 18, AlaA: 15, GlyG: 15, MetM: 15, CysC: 13).

3.3 Derivation of stoichiometric hydration stateChoice of basis species: stoichiometric analysis

Here we compute the stoichiometric hydration state by analyzing the compositions of the 20 proteinogenic amino acids in

detail. Using theWe start with a “default” set of basis species chosen for their common occurrence in overall catabolic reactions

(Amend and LaRowe, 2019): CO2, NH3, H2S, H2O, and O2. Using these basis species (designated CHNOS), the theoretical220

formation reaction of alanine (C3H7NO2) is

3CO2 +2H2O+NH3→ C3H7NO2 +3O2 (R1)

and the oxygen and water content of the amino acid (i.e, nO2 = -3 and nH2O = 2) are the opposite of the coefficients on O2

and H2O in the reaction. SimilarAnalogous reactions for the other amino acids were used to make Fig. 1a–b. Using glutamine
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Figure 1. Stoichiometric valuesnumbers of H2O and O2 for theoretical formation reactions of amino acids computed with different sets of

basis species, plotted against carbon oxidation state (ZC), which is computed from the elemental formula and does not depend on the choice of

basis species. Linear regressions and R2 values were calculated using the lm function in R (R Core Team, 2020). (a–b) CO2, NH3, H2S, H2O,

O2 (CHNOS). (c–d) Glutamine, glutamic acid, cysteine, H2O, O2 (QEC). (e) Scatterplot of R2 values for nH2O–ZC fits against R2 values for

nO2 –ZC fits for all combinations of basis species consisting of H2O, O2 and three amino acids (including the points labeled QEC and MWY

(methionine, tryptophan, tyrosine)), or CO2, NH3, H2S, H2O, and O2 (CHNOS).(CHNOS and QEC) and derivation of the residual correction

(rQEC). (a–b) Number of H2O and O2 in the theoretical formation reactions of amino acids from CO2–NH3–H2S–H2O–O2 (CHNOS) are

plotted against carbon oxidation state (ZC), which is also computed from the chemical formula but does not depend on the choice of basis

species. Linear models and R2 values were calculated using the lm function in R (R Core Team, 2020). (c–d) Changing the basis species

to glutamine–glutamic acid–cysteine–H2O–O2 (QEC) strengthens the association between ZC and nO2 and decreases that between ZC and

nH2O. However, there is still a noticeable negative correlation between ZC and nH2O, which is also visible in scatterplots of all proteins in

(e) H. sapiens and (f) E. coli K12 [UniProt reference proteomes UP000005640 and UP000000625 (The UniProt Consortium, 2019)]. (g)

Residuals from the linear model in (d) minus a constant of 0.355 yield values for the stoichiometric hydration state (rQEC) of amino acids.

(h–i) Stoichiometric hydration states of proteins calculated with the rQEC values. The constant was defined so that the mean nH2O for human

proteins equals zero.
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Table 1. Values of stoichiometric hydration state (nH2O) of amino acids residues calculated with the rQECQEC derivationbasis species

(glutamine, glutamic acid, cysteine, H2O, O2) and average oxidation state of carbon (ZC) and number of carbon atoms (nC). Standard one-

letter abbreviations for the amino acids (AA) are used.

AA nH2O ZC nC AA nH2O ZC nC

A 0.6 0 3 M 0.4 -2/5 5

C 0.0 2/3 3 N -0.2 1 4

D -0.2 1 4 P 0.0 -2/5 5

E 0.0 2/5 5 Q 0.0 2/5 5

F -2.2 -4/9 9 R 0.2 1/3 6

G 0.4 1 2 S 0.6 2/3 3

H -1.8 2/3 6 T 0.8 0 4

I 1.2 -1 6 V 1.0 -4/5 5

K 1.2 -2/3 6 W -3.8 -2/11 11

L 1.2 -1 6 Y -2.2 -2/9 9

(C5H10N2O3), glutamic acid (C5H9NO4), cysteine (C3H7NO2S), H2O, and O2 (the QEC basis species), the theoretical forma-225

tion reaction of alanine is

0.4C5H10N2O3 +0.2C5H9NO4 +0.6H2O→ C3H7NO2 +0.3O2 (R2)

showing that the oxygen and water content are nO2 = -0.3 and nH2O = 0.6. Calculations for all the amino acids using the QEC

basis were used to make Fig. 1c–fd.

As measured by R2 in linear regressions, the CHNOS basis yields a strong negative correlation between ZC and nH2O for230

the amino acids (Fig. 1a), but a relatively weak correlation between ZC and nO2 (Fig. 1b). The QEC basis provides a much

stronger association between ZC and nO2 and greatly reduces the correlation between ZC and nH2O (Fig. 1c–d). However, there

is still a small negative correlation for amino acids (Fig. 1dc). A plot with the R2 values for all possible combinations of H2O,

O2, and 3 amino acids indicates that QEC has relatively low R2 of nH2O–ZC and high R2 of nO2 –ZC (Fig. 1e). Therefore, it

is a suitable candidate to meet the objectives described above. Although another combination of amino acids – methionine,235

tryptophan, and tyrosine (MWY) – has even lower R2 for the nH2O–ZC fit (Fig. 1e), tryptophan and tyrosine are not highly

connected metabolites and therefore are less preferable as basis species.

which is also visible in whole-proteome data for humans and E. coli (Fig. 1e–f). We calculated residual-corrected values

of nH2O by taking the residuals of a linear model for amino acids (Fig. 1d), then subtracting a constant, defined such that

the mean nH2O for all human proteins equals zero. This derivation, which we refer to as “rQEC”, gives the residual-corrected240

stoichiometric hydration state for each amino acid, which is plotted in Fig. 1g and listed in Table 1. Even with the residual

correction for amino acids, there remain slightly positive and negative correlations for human and E. coli proteins (Fig. 1h–i).
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As noted above, the mean nH2O for human proteins was defined to be zero; the mean for proteins in E. coli is somewhat greater,

at 0.014.

By strengthening the association between ZC and nO2 , which can both be interpreted as represent alternative metrics for245

oxidation state, and reducing the correlation between ZC and nH2O, the QEC basis species provides a more convenient projection

of chemicalelemental composition than a “default” choice of inorganic species, such as CO2, NH3, H2S, H2O, and O2, which

commonly appear in overall catabolic reactions (Amend and LaRowe, 2019). The selection of basis species is an evolving

method, and further analysis with other metabolites may lead to a more convenient set of basis species to project the elemental

composition of proteins into chemical variables.Furthermore, the residual correction allows the identification of horizontal or250

vertical trends on nH2O–ZC scatterplots to be associated with changes in only oxidation state or hydration state, respectively.

3.4 Compositional metrics for proteins and metagenomes

For a given protein, the stoichiometric hydration state was calculated by taking the sum of (number of each amino acid

multiplied by the respective value of nH2O in Table 1), then dividing the result by the number of amino acids.from

nH2O =

∑
ni (nH2O,i− 1)∑

ni
+1 (2)255

where ni is the frequency of the ith amino acid (i = 1 to 20) in the protein and nH2O,i is the stoichiometric hydration state of that

amino acid (Table 1). The “-1” in the numerator accounts for the loss of H2O in the polymerization of amino acids, and the

“+1” after the fraction accounts for the N-terminal H and C-terminal OH of the polypeptide.

The average oxidation state of carbon was also calculated from the values for the amino acids [see Table 1 of Dick and Shock (2011)].

Unlike nH2O, averages for ZC for proteins must be weighted by the number of carbon atoms in each amino acid, i.e.260

ZC =

∑
ninC,iZC,i∑
ninC,i

(3)

where nC,i and ZC,i are the number of carbon atoms and carbon oxidation state of the ith amino acid (see Table 1). For example,

ZC of the dipeptide Ala-Gly can be calculated as (3 × 0 + 2 × 1) / (3 + 2), where 3 and 2 are the numbers of carbon atoms and

0 and 1 are the ZC of Ala and Gly, respectively. The result, 0.4, can be checked by applying Eq. 1 to the chemical formula of

alanylglycine (C5H10N2O3). The methods for calculating nH2O and ZC from elemental composition and amino acid composition265

are shown schematically in Fig. 2.

3.5 Amino acid composition of proteomes of Nif-bearing organisms

In a separate study, Poudel et al. (2018) used carbon oxidation state as a metric for comparing proteomes of organisms con-

taining the nitrogenase gene (Nif). The evolution of these organisms is associated with rising atmospheric oxygen through

geological history. In order to approximately replicate their results, amino acid compositions of all proteins for each bacterial,270

archaeal, and viral taxon in the NCBI Reference Sequence (RefSeq) database (O’Leary et al., 2016) were compiled from Ref-

Seq release 95201 (July 20192020). Scripts to do this, and the resulting data file of amino acid compositions of 36,42542,787
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Elemental composition Amino acid composition

B
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s
is
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e
c
ie

s
nH2O

ZC

C613H959N193O185S10 =

66.4 C5H10N2O3 (glutamine)

50.2 C5H9NO4 (glutamic acid)

10.0 C3H7NO2S (cysteine)

−113.4 H2O
−60.8 O2

−113.4

129 (protein length)
= −0.879

− 959 + 3(193) + 2(185) + 2(10)

613
= 0.016

(Equation 1)

A C D E F G H I K L
12 8 7 2 3 12 1 6 6 8

M N P Q R S T V W Y
2 14 2 3 11 10 7 6 6 3

← Equation 2

← Equation 3

Figure 2. Schematic of calculations of nH2O and ZC for a single protein. The selected protein is chicken egg white lysozyme (UniProt ID:

LYSC_CHICK), which is historically an extensively characterized protein in the laboratory. The protein sequence was used to tabulate the

amino acid composition (right column), which in turn was used to generate the elemental composition (left column). The coefficients on the

basis species are determined from the elemental composition by mass-balance constraints. Dividing the number of H2O in the basis species

by the protein length gives the stoichiometric hydration state (nH2O). Independent of the basis species, the elemental composition yields the

average oxidation state of carbon (ZC) according to Eq. (1). To reduce computing steps, in this study the amino acid compositions of proteins

(obtained e.g. from metagenomic sequences) were used to calculate nH2O and ZC with Eqs. (2) and (3) and the values for amino acids in Table

1.

taxa, are available in the JMDplots R package (see Code and data availability). Names of organisms containing different ni-

trogenase (Nif) homologs were extracted from Supplemental Table 1A of Poudel et al. (2018). These names were matched to

the closest organism name in RefSeq. Duplicated species (represented by different strains) were removed, as were matching275

organisms with fewer than 1000 RefSeq protein sequences. As a result, the numbers of organisms included in the present

calculations (Nif-A: 157155, Nif-B: 6968, Nif-C: 14, Nif-D: 7) are less than those identified in Poudel et al. (2018). Note that

values of ZC calculated here (Fig. 3a) are lower than those shown in Fig. 5 of Poudel et al. (2018). This difference is associated

with the weighting by carbon number (described above), which was not performed by Poudel et al. (2018).

3.6 GRAVY and pI280

The grand average of hydropathicity (GRAVY) was calculated using published hydropathy values for amino acids (Kyte and

Doolittle, 1982). The isoelectric point (pI) was calculated using published pK values for terminal groups (Bjellqvist et al., 1993)

and sidechains (Bjellqvist et al., 1994); however, the calculation does not implement position-specific adjustments (Bjellqvist

et al., 1994). The pK values used for calculating pI (Bjellqvist et al., 1993, 1994) and transfer free energies used in the derivation

of the GRAVY scale (Kyte and Doolittle, 1982) correspond to 25 ◦C and 1 bar and no attempt was made here to account for the285

temperature effects on these properties. The charge for each ionizable group was precalculated from pH 0 to 14 at intervals of
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0.01, and the isoelectric point was computed as the pH where the sum of charges of all groups in the protein is closest to zero.

These calculations were implemented as new functions in the canprot R package (Dick, 2017) (see Code and data availability).

Comparisons for selected proteins (UniProt IDs: LYSC_CHICK, RNAS1_BOVIN, AMYA_PYRFU) show that the calculated

values of GRAVY and pI are equal to those obtained with the ProtParam tool (Gasteiger et al., 2005).290

3.7 Prediction of protein sequences

Protein sequences were predicted from metagenomic reads using a previously described workflow (Dick et al., 2019). Briefly,

reads were trimmed, filtered, and dereplicated using scripts adapted from the MG-RAST pipeline (Keegan et al., 2016). For

metatranscriptomic datasets, ribosomal RNA sequences were removed using SortMeRNA (Kopylova et al., 2012). Protein-

coding sequences were identified using FragGeneScan (Rho et al., 2010), and the amino acid sequences of the predicted295

proteins were used in further calculations. For large datasets, only a portion of the available reads was processed (at least

500,000 reads; see Supplementary Tables S1 and S2). This reduces the computational requirements without noticeably affecting

the calculated average compositions (Dick et al., 2019).

Means and standard deviations of ZC, nH2O, GRAVY, and pI were calculated for 100 random subsamples of protein sequences

from each metagenomic or metatranscriptomic dataset. The numbers of sequences included in theeach subsamples werewas300

chosen to give a total length closest to 50,000 amino acids on average. The subsample density, or number of sequences included

in each sample, depends on the average length of the metagenomic or metatranscriptomic sequences and is listed in Tables S1

and S2. This number ranges from 251 for the dataset with the highest mean protein fragment length (199.1; metagenome of

hot-spring source of Bison Pool) to 1696 for the dataset with the lowest mean protein fragment length (29.5; metatranscriptome

of site GS684 in the Baltic Sea).305

4 Results and discussion

4.1 Comparison of redox and salinity gradients

To search for the hypothesized dehydration signal in metagenomic data, we began with redox gradients as a negative control.

Submarine hydrothermal vents are zones of complex interactions between reduced endmember fluids and relatively oxidized

seawater (Reeves et al., 2014; Ooka et al., 2019). Terrestrial hydrothermal systems, such as the hot springs in Yellowstone310

National Park, USA, provide a source of reduced fluids that are oxidized by degassing and mixing with air and surface ground-

water as well as biological activity including sulfide oxidation (Lindsay et al., 2018). Redox gradients can also develop over

smaller length scales. The surface of the Guerrero Negro microbial mat (Baja California Sur, Mexico) is exposed to ca. 1

m deep hypersaline, oxygenated water (approximately 200 mM O2), but in the mat, oxygen rises during the daytime and is

depleted within a few millimeters, giving way to anoxic, then sulfidic conditions (Ley et al., 2006).315

Using metagenomic data for these redox gradients (Kunin et al., 2008; Havig et al., 2011; Swingley et al., 2012; Reveillaud

et al., 2016; Fortunato et al., 2018), Dick et al. (2019) showed that the carbon oxidation states of DNA, messenger RNA, and
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Figure 3. Compositional analysis of proteins in redox gradients and the Baltic Sea salinity gradient. (a) Redox gradients. Abbreviations and

data sources: are given in Fig. 3BP (Bison Pool hot spring; Havig et al., 2011; Swingley et al., 2012), DV (diffuse submarine vents; Reveillaud

et al., 2016; Fortunato et al., 2018), GN (Guerrero Negro microbial mat; Kunin et al., 2008), NF (nitrogenase-bearing organisms; Poudel

et al., 2018). The NF data are based on reference proteomes (see Methods); all others are for protein sequences predicted from metagenomic

data. Outlined symbols indicate samples infrom relatively oxidizing conditions. (b) Surface and (c) deeper samples (chl a max: chlorophyll

a maximum, 9–30 m deep) from the Baltic Sea transect. Metagenomes as described in Dupont et al. (2014) were downloaded from iMicrobe

(Youens-Clark et al., 2019); the plots show data for the 0.1–0.8 mm size fraction are plotted here. Upward- and downward-pointing symbols,

connected by dashed and dotted lines, represent surface and deeper samples, respectively,collected from stations along the transect at low

salinity (< 6 PSU) and high salinity (> 6 PSU). Background guidelines have slopes equal to that of the nH2O–ZC linear regression for amino

acids in Fig. 1c.

proteins increase down the outflow channel of Bison Pool and between fluids from diffuse hydrothermal vents and relatively

oxidizing seawater. NotablyMoreover, intact polar lipids extracted from the microbial communities of Bison Pool and other

alkaline hot springs also exhibit downstream increases in carbon oxidation state (Boyer et al., 2020), confirmingrevealing that320

similarparallel compositional trends characterize multiple classesall major types of biomacromolecules in these hot springs.

The ZC of proteins increases more subtly toward the surface in the upper few millimeters of the Guerrero Negro microbial mat;

it also increases at greater depths, perhaps due to heterotrophic degradation and/or horizontal gene transfer (Dick et al., 2019).

Furthermore, an evolutionary trajectory associated with the occurrence of different homologs of nitrogenase (Nif) in anaerobic

and aerobic organisms is characterized by increasing ZC of the proteomes of these organisms (Poudel et al., 2018).325

The trends of carbon oxidation state described above are visible in the nH2O–ZC scatter plot in Fig. 3a, with an added

dimension: stoichiometric hydration state. The guidelines in this plot are parallel to the nH2O–ZC trend for amino acids (Fig.

1c); their slope represents the background correlation between nH2O and ZC that is associated with the choice of basis species.

Sample data for Bison Pool and the submarine vents are distributed parallel to these guidelines. Therefore, the decrease of nH2O
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Figure 4. Stoichiometric hydration state of proteins in metagenomes (Dupont et al., 2014) and metatranscriptomes (Asplund-Samuelsson

et al., 2016) of surface water samples in the Baltic Sea with increasing particle size: (a) 0.1–0.8 mm, (b) 0.8–3.0 mm, (c) 3.0–200 mm. From

left to right, the samples on the x-horizontal axis (some IDs omitted for clarity) are arranged from freshwater to marine conditions in the

Sorcerer II Global Ocean Sampling Expedition (Dupont et al., 2014); all sample IDs are GS667, GS665, GS669, GS673, GS675, GS659,

GS679, GS681, GS683, GS685, GS687, GS694. Width of shading represents ±1 standard deviation in subsampled sequences (see Methods).

along these redox gradients can be attributed to the background correlation in the stoichiometric analysis, and the differences330

between samples within each dataset are specifically associated with changes in carbon oxidation state and not stoichiometric

hydration state.with the exception of Guerrero Negro, these datasets exhibit larger changes in carbon oxidation state than

stoichiometric hydration state. This is an expected outcome, as the redox gradients considered here do not have large changes

in salinity. In particular, concentrations of Cl−, a conservative ion, increase by less than 10% (6.1 to 6.6 mM) in the outflow of

Bison Pool due to evaporation (Swingley et al., 2012). The diffuse vents considered here have concentrations of Cl− between335

515 and 624 mM, not greatly different from bottom seawater at 545 mM [(Dataset S1 of Reeves et al. (2014)]).

As a well-known example of a regional salinity gradient, the Baltic Sea exhibits a freshwater to marine transition over 1800

km, but dissolved oxygen at the surface is at or near saturation with air (Dupont et al., 2014), so this transect does not represent

a redox gradient. For protein sequences derived from metagenomes in the 0.1–0.8 mm size fraction, there are large changes in

stoichiometric hydration state along the Baltic Sea transect, but relatively small differences in the carbon oxidation state (Fig.340

3b). This pattern holds for samples from both the surface and chlorophyll a maximum (9–30 m deep; Fig. 3c).

4.2 Multifactorial hydration effects
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Metagenomic and metatranscriptomic data for different filter size fractions are available for the Baltic Sea. The stoichiometric

hydration state of proteins can be influenced by factors other than just salinity. Previous authors have observed large differences

in microbial community composition between free-living and particle-associated fractions, which may be due in part to anoxic345

conditions arising from limited diffusion in particles (Simon et al., 2014). As described below, we found a trend of relatively low

nH2O in particles compared to free-living fractions in both the Baltic Sea and Amazon River. This effect is probably associated

with phylogenetic differences among the size fractions, but reduced accessibility to bulk water may be a contributing factor.

Further support for the possible influence of physical accessibility is the reduced nH2O in the interior compared to upper layers

of the Guerrero Negro microbial mat.350

For the Baltic Sea metagenomes and metatranscriptomes, the 0.1–0.8 mm and 0.8–3.0 mm size fractions of particles that

don’t pass through the filter, which are used for subsequent DNA extraction and sequencing, represent free living bacteria,

while the 3.0–200 mm fraction contains particle-associated bacteria with average larger genome sizes and greater inferred

metabolic and regulatory capacity (Dupont et al., 2014). FigureFig. 4a–c shows that proteins inferred from metagenomes for

larger particles have lower nH2O than those for the smallest size fraction. The Guerrero Negro microbial mat offers another355

opportunity to compare exposed and interior environments. Unlike ZC, which reaches a minimum a few millimeters into the

mat, nH2O decreases throughout the mat, but the changes are most pronounced in the upper few millimeters (Fig. 3a).

One hypothesis that could explain these findings is that the interiors of particles and the mat are sequestered to some ex-

tent from the surrounding aqueous environment. If limited accessibility to the aqueous phase were manifested as lower water

activity, [perhaps due to surface effects associated with geological nanomaterials (Wang et al., 2003) and/or higher concentra-360

tions of solutes], it would provide a thermodynamic drive that favors lower nH2O of proteins. However, it should be noted that

particles are also suitable habitats for multicellular and eukaryotic populations (Simon et al., 2014). Therefore, the trends in

stoichiometric hydration state may require an explanation in terms of both physical and phylogenetic differences, which should

be explored in future studies. A lower average nH2O in one eukaryotic organism, humans, is apparent in comparison to E. coli

(Sect. 3.3) and in the positive values of nH2O for most of the metagenomic and metatranscriptomic datasets considered here365

(see Figs. 3–5) (recall that the mean for human proteins was defined to be zero). These preliminary observations suggest that

the evolution of multicellularity may be accompanied by an overall decrease in stoichiometric hydration state.

Another important evolutionary transition is the emergence of heterotrophic metabolism, which is a later innovation than

autotrophic core metabolism (Morowitz, 1999; Braakman and Smith, 2013). It is notable that the deeper layers of the Guerrero

Negro mat show greater evidence for heterotrophic metabolism (Kunin et al., 2008); likewise, heterotrophs in the “photosyn-370

thetic fringe” in Bison Pool may outcompete the autotrophs that dominate at higher and lower temperatures (Swingley et al.,

2012). These putative heterotroph-rich zones show locally lower values of nH2O (Fig. 3a). If decreasing stoichiometric hydra-

tion state is a common theme across these majorsome evolutionary transitions, then the relatively high nH2O in the proteomes of

organisms carrying the ancestral nitrogenase Nif-D (Fig. 3a) is not unexpected. A better understanding of these trends would

require more extensive phylogenetically resolved comparisons of the compositional differences as well as quantitative analyses375

of water fluxes in different metabolic pathways.
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Figure 5. Compositional analysis and hydropathicity and isoelectric point calculations for proteins from the Amazon River and plume

and other metagenomes. Samples representing freshwater, marine, and hypersaline environments are indicated by the colored convex hulls.

(a) Metagenomic and (b) metatranscriptomic data for particle-associated and free-living fractions from the lower Amazon River (Satinsky

et al., 2015) and plume in the Atlantic Ocean (Satinsky et al., 2014). (c) Freshwater (lakes in Sweden and USA) and marine metagenomes

considered in a previous comparative study (Eiler et al., 2014) and metagenomes from hypersaline environments including Kulunda Steppe

soda lakes in Siberia, Russia (Vavourakis et al., 2016) (KS), Santa Pola salterns in Spain (Ghai et al., 2011; Fernandez et al., 2013) (SA),

and salterns in the South Bay of San Francisco, CA, USA (Kimbrel et al., 2018) (SB). Plots (d-f) show values of average hydropathicity

(GRAVY) and isoelectric point (pI) of proteins for the same datasets. Background guidelines have slopes equal to that of the nH2O–ZC linear

regression for amino acids in Fig. 1c.

4.3 Compositional trends in rivers, lakes, and hypersaline environments

The Amazon river and ocean plume provide another example of a freshwater to marine transition, with salinities that range

from below the scale of practical salinity units (PSU) in the river to 23–36 PSU in the plume (Satinsky et al., 2014, 2015).

We used published metagenomic and metatranscriptomic data for filtered samples classified as free-living (0.2 to 2.0 mm) and380

particle-associated (2.0 to 156 mm) (Satinsky et al., 2014, 2015). River samples form a tight cluster on a plot of stoichiometric

hydration state against carbon oxidation state of proteins, and the free-living size fraction of plume samples isare scattered over

lower ZC whereas the particle-associated fraction shows very and low values of nH2O, particularly for the particle-associated

fraction (Fig. 5a). For metatranscriptomes, there is a noticeable decrease of nH2O from the river to the ocean plume but little

difference in carbon oxidation state (Fig. 5b), and the particle-associated samples again exhibit a generally lower nH2O than385
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the free-living samples. Together with the lower nH2O for proteins inferred from metagenomes and metatranscriptomes in the

larger size fractions from Baltic Sea samples, this could reflect a lower availability of H2O to organisms living near the particle

surface due to physical separation from the bulk aqueous phase and associated diffusion limitation or lower water activity

(Wang et al., 2003).

To continue the investigation, We also considered data used in a previous comparative study and data for hypersaline environ-390

ments including evaporation ponds (salterns) and lakes in desert areas. Eiler et al. (2014) characterized microbial communities

using metagenomic data for various freshwater samples (lakes in the USA and Sweden) and marine locations. For hypersaline

settings, we used metagenomic data from the Santa Pola salterns in Spain (Ghai et al., 2011; Fernandez et al., 2013), natural

soda lakes of the Kulunda Steppe in Serbia (Vavourakis et al., 2016), and South Bay salterns in California, USA (Kimbrel et al.,

2018). The compositional analysis reveals a relatively low nH2O of proteins inferred from the marine metagenomes compared to395

freshwater samples in the Eiler et al. dataset (Fig. 5c). Surprisingly, hypersaline metagenomes have ranges of nH2O of proteins

that are similar to marine environments, but considerably higher ZC (Fig. 5c). To interpret these results, we considered other

factors that are known to influence the amino acid compositions of proteins in halophiles.

“Salt-in” halophilic organisms have proteins with relatively low isoelectric point that remain soluble at high salt concentra-

tions (Ghai et al., 2011). Notably, It should be noted that proteins with a lower pI also tend to have relatively high ZC due to400

higher abundances of aspartic acid and glutamic acid, which are relatively oxidized (see Amend and Shock, 1998, Dick, 2014,

and Fig. 1). Consequently, the lower pI characteristic of “salt-in” organisms is also associated with an increase of carbon oxi-

dation state. Because of the large pI differences (Fig. 5f), the increase of ZC in hypersaline environments can not be interpreted

as an indicator of an environmental redox gradient. Some halophilic organisms are also noted known to have proteins that are

less hydrophobic, with lower values of GRAVY (Paul et al., 2008; Boyd et al., 2014). Because hydrophobic amino acids have405

relatively low values of ZC (Dick, 2014), a negative correlation between GRAVY and ZC is also expected.

for proteins are negatively correlated., as shown in Fig. 6a for all proteins in the E. coli genome. On the other hand, there

is very little correlation in these proteins between GRAVY and nH2O (Fig. 6b). A small correlation between pI and ZC is also

apparent in the E. coli genome, in contrast to no correlation with nH2O (Fig. 6c–d). Therefore, it seems likely that selection for

hydrophobicity or isoelectric point are not largely responsible for trends of nH2O in environmental samples.410

Consistent with these well-known features of halophilic adaptation, marine metagenomes exhibit lower hydrophobicity than

most of the freshwater samples, and hypersaline metagenomes are shifted to both lower GRAVY and pI (Fig. 5f). However,

there are irregular trends in the Amazon River data. Compared to the river, the proteins in plume metagenomes exhibit lower

GRAVY and either higher or lower pI (Fig. 5d). Similarly, other authors have reported that although lower pI is a signature of

many hypersaline environments, it does not clearly distinguish marine from lower-salinity environments (Rhodes et al., 2010).415

On the other hand, the plume metatranscriptomes do show decreased pI but no major difference in GRAVY compared to river

samples (Fig. 5e).

There is not enough space here to comprehensively examine all the available metagenomic data for environmental salinity

gradients. However, we have identified one dataset that gives a contradictory result, and therefore offers more perspective on

the compositional relationships of proteins coded by metagenomes in salinity gradients. This dataset was generated in a time-420
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Figure 6. Divergent trends of nH2O and ZC of proteins from metagenomes for (a) the Baltic Sea and (b) freshwater and higher-salinity

samples from southern California (Rodriguez-Brito et al., 2010). The datasets from Rodriguez-Brito et al. (2010) are classified according to

salinity: freshwater (FW; 3 samples at different times from the “tilapia channel” and 1 sample from the “prebead pond”), low salinity (LS;

3 samples at different times from the low salinity saltern), and hypersaline (MS–HS; 4 samples from a medium salinity and 2 from a high

salinity saltern). Plots (c) and (d) show GRAVY and pI computed for the same datasets. Background guidelines have slopes equal to that of

the nH2O–ZC linear regression for amino acids in Fig. 1c.

series study of microbial and viral community dynamics in a freshwater aquaculture facility (“tilapia channel” and “prebead

bond”) and low-, medium-, and high-salinity salterns in southern California (Rodriguez-Brito et al., 2010). Here, we have used

only the reported microbial sequences (not the viral dataset) and considered all time points together. Contrary to our starting

hypothesis, the stoichiometric hydration state of proteins is lowest in the freshwater samples, which is the reverse of the trend

from the Baltic Sea (Fig. 6a–b). A side-by-side comparison of the Baltic Sea and Rodriguez-Brito et al. datasets shows large425

changes of GRAVY in the former, but pI in the latter (Fig. 6c–d), which is another indication that these variables respond as

expected are responsive only in certain ranges of salinity.

This counterexample demonstrates that the sign of differences of nH2O is not predictable in all environments; however, the

large negative offset in the freshwater samples may be a signal of some other influence, perhaps related to the human control
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of these ponds, which are used as fish nurseries. Specifically, the microbial communities in the aquaculture ponds may not be430

responding as they would in a typical natural system that is less nutrient-rich. As noted above for putative heterotroph-rich

zones in other systems, the lower stoichiometric hydration state could be associated with the enrichment of heterotrophic taxa,

in this case due to the addition of organic compounds to the aquaculture ponds.

Considering all the datasets shown in Figs. 5 and 6, there appears to be no globally consistent metric for environmental

salinity gradients that can be derived from amino acid composition. If we exclude the Rodriguez-Brito et al. (2010) dataset,435

then nH2O exhibits a consistent decreasing trend in marine compared to freshwater samples. However, this trend does not

continue into hypersaline environments.

4.4 Compositional analysis of differentially expressed proteins

Coming away from a picture of salinity gradients as only spatial phenomena, there is much interest in the impact of changing

salinities on microbial organisms. To cite one example relevant to environmental studies, cyanobacteria respond to salt shock440

through stages including cell shrinkage, influx of external salts, synthesis of compatible solutes, changes in gene and protein

expression, and acclimation (Qiao et al., 2013). While biomolecular data for environmental salinity gradients reflect both eco-

logical and evolutionary differences, laboratory experiments provide information on the physiological effects of osmotic con-

ditions on protein expression in particular organisms. It is also important to recognize that osmotic stress can be imposed by

solutes other than NaCl; the effects of organic solutes differ in relation to their ability to permeate or depolarize cell membranes445

and to be sensed by cellular osmoregulatory systems (Kanesaki et al., 2002; Shabala et al., 2009; Withman et al., 2013). It is

clear thatBecause microbial adaptation to changes in osmotic conditions is a dynamic process, so it is helpful to look at gene

and protein expression data for a range of times and conditions that can be controlled in the lab.

We performed multiple literature searches searched the literature to compile data for differential gene and protein expression

in non-halophilic bacteria in NaCl or other osmotic stress conditions. As a general rule, we only included only datasets with450

a minimum of 20 down-regulated and 20 up-regulated genes or proteins; however, smaller datasets were included if they

are part of a study with larger datasets. This compilation consists of 49 transcriptomics and 2930 proteomics datasets from

3536 studies (note that different time points and treatments are considered as separate datasets); descriptions and references

for all datasets are given in Figures S1 and S2. In addition, four datasets for differential expression of proteins in halophilic

archaea in hyperosmotic stress were located (Leuko et al., 2009; Zhang et al., 2016; Lin et al., 2017; Jevtić et al., 2019)455

(see Figure S3). We assembled the lists of up- and down-regulated proteins in each dataset or, for gene expression studies,

the proteins corresponding to the up- and down-regulated genes, and converted gene names or accession numbers to UniProt

accessions using the UniProt mapping tool (Huang et al., 2011). The compiled data are available as CSV files in R packages

(see Code and data availability). This is a major update to an earlier compilation of data for hyperosmotic stress experiments

(Dick, 2017), but we have limited the present compilation to data for bacteria or archaea; data for osmotic stress induced by460

NaCl or glucose in eukaryotic cells are considered in a separate paper (Dick, 2020a).

We assembled the lists of up- and down-regulated proteins in each dataset or, for gene expression studies, the proteins

corresponding to the up- and down-regulated genes, and converted gene names or accession numbers to UniProt accessions
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Table 2. Halophilic organisms, growth conditions, number of differentially expressed proteins, and sources of data for hypoosmotic and

hyperosmotic stress experiments. Units for NaCl concentrations are taken from the references; approximate conversions between molarity

and weight percent are 1 M NaCl ≈ 6%, 2.5 M NaCl ≈ 13%, 4 M NaCl ≈ 20%.

Data sources: (a, b) Tables 1 and 2 of Leuko et al. (2009). (c, d) Table S-1 of Zhang et al. (2016). Values of reporter intensities at each

condition (6%, 10%, and 17.5% NaCl) were quantile normalized and used to compute intensity ratios (6% / 10% NaCl and 17.5% / 10%

NaCl). Only proteins with expression ratios > 1.3 in either direction (Zhang et al., 2016), p-values < 0.05, and at least 2 peptides were

included. (e, g) Tables S2 and S3 of Lin et al. (2017). (g, h) Supporting Table 1C of Jevtić et al. (2019). Only proteins with at least 2-fold

expression difference and marked as significant were included.

using the UniProt mapping tool (Huang et al., 2011). The compiled data are available as CSV files in R packages (see Code

and data availability). After removing genes or proteins with unavailable or duplicated UniProt IDs and those with ambigu-465

ous differences (appearing in both the down- and up-regulated groups), the amino acid compositions computed for protein

sequences downloaded from UniProt (The UniProt Consortium, 2019) were used for the compositional analysis of carbon

oxidation state and stoichiometric hydration state. Median differences (i.e. DnH2O and DZC) were calculated as the median

value for all up-regulated proteins minus the median value for all down-regulated proteins in each dataset. In Fig. 7, the values

of DZC and DnH2O represented by empty and lettered symbols refer to median differences in individual datasets; that is, the470

median value for all up-regulated proteins minus the median value for all down-regulated proteins. Although there is obvious

scatter in values, the DnH2O for proteins in transcriptomic and proteomic experiments is negative on average (Fig. 7a–b), but

the differences are non-significant to marginally significant [p = 0.215 and 0.052, respectively; all p-values were calculated for

paired two-sided Student’s t-tests using R (R Core Team, 2020)]. The compilations of gene and protein expression data also

show small average DZC, with p = 0.088 and 0.666, respectively.475

Figure 7ca shows results for selected time-course experiments for hyperosmotic stress. Note that all values are differences

calculated relative to the same control (starting conditioninitial time point) in a given study. In transcriptomic experiments

for a commensal species (Enterococcus faecalis), a soil bacterium (Methylocystis sp. strain SC2), and two pathogens (E. coli

O157:H7 and Salmonella enterica serovar Typhimurium) (Solheim et al., 2014; Han et al., 2017; Kocharunchitt et al., 2014;

Finn et al., 2015), there is a marked progression toward lower DnH2O of the associated proteins with time. In a transcriptomic480

experiment for salt stress in Synechocystis sp. PCC 6803 (Qiao et al., 2013), DnH2O is shifted negatively between 24 and 48 h,

but rises to a less negativeslightly positive value at 72 h. Proteomic data are available from two of these studies, indicating that

the differentially expressed proteins in E. coli (Kocharunchitt et al., 2014) also show decreasingDnH2O with time (Fig. 7d), but

in the proteomic experiment for Synechocystis sp. PCC 6803 (Qiao et al., 2013), DnH2O changes sign from negative to positive

between 24 and 48 h (Fig. 7a).485

Perhaps the most striking result to emerge from this analysis is the strong dehydrating signal associated with osmotic stress

imposed by organic solutes. We compared pairs of datasets from the same study for NaCl and another solute at concentrations

that give similar total osmolalities. Transcriptomic data for sorbitol (Kanesaki et al., 2002; Han et al., 2005), sucrose (Kohler

et al., 2015), and glycerol (Finn et al., 2015) compared to controls all show a lower DnH2O of the associated proteins than for
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Figure 7. Compositional analysis of proteins in hyperosmotic stress experiments for non-halophilices bacteria and halophilic archaea. All

datasets and mean value for all datasets in each compilation are shown for (a) proteins coded by differentially expressed genes and (b)

differentially expressed proteins. See Figures S1 and S2 for references for all datasets. Selected time course experiments are highlighted in

(c) and (d). (a) Time-course experiments for bacteria; black circles represent datasets for proteins coded by differentially expressed genes

(transcriptomics experiments) and blue squares represent datasets for differentially expressed proteins (proteomics experiments). Points

connected by lines showLettered symbols represent the progression in each experiment: a–c (30, 80, 310 min; Kocharunchitt et al., 2014)

(transcriptomes and proteomes), d–f (5, 30, 60 min; Solheim et al., 2014), g–i (1, 6, 24 h; Finn et al., 2015), j–k (45 min, 14 h; Han et al.,

2017), l–n (24, 48, 72 h; Qiao et al., 2013) (transcriptomes and proteomes; no proteomic data available at 72 h). (e–fb) Pairs of experiments

for bacteria under hyperosmotic stress imposed by NaCl or organic solutes. The sources of data are: A–B (sorbitol; Kanesaki et al., 2002),

C–D (sorbitol; Han et al., 2005), E–F (sucrose; Kohler et al., 2015) (transcriptomes and proteomes), G–H (glycerol at 1 h; Finn et al., 2015),

I–J (glycerol at 6 h; Finn et al., 2015), K–L (sucrose; Shabala et al., 2009), M–N (urea; Withman et al., 2013), O–P (glucose; Schmidt

et al., 2016) (only proteomes). (c–f) Plots of median differences of nH2O and ZC or GRAVY and pI for all compiled transcriptomic and

proteomic data for hyperosmotic stress, including datasets shown in (a) and (b) together with data for other experiments. In each panel, open

symbols represent individual datasets and filled symbols represent the mean for all datasets. The axis labels include the p-values for the mean

difference for all datasets in each plot; p-values less than 0.05 are shown in bold. References for all datasets are in Figures S1 (transcriptomics

for non-halophilic bacteria), S2 (proteomics for non-halophilic bacteria), and S3 (proteomics for halophilic archaea).
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Figure 8. Compositional analysis of differentially expressed proteins in halophiles under hypoosmotic and hyperosmotic stress. (a)

Median differences of nH2O and ZC between up- and down-regulated proteins in hypoosmotic compared to optimal growth conditions and

hyperosmotic compared to optimal growth conditions. See Table 2 for experimental conditions and references. (b) Median differences of

GRAVY and pI for the same datasets. (c) Median differences of GRAVY and pI for all compiled proteomics data for hyperosmotic stress in

halophiles and non-halophiles.

NaCl compared to controls (Fig. 7eb). Data from the study of Finn et al. (2015) are plotted at 1 and 6 h in the experiment,490

indicating a time-dependent decrease of DnH2O under both NaCl and glycerol treatment as well as more negative values

for glycerol than NaCl. Experiments with different strains of E. coli show a smaller negative difference between NaCl and

sucroseslightly more positive value for sucrose than NaCl (Shabala et al., 2009) and the only positivea much larger positive

difference for an organic solute (urea) compared to NaCl (Withman et al., 2013). The available proteomic data also show lower

nH2O for sucrose (Kohler et al., 2015) and glucose (Schmidt et al., 2016) compared to NaCl (Fig. 7fb). Note that the latter495

dataset is actually a comparison between growth on glucose and glucose with NaCl; growth on glucose alone produces a lower

DnH2O of the differentially expressed proteins.

The marked decrease of DnH2O induced by solutes such as sorbitol, which does not permeate the plasma membrane, could

followresult from a higher effective osmotic pressure compared to NaCl (Kanesaki et al., 2002). Because it permeates cells,

solutions of urea are not considered hypertonic (Burg et al., 2007), which may be one reason for the higher DnH2O for urea500

compared to NaCl. However, sSucrose, which permeates but unlike NaCl does not depolarize the plasma membrane (Shabala

et al., 2009), produces a slightly higher DnH2O than NaCl in one transcriptomics dataset for E. coli (Shabala et al., 2009), also

exhibits a strong but has a more marked dehydrating effect in both transcriptomics and proteomics datasets for Caulobacter

crescentus (Kohler et al., 2015). The negative shift ofDnH2O associated with most organic solutes compared to NaCl lends sup-

port to the notion that high organic loading could contribute to the relatively low nH2O of protein sequences from metagenomes505

of freshwater aquaculture systems (Fig. 6b).

We also considered the changes in protein expression when halophilic organisms are exposed to hyperosmotic conditions

in the laboratory. Proteomic data were found for four halophilic species of bacteria and archaea for hypo- and hyperosmotic

stress under changing NaCl concentrations (Leuko et al., 2009; Zhang et al., 2016; Lin et al., 2017; Jevtić et al., 2019) (Table

2). The combined data are plotted in Fig. 7a. A negative DnH2O of the differentially expressed proteins characterizes most of510

the hyperosmotic stress experiments; only Tetragenococcus halophilus shows a small positive value. Unexpectedly, growth at

NaCl concentrations below the optimal concentrations (i.e. hypoosmotic stress) in three of these organisms – the archaeon

Halobacterium salinarium and bacteria Nocardiopsis xinjiangensis and Tetragenococcus halophilus – induces an even larger

loss of nH2O in the differentially expressed proteins (points labeled a, c, and e in Fig. 7a).

The median difference of GRAVY increases for differentially expressed proteins in three of the four halophilic organisms515

under hyperosmotic stress (Fig. 7b). Considering all transcriptomic datasets together (see Figure S1 for references), the pro-

teins coded by differentially expressed genes in non-halophilic bacteria under hyperosmotic stress do not show significant

differences in ZC, nH2O, pI, or GRAVY (Fig. 7c–d). However, the average difference of nH2O would become more negative if
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the early time points in individual time-course experiments were excluded from the average (see Fig. 7a). Unlike the results

for transcriptomes, the data for hyperosmotic stress in both halophiles and non-halophiles, the average value of GRAVY for all520

proteomics datasets (see Figures S2 and S3 for references) increases significantly (Fig. 7cf; p = 0.0100.011). The proteomic

data also exhibit a small decrease of pI (p = 0.1000.083), which is expected for halophiles, but the increase of GRAVY – that

is, higher hydrophobicity – is the opposite of the evolutionary trend for proteomes of halophilic organisms (Paul et al., 2008)

and the metagenomic comparisons described above. Overall, the proteomic experiments record a significant decrease of nH2O

in hyperosmotic stress (Fig. 7e; p = 0.016). We therefore proposeconclude that nH2O is a more consistent metric with consistent525

behavior for field and laboratory datasets, since it records decreasing hydration state of proteins with increasing salinity in the

Baltic Sea and Amazon River and plume, and in of differentially expressed proteins of both halophiles and non-halophilesin

microbial cells grown under hyperosmotic stress.

5 Conclusions

This study was focused on describing the chemical compositions of proteins in a geochemical context. The theoretical nov-530

elty of this study is the derivation of a compositional metric for stoichiometric hydration state (nH2O) that is largely de-

coupled from changes in oxidation state (ZC) of proteins. Therefore, based on mass-action effects in thermodynamics, we

predicted that the stoichiometric hydration state of proteins (nH2O) should is predicted to decrease toward higher salinity but

be mostly insensitive to redox gradients. We found that protein sequences inferred from metagenomes in regional salinity

gradients, including the Baltic Sea freshwater-marine transect and Amazon River and plume, are characterized by changes535

of nH2O in the predicted direction. However, theAlthough this trend does not continue into hypersaline environments, and

there are conflicting results derived from metagenomic data used in previous comparative studies: nH2O decreases between

freshwater lakes and marine samples (Eiler et al., 2014) but increases between freshwater aquaculture ponds and salterns

(Rodriguez-Brito et al., 2010). While biomolecular data for environmental salinity gradients reflect phylogenetic differences

and evolution, laboratory experiments provide information on the physiological effects of osmotic conditions on protein540

expression in single organisms. the applicability of the compositional analysis to microbial cells is supported by compila-

tions of transcriptomic and proteomic data, for non-halophilic organisms which indicate a small decrease of decreasing nH2O

on average for the differentially expressed proteins in hyperosmotic stress experiments. The dehydration signal becomes larger

during many time-course experiments and is stronger for most organic solutes (except urea) than for NaCl. Differentially

expressed proteins in halophiles show a more complex response: for three of four organisms with available data, DnH2O is545

much lower in hypoosmotic compared to hyperosmotic conditions, which is an unexpected finding.

We were also surprised to find a pattern of relatively low nH2O in the interior compared to upper layers of the Guerrero

Negro microbial mat and in particles compared to free-living fractions in both the Baltic Sea and Amazon River. This effect is

probably associated with phylogenetic differences among the size fractions, but reduced accessibility to bulk water may be a

contributing factor. The latter possibility can be further investigated through compositional analysis of differentially expressed550

proteins between single-species biofilms and planktonic growth in the laboratory.
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The central message of this study is that geochemical and laboratory conditions can influence, but naturally do not completely

determine, the chemical compositions of proteins. The compositional analysis establishes the feasibility and the limits of using

thermodynamic models to predict the biomolecular makeup of organisms in new environments. The usefulness of As a step

toward constructing multidimensional chemical-thermodynamic models is also apparentof microbial communities, since the555

present results provide evidence that different compositional metrics, representing the oxidation state and hydration state of

molecules, can in some cases be associated specifically with redox and salinity gradients, respectively. The findings of this

study underscore an opportunity for the integration of hydration state into evolutionary models that already consider changes

in oxidation state or oxygen content of proteins (Acquisti et al., 2007; Poudel et al., 2018).

Code and data availability.560

All metagenomic and metatranscriptomic data analyzed here were obtained from public databases using the accession num-

bers listed in Supplementary Table S1 for salinity gradients and Table S2 for redox gradients. The amino acid compositions

of subsampled sequences from the metagenomic and metatranscriptomic data are available in the JMDplots R package, ver-

sion 1.2.21.2.4 (https://github.com/jedick/JMDplots), which is archived on Zenodo (Dick, 2020b). Specifically, the data are

contained in the file inst/extdata/gradH2O/MGP.rds, which can be read using the R function readRDS (minimum R565

version: 2.3.0).

The compilation of differential gene expression data is available in the JMDplots package as xz-compressed CSV files in

the directory inst/extdata/expression/osmotic/. The compilation of differential protein expression data is in the

corresponding directory of the canprot R package, version 1.0.01.1.0 (https://cran.r-project.org/package=canprot), which is

also archived on Zenodo (Dick, 2020c). The results of the compositional analysis of differential expression data, which are570

used for Figs. 7, are in the inst/vignettes/ directories of the JMDplots and canprot packages.

The code used to make all of the figures and perform statistical testing is in the JMDplots package. The gradH2O.Rmd

vignette in the package containsdemonstrates the functions calls used forto make the figures.
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Ghai, R., Pašić, L., Fernández, A. B., Martin-Cuadrado, A.-B., Mizuno, C. M., McMahon, K. D., Papke, R. T., Stepanauskas, R., Rodriguez-

Brito, B., Rohwer, F., Sánchez-Porro, C., Ventosa, A., and Rodríguez-Valera, F.: New abundant microbial groups in aquatic hypersaline

environments, Scientific Reports, 1, 135, https://doi.org/10.1038/srep00135, 2011.665

Gunde-Cimerman, N., Plemenitaš, A., and Oren, A.: Strategies of adaptation of microorganisms of the three domains of life to high salt

concentrations, FEMS Microbiology Reviews, 42, 353–375, https://doi.org/10.1093/femsre/fuy009, 2018.

Han, D., Link, H., and Liesack, W.: Response of Methylocystis sp. strain SC2 to salt stress: Physiology, global transcriptome, and amino acid

profiles, Applied and Environmental Microbiology, 83, e00 866–17, https://doi.org/10.1128/AEM.00866-17, 2017.

Han, Y., Zhou, D., Pang, X., Zhang, L., Song, Y., Tong, Z., Bao, J., Dai, E., Wang, J., Guo, Z., Zhai, J., Du, Z., Wang, X., Wang, J., Huang,670

P., and Yang, R.: Comparative transcriptome analysis of Yersinia pestis in response to hyperosmotic and high-salinity stress, Research in

Microbiology, 156, 403–415, https://doi.org/10.1016/j.resmic.2004.10.004, 2005.

Havig, J. R., Raymond, J., Meyer-Dombard, D. R., Zolotova, N., and Shock, E. L.: Merging isotopes and community genomics in a siliceous

sinter-depositing hot spring, Journal of Geophysical Research, 116, G01 005, https://doi.org/10.1029/2010JG001415, 2011.

Huang, H., McGarvey, P. B., Suzek, B. E., Mazumder, R., Zhang, J., Chen, Y., and Wu, C. H.: A comprehensive protein-centric ID mapping675

service for molecular data integration, Bioinformatics, 27, 1190–1191, https://doi.org/10.1093/bioinformatics/btr101, 2011.
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