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Abstract. Prediction of the direction of change of a system under specified environmental conditions is one reason for the

widespread utility of thermodynamic models in geochemistry. However, thermodynamic influences on the chemical com-

positions of proteins in nature have remained enigmatic despite much work that demonstrates the impact of environmental

conditions on amino acid frequencies. Here, we present evidence that the dehydrating effect of salinity is detectable as chem-

ical differences in protein sequences inferred from 1) metagenomes and metatranscriptomes in regional salinity gradients and5

2) differential gene and protein expression in microbial cells under hyperosmotic stress. The stoichiometric hydration state

(nH2O), derived from the number of water molecules in theoretical reactions to form proteins from a particular set of basis

species (glutamine, glutamic acid, cysteine, O2, H2O), decreases along salinity gradients including the Baltic Sea and Amazon

River and ocean plume and in particle-associated compared to free-living fractions. However, the proposed metric does not

respond as expected for hypersaline environments. Analysis of data compiled for hyperosmotic stress experiments under con-10

trolled laboratory conditions shows that differentially expressed proteins are on average shifted toward lower nH2O. Notably,

the dehydration effect is stronger for most organic solutes compared to NaCl. This new method of compositional analysis can

be used to identify possible thermodynamic effects in the distribution of proteins along chemical gradients at a range of scales

from microbial mats to oceans.

1 Introduction15

How microbial populations adapt to environmental gradients is a major challenge at the intersection of geochemistry, microbi-

ology, and biochemistry. Patterns of amino acid usage in proteins are important indicators of microbial adaptation, and amino

acid composition at the genome level is well known to depend on growth temperature (Zeldovich et al., 2007). Furthermore,

measures of evolutionary distance and community composition based on protein sequences predicted from metagenomic se-

quencing are strongly associated with environmental temperature and pH (Alsop et al., 2014). It is widely acknowledged that20

the effect of amino acid substitutions on the structural stability of proteins is a major factor affecting amino acid usage in

thermophiles (Sterner and Liebl, 2001; Zeldovich et al., 2007). Similarly, a large body of work has demonstrated amino acid

signatures associated with proteins from halophilic organisms (Kunin et al., 2008; Paul et al., 2008; Oren, 2013; Boyd et al.,
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2014). The most common interpretation of these trends is that particular amino acid substitutions are selected through evolu-

tion to increase the stability and solubility of the folded conformation and enhance other structural properties such as flexibility25

(Paul et al., 2008).

An interrelated approach to interpreting patterns of amino acid composition is based on the energetics of amino acid syn-

thesis. Energetic costs in terms of ATP requirements have been used to model protein expression levels in bacterial and yeast

cells (Akashi and Gojobori, 2002; Wagner, 2005). Although ATP demands depend on environmental conditions (Akashi and

Gojobori, 2002), a limitation of ATP-based models is that they are derived for specific biosynthetic pathways, such as whether30

cells are grown in respiratory or fermentative (i.e. aerobic or anaerobic) conditions (Wagner, 2005). A different class of models,

based on thermodynamic analysis of the overall Gibbs energy of reactions to synthesize metabolites from inorganic precursors,

quantifies the energetics of the reactions in terms of temperature, pressure, and chemical activities of all the species in the reac-

tions, including those that define pH and oxidation-reduction potential (Shock et al., 2010). Notably, the overall Gibbs energies

for amino acid synthesis become more favorable, but to a different extent for each amino acid, between cold, oxidizing seawater35

and hot, reducing hydrothermal solution (Amend and Shock, 1998). A recent systems biology study demonstrates tradeoffs

between Gibbs energy of alternative pathways for amino acid synthesis and cofactor use efficiency (which affects ATP costs)

in the model organism Escherichia coli and suggests that pathway thermodynamics play a role in thermophilic adaptation (Du

et al., 2018). The oxidation state of proteins as well as lipids has been shown to be associated with oxidation-reduction (redox)

gradients in a hot spring (Dick and Shock, 2011; Boyer et al., 2020), but so far energetic models have not been broadly adopted40

as a tool for relating metagenomic and geochemical data. This may be because few studies have asked whether specific changes

in the chemical composition of biomolecules reflect specific environmental conditions.

To help close this gap, here we use compositional analysis of protein sequences to identify chemical signatures of two types

of environmental conditions: redox and salinity gradients. In a previous study (Dick et al., 2019), we compared one broad

class of geochemical conditions (redox gradients) with one compositional metric for proteins (carbon oxidation state). Here,45

we expand the geobiochemical framework to two dimensions by considering another set of environments (salinity gradients)

and another compositional metric (stoichiometric hydration state). Thermodynamic considerations predict that redox gradients

supply a driving force for changes in the oxidation state of biomolecules (similar reasoning applies to the oxygen content of

proteins; Acquisti et al., 2007), while salinity gradients, through the dehydrating potential associated with osmotic effects, exert

a force that selectively alters the hydration state of biomolecules.50

To test these predictions, we used two compositional metrics, the carbon oxidation state (ZC) and stoichiometric hydration

state (nH2O). ZC is computed from the chemical formulas of organic molecules, and takes values between the extremes of -4

for CH4 and +4 for CO2, although the range for particular classes of biomolecules is much smaller (Amend et al., 2013).

nH2O is derived from the number of water molecules in theoretical formation reactions of proteins from basis species (Dick,

2016, 2017). Through the compositional analysis of representative metagenomic and metatranscriptomic datasets, we show55

that ZC and nH2O are most closely aligned with environmental redox and salinity gradients, respectively. These findings apply

to freshwater and marine environments, but trends for hypersaline environments deviate from the thermodynamic predictions,
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most likely due to evolutionary optimizations of hydrophobicity and isoelectric point to stabilize the structures of proteins in

halophilic organisms.

2 Conceptual background60

In this study we use compositional analysis to uncover environmental imprints in protein sequences. Analysis of compositional

data is used by geochemists to study processes such as water-rock interaction and ore deposition, and is often one of the

first steps in constructing thermodynamic models, but its application to living systems is relatively uncommon. Therefore, it

is important to describe the conceptual basis for our methods. To do this, we identified six areas of concern summarized as:

1) intracellular or environmental conditions, 2) amino acids or atoms, 3) condensation or theoretical formation reactions, 4)65

chemical composition or conformational stability, 5) oxidation and hydration state or temperature and pH, and 6) mathematical

or biosynthetic models.

A first concern is that intracellular conditions are maintained within physiological ranges, so the influence of external con-

ditions on the composition of microbial biomolecules may be limited. However, cell membranes are permeable to uncharged

species such as hydrogen (Slonczewski et al., 2009), supporting the argument that the oxidation state of the cytoplasm, and70

therefore the energetics of metabolic reactions, are influenced by the external environment (Poudel et al., 2018; Canovas and

Shock, 2020). Likewise, oxygen diffuses rapidly through lipid membranes, depending on their composition and structure, and

rates of diffusion increase with temperature (Möller et al., 2016). Cell membranes are also permeable to water (Record et al.,

1998). For E. coli, which grows most rapidly at about 0.3 OsM (osmolarity), increasing the extracellular osmotic strength from

0.1 to 1.0 OsM (approximately the osmotic concentration of seawater; BioNumbers BNID 100802 (Milo et al., 2010)) reduces75

the amount of free cytoplasmic water by more than half (Record et al., 1998). Halophiles, which thrive at even higher salinities,

accumulate inorganic salts or organic solutes to maintain osmotic balance with the environment (Garner and Burg, 1994; Oren,

2013). The result is that, with few exceptions, intracellular conditions must be isosmotic with the environment, or somewhat

higher to maintain turgor pressure (Gunde-Cimerman et al., 2018). Water activity is lower in more concentrated solutions, and

intracellular water activity estimated from freezing point and cell composition data closely follows that of the growth medium,80

but is often offset to lower values (Chirife et al., 1981), perhaps due to macromolecular crowding effects (Garner and Burg,

1994). To summarize, high osmotic strength causes a decrease in hydration potential, measured as water activity, both outside

and inside cells.

This brief review suggests that oxidation and hydration potentials in cell interiors, at least under experimental conditions, are

influenced by, but not equal to, environmental conditions. Ideally, we would like to compare the compositions of biomolecules85

to conditions actually measured inside cells or in the immediate surroundings of cells, but these measurements are generally

not available for microbial communities in their natural environments, so we make comparisons with large-scale geochemical

gradients, except for different layers of the Guerrero Negro microbial mat, where metagenomic and chemical data are available

on the scale of millimeters.
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Second, previous authors have emphasized the importance of changes in elemental stoichiometry – that is, atomic compo-90

sition – and not only amino acid composition in the molecular evolution of proteins (Baudouin-Cornu et al., 2001). Although

stoichiometric predictions are amenable to experimental tests, such as the long-term evolution of E. coli in the laboratory

(Turner et al., 2017), the omission of a major bioelement, hydrogen, and the oxidation state of organic matter from most sto-

ichiometric models (Karl and Grabowski, 2017) means that there are also significant opportunities for theory development.

Because redox reactions are inherent in many aspects of metabolism, while hydration and dehydration reactions are essential95

for the synthesis of biomacromolecules (Braakman and Smith, 2013), our approach is shaped by the assumption that O2 and

H2O are two primary components that link environmental conditions to the energetics of biomolecular synthesis.

The third point follows from the previous one. The polymerization of amino acids is a condensation reaction that releases

one H2O per bond formed, independent of the particular amino acids that are involved. By contrast, our analysis depends

crucially on the concept of a “formation reaction”, which in the thermodynamic literature represents the composition of a100

chemical species, either in terms of elements (Warn and Peters, 1996), or in terms of other species (May and Rowland, 2018).

When these other species are restricted in number to the minimum needed to represent the composition of all possible species

in the system, they constitute a set of “basis species”, which can be thought of as the building blocks of the system, similar to

the concept of thermodynamic components (Anderson, 2005). Therefore, a formation reaction from basis species is a mass-

balanced, but non-unique, stoichiometric representation of the chemical composition of the protein. This type of reaction in105

general does not correspond to amino acid biosynthesis or polymerization, so to avoid confusion, we refer to these formation

reactions as “theoretical formation reactions”; the number of water molecules in the theoretical formation reactions, normalized

by the protein length, is the “stoichiometric hydration state”.

From a mechanistic standpoint, an analysis using any set of basis species is inadequate, since the number of basis species

(five, corresponding to the elements C, H, N, O, and S) is smaller than the number of biochemical precursors and inorganic110

species that are actually involved in amino acid synthesis (Du et al., 2018). The use of O2, H2O, and other basis species

to represent the composition of proteins reflects the hypothesis that they are conjugate to thermodynamically meaningful

descriptive variables (specifically, chemical potentials) even if they are not directly involved in the biosynthetic mechanisms

for amino acids. The projection of amino acid composition (20-D) into the compositional space represented by basis species (5-

D) is a type of dimensionality reduction, but the variables are chosen based on a physicochemical hypothesis, unlike principal115

components analysis (PCA) or other unsupervised methods, where the projection is determined by the data.

A fourth concern is that this analysis is based on the hypothesis that thermodynamic forces affect the chemical compositions

of proteins over evolutionary time, which is different from the more common hypothesis of optimization of structural stability.

Thermodynamic models define the “cost” of a protein as a function of not only amino acid composition but also environmental

conditions. Conceptually, this follows from Le Chatelier’s principle, in that increasing the chemical activity of a reactant (on120

the left-hand side of a reaction) drives the reaction toward the products. Stated in more general terms, the overall Gibbs energy

of a reaction depends on the activities of species in the reaction (Shock et al., 2010; Amend and LaRowe, 2019). Consider two

proteins with different amino acid compositions, and therefore also different chemical compositions and theoretical formation

reactions, which should be normalized by the number of residues in order to compare proteins of different length. The formation
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of the protein with more water as a reactant is theoretically favored by increasing the water activity, whereas the formation125

of the protein with more oxygen as a reactant is favored by increasing the oxygen activity. The water and oxygen activity are

thermodynamic measures of hydration and oxidation potential and can be converted to other scales, such as oxidation-reduction

potential (ORP).

This reasoning provides the theoretical justification for using chemical composition as an indicator of molecular adaptation

to specific environmental conditions, but does not replace interpretations based on structural considerations. Halophilic organ-130

isms exhibit well-documented patterns of amino acid usage, including lower hydrophobicity and higher abundance of acidic

residues, that impart greater stability, solubility, and flexibility of proteins (Paul et al., 2008). These adaptations are reflected in

lower values of the GRAVY hydrophobicity scale (Paul et al., 2008; Boyd et al., 2014) and/or isoelectric point of proteins (pI)

(Oren, 2013). In Sect. 4.3 and 4.4, we compare the compositional metrics with GRAVY and pI for the same datasets.

Fifth, temperature, pH, and other environmental parameters besides redox and salinity might influence the oxidation and135

hydration state of proteins. For instance, the redox gradients in hydrothermal systems are also temperature gradients, due to

the mixing of seawater and hydrothermal fluid, and we have not attempted to disentangle the effects of temperature and redox

conditions. However, our previous analysis of other redox gradients, including stratified hypersaline lakes, indicates that carbon

oxidation state of biomolecules can vary even in systems where temperature changes are much smaller (Dick et al., 2019). It

is an axiomatic statement that changes in oxidation state can be associated with one thermodynamic component of a system;140

our objective in the present study is to explore the differences between this and one other component, represented by hydration

state. Future work should also account for the effects of pH and temperature, which is possible using thermodynamic models

for proteins (Dick and Shock, 2011).

Finally, it should be noted that the basis species used in the stoichiometric analysis are chosen primarily for mathematical

convenience, not because of evolutionary or biosynthetic requirements. The main criterion we consider for the choice of145

basis species is to reduce the covariation between the metrics for oxidation and hydration state, which arises as a mathematical

consequence of projecting the atomic formulas of proteins into a particular compositional space, and may not reflect meaningful

differences of chemical composition. Additional considerations are described in Sect. 3.2.

3 Methods

3.1 Carbon oxidation state150

The most common metric used in geochemistry for the oxidation state of organic molecules is the average oxidation state of

carbon (ZC), which also goes by other names such as nominal oxidation state of carbon (NOSC) (LaRowe and Van Cappellen,

2011). This quantity measures the average degree of oxidation of carbon atoms in organic molecules. For a protein for which

the primary sequence has the chemical formula CcHhNnOoSs, the value of ZC can be calculated from (Dick and Shock, 2011;

Dick, 2014)155

ZC =
−h+3n+2o+2s

c
(1)
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The derivation of Eq. (1) is based on the relative electronegativities of the elements, expressed as oxidation numbers (e.g.

Kauffman, 1986; Minkiewicz et al., 2018). When bonded to carbon, H is assigned an oxidation number of +1, and N, O, and S

have oxidation numbers of -3, -2, and -2. Eq. (1) gives the remaining charge that must be present on each C atom, on average,

to satisfy overall neutrality. Because of the relatively simple structures of amino acids and the primary structure of proteins,160

in which N, O, and S are bonded to only H and C, it is possible to calculate the average oxidation state of carbon using Eq.

(1). However, this equation is not necessarily valid for other classes of organic molecules or some types of post-translational

modifications of proteins, including the formation of disulfide bonds. An important relation inherent in Eq. (1) is the redox

neutrality of hydration and dehydration reactions; any pair of hypothetical (or real) proteins whose formulas differ only by

some amount of H2O have equal carbon oxidation states.165

3.2 Choice of basis species: theoretical considerations

A major premise of this study is that oxidation state and hydration state are two primary variables in geobiochemical systems.

Accordingly, when choosing the basis species that can be combined to make the proteins, O2 and H2O are the only fixed

requirements. This leaves three basis species that when combined with each other and with O2 and H2O must be able to give

any possible formula written as CcHhNnOoSs. We reiterate that this analysis refers to the chemical formulas of polypeptide170

sequences, that is, the primary structure of proteins, not post-translational modifications or H2O molecules in the hydration

shell of folded proteins.

Eq. (1) is derived from electronegativity relations and therefore allows the calculation of the carbon oxidation state from

a given chemical formula, independent of any chemical reactions. In contrast, there is no way to count the number of H2O

molecules in a chemical formula; H2O appears only in chemical reactions. But it is important to note that any particular reaction175

that involves only H2O is redox-neutral. On the other hand, the coefficient of O2 in redox reactions is closely related to the

number of electrons transferred. Let us consider the 20 protein-forming amino acids as a baseline for compositional analysis;

the numbers of H2O and O2 in the formation reactions of the amino acids from a particular set of basis species are denoted

by nH2O and nO2 . The choice of basis species in our study is guided by the dual objectives that 1) nH2O of amino acids should

have very little correlation with ZC and 2) nO2 of amino acids should be strongly correlated with ZC. It should be emphasized180

that these are not criteria for “correctness”, since basis species, like thermodynamic components, only have to be the minimum

number needed to represent the chemical composition of all the species that can be formed from them (Anderson, 2005).

Instead, basis species selected using these conditions yield a convenient mathematical projection of elemental composition;

that is, nearly horizontal or vertical trends on nH2O–ZC scatterplots for proteins from environmental gradients specifically

reflect changes in oxidation state or hydration state, respectively.185

An additional consideration is that a biologically meaningful set of basis species is likely to comprise metabolites that have

high network connectivity, that is, are involved in reactions with many other metabolites. Reactions involving glutamine and

glutamic acid, or its ionized form, glutamate, are major steps of nitrogen metabolism (Morowitz, 1999; DeBerardinis and

Cheng, 2010), and these amino acids have been characterized as “nodal point” metabolites (Walsh et al., 2018). Either methio-

nine or cysteine would provide the sulfur required for the system, but cysteine is relevant as a constituent of the glutathione190
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Figure 1. Stoichiometric numbers of H2O and O2 for theoretical formation reactions of amino acids computed with different sets of basis

species, plotted against carbon oxidation state (ZC), which is computed from the elemental formula and does not depend on the choice of

basis species. Linear regressions and R2 values were calculated using the lm function in R (R Core Team, 2020). (a–b) CO2, NH3, H2S, H2O,

O2 (CHNOS). (c–d) Glutamine, glutamic acid, cysteine, H2O, O2 (QEC). (e) Scatterplot of R2 values for nH2O–ZC fits against R2 values for

nO2 –ZC fits for all combinations of basis species consisting of H2O, O2 and three amino acids (including the points labeled QEC and MWY

(methionine, tryptophan, tyrosine)), or CO2, NH3, H2S, H2O, and O2 (CHNOS).

molecule, which has important roles in cellular redox chemistry (Walsh et al., 2018). These considerations support the pro-

posal of the amino acids glutamine, glutamic acid, and cysteine (collectively abbreviated QEC) together with O2 and H2O as a

biologically relevant set of basis species for describing the chemical compositions of proteins (Dick, 2016). These three amino

acids are among the top eight amino acids ranked by number of reactions in a metabolic model for E. coli (Feist et al., 2007)

(E: 52, S: 25, D: 23, Q: 18, A: 15, G: 15, M: 15, C: 13).195

3.3 Choice of basis species: stoichiometric analysis

Here we compute the stoichiometric hydration state by analyzing the compositions of the 20 proteinogenic amino acids in

detail. We start with a “default” set of basis species chosen for their common occurrence in overall catabolic reactions (Amend

and LaRowe, 2019): CO2, NH3, H2S, H2O, and O2. Using these basis species (designated CHNOS), the theoretical formation

reaction of alanine (C3H7NO2) is200

3CO2 +2H2O+NH3→ C3H7NO2 +3O2 (R1)

and the oxygen and water content of the amino acid (i.e, nO2 = -3 and nH2O = 2) are the opposite of the coefficients on

O2 and H2O in the reaction. Analogous reactions for the other amino acids were used to make Fig. 1a–b. Using glutamine
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Table 1. Values of stoichiometric hydration state (nH2O) of amino acids calculated with the QEC basis species (glutamine, glutamic acid,

cysteine, H2O, O2) and average oxidation state of carbon (ZC) and number of carbon atoms (nC). Standard one-letter abbreviations for the

amino acids (AA) are used.

AA nH2O ZC nC AA nH2O ZC nC

A 0.6 0 3 M 0.4 -2/5 5

C 0.0 2/3 3 N -0.2 1 4

D -0.2 1 4 P 0.0 -2/5 5

E 0.0 2/5 5 Q 0.0 2/5 5

F -2.2 -4/9 9 R 0.2 1/3 6

G 0.4 1 2 S 0.6 2/3 3

H -1.8 2/3 6 T 0.8 0 4

I 1.2 -1 6 V 1.0 -4/5 5

K 1.2 -2/3 6 W -3.8 -2/11 11

L 1.2 -1 6 Y -2.2 -2/9 9

(C5H10N2O3), glutamic acid (C5H9NO4), cysteine (C3H7NO2S), H2O, and O2 (the QEC basis species), the theoretical forma-

tion reaction of alanine is205

0.4C5H10N2O3 +0.2C5H9NO4 +0.6H2O→ C3H7NO2 +0.3O2 (R2)

showing that the oxygen and water content are nO2 = -0.3 and nH2O = 0.6. Calculations for all the amino acids using the QEC

basis were used to make Fig. 1c–d.

As measured by R2 in linear regressions, the CHNOS basis yields a strong negative correlation between ZC and nH2O for

the amino acids (Fig. 1a), but a relatively weak correlation between ZC and nO2 (Fig. 1b). The QEC basis provides a stronger210

association between ZC and nO2 and reduces the correlation between ZC and nH2O (Fig. 1c–d). However, there is still a small

negative correlation for amino acids (Fig. 1c). A plot with the R2 values for all possible combinations of H2O, O2, and 3 amino

acids indicates that QEC has relatively low R2 of nH2O–ZC and high R2 of nO2 –ZC (Fig. 1e). Therefore, it is a suitable candidate

to meet the objectives described above. Although another combination of amino acids – methionine, tryptophan, and tyrosine

(MWY) – has even lower R2 for the nH2O–ZC fit (Fig. 1e), tryptophan and tyrosine are not highly connected metabolites and215

therefore are less preferable as basis species.

By strengthening the association between ZC and nO2 , which represent alternative metrics for oxidation state, and reducing

the correlation between ZC and nH2O, the QEC basis species provides a more convenient projection of elemental composition

than a “default” choice of inorganic species, such as CO2, NH3, H2S, H2O, and O2, which commonly appear in overall catabolic

reactions (Amend and LaRowe, 2019). The selection of basis species is an evolving method, and further analysis with other220
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metabolites may lead to a more convenient set of basis species to project the elemental composition of proteins into chemical

variables.

3.4 Compositional metrics for proteins and metagenomes

For a given protein, the stoichiometric hydration state was calculated from

nH2O =

∑
ni (nH2O,i− 1)∑

ni
+1 (2)225

where ni is the frequency of the ith amino acid (i = 1 to 20) in the protein and nH2O,i is the stoichiometric hydration state of that

amino acid (Table 1). The “-1” in the numerator accounts for the loss of H2O in the polymerization of amino acids, and the

“+1” after the fraction accounts for the N-terminal H and C-terminal OH of the polypeptide.

Unlike nH2O, ZC for proteins must be weighted by the number of carbon atoms in each amino acid, i.e.

ZC =

∑
ninC,iZC,i∑
ninC,i

(3)230

where nC,i and ZC,i are the number of carbon atoms and carbon oxidation state of the ith amino acid (see Table 1). For example,

ZC of the dipeptide Ala-Gly can be calculated as (3 × 0 + 2 × 1) / (3 + 2), where 3 and 2 are the numbers of carbon atoms and

0 and 1 are the ZC of Ala and Gly, respectively. The result, 0.4, can be checked by applying Eq. 1 to the chemical formula of

alanylglycine (C5H10N2O3). The methods for calculating nH2O and ZC from elemental composition and amino acid composition

are shown schematically in Fig. 2.235

3.5 Amino acid composition of proteomes of Nif-bearing organisms

In a separate study, Poudel et al. (2018) used carbon oxidation state as a metric for comparing proteomes of organisms con-

taining the nitrogenase gene (Nif). The evolution of these organisms is associated with rising atmospheric oxygen through

geological history. In order to approximately replicate their results, amino acid compositions of all proteins for each bacte-

rial, archaeal, and viral taxon in the NCBI Reference Sequence (RefSeq) database (O’Leary et al., 2016) were compiled from240

RefSeq release 201 (July 2020). Scripts to do this, and the resulting data file of amino acid compositions of 42,787 taxa, are

available in the JMDplots R package (see Code and data availability). Names of organisms containing different nitrogenase

(Nif) homologs were extracted from Supplemental Table 1A of Poudel et al. (2018). These names were matched to the closest

organism name in RefSeq. Duplicated species (represented by different strains) were removed, as were matching organisms

with fewer than 1000 RefSeq protein sequences. As a result, the numbers of organisms included in the present calculations245

(Nif-A: 155, Nif-B: 68, Nif-C: 14, Nif-D: 7) are less than those identified in Poudel et al. (2018). Note that values of ZC

calculated here (Fig. 3a) are lower than those shown in Fig. 5 of Poudel et al. (2018). This difference is associated with the

weighting by carbon number (described above), which was not performed by Poudel et al. (2018).
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C613H959N193O185S10 =

66.4 C5H10N2O3 (glutamine)

50.2 C5H9NO4 (glutamic acid)

10.0 C3H7NO2S (cysteine)

−113.4 H2O
−60.8 O2
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A C D E F G H I K L
12 8 7 2 3 12 1 6 6 8

M N P Q R S T V W Y
2 14 2 3 11 10 7 6 6 3

← Equation 2

← Equation 3

Figure 2. Schematic of calculations of nH2O and ZC for a single protein. The selected protein is chicken egg white lysozyme (UniProt ID:

LYSC_CHICK), which is historically an extensively characterized protein in the laboratory. The protein sequence was used to tabulate the

amino acid composition (right column), which in turn was used to generate the elemental composition (left column). The coefficients on the

basis species are determined from the elemental composition by mass-balance constraints. Dividing the number of H2O in the basis species

by the protein length gives the stoichiometric hydration state (nH2O). Independent of the basis species, the elemental composition yields the

average oxidation state of carbon (ZC) according to Eq. (1). To reduce computing steps, in this study the amino acid compositions of proteins

(obtained e.g. from metagenomic sequences) were used to calculate nH2O and ZC with Eqs. (2) and (3) and the values for amino acids in Table

1.

3.6 GRAVY and pI

The grand average of hydropathicity (GRAVY) was calculated using published hydropathy values for amino acids (Kyte and250

Doolittle, 1982). The isoelectric point (pI) was calculated using published pK values for terminal groups (Bjellqvist et al., 1993)

and sidechains (Bjellqvist et al., 1994); however, the calculation does not implement position-specific adjustments (Bjellqvist

et al., 1994). The pK values used for calculating pI (Bjellqvist et al., 1993, 1994) and transfer free energies used in the derivation

of the GRAVY scale (Kyte and Doolittle, 1982) correspond to 25 ◦C and 1 bar and no attempt was made here to account for the

temperature effects on these properties. The charge for each ionizable group was precalculated from pH 0 to 14 at intervals of255

0.01, and the isoelectric point was computed as the pH where the sum of charges of all groups in the protein is closest to zero.

These calculations were implemented as new functions in the canprot R package (Dick, 2017) (see Code and data availability).

Comparisons for selected proteins (UniProt IDs: LYSC_CHICK, RNAS1_BOVIN, AMYA_PYRFU) show that the calculated

values of GRAVY and pI are equal to those obtained with the ProtParam tool (Gasteiger et al., 2005).
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3.7 Prediction of protein sequences260

Protein sequences were predicted from metagenomic reads using a previously described workflow (Dick et al., 2019). Briefly,

reads were trimmed, filtered, and dereplicated using scripts adapted from the MG-RAST pipeline (Keegan et al., 2016). For

metatranscriptomic datasets, ribosomal RNA sequences were removed using SortMeRNA (Kopylova et al., 2012). Protein-

coding sequences were identified using FragGeneScan (Rho et al., 2010), and the amino acid sequences of the predicted

proteins were used in further calculations. For large datasets, only a portion of the available reads was processed (at least265

500,000 reads; see Supplementary Tables S1 and S2). This reduces the computational requirements without noticeably affecting

the calculated average compositions (Dick et al., 2019).

Means and standard deviations of ZC, nH2O, GRAVY, and pI were calculated for 100 random subsamples of protein sequences

from each metagenomic or metatranscriptomic dataset. The number of sequences included in each subsample was chosen to

give a total length closest to 50,000 amino acids on average. The subsample density, or number of sequences included in each270

sample, depends on the average length of the metagenomic or metatranscriptomic sequences and is listed in Tables S1 and S2.

This number ranges from 251 for the dataset with the highest mean protein fragment length (199.1; metagenome of hot-spring

source of Bison Pool) to 1696 for the dataset with the lowest mean protein fragment length (29.5; metatranscriptome of site

GS684 in the Baltic Sea).

4 Results and discussion275

4.1 Comparison of redox and salinity gradients

To search for the hypothesized dehydration signal in metagenomic data, we began with redox gradients as a negative control.

Submarine hydrothermal vents are zones of complex interactions between reduced endmember fluids and relatively oxidized

seawater (Reeves et al., 2014; Ooka et al., 2019). Terrestrial hydrothermal systems, such as the hot springs in Yellowstone

National Park, USA, provide a source of reduced fluids that are oxidized by degassing and mixing with air and surface ground-280

water as well as biological activity including sulfide oxidation (Lindsay et al., 2018). Redox gradients can also develop over

smaller length scales. The surface of the Guerrero Negro microbial mat (Baja California Sur, Mexico) is exposed to ca. 1

m deep hypersaline, oxygenated water (approximately 200 mM O2), but in the mat, oxygen rises during the daytime and is

depleted within a few millimeters, giving way to anoxic, then sulfidic conditions (Ley et al., 2006).

Using metagenomic data for these redox gradients (Kunin et al., 2008; Havig et al., 2011; Swingley et al., 2012; Reveillaud285

et al., 2016; Fortunato et al., 2018), Dick et al. (2019) showed that the carbon oxidation states of DNA, messenger RNA, and

proteins increase down the outflow channel of Bison Pool and between fluids from diffuse hydrothermal vents and relatively

oxidizing seawater. Moreover, intact polar lipids extracted from the microbial communities of Bison Pool and other alkaline hot

springs also exhibit downstream increases in carbon oxidation state (Boyer et al., 2020), revealing that parallel compositional

trends characterize all major types of biomacromolecules in these hot springs. The ZC of proteins increases more subtly toward290

the surface in the upper few millimeters of the Guerrero Negro microbial mat; it also increases at greater depths, perhaps
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Figure 3. Compositional analysis of proteins in redox gradients and the Baltic Sea salinity gradient. (a) Redox gradients. Abbreviations and

data sources: BP (Bison Pool hot spring; Havig et al., 2011; Swingley et al., 2012), DV (diffuse submarine vents; Reveillaud et al., 2016;

Fortunato et al., 2018), GN (Guerrero Negro microbial mat; Kunin et al., 2008), NF (nitrogenase-bearing organisms; Poudel et al., 2018). The

NF data are based on reference proteomes (see Methods); all others are for protein sequences predicted from metagenomic data. Outlined

symbols indicate samples from relatively oxidizing conditions. (b) Surface and (c) deeper samples (chl a max: chlorophyll a maximum, 9–30

m deep) from the Baltic Sea transect. Metagenomes as described in Dupont et al. (2014) were downloaded from iMicrobe (Youens-Clark

et al., 2019); the plots show data for the 0.1–0.8 mm size fraction collected from stations along the transect at low salinity (< 6 PSU) and high

salinity (> 6 PSU). Background guidelines have slopes equal to that of the nH2O–ZC linear regression for amino acids in Fig. 1c.

due to heterotrophic degradation and/or horizontal gene transfer (Dick et al., 2019). Furthermore, an evolutionary trajectory

associated with the occurrence of different homologs of nitrogenase (Nif) in anaerobic and aerobic organisms is characterized

by increasing ZC of the proteomes of these organisms (Poudel et al., 2018).

The trends of carbon oxidation state described above are visible in the scatter plot in Fig. 3a, with an added dimension:295

stoichiometric hydration state. The guidelines in this plot are parallel to the nH2O–ZC trend for amino acids (Fig. 1c); their

slope represents the background correlation between nH2O and ZC that is associated with the choice of basis species. Sample

data for Bison Pool and the submarine vents are distributed parallel to these guidelines. Therefore, the decrease of nH2O along

these redox gradients can be attributed to the background correlation in the stoichiometric analysis, and the differences between

samples within each dataset are specifically associated with changes in carbon oxidation state and not stoichiometric hydration300

state. This is an expected outcome, as the redox gradients considered here do not have large changes in salinity. In particular,

concentrations of Cl−, a conservative ion, increase by less than 10% (6.1 to 6.6 mM) in the outflow of Bison Pool due to

evaporation (Swingley et al., 2012). The diffuse vents considered here have concentrations of Cl− between 515 and 624 mM,

not greatly different from bottom seawater at 545 mM (Dataset S1 of Reeves et al. (2014)).
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Figure 4. Stoichiometric hydration state of proteins in metagenomes (Dupont et al., 2014) and metatranscriptomes (Asplund-Samuelsson

et al., 2016) of surface water samples in the Baltic Sea with increasing particle size: (a) 0.1–0.8 mm, (b) 0.8–3.0 mm, (c) 3.0–200 mm. From

left to right, the samples on the horizontal axis (some IDs omitted for clarity) are arranged from freshwater to marine conditions in the

Sorcerer II Global Ocean Sampling Expedition (Dupont et al., 2014); all sample IDs are GS667, GS665, GS669, GS673, GS675, GS659,

GS679, GS681, GS683, GS685, GS687, GS694. Width of shading represents ±1 standard deviation in subsampled sequences (see Methods).

As a well-known example of a regional salinity gradient, the Baltic Sea exhibits a freshwater to marine transition over 1800305

km, but dissolved oxygen at the surface is at or near saturation with air (Dupont et al., 2014), so this transect does not represent

a redox gradient. For protein sequences derived from metagenomes in the 0.1–0.8 mm size fraction, there are large changes in

stoichiometric hydration state along the Baltic Sea transect, but relatively small differences in the carbon oxidation state (Fig.

3b). This pattern holds for samples from both the surface and chlorophyll a maximum (9–30 m deep; Fig. 3c).

4.2 Multifactorial hydration effects310

The stoichiometric hydration state of proteins can be influenced by factors other than just salinity. Previous authors have

observed large differences in microbial community composition between free-living and particle-associated fractions, which

may be due in part to anoxic conditions arising from limited diffusion in particles (Simon et al., 2014). As described below,

we found a trend of relatively low nH2O in particles compared to free-living fractions in both the Baltic Sea and Amazon River.

This effect is probably associated with phylogenetic differences among the size fractions, but reduced accessibility to bulk315

water may be a contributing factor. Further support for the possible influence of physical accessibility is the reduced nH2O in

the interior compared to upper layers of the Guerrero Negro microbial mat.
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For the Baltic Sea metagenomes and metatranscriptomes, the 0.1–0.8 mm and 0.8–3.0 mm size fractions of particles that don’t

pass through the filter, which are used for subsequent DNA extraction and sequencing, represent free living bacteria, while the

3.0–200 mm fraction contains particle-associated bacteria with average larger genome sizes and greater inferred metabolic and320

regulatory capacity (Dupont et al., 2014). Fig. 4a–c shows that proteins inferred from metagenomes for larger particles have

lower nH2O than those for the smallest size fraction. The Guerrero Negro microbial mat offers another opportunity to compare

exposed and interior environments. Unlike ZC, which reaches a minimum a few millimeters into the mat, nH2O decreases

throughout the mat, but the changes are most pronounced in the upper few millimeters (Fig. 3a).

One hypothesis that could explain these findings is that the interiors of particles and the mat are sequestered to some ex-325

tent from the surrounding aqueous environment. If limited accessibility to the aqueous phase were manifested as lower water

activity, perhaps due to surface effects associated with geological nanomaterials (Wang et al., 2003) and/or higher concentra-

tions of solutes, it would provide a thermodynamic drive that favors lower nH2O of proteins. However, it should be noted that

particles are also suitable habitats for multicellular and eukaryotic populations (Simon et al., 2014). Therefore, the trends in

stoichiometric hydration state may require an explanation in terms of both physical and phylogenetic differences, which should330

be explored in future studies.

An important evolutionary transition is the emergence of heterotrophic metabolism, which is a later innovation than au-

totrophic core metabolism (Morowitz, 1999; Braakman and Smith, 2013). It is notable that the deeper layers of the Guerrero

Negro mat show greater evidence for heterotrophic metabolism (Kunin et al., 2008); likewise, heterotrophs in the “photosyn-

thetic fringe” in Bison Pool may outcompete the autotrophs that dominate at higher and lower temperatures (Swingley et al.,335

2012). These putative heterotroph-rich zones show locally lower values of nH2O (Fig. 3a). If decreasing stoichiometric hydra-

tion state is a common theme across some evolutionary transitions, then the relatively high nH2O in the proteomes of organisms

carrying the ancestral nitrogenase Nif-D (Fig. 3a) is not unexpected. A better understanding of these trends would require

more extensive phylogenetically resolved comparisons of the compositional differences as well as quantitative analyses of

water fluxes in different metabolic pathways.340

4.3 Compositional trends in rivers, lakes, and hypersaline environments

The Amazon river and ocean plume provide another example of a freshwater to marine transition, with salinities that range

from below the scale of practical salinity units (PSU) in the river to 23–36 PSU in the plume (Satinsky et al., 2014, 2015).

We used published metagenomic and metatranscriptomic data for filtered samples classified as free-living (0.2 to 2.0 mm) and

particle-associated (2.0 to 156 mm) (Satinsky et al., 2014, 2015). River samples form a tight cluster on a plot of stoichiometric345

hydration state against carbon oxidation state of proteins, and the plume samples are scattered over lower ZC and low values

of nH2O, particularly for the particle-associated fraction (Fig. 5a). For metatranscriptomes, there is a noticeable decrease of

nH2O from the river to the ocean plume but little difference in carbon oxidation state (Fig. 5b), and the particle-associated

samples again exhibit a generally lower nH2O than the free-living samples. Together with the lower nH2O for proteins inferred

from metagenomes and metatranscriptomes in the larger size fractions from Baltic Sea samples, this could reflect a lower350
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Figure 5. Compositional analysis and hydropathicity and isoelectric point calculations for proteins from the Amazon River and plume

and other metagenomes. Samples representing freshwater, marine, and hypersaline environments are indicated by the colored convex hulls.

(a) Metagenomic and (b) metatranscriptomic data for particle-associated and free-living fractions from the lower Amazon River (Satinsky

et al., 2015) and plume in the Atlantic Ocean (Satinsky et al., 2014). (c) Freshwater (lakes in Sweden and USA) and marine metagenomes

considered in a previous comparative study (Eiler et al., 2014) and metagenomes from hypersaline environments including Kulunda Steppe

soda lakes in Siberia, Russia (Vavourakis et al., 2016) (KS), Santa Pola salterns in Spain (Ghai et al., 2011; Fernandez et al., 2013) (SA),

and salterns in the South Bay of San Francisco, CA, USA (Kimbrel et al., 2018) (SB). Plots (d-f) show values of average hydropathicity

(GRAVY) and isoelectric point (pI) of proteins for the same datasets. Background guidelines have slopes equal to that of the nH2O–ZC linear

regression for amino acids in Fig. 1c.

availability of H2O to organisms living near the particle surface due to physical separation from the bulk aqueous phase and

associated diffusion limitation or lower water activity (Wang et al., 2003).

We also considered data used in a previous comparative study and data for hypersaline environments including evaporation

ponds (salterns) and lakes in desert areas. Eiler et al. (2014) characterized microbial communities using metagenomic data for

various freshwater samples (lakes in the USA and Sweden) and marine locations. For hypersaline settings, we used metage-355

nomic data from the Santa Pola salterns in Spain (Ghai et al., 2011; Fernandez et al., 2013), natural soda lakes of the Kulunda

Steppe in Serbia (Vavourakis et al., 2016), and South Bay salterns in California, USA (Kimbrel et al., 2018). The compositional

analysis reveals a relatively low nH2O of proteins inferred from the marine metagenomes compared to freshwater samples in the

Eiler et al. dataset (Fig. 5c). Surprisingly, hypersaline metagenomes have ranges of nH2O of proteins that are similar to marine

15



environments, but considerably higher ZC (Fig. 5c). To interpret these results, we considered other factors that are known to360

influence the amino acid compositions of proteins in halophiles.

“Salt-in” halophilic organisms have proteins with relatively low isoelectric point that remain soluble at high salt concentra-

tions (Ghai et al., 2011). It should be noted that proteins with a lower pI also tend to have relatively high ZC due to higher

abundances of aspartic acid and glutamic acid, which are relatively oxidized (see Amend and Shock, 1998, Dick, 2014, and

Fig. 1). Consequently, the lower pI characteristic of “salt-in” organisms is also associated with an increase of carbon oxida-365

tion state. Because of the large pI differences (Fig. 5f), the increase of ZC in hypersaline environments can not be interpreted

as an indicator of an environmental redox gradient. Some halophilic organisms are also known to have proteins that are less

hydrophobic, with lower values of GRAVY (Paul et al., 2008; Boyd et al., 2014). Because hydrophobic amino acids have

relatively low values of ZC (Dick, 2014), a negative correlation between GRAVY and ZC is also expected.

Consistent with these well-known features of halophilic adaptation, marine metagenomes exhibit lower hydrophobicity than370

most of the freshwater samples, and hypersaline metagenomes are shifted to both lower GRAVY and pI (Fig. 5f). However,

there are irregular trends in the Amazon River data. Compared to the river, the proteins in plume metagenomes exhibit lower

GRAVY and either higher or lower pI (Fig. 5d). Similarly, other authors have reported that although lower pI is a signature of

many hypersaline environments, it does not clearly distinguish marine from lower-salinity environments (Rhodes et al., 2010).

On the other hand, the plume metatranscriptomes do show decreased pI but no major difference in GRAVY compared to river375

samples (Fig. 5e).

There is not enough space here to comprehensively examine all the available metagenomic data for environmental salinity

gradients. However, we have identified one dataset that gives a contradictory result, and therefore offers more perspective on

the compositional relationships of proteins coded by metagenomes in salinity gradients. This dataset was generated in a time-

series study of microbial and viral community dynamics in a freshwater aquaculture facility (“tilapia channel” and “prebead380

bond”) and low-, medium-, and high-salinity salterns in southern California (Rodriguez-Brito et al., 2010). Here, we have used

only the reported microbial sequences (not the viral dataset) and considered all time points together. Contrary to our starting

hypothesis, the stoichiometric hydration state of proteins is lowest in the freshwater samples, which is the reverse of the trend

from the Baltic Sea (Fig. 6a–b). A side-by-side comparison of the Baltic Sea and Rodriguez-Brito et al. datasets shows large

changes of GRAVY in the former, but pI in the latter (Fig. 6c–d), which is another indication that these variables are responsive385

only in certain ranges of salinity.

This counterexample demonstrates that the sign of differences of nH2O is not predictable in all environments; however, the

large negative offset in the freshwater samples may be a signal of some other influence, perhaps related to the human control

of these ponds, which are used as fish nurseries. Specifically, the microbial communities in the aquaculture ponds may not be

responding as they would in a typical natural system that is less nutrient-rich. As noted above for putative heterotroph-rich390

zones in other systems, the lower stoichiometric hydration state could be associated with the enrichment of heterotrophic taxa,

in this case due to the addition of organic compounds to the aquaculture ponds.

Considering all the datasets shown in Figs. 5 and 6, there appears to be no globally consistent metric for environmental

salinity gradients that can be derived from amino acid composition. If we exclude the Rodriguez-Brito et al. (2010) dataset,
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Figure 6. Divergent trends of nH2O and ZC of proteins from metagenomes for (a) the Baltic Sea and (b) freshwater and higher-salinity

samples from southern California (Rodriguez-Brito et al., 2010). The datasets from Rodriguez-Brito et al. (2010) are classified according to

salinity: freshwater (FW; 3 samples at different times from the “tilapia channel” and 1 sample from the “prebead pond”), low salinity (LS;

3 samples at different times from the low salinity saltern), and hypersaline (MS–HS; 4 samples from a medium salinity and 2 from a high

salinity saltern). Plots (c) and (d) show GRAVY and pI computed for the same datasets. Background guidelines have slopes equal to that of

the nH2O–ZC linear regression for amino acids in Fig. 1c.

then nH2O exhibits a consistent decreasing trend in marine compared to freshwater samples. However, this trend does not395

continue into hypersaline environments.

4.4 Compositional analysis of differentially expressed proteins

While biomolecular data for environmental salinity gradients reflect both ecological and evolutionary differences, laboratory

experiments provide information on the physiological effects of osmotic conditions on protein expression in particular organ-

isms. It is also important to recognize that osmotic stress can be imposed by solutes other than NaCl; the effects of organic400

solutes differ in relation to their ability to permeate or depolarize cell membranes and to be sensed by cellular osmoregulatory

systems (Kanesaki et al., 2002; Shabala et al., 2009; Withman et al., 2013). Because microbial adaptation to changes in osmotic
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conditions is a dynamic process, it is helpful to look at gene and protein expression data for a range of times and conditions

that can be controlled in the lab.

We searched the literature to compile data for differential gene and protein expression in non-halophilic bacteria in NaCl405

or other osmotic stress conditions. As a general rule, we only included datasets with a minimum of 20 down-regulated and

20 up-regulated genes or proteins; however, smaller datasets were included if they are part of a study with larger datasets.

This compilation consists of 49 transcriptomics and 30 proteomics datasets from 36 studies (note that different time points

and treatments are considered as separate datasets); descriptions and references for all datasets are given in Figures S1 and

S2. In addition, four datasets for differential expression of proteins in halophilic archaea in hyperosmotic stress were located410

(Leuko et al., 2009; Zhang et al., 2016; Lin et al., 2017; Jevtić et al., 2019) (see Figure S3). This is a major update to an earlier

compilation of data for hyperosmotic stress experiments (Dick, 2017), but we have limited the present compilation to data for

bacteria or archaea; data for osmotic stress induced by NaCl or glucose in eukaryotic cells are considered in a separate paper

(Dick, 2020a).

We assembled the lists of up- and down-regulated proteins in each dataset or, for gene expression studies, the proteins cor-415

responding to the up- and down-regulated genes, and converted gene names or accession numbers to UniProt accessions using

the UniProt mapping tool (Huang et al., 2011). The compiled data are available as CSV files in R packages (see Code and data

availability). After removing genes or proteins with unavailable or duplicated UniProt IDs and those with ambiguous differ-

ences (appearing in both the down- and up-regulated groups), the amino acid compositions computed for protein sequences

downloaded from UniProt (The UniProt Consortium, 2019) were used for the compositional analysis of carbon oxidation420

state and stoichiometric hydration state. Median differences (i.e. DnH2O and DZC) were calculated as the median value for all

up-regulated proteins minus the median value for all down-regulated proteins in each dataset.

Figure 7a shows results for time-course experiments for hyperosmotic stress. Note that all values are differences calculated

relative to the same control (initial time point) in a given study. In transcriptomic experiments for a commensal species (En-

terococcus faecalis), a soil bacterium (Methylocystis sp. strain SC2), and two pathogens (E. coli O157:H7 and Salmonella425

enterica serovar Typhimurium) (Solheim et al., 2014; Han et al., 2017; Kocharunchitt et al., 2014; Finn et al., 2015), there is a

marked progression toward lower DnH2O of the associated proteins with time. In a transcriptomic experiment for salt stress in

Synechocystis sp. PCC 6803 (Qiao et al., 2013),DnH2O is shifted negatively between 24 and 48 h, but rises to a slightly positive

value at 72 h. Proteomic data are available from two of these studies, indicating that the differentially expressed proteins in E.

coli (Kocharunchitt et al., 2014) also show decreasing DnH2O with time, but in the proteomic experiment for Synechocystis sp.430

PCC 6803 (Qiao et al., 2013), DnH2O changes sign from negative to positive between 24 and 48 h (Fig. 7a).

Perhaps the most striking result to emerge from this analysis is the strong dehydrating signal associated with osmotic stress

imposed by organic solutes. We compared pairs of datasets from the same study for NaCl and another solute at concentrations

that give similar total osmolalities. Transcriptomic data for sorbitol (Kanesaki et al., 2002; Han et al., 2005), sucrose (Kohler

et al., 2015), and glycerol (Finn et al., 2015) compared to controls all show a lower DnH2O of the associated proteins than for435

NaCl compared to controls (Fig. 7b). Data from the study of Finn et al. (2015) are plotted at 1 and 6 h in the experiment,

indicating a time-dependent decrease of DnH2O under both NaCl and glycerol treatment as well as more negative values for
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Figure 7. Compositional analysis of proteins in hyperosmotic stress experiments for non-halophilic bacteria and halophilic archaea. (a)

Time-course experiments for bacteria; black circles represent datasets for proteins coded by differentially expressed genes (transcriptomics

experiments) and blue squares represent datasets for differentially expressed proteins (proteomics experiments). Lettered symbols represent

the progression in each experiment: a–c (30, 80, 310 min; Kocharunchitt et al., 2014) (transcriptomes and proteomes), d–f (5, 30, 60 min;

Solheim et al., 2014), g–i (1, 6, 24 h; Finn et al., 2015), j–k (45 min, 14 h; Han et al., 2017), l–n (24, 48, 72 h; Qiao et al., 2013) (transcriptomes

and proteomes; no proteomic data available at 72 h). (b) Pairs of experiments for bacteria under hyperosmotic stress imposed by NaCl or

organic solutes. The sources of data are: A–B (sorbitol; Kanesaki et al., 2002), C–D (sorbitol; Han et al., 2005), E–F (sucrose; Kohler et al.,

2015) (transcriptomes and proteomes), G–H (glycerol at 1 h; Finn et al., 2015), I–J (glycerol at 6 h; Finn et al., 2015), K–L (sucrose; Shabala

et al., 2009), M–N (urea; Withman et al., 2013), O–P (glucose; Schmidt et al., 2016) (only proteomes). (c–f) Plots of median differences of

nH2O and ZC or GRAVY and pI for all compiled transcriptomic and proteomic data for hyperosmotic stress, including datasets shown in (a)

and (b) together with data for other experiments. In each panel, open symbols represent individual datasets and filled symbols represent the

mean for all datasets. The axis labels include the p-values for the mean difference for all datasets in each plot; p-values less than 0.05 are

shown in bold. References for all datasets are in Figures S1 (transcriptomics for non-halophilic bacteria), S2 (proteomics for non-halophilic

bacteria), and S3 (proteomics for halophilic archaea).
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glycerol than NaCl. Experiments with different strains of E. coli show a slightly more positive value for sucrose than NaCl

(Shabala et al., 2009) and a much larger positive difference for urea compared to NaCl (Withman et al., 2013). The available

proteomic data also show lower nH2O for sucrose (Kohler et al., 2015) and glucose (Schmidt et al., 2016) compared to NaCl440

(Fig. 7b). Note that the latter dataset is actually a comparison between growth on glucose and glucose with NaCl; growth on

glucose alone produces a lower DnH2O of the differentially expressed proteins.

The marked decrease of DnH2O induced by solutes such as sorbitol, which does not permeate the plasma membrane, could

result from a higher effective osmotic pressure compared to NaCl (Kanesaki et al., 2002). Because it permeates cells, solutions

of urea are not considered hypertonic (Burg et al., 2007), which may be one reason for the higher DnH2O for urea compared to445

NaCl. Sucrose, which permeates but unlike NaCl does not depolarize the plasma membrane (Shabala et al., 2009), produces a

slightly higher DnH2O than NaCl in one transcriptomics dataset for E. coli (Shabala et al., 2009), but has a more marked dehy-

drating effect in both transcriptomics and proteomics datasets for Caulobacter crescentus (Kohler et al., 2015). The negative

shift of DnH2O associated with most organic solutes compared to NaCl lends support to the notion that high organic loading

could contribute to the relatively low nH2O of protein sequences from metagenomes of freshwater aquaculture systems (Fig.450

6b).

Considering all transcriptomic datasets together (see Figure S1 for references), the proteins coded by differentially expressed

genes in non-halophilic bacteria under hyperosmotic stress do not show significant differences in ZC, nH2O, pI, or GRAVY (Fig.

7c–d). However, the average difference of nH2O would become more negative if the early time points in individual time-course

experiments were excluded from the average (see Fig. 7a). Unlike the results for transcriptomes, the average value of GRAVY455

for all proteomics datasets (see Figures S2 and S3 for references) increases significantly (Fig. 7f; p = 0.011). The proteomic

data also exhibit a small decrease of pI (p = 0.083), which is expected for halophiles, but the increase of GRAVY – that is,

higher hydrophobicity – is the opposite of the evolutionary trend for proteomes of halophilic organisms (Paul et al., 2008) and

the metagenomic comparisons described above. Overall, the proteomic experiments record a significant decrease of nH2O in

hyperosmotic stress (Fig. 7e; p = 0.016). We therefore conclude that nH2O is a metric with consistent behavior for field and460

laboratory datasets, since it records decreasing hydration state of proteins with increasing salinity in the Baltic Sea and Amazon

River and plume, and of differentially expressed proteins in microbial cells grown under hyperosmotic stress.

5 Conclusions

This study was focused on describing the chemical compositions of proteins in a geochemical context. The theoretical novelty

of this study is the derivation of a compositional metric for stoichiometric hydration state (nH2O) that is largely decoupled465

from changes in oxidation state (ZC) of proteins. Therefore, based on mass-action effects in thermodynamics, nH2O is predicted

to decrease toward higher salinity but be mostly insensitive to redox gradients. We found that protein sequences inferred

from metagenomes in regional salinity gradients, including the Baltic Sea freshwater-marine transect and Amazon River and

plume, are characterized by changes of nH2O in the predicted direction. Although this trend does not continue into hypersaline

environments, the applicability of the compositional analysis to microbial cells is supported by compilations of transcriptomic470
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and proteomic data, which indicate decreasing nH2O on average for the differentially expressed proteins in hyperosmotic stress

experiments. The dehydration signal becomes larger during many time-course experiments and is stronger for most organic

solutes than for NaCl.

The central message of this study is that geochemical and laboratory conditions can influence, but naturally do not completely

determine, the chemical compositions of proteins. As a step toward constructing multidimensional chemical-thermodynamic475

models of microbial communities, the present results provide evidence that different compositional metrics, representing the

oxidation state and hydration state of molecules, can be associated specifically with redox and salinity gradients, respectively.

The findings of this study underscore an opportunity for the integration of hydration state into evolutionary models that already

consider changes in oxidation state or oxygen content of proteins (Acquisti et al., 2007; Poudel et al., 2018).

Code and data availability.480

All metagenomic and metatranscriptomic data analyzed here were obtained from public databases using the accession num-

bers listed in Supplementary Table S1 for salinity gradients and Table S2 for redox gradients. The amino acid compositions of

subsampled sequences from the metagenomic and metatranscriptomic data are available in the JMDplots R package, version

1.2.4 (https://github.com/jedick/JMDplots), which is archived on Zenodo (Dick, 2020b). Specifically, the data are contained

in the file inst/extdata/gradH2O/MGP.rds, which can be read using the R function readRDS (minimum R version:485

2.3.0).

The compilation of differential gene expression data is available in the JMDplots package as xz-compressed CSV files in

the directory inst/extdata/expression/osmotic/. The compilation of differential protein expression data is in the

corresponding directory of the canprot R package, version 1.1.0 (https://cran.r-project.org/package=canprot), which is also

archived on Zenodo (Dick, 2020c). The results of the compositional analysis of differential expression data, which are used for490

Fig. 7, are in the inst/vignettes/ directories of the JMDplots and canprot packages.

The code used to make all of the figures and perform statistical testing is in the JMDplots package. The gradH2O.Rmd

vignette in the package demonstrates the functions used to make the figures.
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