Dear handling editor,

Thanks for giving us the opportunity to revise our manuscript following reviewers' comments. We have taken into account all of reviewers' comments in revising our manuscript.

Among their major comments,

- 1) we have rearranged the manuscript by moving budget equations to the appendix, and moving the description of all parameterizations to the main text,
- 2) moved Figure 1, which showed the original structure of the model, from main text to the appendix
- 3) added additional discussion of various BNF parameterizations, and parameterizations that related leaf N to Vcmax, in the discussion section
- 4) added equations that describe how the model treats upper limit of C:N ratios of different plant components,
- 5) included an additional plot (now Figure 10c) which shows zonally-averaged GPP ratios to illustrate how downregulation works differently in the original model and the model version with N cycle, and
- included a sentence about prioritizing immobilization versus plant N uptake in section 3.3.6 (on page 27 of this document).
- 7) Reorganized figures such that fertilizer input and N deposition are considered inputs, plotted in a separate figure, and discussed in inputs while BNF is considered a model output, plotted separately than specified N inputs of fertilizer and N deposition, and discussed in the model results section.

In addition, we also took into account all of minor comments that reviewers made as mentioned in our reply to the reviewers in the discussion section.

This document tracks all the changes that we have made since our last version.

Best regards, Vivek.

Implementation of nitrogen cycle in the CLASSIC land model

Ali Asaadi and Vivek. K. Arora

Canadian Centre for Climate Modelling and Analysis, Environment Canada, University of Victoria, Victoria, B.C., V8W 2Y2, Canada

1 Abstract

2

A terrestrial nitrogen (N) cycle model is coupled to carbon (C) cycle in the framework of the Canadian Land 3 4 Surface Scheme Including biogeochemical Cycles (CLASSIC). CLASSIC currently models physical and 5 biogeochemical processes and simulates fluxes of water, energy, and CO2 at the land-atmosphere boundary. Similar to most models, gross primary productivity in CLASSIC increases in response to 6 7 increasing atmospheric CO₂ concentration. In the current model version, a downregulation 8 parameterization emulates the effect of nutrient constraints and scales down potential photosynthesis 9 rates, using a globally constant scalar, as a function of increasing CO₂. In the new model when nitrogen (N) and carbon (C) cycles are coupled, cycling of N through the coupled soil-vegetation system facilitates 10 11 the simulation of leaf N content and maximum carboxylation capacity (V_{cmax}) prognostically. An increase 12 in atmospheric CO_2 decreases leaf N content, and therefore V_{cmax} , allowing the simulation of photosynthesis downregulation as a function of N supply. All primary N cycle processes, that represent 13 14 the coupled soil-vegetation system, are modelled explicitly. These include biological N fixation, treatment 15 of externally specified N deposition and fertilization application, uptake of N by plants, transfer of N to 16 litter via litterfall, mineralization, immobilization, nitrification, denitrification, ammonia volatilization, 17 leaching, and the gaseous fluxes of NO, N₂O, and N₂. The interactions between terrestrial C and N cycles 18 are evaluated by perturbing the coupled soil-vegetation system in CLASSIC with one forcing at a time over 19 the 1850-2017 historical period. These forcings include the increase in atmospheric CO₂, change in 20 climate, increase in N deposition, and increasing crop area and fertilizer input, over the historical period. 21 Increase in atmospheric CO₂ increases the C:N ratio of vegetation; climate warming over the historical 22 period increases N mineralization and leads to a decrease in vegetation C:N ratio; N deposition also 23 decreases vegetation C:N ratio; and fertilizer input increases leaching, NH₃ volatilization, and gaseous 24 losses of N₂, N₂O, and NO. These model responses are consistent with conceptual understanding of the 25 coupled C and N cycles. The simulated terrestrial carbon sink over the 1959-2017 period, from the simulation with all forcings, is 2.0 Pg C/yr and compares reasonably well with the quasi observation-based 26 estimate from the 2019 Global Carbon Project (2.1 Pg C/yr). The contribution of increasing CO₂, climate 27 28 change, and N deposition to carbon uptake by land over the historical period (1850-2017) is calculated to 29 be 84%, 2%, and 14%, respectively.

30

Deleted: to these forcings is

32 1. Introduction

The uptake of carbon (C) by land and ocean in response to the increase in anthropogenic 33 34 fossil fuel emissions of CO₂ has served to slow down the growth rate of atmospheric CO₂ since the start of the industrial revolution. At present, about 55% of total carbon emitted into the 35 atmosphere is taken up by land and ocean (Le Quéré et al., 2018; Friedlingstein et al., 2019). It is 36 37 of great policy, societal, and scientific relevance whether land and ocean will continue to provide 38 this ecosystem service. Over land, as long as photosynthesis is not water limited, the uptake of carbon in response to increasing anthropogenic CO₂ emissions is driven by two primary factors, 39 1) the CO₂ fertilization of the terrestrial biosphere, and 2) the increase in temperature, both of 40 which are associated with increasing [CO2]. The CO2 fertilization effect increases photosynthesis 41 42 rates for about 80% of the world's vegetation that uses the C3 photosynthetic pathway and is 43 currently limited by [CO₂] (Still et al., 2003; Zhu et al., 2016). The remaining 20% of vegetation uses the C₄ photosynthetic pathway that is much less sensitive to [CO₂]. Warming increases 44 45 carbon uptake by vegetation in mid-high latitude regions where growth is currently limited by 46 low temperatures (Zeng et al., 2011).

Even when atmospheric CO₂ is not limiting for photosynthesis, and near surface air temperature is optimal, vegetation cannot photosynthesize at its maximum possible rate if available water and nutrients (most importantly nitrogen (N) and phosphorus (P)) constrain photosynthesis (Vitousek and Howarth, 1991; Reich et al., 2006b). In the absence of water and nutrients, photosynthesis simply cannot occur. N is a major component of chlorophyll (the compound through which plants photosynthesize) and amino acids (that are the building blocks of proteins). The constraint imposed by available water and nutrients implies that the carbon

Deleted: C₃

Deleted: since photosynthesis for plants

56	uptake by land over the historical period in response to increasing $[CO_2]$ is lower than what it
57	would have been if water and nutrients were not limiting. This lower than maximum theoretically
58	possible rate of increase of photosynthesis in response to increasing atmospheric CO_2 is referred
59	to as downregulation (Faria et al., 1996; Sanz-Sáez et al., 2010). Typically, however, the term
60	downregulation of photosynthesis is used only in the context of nutrients and not water.
61	Downregulation is defined as a decrease in photosynthetic capacity of plants grown at elevated
62	CO ₂ in comparison to plants grown at baseline CO ₂ (McGuire et al., 1995), However, despite the
63	decrease in photosynthetic capacity, the photosynthesis rate for plants grown at elevated CO2 is
64	still higher than the rate for plants grown and measured at baseline CO_2 because of higher
65	background CO ₂
66	Earth system models (ESMs) that explicitly represent coupling of the global carbon cycle
67	and physical climate system processes are the only tools available at present that, in a physically

68 consistent way, are able to project how land and ocean carbon cycles will respond to future 69 changes in [CO₂]. Such models are routinely compared to one another under the auspices of the 70 Coupled Model Intercomparison Project (CMIP) every 6-7 years. The most recent and sixth phase of CMIP (CMIP6) is currently underway (Eyring et al., 2016). Interactions between carbon cycle 71 and climate in ESMs have been compared under the umbrella of the Coupled Climate-Carbon 72 Cycle Model Intercomparison Project (C⁴MIP) (Jones et al., 2016) which is an approved MIP of 73 the CMIP. Comparison of land and ocean carbon uptake in C⁴MIP studies (Friedlingstein et al., 74 75 2006; Arora et al., 2013, 2020) indicate that the inter-model uncertainty in future land carbon 76 uptake across ESMs js more than three times than the uncertainty for the ocean carbon uptake. 77 The reason for widely varying estimates of future land carbon uptake across models is that our

Deleted: McGuire et al. (1995) define d
Deleted: ,
Deleted: although
Deleted: rate of
Deleted: and measured at
Deleted:

Deleted: varies widely and Deleted: as much

86 understanding of biological processes that determine land carbon uptake is much less advanced than the physical processes which primarily determine carbon uptake over the ocean. In the 87 current generation of terrestrial ecosystem models, other than photosynthesis for which a 88 theoretical framework exists, almost all of the other biological processes are represented on the 89 90 basis of empirical observations and parameterized in one way or another. In addition, not all models include N and P cycles. In the absence of an explicit representation of nutrient constraints 91 on photosynthesis, land models in ESMs parameterize downregulation of photosynthesis in other 92 ways that reduce the rate of increase of photosynthesis to values below its theoretically 93 maximum possible rate, as [CO₂] increases (e.g., Arora et al., 2009). Comparison of models across 94 95 5th and 6th phase of CMIP shows that the fraction of models with land N cycle is increasing (Arora 96 et al., 2013, 2020).

97 The nutrient constraints on photosynthesis are well recognized (Vitousek and Howarth, 1991; Arneth et al., 2010). Terrestrial carbon cycle models neglect of nutrient limitation on 98 photosynthesis has been questioned from an ecological perspective (Reich et al., 2006a) and it 99 100 has been argued that without nutrient constraints these models will overestimate future land carbon uptake (Hungate et al., 2003). Since in the real world photosynthesis downregulation does 101 102 indeed occur due to nutrient constraints, it may be argued that more confidence can be placed 103 in future projections of models that explicitly model the interactions between the terrestrial C 104 and N cycles rather than parameterize it in some other way.

Here, we present the implementation of N cycle in the Canadian Land Surface Scheme Including biogeochemical Cycles (CLASSIC) model, which serves as the land component in the family of Canadian Earth System Models (Arora et al., 2009, 2011; Swart et al., 2019). Section 2

6

Deleted: s

briefly describes existing physical and carbon cycle components and processes of the CLASSIC
model. The conceptual basis of the new N cycle model and its parameterizations are described
in Section 3, Section 4 outlines the methodology and data sets that we have used to perform
various simulations over the 1850-2017 historical period to assess the realism of the coupled C
and N cycles in CLASSIC in response to various forcings. Results from these simulations over the
historical period are presented in Section 5 and finally discussion and conclusions are presented

in Section 6.

116 2. The CLASSIC land model

117 2.1 The physical and carbon biogeochemical processes

The CLASSIC model is the successor to, and based on, the coupled Canadian Land Surface 118 119 Scheme (CLASS; Verseghy, 1991; Verseghy et al., 1993) and Canadian Terrestrial Ecosystem Model (CTEM; Arora and Boer, 2005; Melton and Arora, 2016). CLASS and CTEM model physical 120 and biogeochemical processes in CLASSIC, respectively. Both CLASS and CTEM have a long history 121 of development as described in Melton et al. (2019) who also provide an overview of the CLASSIC 122 123 land model and describe its new technical developments that launched CLASSIC as a community 124 model. CLASSIC simulates land-atmosphere fluxes of water, energy, momentum, CO₂, and CH₄. 125 The CLASSIC model can be run at a point scale, e.g. using meteorological and geophysical data 126 from a FluxNet site, or over a spatial domain, that may be global or regional, using gridded data. We briefly summarize the primary physical and carbon biogeochemical processes of CLASSIC here 127 that are relevant in the context of implementation of the N cycle in the model. 128

129 2.1.1 Physical processes

Deleted: and in the appendix

131	The physical processes of CLASSIC which simulate fluxes of water, energy and momentum,	
132	are calculated over vegetated, snow, and bare fractions at a sub-daily time step of 30 minutes,	
133	The vegetation is described in terms of four plant functional types (PFTs); needleleaf trees,	
134	broadleaf trees, crops, and grasses. The fractional coverage of these four PFTs are specified in	
135	the current study over the historical period. The structural attributes of vegetation are described	``\
136	by leaf area index (LAI), vegetation height, canopy mass, and <u>rooting distribution through the soil</u>	
137	layers and these are all simulated dynamically by the biogeochemical module of CLASSIC. In the	
138	model <u>version used here</u> , 20 ground layers starting with 10 layers of 0.1 m thickness <u>are used</u> .	10 10 10 10 10 10 10 10 10 10 10 10 10 1
139	The thickness of layers gradually increases to 30 m for a total ground depth of over 61 m. The	
140	depth to bedrock varies geographically and is specified based on a soil depth data set. Liquid and	
141	frozen soil moisture contents, and soil temperature, are determined prognostically for	
142	permeable soil layers. CLASSIC also prognostically models the temperature, mass, albedo, and	
143	density of a single layer snow pack (when the climate permits snow to exist), Interception and	- 1- 1-1 1-1
144	throughfall of rain and snow by the canopy, and the subsequent unloading of snow, are also	
145	modelled. The energy and water balance over the land surface, and the transfer of heat and	
146	moisture through soil, affect the temperature and soil moisture content of soil layers all of which	
147	consequently affect the carbon and nitrogen cycle processes.	
148		1

149 2.1.2 Biogeochemical processes

- 150
- The biogeochemical processes in CLASSIC are based on CTEM, and described in detail in the appendix of Melton and Arora (2016). The biogeochemical component of CLASSIC simulates 151

Deleted: that

De	eleted: based on CLASS, operate at
De	eleted: . A time step
De	eleted: is typically used to avoid numerical instabilities
De ov ve	eleted: Water, energy, and momentum fluxes are calculated er vegetated, snow, and bare fractions, and the fractional getation cover is specified for each grid cell.
De	eleted: in the operational version of the model
De	eleted: either
De be bio	eleted: or may be dynamically simulated using competition tween PFTs, calculations for which are performed in the ogeochemical module (CTEM).
De	eleted: rooting
De ro ve	eleted: depth and distribution that determine the fraction of ots in each of the model's soil layers. These structural getation attributes
De	eleted: may be specified or
De da	eleted: of CLASSIC as a function of the driving meteorological ta and [CO ₂]
De be ap	eleted: The number of permeable soil and non-permeable drock layers in CLASSIC can be varied depending on its plication. The
De	eleted: standard offline
De	eleted: that is driven with reanalysis meteorological data, like
De	eleted: in this study, uses
De	eleted: ,
De	eleted: ing
De	eleted: a
De	eleted: thick layer
De mo an	eleted: For application within the Canadian Earth system odel currently three ground layers with thicknesses of 0.1, 0.25 d 3.75 m are used.
De the lay	eleted: Above this depth, the layers are considered soil and erefore permeable allowing movement of water between the vers for which I
De co co gre	eleted: Below the permeable soil, the bedrock rock layers are nsidered impermeable and therefore their soil moisture ntent is zero. Soil and bedrock temperatures are found for each pund layer.
De so	eleted: , the temperature and depth of ponded water on the il, and the temperature of the vegetation canopy
	lated. Energy and water balance of each grid call evolves

Deleted: Energy and water balance of each grid cell evolves independently and there is no lateral transfer of heat or moisture between them.

196 the land-atmosphere exchange of CO2 and while doing so simulates vegetation as a dynamic 197 component. The biogeochemical module of CLASSIC uses information about net radiation, and 198 liquid and frozen soil moisture contents of all the soil layers along with air temperature to 199 simulate photosynthesis and prognostically calculates amount of carbon in the model's three live 200 (leaves, stem, and root) and two dead (litter and soil) carbon pools for each PFT. The litter and 201 soil carbon pools are not tracked for each soil layer. Litter is assumed to be near surface and an 202 exponential distribution for soil carbon is assumed with values decreasing with soil depth. 203 Photosynthesis in CLASSIC is modelled at the same sub-daily time as the physical processes. The remainder of the biogeochemical processes are modelled at a daily time step. These include: 1) 204 autotrophic and heterotrophic respirations from all the live and dead carbon pools, respectively, 205 2) allocation of photosynthate from leaves to stem and roots, 3) leaf phenology, 4) turnover of 206 207 live vegetation components that generates litter, 5) mortality, 6) land use change (LUC), 7) fire (Arora and Melton, 2018), and 8) competition between PFTs for space (not switched on in this 208 209 study).

210 211

212

213

214

215

216

217

Figure <u>A1 in the appendix shows the existing structure of CLASSIC's carbon pools along</u> with the addition of non-structural carbohydrate pools for each of the model's live vegetation components. The non-structural pools are not yet represented in the current operational version of CLASSIC (Melton et al., 2019). The addition of non-structural carbohydrate pools is explained in Asaadi et al. (2018) and helps improve leaf phenology for cold deciduous tree PFTs. The N cycle model presented here is built on the research version of CLASSIC that consists of non-structural and structural carbon pools for the leaves (L), stem (S), and root (R) components and the two dead carbon pools in litter or detritus (D) and soil or humus (H) (Figure A1). We briefly describe **Deleted:** The physics module (CLASS) provides the biogeochemical module (CTEM) with physical land surface information including net radiation, and liquid and frozen soil moisture contents of all the soil layers.

Deleted: this

Deleted: ¶

224 these carbon pools and fluxes between them, since N cycle pools and fluxes are closely tied to carbon pools and fluxes. The gross primary productivity (GPP) flux enters the leaves from the 225 226 atmosphere. This non-structural photosynthate is allocated between leaves, stem, and roots. The 227 non-structural carbon then moves into the structural carbohydrates pool. Once this conversion 228 occurs structural carbon cannot be converted back to non-structural labile carbon. The model 229 attempts to maintain a minimum fraction of non-structural to total carbon in each component of about 0.05 (Asaadi et al., 2018). Non-structural carbon is moved from stem and root components 230 to leaves, at the time of leaf onset for deciduous PFTs, and this is termed reallocation. The 231 movement of non-structural carbon is indicated by red arrows. Maintenance and growth 232 233 respiration (indicated by subscript *m* and *g* in Figure A1), which together constitute autotrophic 234 respiration, occur from the non-structural components of the three live vegetation components. 235 Litterfall from the structural and non-structural components of the vegetation components 236 contributes to the litter pool. Leaf litterfall is generated due to normal turnover of leaves as well 237 as cold and drought stresses, and reduction in day length. Stem and root litter is generated due to their turnover based on their specified life spans. Heterotrophic respiration occurs from the 238 239 litter and soil carbon pools depending on soil moisture and temperature, and humified litter is moved from litter to the soil carbon pool. 240

All these terrestrial ecosystem processes and the amount of carbon in the live and dead carbon pools are modelled explicitly for nine PFTs that map directly onto the four base PFTs used in the physics module of CLASSIC. Needleleaf trees are divided into their deciduous and evergreen phenotypes, broadleaf trees are divided into cold deciduous, drought deciduous, and evergreen phenotypes, and crops and grasses are divided based on their photosynthetic pathways into C₃ and C₄ versions. The sub-division of PFTs is required for modelling
biogeochemical processes. For instance, simulating leaf phenology requires the distinction
between evergreen and deciduous phenotypes of needleleaf and broadleaf trees. However, once
LAI is known, a physical process (such as the interception of rain and snow by canopy leaves) does
not need to know the underlying evergreen or deciduous nature of leaves.

251 The prognostically determined biomasses in leaves, stem, and roots are used to calculate 252 structural vegetation attributes that are required by the physics module. Leaf biomass is used to calculate LAI using PFT-dependent specific leaf area. Stem biomass is used to calculate vegetation 253 254 height for tree and crop PFTs, and LAI is used to calculate vegetation height for grasses. Finally, 255 root biomass is used to calculate rooting depth and distribution which determines the fraction of 256 roots in each soil layer. Only total root biomass is tracked; fine and coarse root biomasses are not 257 separately tracked. Fraction of fine roots is calculated as a function of total root biomass, as 258 shown later.

259 The approach for calculating photosynthesis in CLASSIC is based on the standard Farquhar 260 et al. (1980) model for C_3 photosynthetic pathway, and Collatz et al. (1992) for the C_4 photosynthetic pathway and presented in detail in Arora (2003). The model calculates gross 261 262 photosynthesis rate that is co-limited by the photosynthetic enzyme Rubisco, by the amount of available light, and by the capacity to transport photosynthetic products for C₃ plants or the CO₂-263 limited capacity for C₄ plants. In the real world, the maximum Rubsico limited rate (V_{cmax}) depends 264 265 on the leaf N content since photosynthetic capacity and leaf N are strongly correlated (Evans, 1989; Field and Mooney, 1986; Garnier et al., 1999). In the current operational version of 266 CLASSIC, the N cycle is not represented and the PFT-dependent values of V_{cmax} are therefore 267

Deleted: Other than these structural vegetation attributes the biogeochemical module also calculates canopy resistance (in conjunction with photosynthesis) that is used by the physics module in calculating transpiration.

272	specified based on Kattge et al. (2009) who compile V_{cmax} values using observation-based data		
273	from more than 700 measurements. Along with available light, and the capacity to transport		
274	photosynthetic products, the GPP in the model is determined by specified PFT-dependent values	·	Deleted: strongly
275	of V _{cmax.}		
276	In the current CLASSIC version a parameterization of photosynthesis downregulation is included	`	Deleted: Also, i
277	which, in the absence of the N cycle, implicitly attempts to simulate the effects of nutrient		
278	constraints. This parameterization, based on approaches which express GPP as a logarithmic		
279	function of [CO ₂] (Cao et al., 2001; Alexandrov and Oikawa, 2002), is explained in detail in Arora		
280	et al. (2009) and briefly summarized here. <u>To parameterize photosynthesis downregulation with</u>	<	Moved (insertion) [1]
281	increasing [CO ₂] the unconstrained or potential GPP (for each time step and each PFT in a grid		Deleted: of photosynthesis Deleted: for emulating nutrient constraints.
282	<u>cell) is multiplied by the global scalar $\xi(c)$</u>		
283	$G = \xi(c) \ G_p \underline{\qquad (1)}$		Deleted: 2
284	$\xi(c) = \frac{1 + \gamma_d \ln(c/c_0)}{1 + \gamma_p \ln(c/c_0)} $ (2)		Deleted: 3
285	where c is [CO ₂] at time t and its initial value is c_0 , the parameter γ_p indicates the "potential" rate		
286	of increase of GPP with [CO ₂] (indicated by the subscript <i>p</i>), the parameter γ_d represents the	'	Deleted: where t is omitted for clarity and
287	downregulated rate of increase of GPP with [CO ₂] (indicated by the subscript d). When $\gamma_d < \gamma_p$		
288	the modelled gross primary productivity (G) increases in response to [CO ₂] at a rate determined		
289	by the value of γ_d . In the absence of the N cycle, the term $\xi(c)$ thus emulates down-regulation		
290	of photosynthesis as CO ₂ increases. For example, values of $\gamma_d = 0.35$ and $\gamma_p = 0.90$, yield a value of	<	Deleted: 42
291	$\xi(c) = 0.87$ (indicating a 13% downregulation) for $c=390$ ppm (corresponding to year 2010) and		Deleted: , from Arora et al. (2009) Deleted: 94
292	с ₀ <u>=285 ppm.</u>	1.	Deleted: 6

304	Note that while the original model version does not include N cycle, it is capable of	
305	simulating realistic geographical distribution of GPP that partly comes from the specification of	N N
306	observation-based V _{cmax} values (which implicitly takes into account C and N interactions in a non-	
307	dynamic way) but more so the fact that the geographical distribution of GPP (and therefore net	
308	primary productivity, NPP), to the first order, depends on climate. The specified V _{cmax} values for	
309	the 9 PFTs in CLASSIC vary by about 2 times, from about 35 to 75 μ -mol CO ₂ m ⁻² s ⁻¹ . The simulated	
310	GPP in the model, however, varies from zero in the Sahara desert to about 3000 gC m ⁻² year ⁻¹ in	11 - 1 11 11
311	the Amazonian rainforest indicating the overarching control of climate in determining the	1 11 11
312	geographical distribution of GPP. This is further illustrated by the Miami NPP model, for instance,	11
313	which is able to simulate the geographical distribution of NPP using only mean annual	
314	temperature and precipitation (Leith, 1975) since both the C and N cycles are governed primarily	
315	by climate. The current version of CLASSIC is also able to reasonably simulate the terrestrial C	
316	sink over the second half of the 20 th century and early 21 st century. CLASSIC (with <u>jts former</u>	
317	CLASS-CTEM name) has regularly contributed to the annual Trends in Net Land–Atmosphere	
318	Carbon Exchange (TRENDY) model intercomparison since 2016 which contributes results to the	
319	Global Carbon Project's annual assessments – the most recent one being Friedlingstein et al.	
320	(2019). What is then the purpose of coupling C and N cycles?	
321		
322	3. Implementation of the N cycle in CLASSIC	10

3. Implementation of the N cycle in CLASSIC 322

- The primary objective of implementation of the N cycle is to model V_{cmax} as a function of 323
- leaf N content so as to make the use of multiplier $\xi(c)$ obsolete in the model, and allow to project 324

Moved up [1]: To parameterize do	wnregulation of
photosynthesis with increasing [CO2	for emulating nutrient
constraints, the unconstrained or po	tential GPP (for each time
step and each PFT in a grid cell) is m	ultiplied by the global scalar
ξ(c) ¶	
$C = \zeta(a) C$	(2)

$G = \xi(c) G_p$	(2)
$\xi(c) = \frac{1 + \gamma_d \ln(c/c_0)}{1 + \gamma_u \ln(c/c_0)}$	(3)¶

where t is omitted for clarity and the parameter γ_d represents the downregulated rate of increase of GPP with [CO2] (indicated by the subscript d). When $\gamma_d < \gamma_p$ the modelled gross primary productivity (G) increases in response to [CO₂] at a rate determined by the value of γ_d . In the absence of the N cycle, the term $\xi(c)$ thus emulates down-regulation of photosynthesis as CO₂ increases. For example, values of γ_d =0.42 and γ_p =0.90, from Arora et al. (2009), vield a value of $\xi(c) = 0.94$ (indicating a 6%) downregulation) for c=390 ppm (corresponding to year 2010) and c₀=285 ppm.

Deleted: ¶

Following earlier simpler approaches (Cao et al., 2001; Alexandrov and Oikawa, 2002), GPP can be expressed as a logarithmic function of $[\text{CO}_2]$ \P

 $G_p(t) = G_0 \left(1 + \gamma_p \ln \frac{c(t)}{c_0} \right)$

(1)¶

where the unconstrained or potential GPP at any given time, $G_p(t)$, is a function of its initial value G_0 , $[CO_2]$ at time t, c(t), and its initial value c0. The rate of increase of GPP is determined by the parameter $\gamma_p\;$ (where p indicates the "potential" rate of increase of GPP with [CO₂]). The parameter γ_p is calculated by fitting equation (1) to simulated GPP over the historical period. In the absence of any nutrient constraints, the rate of increase of carbon uptake per unit area of leaves is determined by the theoretical framework of Farquhar et al. (1980) and Collatz et al. (1992) for C₃ and C₄ photosynthetic pathways, respectively. The rate of increase of global GPP, however, also depends on how the model simulated LAI increases in response to increasing [CO2], which in turn depends on how photosynthate is allocated between leaves, stem, and root, Arora et al. (2009) compared the unconstrained simulated rate of increase of GPP per unit increase in [CO₂] (their Figure 3) with that based on the theoretical framework to show that the model's response to increasing [CO₂] over the historical period is consistent with the theoretical framework, given specified time-independent V_{cmax} values for different PFTs. To parameterize downregulation of photosynthesis with increasing [CO2] for emulating nutrient constraints, the unconstrained or potential GPP (for each time step and each PFT in a grid cell) is multiplied by the global scalar $\xi(c)$ ¶ $G = \xi(c) G_p$ (2) $\xi(c) = \frac{1+\gamma_d \ln(c/c_0)}{1+\gamma_p \ln(c/c_0)}$ (3)¶ where t is omitted for clarity and the parameter γ_d represents

the downregulated rate of increase of GPP with [CO₂] (indic ... [1]

Deleted: rates Deleted: T

Deleted: the

420 future carbon uptake that is constrained by available N. Modelling of leaf N content as a prognostic variable, however, requires modelling the full N cycle over land. N enters the soil in 421 422 the inorganic mineral form through biological fixation of N, fertilizer application, and atmospheric N deposition in the form of ammonium and nitrate. N cycling through plants implies uptake of 423 424 inorganic mineral N by plants, its return to soil through litter generation in the organic form, and 425 its conversion back to mineral form during decomposition of organic matter in litter and soil. Finally, N leaves the coupled soil-vegetation system through leaching in runoff and through 426 427 various gaseous forms to the atmosphere. This section describes how these processes are implemented and parameterized in the CLASSIC modelling framework. While the first order 428 interactions between C and N cycles are described well by the current climate, their temporal 429 dynamics over time require to explicitly model these processes. 430

431 Globally, terrestrial N cycle processes are even less constrained than the C cycle processes. As a result, the model structure and parameterizations are based on conceptual 432 433 understanding and mostly empirical observations of N cycle related biological processes. We attempt to achieve balance between a parsimonious and simple model structure and the ability 434 to represent the primary feedbacks and interactions between different model components. 435

436 3.1 Model structure, and N pools and fluxes

437 N is associated with each of the model's three live vegetation components and the two 438 dead carbon pools (shown in Figure A1). In addition, separate mineral pools of ammonium (NH4⁺) and nitrate (NO₃⁻) are considered. Figure <u>1</u> shows the C and N pools together in one graphic along 439 Deleted: 2 with the fluxes of N and C between various pools. The structural and non-structural N pools in 440

Deleted: five

443	root are written as $N_{R,S}$ and $N_{R,NS}$, respectively, and similarly for stem ($N_{S,S}$ and $N_{S,NS}$) and leaves
444	$(N_{L,S} \text{ and } N_{L,NS})$, and together the structural and non-structural pools make up the total N pools
445	$\underline{\text{in leaf}(N_L = N_{L,S} + N_{L,NS}), \text{root}(N_R = N_{R,S} + N_{R,NS}), \text{ and stem}(N_S = N_{S,S} + N_{S,NS}) \text{ components.}}$
446	The fluxes between the pools in Figure 1 characterize the prognostic nature of the pools as
447	defined by the rate change equations <u>summarized in section A1 in the appendix</u> . The model
448	structure allows the C:N ratio of the live leaves ($C: N_L = C_L/N_L$), stem ($C: N_S = C_S/N_S$), and root
449	$(C: N_R = C_R/N_R)$ components, and the dead litter (or debris) pool $(C: N_D = C_D/N_D)$ to evolve
450	prognostically. The C:N ratio of soil organic matter ($C: N_H = C_H/N_H$), however, is assumed to be
451	constant at 13 following Wania et al. (2012) (see also references therein), The implications of this
452	assumption are discussed later.
453	The individual terms of the rate change equations of the 10 prognostic N pools (equations
454	A1 through A8, and equations A10 and A11 in the appendix), corresponding to Figure 1, are
455	specified or parameterized as explained in the following sections. These parameterizations are
456	divided into three groups and related to 1) N inputs, 2) N cycling in vegetation and soil, and 3) N
457	cycling in mineral pools and N outputs.
458	
459	3.2 N inputs
460	3.2.1 Biological N fixation
461	Biological N fixation (BNF, B_{NH4}) is caused by both free living bacteria in the soil and by
462	bacteria symbiotically living within nodules of host plants' roots. Here, the bacteria convert free
463	nitrogen from the atmosphere to ammonium, which is used by the host plants. Like any other

Deleted: se

Deleted: below

Deleted:

467 microbial activity, BNF is limited both by drier soil moisture conditions and cold temperatures. Cleveland et al. (1999) attempt to capture this by parameterizing BNF as a function of actual 468 evapotranspiration (AET). AET is a function primarily of soil moisture (through precipitation and 469 470 soil water balance) and available energy. In places where vegetation exists, AET is also affected 471 by vegetation characteristics including LAI and rooting depth. Here, we parameterize BNF (B_{NH4} , gN $m^{-2}\ day^{-1})$ as a function of modelled soil moisture and temperature to depth of 0.5 m 472 473 (following the use of similar depth by Xu-Ri and Prentice (2008)) which yields a very similar 474 geographical distribution of BNF as the Cleveland et al. (1999) approach as seen later in Section 4. 475

 $B_{NH4} = \left(\sum_{c} \alpha_{c} f_{c} + \sum_{n} \alpha_{n} f_{n} + \right) f(T_{0.5}) f(\theta_{0.5})$ $f(T_{0.5}) = 2^{(T_{0.5} - 25)/10}$ $f(\theta_{0.5}) = \min\left(0, \max\left(1, \frac{\theta_{0.5} - \theta_{w}}{\theta_{fc} - \theta_{w}}\right)\right)$ (3)

where α_c and α_n (gN m⁻² day⁻¹) are BNF coefficients for crop (c) and non-crop or natural (n) PFTs, 477 which are area weighted using the fractional coverages f_c and f_n of crop and non-crop PFTs that 478 are present in a grid cell, f(T) is the dependence on soil temperature based on a Q_{10} formulation 479 and $f(\theta)$ is the dependence on soil moisture which varies between 0 and 1. θ_{fc} and θ_w are the 480 soil moisture at field capacity and wilting points, respectively. $T_{0.5}$ (°C) and $\theta_{0.5}$ (m³ m⁻³) in 481 equation (3) are averaged over the 0.5 m soil depth over which BNF is assumed to occur. We do 482 483 not make the distinction between symbiotic and non-symbiotic BNF since this requires explicit knowledge of geographical distribution of N fixing PFTs which are not represented separately in 484 our base set of nine PFTs. A higher value of α_c is used compared to α_n to account for the use of 485 486 N fixing plants over agricultural areas. Biological nitrogen fixation has been an essential

Deleted: e

component of many farming systems for considerable periods, with evidence for the agricultural use of legumes dating back more than 4,000 years (O'Hara, 1998). A higher α_c than α_n is also consistent with Fowler et al. (2013) who report BNF of 58 and 60 Tg N yr⁻¹ for natural and agricultural ecosystems for present day. Since the area of natural ecosystems is about five times the current cropland area, <u>this</u> implies BNF rate per unit land area is higher for crop ecosystems than for natural ecosystems. Values of α_c than α_n and other model parameters are summarized in Table A1.

Deleted: it

Similar to Cleveland et al. (1999), our approach does not lead to a significant change in 495 BNF with increasing atmospheric CO2, other than through changes in soil moisture and 496 temperature. At least two meta-analyses, however, suggest that an increase in atmospheric CO2 497 498 does lead to an increase in BNF through increased symbiotic activity associated with an increase in both nodule mass and number (McGuire et al., 1995; Liang et al., 2016). Models have 499 attempted to capture this by simulating BNF as a function of NPP (Thornton et al., 2007; Wania 500 501 et al., 2012). The caveat with this approach and the implications of our BNF approach are discussed in Section 6. 502

503 3.2.2 Atmospheric N deposition

Atmospheric N deposition is externally specified. The model reads in spatially- and temporally-varying annual deposition rates from a file. Deposition is assumed to occur at the same rate throughout the year so the same daily rate ($gN m^{-2} day^{-1}$) is used for all days of a given year. If separate information for ammonium (NH_4^+) and nitrate (NO_3^-) deposition rates is available 509 then it is used otherwise deposition is assumed to be split equally between NH4⁺ and NO3⁻

(indicated as P_{NH4} and P_{NO3} in equations A1 and A2). 510

511 3.2.3 Fertilizer application

512 Geographically and temporally varying annual fertilizer application rates (F_{NH4}) are also 513 specified externally and read in from a file. Fertilizer application occurs over the C_3 and C_4 crop fractions of grid cells. Agricultural management practices are difficult to model since they vary 514 widely between countries and even from farmer to farmer. For simplicity, we assume fertilizer is 515 applied at the same daily fertilizer application rate (gN m^{-2} day⁻¹) throughout the year in the 516 517 tropics (between 30°S and 30°N), given the possibility of multiple crop rotations in a given year. 518 Between the 30° and 90° latitudes in both northern and southern hemispheres, we assume that fertilizer application starts on the spring equinox and ends on the fall equinox. The annual 519 520 fertilizer application rate is thus distributed over around 180 days. This provides somewhat more realism, than using the same treatment as in tropical regions, since extra-tropical agricultural 521 areas typically do not experience multiple crop rotations in a given year. The prior knowledge of 522 523 start and end days for fertilizer application makes it easier to figure out how much fertilizer is to 524 be applied each day and helps ensure that the annual amount read from the externally specified 525 file is consistently applied.

526

3.3 N cycling in plants and soil 527

528

Plant roots take up mineral N from soil and then allocate it to leaves and stem to maintain 529 an optimal C:N ratio of each component. Both active and passive plant uptakes of N (from both

Moved down [4]: Litterfall from vegetation contributes to the litter pool and decomposition of litter transfers humified litter to the soil organic matter pool. Decomposition of litter and soil organic matter returns mineralized N back to the NH₄⁺ pool, closing the soil-vegetation N cycle loop.

the NH₄⁺ and NO₃⁻ pools; explained in Sections 3.3.2 and 3.3.3) are explicitly modelled. The active
N uptake is modelled as a function of fine root biomass, and passive N uptake depends on the
transpiration flux. The modelled plant N uptake also depends on its N demand. Higher N demand
leads to higher mineral N uptake from soil as explained below. Litterfall from vegetation
contributes to the litter pool and decomposition of litter transfers humified litter to the soil
organic matter pool. Decomposition of litter and soil organic matter returns mineralized N back
to the NH₄⁺ pool, closing the soil-vegetation N cycle loop.

542 3.3.1 Plant N demand

547

Plant N demand is calculated based on the fraction of NPP allocated to leaves, stem, and root components and their specified minimum PFT-dependent C:N ratios, similar to other models (Xu-Ri and Prentice, 2008; Jiang et al., 2019). The assumption is that plants always want to achieve their desired minimum C:N ratios if enough N is available.

$$\Delta_{WP} = \Delta_L + \Delta_R + \Delta_S$$
$$\Delta_i = \frac{\max(0, NPP \cdot a_{i,C})}{C:N_{i}\min}, \quad i = L, S, R$$

where the whole plant N demand (Δ_{WP}) is the sum of N demand for the leaves (Δ_L) , stem (Δ_S) , and root (Δ_R) components, $a_{i,C}$, i = L, S, R is the fraction of NPP (i.e., carbon as indicated by letter C in the subscript, gC m⁻² day⁻¹) allocated to leaf, stem, and root components, and $C: N_{i,\min}$, i = L, S, R are their specified minimum C:N ratios (see Table A1 for these and all other model parameters). A caveat with this approach when applied at the daily time step, for biogeochemical processes in our model, is that during periods of time when NPP is negative due to adverse climatic conditions (e.g., during winter or drought seasons), the calculated demand is Moved (insertion) [4]

(4)

555	negative. If positive NPP implies there is demand for N, negative NPP cannot be taken to imply
556	that N must be lost from vegetation. As a result, from a plant's perspective, N demand is assumed
557	to be zero during periods of negative NPP. N demand is also set to zero when all leaves have been
558	shed (i.e., when GPP is zero). At the global scale, this leads to about 15% higher annual N demand
559	than would be the case if negative NPP values were taken into consideration.

560

561 3.3.2 Passive N uptake

562 N demand is weighed against passive and active N uptake. Passive N uptake depends on 563 the concentration of mineral N in the soil and the water taken up by the plants through their roots as a result of transpiration. We assume that plants have no control over N that comes into 564 565 the plant through this passive uptake. This is consistent with existing empirical evidence that too much N in soil will cause N toxicity (Goyal and Huffaker, 1984), although we do not model N 566 toxicity in our framework. If the N demand for the current time step cannot be met by passive N 567 uptake then a plant compensates for the deficit (i.e., the remaining demand) through active N 568 569 uptake.

570 The NH₄⁺ concentration in the soil moisture within the rooting zone, referred to as [NH₄] 571 (gN gH₂O⁻¹), is calculated as

572
$$[\mathrm{NH}_4] = \frac{N_{\mathrm{NH}4}}{\sum_{i=1}^{i \le r_d} 10^6 \,\theta_i \, z_i}$$
(5)

where N_{NH4} is ammonium pool size (gN m⁻²), θ_i is the volumetric soil moisture content for soil layer *i* (m³ m⁻³), z_i is the thickness of soil layer *i* (m), r_d is the soil layer in which the 99% rooting depth lies as dynamically simulated by the biogeochemical module of CLASSIC following Arora and Boer (2003). The 10⁶ term converts units of the denominator term to $gH_2O m^{-2}$. NO_3^{-1} concentration ([NO_3], $gN gH_2O^{-1}$) in the rooting zone is found in a similar fashion. The transpiration flux q_t (Kg $H_2O m^{-2} s^{-1}$) (calculated in the physics module of CLASSIC) is multiplied by [NH_4] and [NO_3] ($gN gH_2O^{-1}$) to obtain passive uptake of NH_4^+ and NO_3^- ($gN m^{-2} day^{-1}$) as

 $U_{p,NH4} = 86400 \times 10^{3} \beta q_{t} [\text{NH}_{4}]$ $U_{p,NO3} = 86400 \times 10^{3} \beta q_{t} [\text{NO}_{3}]$ (6)

where the multiplier 86400× 10^3 converts q_t to units of gH₂O m⁻² day⁻¹, and β (see Table A1) is the dimensionless mineral N distribution coefficient with <u>a</u> value less than 1 that accounts for the fact that NH₄⁺ and NO₃⁻ available in the soil are not well mixed in the soil moisture solution, and not completely accessible to roots, to be taken up by plants.

585 3.3.3 Active N uptake

586 The active plant N uptake is parameterized as a function of fine root biomass and the size 587 of NH_4^+ and NO_3^- pools in a manner similar to Gerber et al. (2010) and Wania et al. (2012). The 588 distribution of fine roots across the soil layers is ignored. CLASSIC does not explicitly model fine root biomass. We therefore calculate the fraction of fine root biomass using an empirical 589 590 relationship that is very similar to the relationship developed by Kurz et al. (1996) (their equation 5) but also works below total root biomass of 0.33 Kg C m^{-2} (the Kurz et al. (1996) relationship 591 yields a fraction of fine root more than 1.0 below this threshold). The fraction of fine root biomass 592 593 (f_r) is given by

$$f_r = 1 - \frac{c_R}{c_R + 0.6}$$
 (7)

1

Deleted: Formatted: Superscript

Deleted: s

where C_R is the root biomass (KgC m⁻²) simulated by the biogeochemical module of CLASSIC. Equation (7) yields fine root fraction approaching 1.0 as C_R approaches 0, so at very low root biomass values all roots are considered fine roots. For grasses the fraction of fine root biomass is set to 1. The maximum or potential active N uptake for NH₄[±] and NO₃[±] is given by

 $U_{a,pot,NH4} = \frac{\varepsilon f_r C_R N_{NH4}}{k_{p,!/2} r_d + N_{NH4} + N_{NO3}}$ $U_{a,pot,NO3} = \frac{\varepsilon f_r C_R N_{NO3}}{k_{p,!/2} r_d + N_{NH4} + N_{NO3}}$ (8)

602 where *ɛ* (see Table A1) is the efficiency of fine roots to take up N per unit fine root mass per day (gN gC⁻¹ day⁻¹), $k_{p,\frac{1}{2}}$ (see Table A1) is the half saturation constant (gN m⁻³), and N_{NH4} and N_{NO3} 603 are the ammonium and nitrate pool sizes (gN m⁻²) as mentioned earlier. Depending on the 604 605 geographical location and the time of the year, if passive uptake alone can satisfy plant N demand the actual active N uptake of NH4⁺ ($U_{a,actual,NH4}$) and NO3⁻ ($U_{a,actual,NO3}$) is set to zero. 606 607 Conversely, during other times both passive and potential active N uptakes may not be able to 608 satisfy the demand and in this case actual active N uptake is equal to its potential rate. At times 609 other than these, the actual active uptake is lower than its potential value. This adjustment of actual active uptake is illustrated in equation (9). 610

Formatted: Superscript

Deleted: the

$$\text{if} \left(\Delta_{WP} \leq U_{p,NH4} + U_{p,NO3} \right) \\ U_{a,actual,NH4} = 0 \\ U_{a,actual,NO3} = 0$$

$$\text{if } \left(\Delta_{WP} > U_{p,NH4} + U_{p,NO3} \right) \wedge \left(\Delta_{WP} < U_{p,NH4} + U_{p,NO3} + U_{a,pot,NH4} + U_{a,pot,NH4} \right) \\ U_{a,actual,NH4} = \left(\Delta_{WP} - U_{p,NH4} - U_{p,NO3} \right) \frac{U_{a,pot,NH4}}{U_{a,pot,NH4} + U_{a,pot,NH4}} \\ U_{a,actual,NO3} = \left(\Delta_{WP} - U_{p,NH4} - U_{p,NO3} \right) \frac{U_{a,pot,NO3}}{U_{a,pot,NH4} + U_{a,pot,NH4}}$$
(9)

$$if (\Delta_{WP} \ge U_{p,NH4} + U_{p,NO3} + U_{a,pot,NH4} + U_{a,pot,NO3}) U_{a,actual,NH4} = U_{a,pot,NH4} U_{a,actual,NO3} = U_{a,pot,NO3}$$

Finally, the total N uptake (U), uptake of NH_4^+ (U_{NH4}) and NO_3^- (U_{NO3}), are calculated as

614

$$U = U_{p,NH4} + U_{p,NO3} + U_{a,actual,NH4} + U_{a,actual,NO3}$$

$$U_{NH4} = U_{p,NH4} + U_{a,actual,NH4}$$

$$U_{NO3} = U_{p,NO3} + U_{a,actual,NO3}$$
(10)

615

612

616 3.3.4 Litterfall

617 Nitrogen litterfall from the vegetation components is directly tied to the carbon litterfall618 calculated by the phenology module of CLASSIC through their current C:N ratios.

619
$$LF_i = \frac{(1-r_L) \, LF_{i,C}}{C:N_i}, i = L, S, R$$
(11)

where $LF_{i,C}$ is the carbon litterfall rate (gC day⁻¹) for component *i*, calculated by the phenology module of CLASSIC, and division by its current C:N ratio yields the nitrogen litterfall rate, r_L (see <u>Table A1</u>) is the leaf resorption coefficient that simulates the resorption of N from leaves of deciduous tree PFTs before they are shed and $r_i = 0$, i = R, S. Litter from each vegetation

624 component is proportioned between structural and non-structural components according to

625 their pool sizes.

626 3.3.5 Allocation and reallocation

Plant N uptake by roots is allocated to leaves and stem to satisfy their N demand. When plant N demand is greater than zero, total N uptake (U) is divided between leaves, stem, and root components in proportion to their demands such that the allocation fractions for N (a_i , i =L, S, R) are calculated as

۸.

$$a_{i} = \frac{\Delta_{i}}{\Delta_{WP}}, i = L, S, R$$

$$A_{R2L} = a_{L} (U_{NH4} + U_{NO3})$$

$$A_{R2S} = a_{S} (U_{NH4} + U_{NO3})$$
(12)

where A_{R2L} and A_{R2S} are the amounts of N allocated from root to leaves and stem components, 632 respectively, as shown in equations (A5) and (A7). During periods of negative NPP due to adverse 633 634 climatic conditions (e.g., during winter or drought seasons) the plant N demand is set to zero but 635 passive N uptake, associated with transpiration, may still be occurring if the leaves are still on. Even though there is no N demand, passive N uptake still needs to be partitioned among the 636 637 vegetation components. During periods of negative NPP allocation fractions for N are, therefore, 638 calculated in proportion to the minimum PFT-dependent C:N ratios of the leaves, stem, and root 639 components as follows.

640
$$a_i = \frac{1/C:N_{i,\min}}{1/C:N_{L,\min} + 1/C:N_{S,\min} + 1/C:N_{R,\min}}, i = L, S, R$$

Deleted: A

(13)

For grasses, which do not have a stem component, equations (12) and (13) are modified
accordingly by removing the terms associated with the stem component.

Three additional rules override these general allocation rule specifically for deciduous tree PFTs (or deciduous PFTs in general). First, no N allocation is made to leaves once leaf fall is initiated for deciduous tree PFTs and plant N uptake is proportioned between stem and root components based on their demands in a manner similar to equation (12). Second, for deciduous tree PFTs, a fraction of leaf N is resorbed from leaves back into stem and root as follows

$$R_{L2R} = r_L LF_L \frac{N_{R,NS}}{N_{R,NS} + N_{S,NS}}$$

$$R_{L2S} = r_L LF_L \frac{N_{S,NS}}{N_{R,NS} + N_{S,NS}}$$
(14)

650

where r_L is the leaf resorption coefficient, as mentioned earlier, and LF_L is the leaf litter fall rate. Third, and similar to resorption, at the time of leaf onset for deciduous tree PFTs, N is reallocated to leaves (in conjunction with reallocated carbon as explained in Asaadi et al. (2018)) from stem and root components.

$$R_{R2L} = \frac{R_{R2L,C}}{C:N_L} \frac{N_{R,NS}}{N_{R,NS} + N_{S,NS}}$$

$$R_{S2L} = \frac{R_{S2L,C}}{C:N_L} \frac{N_{S,NS}}{N_{R,NS} + N_{S,NS}}$$
(15)

656 where $R_{R2L,C}$ and $R_{S2L,C}$ represent reallocation of carbon from non-structural stem and root

657 components to leaves and division by $C: N_L$ converts the flux into N units. This reallocated N, at

658 the time of leaf onset, is proportioned between non-structural pools of stem and root according

659 to their sizes.

660 3.3.6 N mineralization, immobilization, and humification

Deleted: e
Deleted: ion
Deleted: demand for

664 Decomposition of litter $(R_{h,D})$ and soil organic matter $(R_{h,H})$ releases C to the atmosphere 665 and this flux is calculated by the heterotrophic respiration module of CLASSIC. <u>The litter and soil</u> 666 <u>carbon decomposition rates used here are the same as in the standard model version (Melton</u> 667 <u>and Arora, 2016; their Table A3).</u> The amount of N mineralized is calculated straightforwardly by 668 division with the current C:N ratios of the respective pools and contributes to the NH₄⁺ pool.

$$M_{D,NH4} = \frac{R_{h,D}}{C:N_D}$$

$$M_{H,NH4} = \frac{R_{h,H}}{C:N_H}$$
(16)

An implication of mineralization contributing to the NH_{4}^{+} pool, in addition to BNF and fertilizer inputs that also contribute solely to the NH_{4}^{+} pool, is that the simulated NH_{4}^{+} pool is typically larger than the NO_{3}^{-} pool. The exception is the dry and arid regions where the lack of denitrification, as discussed below in Section 3.4.2., leads to a build-up of the NO_{3}^{-} pool.

669

Immobilization of mineral N from the NH4⁺ and NO3⁻ pools into the soil organic matter 674 675 pool is meant to keep the soil organic matter C:N ratio ($C: N_H$) at its specified value of 13 for all PFTs in a manner similar to Wania et al. (2012) and Zhang et al. (2018). A value of 13 is within the 676 range of observation-based estimates which vary from about 8 to 25 (Zinke et al., 1998; Tipping 677 et al., 2016). Although $C: N_H$ varies geographically, the driving factors behind this variability 678 679 remain unclear. It is even more difficult to establish if increasing atmospheric CO2 is changing 680 $C:N_H$ given the large heterogeneity in soil organic C and N densities, and the difficulty in 681 measuring small trends for such large global pools. We therefore make the assumption that the 682 $C: N_H$ does not change with time. An implication of this assumption is that as GPP increases with increasing atmospheric CO₂ rises, and plant litter becomes enriched in C with increasing C:N ratio 683

Deleted:

685 of litter, more and more N is locked up in the soil organic matter pool because its C:N ratio is fixed. As a result, mineral N pools of NH_4^+ and NO_3^- decrease in size and plant N content 686 687 subsequently follows. This is consistent with studies of plants grown in elevated CO_2 688 environment. For example, Cotrufo et al. (1998) summarize results from 75 studies and find an 689 average 14% reduction in N concentration for above-ground tissues. Wang et al. (2019) find 690 increased C concentration by 0.8–1.2% and a reduction in N concentration by 7.4–10.7% for rice 691 and winter wheat crop rotation system under elevated CO₂. Another implication of using 692 specified fixed C: N_H is that it does not matter if plant N uptake or immobilization is given preferred access to the mineral N pool since in the long term, by design, N will accumulate in the 693 694 soil organic matter in response to atmospheric CO₂ increase.

695 Jmmobilization from both the NH_4^+ and NO_3^- pools (gN m⁻² day⁻¹) is calculated in _____ Deleted: 1 696 proportion to their pool sizes, employing the fixed $C: N_H$ ratio as

697

$$O_{NH4} = \max\left(0, \left(\frac{C_{H}}{C:N_{H}} - N_{H}\right) \frac{N_{NH4}}{N_{NH4} + N_{NO3}}\right) k_{O}$$

$$O_{NO3} = \max\left(0, \left(\frac{C_{H}}{C:N_{H}} - N_{H}\right) \frac{N_{NO3}}{N_{NH4} + N_{NO3}}\right) k_{O}$$
(17)

 $\frac{\text{where }k_0 \text{ is rate constant with a value of 1.0 day}^{1}}{\text{the carbon flux of humified litter from}}$ $\frac{\text{where }k_0 \text{ is rate constant with a value of 1.0 day}^{1}}{\text{the litter to the soil organic matter pool}}$ $\frac{(H_{C,D2H})}{(H_{C,D2H})}$ $\frac{(H_{C,D2H})}{(H_{C,D2H})}$ $\frac{(H_{C,D2H})}{(H_{C,D2H})}$

$$H_{N,D2H} = \frac{H_{C,D2H}}{C:N_D}$$
(18)

702 3.4 N cycling in mineral pools and N outputs

This section presents the parameterizations of nitrification (which results in transfer of N from the NH_4^+ to the NO_3^- pool) and the associated gaseous fluxes of N_2O and NO (referred to as nitrifier denitrification), gaseous fluxes of N_2O , NO, and N_2 associated with denitrification, volatilization of NH_4^+ into NH_3 , and leaching of NO_3^- in runoff.

708 3.4.1 Nitrification

709 Nitrification, the oxidative process converting ammonium to nitrate, is driven by microbial activity and as such constrained both by high and low soil moisture (Porporato et al., 2003). At 710 high soil moisture content there is little aeration of soil and this constrains aerobic microbial 711 712 activity, while at low soil moisture content microbial activity is constrained by moisture 713 limitation. In CLASSIC, the heterotrophic respiration from soil carbon is constrained similarly but rather than using soil moisture the parameterization is based on soil matric potential (Arora, 714 2003; Melton et al., 2015). Here, we use the exact same parameterization. In addition to soil 715 moisture, nitrification (gN m⁻² day⁻¹) is modelled as a function of soil temperature and the size 716 of the NH4⁺ pool as follows 717

$$I_{NO3} = \eta f_I(T_{0.5}) f_I(\psi) N_{NH4}$$
(19)

where η _is the nitrification coefficient (day⁻¹, see Table A1), $f_I(\psi)$ is the dimensionless soil moisture scalar that varies between 0 and 1 and depends on soil matric potential (ψ), $f_I(T_{0.5})$ is the dimensionless soil temperature scalar that depends on soil temperature ($T_{0.5}$) <u>averaged over</u> the top 0.5 m soil depth over which nitrification is assumed to occur (following Xu-Ri and Prentice, 2008), and N_{NH4} is the ammonium pool size (gN m⁻²), as mentioned earlier. Both $f_I(T_{0.5})$ and

Deleted: average

725 $f_I(\psi)$ are parameterized following Arora (2003) and Melton et al. (2015). $f_I(T_{0.5})$ is a Q₁₀ type

726 function with a temperature dependent Q_{10}

727
$$f_I(T_{0.5}) = Q_{10,I}^{(T_{0.5}-20)/10}, Q_{10,I} = 1.44 + 0.56 \left(\tanh\left(0.075(46 - T_{0.5})\right) \right)$$
(20)

The reference temperature for nitrification is set to 20 °C following Lin et al. (2000), $f_I(\psi)$ is

parameterized as a step function of soil matric potential (ψ) as

730
$$f_{I}(\psi) = \begin{cases} 0.5 & \text{if } \psi \leq \psi_{sat} \\ 1 - 0.5 \frac{\log(0.4) - \log(\psi)}{\log(0.4) - \log(\psi_{sat})} & \text{if } 0.4 > \psi \geq \psi_{sat} \\ 1 & \text{if } 0.6 \geq \psi \geq 0.4 \\ 1 - 0.8 \frac{\log(\psi) - \log(0.6)}{\log(100) - \log(0.6)} & \text{if } 100 > \psi > 0.6 \\ 0.2 & \text{if } \psi > 100 \end{cases}$$
(21)

where the soil matric potential (ψ) is found, following Clapp and Hornberger (1978), as a function of soil moisture (θ)

733
$$\psi(\theta) = \psi_{sat} \left(\frac{\theta}{\theta_{sat}}\right)^{-B}.$$
 (22)

Saturated matric potential (ψ_{sat}), soil moisture at saturation (i.e., porosity) (θ_{sat}), and the parameter *B* are calculated as functions of percent sand and clay in soil following Clapp and Hornberger (1978) as shown in Melton et al. (2015). The soil moisture scalar $f_I(\psi)$ is calculated individually for each soil layer and then averaged over the soil depth of 0.5 m over which nitrification is assumed to occur.

Gaseous fluxes of NO (I_{NO}) and N₂O (I_{N2O}) associated with nitrification, and generated through nitrifier denitrification, are assumed to be directly proportional to the nitrification flux (I_{NO3}) as

-{	Deleted: (
-{	Deleted: .,
1	Deleted: Lin et al. (2000)

$$I_{NO} = \eta_{NO} I_{NO3} I_{N2O} = \eta_{N2O} I_{NO3}.$$
 (23)

745

where η_{NO} and η_{N2O} are dimensionless fractions <u>(see Table A1)</u> which determine what fractions of nitrification flux are emitted as NO and N₂O. **3.4.2 Denitrification**

Denitrification is the stepwise microbiological reduction of nitrate to NO, N₂O, and ultimately to N₂ in complete denitrification. Unlike nitrification, however, denitrification is primarily an anaerobic process (Tomasek et al., 2017) and therefore occurs when soil is saturated. As a result, we use a different soil moisture scalar than for nitrification. Similar to nitrification, denitrification is modelled as a function of soil moisture, soil temperature and the size of the NO₃[°] pool as follows to calculate the gaseous fluxes of NO, N₂O, and N₂.

$$E_{NO} = \mu_{NO} f_E(T_{0.5}) f_E(\theta) N_{NO3}$$

$$E_{N2O} = \mu_{N2O} f_E(T_{0.5}) f_E(\theta) N_{NO3}$$

$$E_{N2} = \mu_{N2} f_E(T_{0.5}) f_E(\theta) N_{NO3}$$

where μ_{N0} , μ_{N20} , and μ_{N2} are coefficients (day⁻¹, see Table A1) that determine daily rates of emissions of NO, N₂O, and N₂. The temperature scalar $f_E(T_{0.5})$ is exactly the same as the one for nitrification ($f_I(T_{0.5})$) since denitrification is also assumed to occur over the same 0.5 <u>m</u> soil depth. The soil moisture scalar $f_E(\theta)$ is given by

$$f_E(\theta) = 1 - \tanh\left(2.5 \left(\frac{1 - w(\theta)}{1 - w_d}\right)^2\right)$$

$$w(\theta) = \max\left(0, \min\left(1, \frac{\theta - \theta_w}{\theta_f - \theta_w}\right)\right)$$
(25)

760

Formatted: Font: (Default) +Body (Calibri)

(24)

Formatted: Font: (Default) +Body (Calibri)

where *w* is the soil wetness that varies between 0 and 1 as soil moisture varies between wilting point (θ_w) and field capacity (θ_f) , and w_d (see Table A1) is the threshold soil wetness for denitrification below which very little denitrification occurs. Since arid regions are characterized by low soil wetness values, typically below $w_{d_{L_s}}$ this leads to build up of the NO₃ pool in arid regions.

Deleted: Since very little denitrification occurs when soil wetness is below w_d

766 **3.4.3 NO₃⁻ leaching**

767 Leaching is the loss of water-soluble ions through runoff. In contrast to positively charged NH_4^+ ions (i.e. cations), the NO_3^- ions do not bond to soil particles because of the limited exchange 768 769 capacity of soil for negatively charged ions (i.e., anions). As a result, leaching of N in the form of NO_3^- ions is a common water quality problem, particularly over cropland regions. The leaching 770 flux (L_{NO3} , gN m⁻² day⁻¹) is parameterized to be directly proportional to baseflow (b_t , Kg m⁻² s⁻¹ 771 772 ¹) calculated by the physics module of CLASSIC and the size of the NO_3^- pool (N_{NO3} , gN m⁻²). 773 Baseflow is the runoff rate from the bottommost soil layer. $L_{NO3} = 86400 \varphi b_t N_{NO3}$ 774 (26) where the multiplier 86400 converts units to per day, and φ is the leaching coefficient (m² Kg⁻¹ 775 776 see Table A1, that can be thought of as the soil particle surface area (m²) that 1 Kg of water (or Deleted:)

about 0.001 m³) can effectively wash to leach the nutrients.

Formatted: Font: (Default) +Body (Calibri)

Formatted: Font: (Default) +Body (Calibri)

778 3.4.4 NH₃ volatilization

NH₃ volatilization (V_{NH3} , gN m⁻² day⁻¹) is parametrized as a function of pool size of NH₄⁺, soil temperature, soil pH, aerodynamic and boundary layer resistances, and atmospheric NH₃ concentration in a manner similar to Riddick et al. (2016) as

785

$$V_{NH4} = \vartheta \ 86400 \ \frac{1}{r_a + r_b} \left(\chi - [\text{NH}_{3,a}] \right)$$
(27)

where ϑ is the dimensionless NH₃ volatilization coefficient <u>(see Table A1)</u> which is set to less than 1 to account for the fact that a fraction of ammonia released from the soil is captured by vegetation, r_a (s m⁻¹) is the aerodynamic resistance calculated by the physics module of CLASSIC, χ is the ammonia (NH₃) concentration at the interface of the top soil layer and the atmosphere (g m⁻³), [NH_{3,a}] is the atmospheric NH₃ concentration specified at 0.3×10⁻⁶ g m⁻³ following Riddick et al. (2016), 86400 converts flux units from gN m⁻² s⁻¹ to gN m⁻² day⁻¹, and r_b (s m⁻¹) is the boundary layer resistance calculated following Thom (1975) as

793
$$r_b = 6.2 \, u_*^{-0.67}$$
 (28)

where u_* (m/s) is the friction velocity provided by the physics module of CLASSIC. The ammonia (NH₃) concentration at surface (χ), in a manner similar to Riddick et al. (2016), is calculated as

796
$$\chi = 0.26 \frac{N_{NH4}}{1 + K_H + K_H [H^+]/K_{NH4}}$$
(29)

where the coefficient 0.26 is the fraction of ammonium in the top 10 cm soil layer assuming exponential distribution of ammonium along the soil depth (given by $3e^{-3z}$, where z is the soil depth), K_H (dimensionless) is the Henry's law constant for NH₃, K_{NH4} (mol L⁻¹) is the dissociation equilibrium constant for aqueous NH₃, and H^+ (mol L⁻¹) is the concentration of hydrogen ion that depends on the soil pH ($H^+ = 10^{-pH}$). K_H and K_{NH4} are modelled as functions of soil

temperature of the top 10 cm soil layer ($T_{0.1}$) following Riddick et al. (2016) as

803

$$K_{H} = 4.59 T_{0.1} \exp\left(4092 \left(\frac{1}{T_{0.1}} - \frac{1}{T_{ref,v}}\right)\right)$$

$$K_{NH4} = 5.67 \times 10^{-10} \exp\left(-6286 \left(\frac{1}{T_{0.1}} - \frac{1}{T_{ref,v}}\right)\right)$$
(30)

804 where $T_{ref,v}$ is the reference temperature of 298.15 K.

3.5 Coupling of C and N cycles

805

806

8	07	As mentioned earlier, the primary objective of coupling of C and N cycles is to be able to
8	08	simulate V_{cmax} as a function of leaf N content (N_L) for each PFT. This coupling is represented
8	09	through the following relationship

810

$$V_{cmax} = \Lambda \left(\Gamma_1 N_L + \Gamma_2 \right)_{-}$$

where Γ_1 (13 µmol CO₂ gN⁻¹ s⁻¹) and Γ_2 (8.5 µmol CO₂ m⁻² s⁻¹) are global constants, except for the broadleaf evergreen tree PFT for which a lower value of Γ_1 (5.1 µmol CO₂ gN⁻¹ s⁻¹) is used as discussed below. $\Lambda_{(\leq 1)}$ is a scalar that reduces calculated V_{cmax} when C:N ratio of any plant component (C: N_i , i = L, S, R) exceeds its specified maximum value (C: $N_{i,max}$, i = L, S, R) (see Table AA1).

ω

816

$$\Lambda = \exp\left(-\omega k_{\Lambda}\right)$$

$$= e_L b_L + e_S b_S + e_R b_R$$
(32)

Moved down [2]: The rates of change of N in the NH₄⁺ and NO₃^{*} pools (in gN m⁻²), N_{NH4} and N_{NO3} , respectively, are given by $\frac{d N_{NH4}}{dt} = B_{NH4} + F_{NH4} + P_{NH4} + M_{D,NH4} + M_{H,NH4}$.

 $\frac{dt}{-U_{NH4} - (I_{NO3} + I_{N2O} + I_{NO}) - V_{NH3} - O_{NH4}}$ $\frac{dN_{NO3}}{dt} = P_{NO3} + I_{NO3} - L_{NO3} - U_{NO3} - (E_{N2} + E_{N2O} + E_{NO}) - O_{NO3}$ 0_{NO3} (5)

and all fluxes are represented in units of gN m⁻² day⁻¹. B_{NH4} is the rate of biological N fixation which solely contributes to the NH_4^+ pool, F_{NH4} is the fertilizer input which is assumed to contribute only to the NH_4^+ pool, and P_{NH4} and P_{NO3} are atmospheric deposition rates that contribute to the NH4⁺ and NO3⁻ pools, respectively. Biological N fixation, fertilizer input, and atmospheric deposition are the three routes through which N enters the coupled soil-vegetation system. $M_{D,NH4}$ and $M_{H,NH4}$ are the mineralization flux from the litter and soil organic matter pools, respectively, associated with their decomposition. We assume mineralization of humus and litter pools only contributes to the NH4⁺ pool. O_{NH4} and O_{NO3} indicate immobilization of N from the NH4+ and NO3 pools, respectively, to the humus N pool which implies microbes (that are not represented explicitly) are part of the humus pool. Combined together the terms ($M_{D,NH4}$ + $M_{H,NH4} - O_{NH4} - O_{NO3}$) yield the net mineralization rate. V_{NH3} is the rate of ammonia (NH₃) volatilization and L_{NO3} is the leaching of N that occurs only from the NO3 pool. The positively charged ammonium ions are attracted to the negatively charged soil particles and as a result it is primarily the negatively charged nitrate ions that leach through the soil (Porporato et al., 2003; Xu-Ri and Prentice, 2008). U_{NH4} and U_{NO3} are uptakes of NH₄⁺ and NO3 by plants, respectively. The nitrification flux from NH4 to NO₃ pool is represented by I_{NO3} which also results in the release of the nitrous oxide (N₂O), a greenhouse gas, and nitric oxide (NO) through nitrifier denitrification represented by the terms I_{N20} and I_{N0} , respectively. Finally, E_{N2} , E_{N20} , and E_{N0} are the gaseous losses of N2 (nitrogen gas), N2O, and NO from the NO3 pool associated with denitrification. N is thus lost through the soil-vegetation system via leaching in runoff and through gaseous losses of I_{N20} , I_{N0} , E_{N2} , E_{N20} , E_{N0} , and V_{NH3} . The structural and non-structural N pools in root are written as $N_{R,S}$ and $N_{R,NS}$, respectively, and similarly for stem ($N_{S,S}$ and $N_{S,NS}$) and leaves ($N_{L,S}$ and $N_{L,NS}$), and together the structural and non-structural pools make the total N pool in leaf (N_L = $N_{L,S} + N_{L,NS}$), root ($N_R = N_{R,S} + N_{R,NS}$), and stem ($N_S = N_{S,S} + N_{R,NS}$) **Deleted:** $\frac{d N_{NH4}}{dt} = B_{NH4} + F_{NH4} + P_{NH4} + M_{D,NH4} + M_{H,NH4}$ $-U_{NH4} - (I_{NO3}^{ul} + I_{N2O} + I_{NO}) - V_{NH3} - O_{NH4}$ (4)¶ $\frac{d_{NN03}}{dt} = P_{N03} + I_{N03} - L_{N03} - U_{N03} - (E_{N2} + E_{N20} + E_{N0}) - (E_{N2} + E_{N0} + E_{N0} + E_{N0}) - (E_{N2} + E_{N0} + E_{N0} + E_{N0} + E_{N0} + E_{N0}) - (E_{N2} + E_{N0} + E$ 0_{N03} (5)¶ and all fluxes are represented in units of gN m⁻² day⁻¹. B_{NH4} is the rate of biological N fixation which solely contributes to the NH_4^+ pool, F_{NH4} is the fertilizer input which is assumed to contribute only to the $\rm NH_{4^+}$ pool, and $P_{\rm NH4}$ and $P_{\rm NO3}$ are [2] Deleted: 2 Deleted: in Section 2.1.2 **Deleted:** $\Gamma_1 N_L + \Gamma_2$

Deleted: 15

(31)

where k_{Λ} is a dimensionless parameter (see Table A1) and ω is dimensionless term that represents excess C:N ratios above specified maximum thresholds $(e_i, i = L, S, R)$ weighted by $b_i, i = L, S, R$. When plant components do not exceed their specified maximum C:N ratio thresholds, e_i is zero and Λ is one. When plants components exceed their specified maximum C:N ratio thresholds, Λ starts reducing below one. This decreases V_{cmax} and thus photosynthetic uptake which limits the rate of increase of C:N ratio of plant components, depending on the value of $k_{\Lambda z}$.

1015 The linear relationship between photosynthetic capacity and N_L (Evans, 1989; Field and 1016 Mooney, 1986; Garnier et al., 1999) (used in equation 31) and between photosynthetic capacity 1017 and leaf chlorophyll content (Croft et al., 2017) is empirically observed. We have avoided using 1018 PFT-dependent values of Γ_1 and Γ_2 for easy optimization of these parameter values but also 1019 because such an optimization can potentially hide other model deficiencies. More importantly, 1020 using PFT-independent values of Γ_1 and Γ_2 yields a more elegant framework whose successful 1021 evaluation will provide confidence in the overall model structure.

1022 As shown later in the results section, using Γ_1 and Γ_2 as global constants yields GPP values 1023 that are higher in the tropical region than an observation-based estimate. This is not surprising 1024 since tropical <u>and mid-latitude</u> regions are known to be limited by P (<u>Vitousek, 1984; Aragão et</u> 1025 <u>al., 2009; Vitousek et al., 2010; Du et al., 2020</u>), and our framework currently doesn't model P 1026 cycle explicitly. An implication of productivity that is limited by P is that changes in N_L are less Deleted: max A

Deleted: The modelled differences in PFT specific values of V_{cmax} in our framework, come through differences in simulated N_L values that depend on BNF, given that BNF is the primary natural source of N input into the coupled soil-vegetation system. N_L values, however, also depend on leaf phenology, allocation of carbon and nitrogen, turnover rates, transpiration (which brings in N through passive uptake), and almost every aspect of plant biogeochemistry which affects a PFT's net primary productivity and therefore N demand.

υ	е	Ie	eτ	е	α	:

Deleted: well

Field Code Changed

Deleted: (Vitousek, 1984; Aragão et al., 2009; Vitousek et al., 2010)

Deleted: a

1042 important. In the absence of explicit treatment of the P cycle, we therefore simply use a lower 1043 value of Γ_1 for the broadleaf evergreen tree PFT which, in our modelling framework, exclusively 1044 represents a tropical PFT. Although, a simple way to express P limitation, this approach yields the 1045 best comparison with observation-based GPP, as shown later, because the effect of P limitation 1046 is most pronounced in the high productivity tropical regions.

1047 The second pathway of coupling between the C and N cycles occurs through 1048 mineralization of litter and soil organic matter. During periods of higher temperature, 1049 heterotrophic C respiration fluxes increase from the litter and soil organic matter pools and this 1050 in turn implies an increased mineralization flux (via equation <u>16</u>) leading to more mineral N 1051 available for plants to uptake.

Deleted: A14
Deleted: in the appendix

1052 4.0 Methodology

1053 4.1 Model simulations and input data sets

1054 We perform CLASSIC model simulations with the N cycle for the pre-industrial period 1055 followed by several simulations for the historical 1851-2017 period to evaluate the model's response to different forcings, as summarized below. The simulation for the pre-industrial period 1056 1057 uses forcings that correspond to year 1850 and the model is run for thousands of years until its 1058 C and N pools come into equilibrium. Global thresholds of net atmosphere-land C flux of 0.05 1059 Pg/yr and net atmosphere-land N flux of 0.5 Tg N/yr are used to ensure the model pools have 1060 reached equilibrium. The pre-industrial simulation, therefore, yields the initial conditions from which the historical simulations for the period 1851-2017 are launched. To spin the mineral N 1061 1062 pools to their initial values, the plant N uptake and other organic processes were turned off while

1065	the model used specified values of V_{cmax} and only the inorganic part of N cycle was operative.	
1066	Once the inorganic mineral soil N pools reached near equilibrium, the organic processes were	
1067	turned on. The model also uses an accelerated spin up procedure for the slow pools of soil organic	
1068	matter and mineral N. The input and output terms are multiplied by a factor greater than one	
1069	and this magnifies the change in pool size and therefore accelerates the spin up. Once the model	
1070	pools reach near equilibrium, the factor is set back to one.	
1071	To evaluate the model's response to various forcings over the historical period we	Moved (insertion) [3]
1072	perform several simulations turning on one forcing at a time as summarized in Table 1. The	
1073	objective of these simulations is to see if the model response to individual forcings is consistent	
1074	with expectations. For example, in the CO2-only simulation only atmospheric CO2 concentration	
1075	increases over the historical period, while all other forcings stay at their 1850 levels. In the N-	
1076	DEP-only simulation only N deposition increases over the historical period, and similarly for other	
1077	runs in Table 1. A "FULL" simulations with all forcings turned on is then also performed which we	
1078	compare to the original model without a N cycle which uses the photosynthesis downregulation	
1079	parameterization (termed "ORIGINAL" in Table 1). Finally, a separate pre-industrial simulation is	Deleted: ¶
1080	also performed that uses the same Γ_1 and Γ_2 globally (FULL-no-implicit-P-limitation). This	
1081	simulation is used to illustrate the effect of neglecting P limitation for the broadleaf evergreen	
1082	tree PFT in the tropics.	
1083	For the historical period, the model is driven with time-varying forcings that include CO_2	Deleted: ¶
 1084	concentration, population density (used by the fire module of the model for calculating	
1085	anthropogenic fire ignition and suppression), land cover, and meteorological data. In addition,	
1086	for the N cycle module, the model requires time-varying atmospheric N deposition and fertilizer	
1089	data. The atmospheric CO_2 and meteorological data (CRU-JRA) are same as those used for the	
------	--	--
1090	TRENDY model intercomparison project for terrestrial ecosystem models for year 2018 (Le Quéré	
1091	et al., 2018). The CRU-JRA meteorological data is based on 6-hourly Japanese Reanalysis (JRA).	
1092	However, since reanalysis data typically do match observations they are adjusted for monthly	
1093	values based on the Climate Research Unit (CRU) data. This yields a blended product with sub-	
1094	daily temporal resolution that comes from the reanalysis and monthly means/sums that match	
1095	the CRU data to yield a meteorological product that can be used by models that require sub-daily	
1096	or daily meteorological forcing. These data are available for the period 1901-2017. Since no	
1097	meteorological data are available for the 1850-1900 period, we use 1901-1925 meteorological	
1098	data repeatedly for this duration and also <u>for</u> the pre-industrial spin up. The assumption is that	
1099	since there is no significant trend in the CRU-JRA data over this period, these data can be reliably	
1100	used to spin up the model to equilibrium. The land cover data used to force the model are based	
1101	on a geographical reconstruction of the historical land cover driven by the increase in crop area	
1102	following Arora and Boer (2010) but using the crop area data prepared for the Global Carbon	
1103	Project (GCP) 2018 following Hurtt et al. (2006). Since land cover is prescribed, the competition	
1104	between PFTs for space for the simulations reported here is switched off. The population data	
1105	for the period 1850-2017 are based on Klein Goldewijk et al. (2017) and obtained from	
1106	ftp://ftp.pbl.nl//hyde/hyde3.2/baseline/zip/. The time-independent forcings consist of soil	
1107	texture and permeable depth data.	

1108Time-varying atmospheric N deposition and fertilizer data used over the historical period1109are also specified as per the TRENDY protocol. The fertilizer data are based on the N2O model1110intercomparison project (NMIP) (Tian et al., 2018) and available for the period 1860-2014. For

Deleted: and

1113	the period before 1860, 1860 fertilizer application rates are used. For the period after 2014,
1114	fertilizer application rates for 2014 are used. Atmospheric N deposition data are from input4MIPs
1115	(https://esgf-node.llnl.gov/search/input4mips/) and are the same as used by models
1116	participating in CMIP6 for the historical period (1850-2014). For years 2015-2017 the N
1117	deposition data corresponding to those from representative concentration pathway (RCP) 8.5
1118	scenario are used. Figure 2 shows the time series of global annual values of externally specified
1119	fertilizer input, and deposition of ammonium and nitrate, based on the TRENDY protocol, for the
1120	six primary simulations. Geographical distribution of these inputs are also shown for the last 20
1121	years from the FULL simulation corresponding to the 1998-2017 period. In Figure 2 (panels a, c
1122	and e) ammonium and nitrate deposition, and fertilizer input stay at their pre-industrial level for
1123	simulations in which these forcings do not increase over the historical period. As mentioned
1124	earlier, N deposition is split evenly into ammonium and nitrate. The values in parenthesis in
1125	Figure 2a legend, and in subsequent time series plots, show average values over the 1850s, the
1126	last 20 years (1998-2017) of the simulations, and the change between these two periods. The
1127	present day values of fertilizer input and N deposition are consistent with other estimates
1128	available in the literature (Table 2). The fertilizer input rate in the simulation with all forcings
1129	except land use change (FULL-no-LUC, blue line), that is with no increase in crop area over its
1130	1850 value, is 50 Tg N yr ⁻¹ compared to 91 Tg N yr ⁻¹ in the FULL simulation, averaged over the
1131	1998-2017 period. The additional 41 Tg N yr ⁻¹ of fertilizer input occurs in the FULL simulation due
1132	to the increase in crop area but also due to the increasing fertilizer application rates over the
1133	historical period. Geographical distribution of the fertilizer application rates in Figure 2b shows
1134	that they are concentrated in regions with crop area and with values as high as 16 gN m ⁻² yr ⁻¹
1	

especially in eastern China. The N deposition rates (Figure 2d, 2f) are more evenly distributed
geographicaly than the fertilizer applications rates, as would be expected, since emissions are
transported downstream from their point sources. Areas with high emissions like the eastern
United States, India, eastern China, and Europe, however, still stand out as areas that receive
higher N deposition.

1140 **4.2** Evaluation data sources

We compare globally-summed annual values of N pools and fluxes with observations and 1141 other models, and where available their geographical distribution and seasonality. In general, 1142 1143 however, much less observation-based data are available to evaluate simulated terrestrial N cycle components than for C cycle components. As a result, N pools and fluxes are primarily 1144 compared to results from both observation-based studies and other modelling studies 1145 (Bouwman et al., 2013; Fowler et al., 2013; Galloway et al., 2004; Vitousek et al., 2013; Zaehle, 1146 2013). Since the primary purpose of the N cycle in our framework is to constrain the C cycle, we 1147 also compare globally-summed annual values of GPP and net atmosphere-land CO₂ flux, and their 1148 zonal distribution with available observation-based and other estimates. The observation-based 1149 1150 estimate of GPP is from Beer et al. (2010), who apply diagnostic models to extrapolate ground-1151 based carbon flux tower observations from about 250 stations to the global scale. Observationbased net atmosphere-land CO₂ flux is from Global Carbon Project's 2019 assessment 1152 1153 (Friedlingstein et al., 2019).

1154 5.0 Results

1155 5.1 N inputs

Deleted: ¶

Moved up [3]: To evaluate the model's response to various forcings over the historical period we perform several simulations turning on one forcing at a time as summarized in Table 1. The objective of these simulations is to see if the model response to individual forcings is consistent with expectations. For example, in the CO2-only simulation only atmospheric CO₂ concentration increases over the historical period, while all other forcings stay at their 1850 levels. In the N-DEP-only simulation only N deposition increases over the historical period, and similarly for other runs in Table 1. A "FULL" simulations with all forcings turned on is then also performed which we compare to the original model without a N cycle which uses the photosynthesis downregulation parameterization (termed "ORIGINAL" in Table 1. ¶

Finally, a separate pre-industrial simulation is also performed that uses the same Γ_1 and Γ_2 globally (FULL-no-implicit-P-limitation). This simulation is used to illustrate the effect of neglecting P limitation for the broadleaf everyrene tree PFT in the tropics.¶

1175	Figure 3 (panels a, c, e) shows the time series of annual values BNF and its natural and	< D
1176	anthropogenic components from the six primary simulations summarized in Table 1. BNF stays	D
1177	at its pre-industrial value of around 80 Tg N yr ⁻¹ in the CO2-only and N-DEP-only simulations. In	D
 1178	the CLIM-only (indicated by magenta coloured line) and the FULL-no-LUC (blue line) simulations	D
1179	the change in climate, associated with increases in temperature and precipitation over the 1901-	
1180	2017 period (see Figure A2 in the appendix), increases BNF to about 85 Tg N yr ⁻¹ . In our	- D
1181	formulation (equation $\frac{2}{2}$) BNF is positively impacted by increases in temperature and	- D
1182	precipitation. In the LUC+FERT-only simulation (dark green line) the increase in crop area	D
1183	contributes to an increase in global BNF with a value around 110 Tg N yr ⁻¹ for the present day,	ov ar
1184	since a higher BNF per unit crop area is assumed than for natural vegetation. Finally, in the FULL	
1185	simulation (red line) the 1998-2017 average value is around 117 Tg N yr $^{-1}$ due both to changes in	
1186	climate over the historical period and the increase in crop area. Our present day value of global	
1187	BNF is broadly consistent with other modelling and data-based studies as summarized is Table 2.	
1188	Panels c and e in Figure 2 show the decomposition of the total terrestrial BNF into its natural	- D
1189	(over non-crop PFTs) and anthropogenic (over C_3 and C_4 crop PFTs) components. The increase in	
1190	crop area over the historical period decreases natural BNF from its pre-industrial value of 59 to	
1191	54 Tg N yr ⁻¹ for the present day as seen for the LUC+FERT-only simulation (green line) in Figure	
1192	$\frac{3}{2}$ c, while anthropogenic BNF over agricultural area increases from 21 to 56 Tg N yr ⁻¹ (Figure <u>3</u> e).	D
1193	Figure $\frac{3}{2}c$ and $\frac{3}{2}e$ show that the increase in BNF (Figure 3a) in the FULL simulation is caused	D
 1194	primarily by an increase in crop area. Our present day values of natural and anthropogenic BNF) D
1195	are also broadly consistent with other modelling and data-based studies as summarized in Table	
1196	2.	

{	Deleted: 3
- 1	Deleted: ,

-{	Deleted: panel a, shows the global values of simulated BNF

Deleted: ,

Deleted: FIRE-only,

Deleted: 1

Deleted: A1

Deleted: The values in parenthesis in Figure 3a legend, and in subsequent panels of this and other figures, show average values over the 1850s, the last 20 years (1998-2017) of the simulations, and the change between these two periods.

Deleted:	3
	-

Deleted: 3	
Deleted: 3	
Deleted: 3	
Deleted: 3	

40

Figure <u>3 (panels b, d, and f)</u> shows the geographical distribution of simulated BNF and its natural and anthropogenic components. The geographical distribution of BNF (Figure <u>3a</u>) looks very similar to the current distribution of vegetation (not shown) with warm and wet regions showing higher values than cold and dry regions since BNF is parameterized as a function of temperature and soil moisture Anthropogenic BNF only occurs in regions where crop area exists according to the specified land cover and it exhibits higher values than natural BNF in some regions because of its higher value per unit area (see section <u>3.2.1</u>).

At the global scale, and for the present day, natural BNF (59 Tg N yr⁻¹) is overwhelmed by anthropogenic sources: anthropogenic BNF (60 Tg N yr⁻¹), fertilizer input (91.7 Tg N yr⁻¹), and atmospheric N deposition increase since the pre-industrial era (~45 Tg N yr⁻¹). Currently humanity fixes more N than the natural processes (Vitousek, 1994).

1224 5.2 C and N pools, fluxes response to historical changes in forcings

1225 To understand the model response to changes in various forcings over the historical 1226 period we first look at the evolution of global values of primary C and N pools, and fluxes, shown 1227 in Figures $\underline{4}$ through $\underline{8}$. Figure $\underline{4}$ a shows the time evolution of global annual GPP values, the 1228 primary flux of C into the land surface, for the six primary simulations, the ORIGINAL simulation performed with the model version with no N cycle, and the ORIG-UNCONST simulation with no 1229 1230 photosynthesis downregulation (see Table 1). The unconstrained increase in GPP (35.6 Pg C yr⁻¹ over the historical period) in the ORIG-UNCONST simulation (dark cyan line) is governed by the 1231 standard photosynthesis model equations following Farquhar et al. (1980) and Collatz et al. 1232 (1992) for C3 and C4 plants, respectively. Downregulation of photosynthesis in the ORIGINAL 1233

Deleted: Figure 3, panels b, d, and f, show the global values of externally specified fertilizer input, and deposition of ammonium and nitrate, based on the TRENDY protocol, for the six primary simulations. Ammonium and nitrate deposition, and fertilizer input stay at their pre-industrial level for simulations in which these forcings do not increase over the historical period. As mentioned earlier, N deposition is split evenly into ammonium and nitrate. The present day values of fertilizer input and N deposition are consistent with other estimates available in the literature (Table 2). The fertilizer input rate in the simulation with all forcings except land use change (FULL-no-LUC, blue line), that is with no increase in crop area over its 1850 value, is 50 Tg N yrcompared to 91 Tg N yr⁻¹ in the FULL simulation, averaged over the 1998-2017 period. The additional 41 Tg N vr⁻¹ of fertilizer input occurs in the FULL simulation due to the increase in crop area but also due to the increasing fertilizer application rates over the historical period.

Deleted: 4

 $\ensuremath{\textbf{Deleted:}}$, and specified fertilizer application and N deposition rates

Deleted: 4

Deleted: Figures 4c and 4e show the split of BNF into its natural and anthropogenic components.

Deleted: A

Deleted: 1

Deleted: in the appendix

Deleted: In Figure 4b, the fertilizer application rates are concentrated in regions with crop area and with values as high as 16 gN m⁻² especially in eastern China. The N deposition rates are more evenly distributed than fertilizer applications rates, as would be expected, since emissions are transported downstream from their point sources. Areas with high emissions like the eastern United States, India, eastern China, and Europe, however, still stand out as areas that receive higher N deposition.

Deleted:

Deleted: 5

Deleted: 9

Deleted: 5

Deleted: rate of

1273	simulation (purple line) is modelled on the basis of equation (1), while in the FULL simulation (red
1274	line) photosynthesis downregulation results from a decrease in V _{cmax} values (Figure 5d) due to a

decrease in leaf N content (Figure 5b). We will compare the FULL and ORIGINAL simulations in
 more detail later. The simulations with individual forcings, discussed below, provide insight into

1277 the combined response of GPP to all forcings in the FULL simulation.

1278 5.2.1 Response to increasing CO₂

1279 The response of C and N cycles to increasing CO₂ in the CO2-only simulation (orange lines in Figure 4) is the most straightforward to interpret. A CO₂ increase causes GPP to increase by 7.5 1280 1281 Pg C yr⁻¹ above its pre-industrial value (Figure 4a), which in turn causes vegetation (Figure 4b), 1282 leaf (Figure $\frac{4}{2}$ c), and soil (Figure $\frac{4}{2}$ d) carbon mass to increase as well. The vegetation and leaf N amounts (orange line, Figures 5 and 5b), in contrast, decrease in response to increasing CO2. 1283 1284 This is because N gets locked up in the soil organic matter pool (Figure 5c) in response to an increase in the soil C mass (due to the increasing GPP), litter inputs which are now rich in C (due 1285 to CO2 fertilization) but poor in N (since N inputs are still at their pre-industrial level), and the fact 1286 that the C:N ratio of the soil organic matter is fixed at 13. This response to elevated CO₂ which 1287 1288 leads to increased C and decreased N in vegetation is consistent with meta-analysis of 75 field 1289 experiments of elevated CO₂ (Cotrufo et al., 1998). A decrease in N in leaves (orange line, Figure 1290 ے) leads to a concomitant decrease in maximum carboxylation capacity (V_{cmax}) (orange line, 🤳 Figure 5d) and as a result GPP increases at a much slower rate in the CO2-only simulation than in 1291 1292 the ORIG-UNCONST simulation (Figure <u>4</u>a). Due to the N accumulation in the soil organic matter 1293 pool, the NH4⁺ and NO3⁻ (Figures <u>5</u>e and <u>5</u>f) pools also decrease in size in the CO2-only simulation.

Deleted: 6

1	Deleted: 5
1	Deleted: over
1	Deleted: 5
1	Deleted: 6
1	Deleted: 6
1	Deleted: 6

- 1	Deleted: 6
- 1	Deleted: 6
- 1	Deleted: 5
- 1	Deleted: 6
{	Deleted: 6

1310	Figure <u>6</u> shows the time series of N demand, plant N uptake and its split between passive	Deleted: 7
1311	and active N uptakes. The plant N demand in the CO2-only simulation (Figure 6a, orange line)	Deleted:
 1312	increases from its pre-industrial value of 1512 Tg N/yr to 1639 Tg N/yr for the present day since	Deleted: 7
1313	the increasing C input from increasing GPP requires higher N input to maintain preferred	
1314	minimum C:N ratio of plant tissues. However, since mineral N pools decrease in size over the	
1315	historical period in this simulation (Figures 5e and 5f), the total plant N uptake (Figure 6b)	Deleted: 6
1316	reduces. Passive plant N uptake is directly proportional to pool sizes of $\rm NH_4^+$ and $\rm NO_3^-$ and	Deleted: 6 Deleted: 7
1317	therefore it reduces in response to increasing CO ₂ . Active plant N uptake, which compensates for	
1318	insufficient passive N uptake compared to the N demand, also eventually starts to decline as it	
1319	also depends on mineral N pool sizes. The eventual result of increased C supply and reduced N	
1320	supply is an increase in the C:N ratio of all plant components and litter (Figure 7). The	Deleted: 8
1321	preindustrial total N uptake of around 960 Tg N/yr (Figure 6b) is lower than the preindustrial N	
1322	demand (1512 Tg N/yr, Figure 6a) despite the sum of global NH_4 and NO_3 pool sizes being around	
1323	4000 Tg N (Figures 5e and 5f). This is because of the mismatch between where the pools are high	
1324	and where the vegetation actually grows and the fact that plant N uptake is limited by its rate.	
1325	As a result, in our model, even in the preindustrial era vegetation is N limited.	
1326	Figure <u>8</u> shows the net mineralization flux (the net transfer of mineralized N from litter	Deleted: 9
1327	and humus pools to the mineral N pools as a result of the decomposition of organic matter),	
1328	nitrification (N flux from NH_4^+ to the NO_3^- pool), and the gaseous and leaching losses from the	
1329	mineral pools. The net mineralization flux reduces in the CO2-only simulation (Figure 2a, orange	Deleted: 9
1330	line) as N gets locked up in the soil organic matter. A reduction in the NH4 ⁺ pool size in response	
1331	to increasing CO ₂ also yields a reduction in the nitrification flux over the historical period (Figure	Deleted: implies

from the NO₃⁻ pool (Figure <u>&</u>c), NH₃ volatilization (Figure <u>&</u>d), and the gaseous losses associated with nitrification from the NH₄⁺ pool (Figure <u>&</u>e) and denitrification from the NO₃⁻ pool (Figure <u>&</u>f) all reduce in response to reduction in pool sizes of NH₄+ and NO₃- in the CO2-only simulation.

<u>8</u>b, orange line) since nitrification depends on the NH₄⁺ pool size (equation 19). Finally, leaching

1346 5.2.2 Response to changing climate

1342

The perturbation due to climate change alone over the historical period in the CLIM-only 1347 1348 simulation (magenta coloured lines in Figures 4 to 8) is smaller than that due to increasing CO2. In Figure 4a, changes in climate over the historical period increase GPP slightly by 3.60 Pg C yr⁻¹ 1349 1350 which in turn slightly increases vegetation (including leaf) C mass (Figure 4b,c). The litter and soil 1351 carbon mass (Figure $\underline{4}d$), however, decrease slightly due to increased decomposition rates associated with increasing temperature (see Figure A2b). Both the increase in BNF due to 1352 increasing temperature (magenta line in Figure 2a), and the reduction in litter and soil N mass 1353 1354 (Figure 5c) due to increasing decomposition and higher net N mineralization (Figure 8a, magenta line), make more N available. This results in a slight increase in vegetation and leaf N mass 1355 1356 (Figures 5a and 5b) and the NH4⁺ (Figure 5e) pool which is the primary mineral pool in soils under 1357 vegetated regions. The global NO₃⁻ pool, in contrast, decreases in the CLIM-only simulation 1358 (Figure <u>5</u>f) with the reduction primarily occurring in arid regions where the NO₃⁻ amounts are very large (see Figure 9 that shows the geographical distribution of the primary C and N pools). The 1359 1360 geographical distribution of NH_4^+ (Figure 2a) generally follows the geographical distribution of 1361 BNF, but with higher values in areas where cropland exists and where N deposition is high. The 1362 geographical distribution of NO3⁻ (Figure 2b) generally shows lower values than NH4⁺ except in the desert regions where lack of denitrification leads to a large buildup of the NO3⁻ pool (as 1363

Deleted: 9	
Deleted: 9	

l	Deleted: 5
(Deleted: -9
ſ	Deleted: simulation
$\left(\right)$	Deleted: 5
-{	Deleted: 5
1	Deleted: 5
(Deleted: 1
1	Deleted: 3
ſ	Deleted: 6
l	Deleted: 9
(Deleted: 6
{	Deleted: 6
(Deleted: 6
1	Deleted: 6
{	Deleted: 10
(Deleted: b
č	Deleted 10

Deleted: 10

Deleted: see

1388	explained earlier in section 3.4,2). Although Figure 9 shows the geographical distribution of		Deleted: A
			Deleted: 3
1389	mineral N pools from the FULL simulation, the geographical distribution of pools are broadly		Deleted: in the appendix
1390	similar between different simulations with obvious differences such as lack of hot spots of N	,	Deleted: 10
1391	deposition and fertilizer input in simulations in which these forcings stay at their pre-industrial		
1392	levels. Figure 2 also shows the simulated geographical distribution of C and N pools in the		Deleted: 10
1393	vegetation and soil organic matter. The increase in GPP due to changing climate increases the N		
1394	demand (Figure $bar{d}a$, magenta line) but unlike the CO2-only simulation, the plant N uptake		Deleted: 7
1395	increases since the NH_4^+ and NO_3^- pools increase in size over the vegetated area in response to		
1396	increased mineralization (Figure 8a, magenta line) and increased BNF (Figure 3a, magenta line).		Deleted: increased BNF (Figure 3a, magenta line)
1397	The increase in plant N uptake comes from the increase in passive plant N uptake (Figure $\underline{6c}$)		Deleted: 7
1398	while the active plant N uptake reduces (Figure £d). Active and passive plant N uptakes are		Deleted: 7
1399	inversely correlated. This is by design since active plant N uptake increases when passive plant N		
1400	uptake reduces and vice-versa, although eventually both depend on the size of available mineral		
1401	N pools. Enhancement of plant N uptake due to changes in climate, despite increases in GPP		
1402	associated with a small increase in V_{cmax} (Figure 2d), leads to a small reduction in the C:N ratio of		Deleted: 6
1403	all plant tissues (Figure 2). The litter C:N, in contrast, shows a small increase since not all N makes		Deleted: 8
1404	its way to the litter as a <u>specified</u> fraction of <u>0.54 (Table A1)</u> leaf N is resorbed from deciduous		
1405	trees leaves prior to leaf fall (Figure <u>7</u> e). <u>Although the leaf C:N ratio decreases in the CLIM only</u>		Deleted: 8
1406	simulation, in response to increased BNF and increased mineralization, this decrease is not large		
1407	enough to overcome the effect of recorntion and as a result the C·N litter increases		

1420	Finally, the small increase in pool sizes of NH_4^+ and NO_3^- leads to a small increase in		
1421	leaching, volatilization, and gaseous losses associated with nitrification and denitrification (Figure		
1422	<u>8</u>).	[Deleted: 9
1423	5.2.3 Response to N deposition		
1424	The simulated response of GPP to changes in N deposition (brown line) over the historical		
1425	period is smaller than that for CO ₂ and climate (Figure <u>4a</u>). The small increase in GPP of 2.0 Pg C	[Deleted: 5
1426	yr ⁻¹ leads to commensurately small increases in vegetation (Figure <u>4</u> b) and litter plus soil (Figure	[Deleted: 5
1427	4d) C mass. Vegetation and leaf N mass (Figure 5a,b) also increase in response to N deposition	[Deleted: 5
1428	and so do mineral pools of NH_4^+ and NO_3^- (Figure 5e,f). The increase in GPP in the simulation with	- 	Deleted: 6 Deleted: 6
1429	N deposition results from an increase in V_{cmax} rates (Figure 5d) associated with an increase in leaf	[Deleted: 6
1430	N content (Figure 5b). N demand increases marginally and so does plant N uptake in response to	[Deleted: 6
1431	N deposition (Figure <u>6</u>). As would be intuitively expected, the C:N ratio of the whole plant, its	[Deleted: 7
1432	components of leaves, stem, and root, and litter decreases slightly in response to N deposition		
1433	(Figure Z). Net N mineralization, nitrification, leaching, volatilization, and gaseous losses	[Deleted: 8
l 1434	associated with nitrification and denitrification all increase in response to N deposition (Figure		
1435	<u>8</u>).	[Deleted: 9
1436	5.2.4 Response to LUC and fertilizer input		
1437	The simulated response to LUC, which reflects an increase in crop area, and increased		
1438	fertilizer deposition rates over the historical period is shown by dark green lines in Figures 4	[Deleted: 5
1439	through <u>8</u> . The increase in fertilizer input is a much bigger perturbation to the N cycle system	[Deleted: 9
1440	than N deposition. Figure 2 shows that at the global scale the fertilizer inputs increase from 0 to	[Deleted: 3

1455	$^{\circ}$ 92 Ig N/yr over the historical period, while the combined NH ₄ ⁺ and NO ₃ ⁻ N deposition rate
1456	increases from around 20 to 65 Tg N/yr. In addition, because of higher per unit area BNF rates
1457	over crop area than natural vegetation, the increase in crop area in this simulation leads to an
1458	increase in anthropogenic BNF from about 20 to 56 Tg N/yr over the historical period. All together
1459	increasing crop area and fertilizer inputs imply an additional \sim 130 Tg N/yr being input into the
1460	terrestrial N cycle at the present day since the pre-industrial period, compared to an increase of
1461	only 45 Tg N/yr for the N deposition forcing.

The global increase in fertilizer input over the historical period leads to higher NH4⁺ and 1462 1463 NO₃ pools (Figures 5e and 5f). Although both fertilizer and BNF contribute to the NH₄⁺ pool, the NO₃⁻ pool also increases through the nitrification flux (Figure <u>8</u>b). An increase in crop area over 1464 1465 the historical period results in deforestation of natural vegetation that reduces vegetation 1466 biomass (Figure 4b). However, soil carbon mass also decreases (Figure 4d) despite higher litter 1467 inputs, This is because a higher soil decomposition rate is assumed over cropland areas to 1468 simulate soil carbon loss as empirical measurements of soil carbon show over deforested areas which are converted to croplands (Wei et al., 2014). Fertilizer application only occurs over crop 1469 1470 areas which increases the V_{cmax} rates for crops and, as expected, this yields an increase in globallyaveraged V_{cmax} (Figure <u>5</u>d). A corresponding large increase in leaf N content (Figure <u>5</u>b) is, 1471 1472 however, not seen because vegetation (and therefore leaf) N (Figure 5a,b) is also lost through 1473 deforestation. In addition, V_{cmax} is <u>essentially</u> a <u>flux (expressed</u> per unit <u>leaf</u> area) that is averaged 1474 over the whole year while leaf and vegetation N pools are sampled at the end of each year and 1475 all crops in the northern hemisphere above 30° N are harvested before the year end. Vegetation N mass, in fact, decreases in conjunction with vegetation C mass (Figure 4b). Plant N demand 1476

1	Deleted: 6
1	Deleted: 6
-	Deleted: 9

Deleted: but also	
Deleted: ,	
Deleted: since	
Deleted: (Figures 5b and 5d),	
Deleted: consistent with	

Deleted: 6	
Deleted: 6	
Deleted: 6	
Deleted: rate	

1490	reduces (Figure <u>6</u> a) and plant N uptake increases (Figure <u>6</u> b) driven by crop PFTs in response to
1491	fertilizer input, as would be intuitively expected. The increase in plant N uptake comes from the
1492	increase in passive N uptake, in response to increases in pool sizes of NH4 ⁺ and NO3 ⁻ over crop
1493	areas, while active plant N uptake decreases since passive uptake can more than keep up with
1494	the demand over cropland area. While the C:N ratio of vegetation biomass decreases over
1495	cropland area in response to fertilizer input (not shown) this is not seen in the globally-averaged
1496	C:N ratio of vegetation (Figure 7a) and its components because C and N are also lost through
1497	deforestation and the fact that crop biomass is harvested. The C:N of the global litter pool,
1498	however, decreases in response to litter from crops which gets rich in N as fertilizer application
1499	rates increase. Finally, in Figure <u>8</u> global net N mineralization, nitrification, leaching, Deleted: 9
1500	volatilization, and gaseous losses associated with nitrification and denitrification all increase by
1501	a large amount in response to an increase in fertilizer input.
1502	5.2.5 Response to all forcings
1503	We can now evaluate and understand the simulated response of the FULL simulation to
1504	all forcings (red line in Figures 4 through 8). The increase in GPP in the FULL simulation (14.5 Pg
1505	C/yr) in Figure 4a over the historical period is driven by GPP increase associated with increase in Deleted: 5
 1506	CO ₂ (7.5 Pg C/yr), changing climate (3.6 Pg C/yr), and N deposition (2.0 Pg C/yr). The increases
1507	associated with these individual forcings add up to 13.1 Pg C/yr indicating that synergistic effects
1508	between forcings contribute to the additional 1.4 Pg C/yr increase in GPP. The changes in Deleted:
1509	vegetation and soil plus litter carbon mass (Figures 4b and 4d) in the FULL simulation are similarly
 1510	driven by these three factors but, in addition, LUC contributes to decreases in vegetation and soil
1511	

1522	Vegetation and leaf N mass (Figures 5a and 5b) decrease in the FULL simulation driven primarily	Deleted: 6
1523	by the response to increasing CO_2 (orange line compared to the red line) while changes in litter	Deleted: 6
1524	and soil N mass are affected variably by all forcings (Figure 5c). Changes in V _{cmax} (Figure 5d) are	Deleted: 6
1525	similarly affected by all forcings: increasing CO_2 leads to a decrease in globally-averaged V_{cmax}	Deleted: 6
1526	values while changes in climate, N deposition, and fertilizer inputs lead to increases in V_{cmax}	
1527	values with the net result being a small decrease over the historical period. The increase in global	
1528	NH4 ⁺ mass in the FULL simulation is driven primarily by the increase in fertilizer input (Figure 5e,	Deleted: (Figure 6e)
1529	red versus green line) while the changes in NO3 ⁻ mass are primarily the result of changes in	Deleted: net
1530	climate (Figure 5f, magenta line) which causes a decrease in NO ₃ ⁻ mass from about 1940 to 1970	
1531	and N deposition and fertilizer input (Figure 5f, green and brown lines) which contribute to the	
1532	increase in NO ₃ mass later on in the historical period, The increase in N demand (Figure <u>6</u> a) over	Deleted: all forcings with no single forcing dominating the
1533	the historical period is also driven primarily by the increase in atmospheric CO ₂ . Plant N uptake	Deleted: 7
1534	(Figure 6b) decreases in response to increasing CO2 but increases in response to changes in	Deleted: 7
1535	climate, N deposition, and fertilizer inputs such that the net change over the historical is a small	
1536	decrease. The increase in the C:N ratio of vegetation and its components (leaves, stem, and root)	Deleted: (Figure 8a)
1537	is driven primarily by an increase in atmospheric CO ₂ (Figure 7a, red versus orange line). Litter	Deleted: Changes in I
1538	C:N in the FULL simulation, in contrast, does not change substantially over the historical period	Deleted: experience
1539	in a globally-averaged sense as the increase in the C:N ratio of litter associated with an increase	
1540	in atmospheric CO_2 is mostly compensated by the decrease associated with an increase in N	
1541	deposition and fertilizer application, The simulated change in global net N mineralization (Figure	Deleted: dominant influence from any one of the forcings
1542	8a) in the FULL simulation, over the historical period, is small since the decrease in net N	Deleted: 9
1543	mineralization due to increasing CO_2 (orange line) is compensated by the increase caused by	

changes in climate, N deposition, and fertilizer inputs <u>(magenta, brown, and green lines</u>
 <u>respectively</u>). The remaining fluxes of nitrification, NO₃⁻ leaching, NH₃ volatilization, and gaseous
 losses associated with nitrification and denitrification in the FULL simulation (Figure <u>8</u>) are all

1562 strongly influenced by fertilizer input (green line compared to red line).

Table 2 compares simulated values of all primary N pools and fluxes from the FULL simulation with other modelling and quasi observation-based studies. Simulated values are averaged over the 1998-2017 period. Where available, time-periods for other modelling and quasi observation-based studies to which estimates correspond are also noted. For the most part simulated pools and fluxes lie within the range of existing studies with the exception of N₂ and NO emissions that are somewhat higher.

1569 5.2.6 Response to all forcings except LUC

1570	The FULL-no-LUC simulation includes all forcings except LUC (blue line in Figures 4	Deleted: 5
1571	through ⁸ and corroborates several of the points mentioned above. In this simulation crop area	Deleted: 9
1572	stays at its 1850 value. Figure 2b (blue line) shows increasing global fertilizer input in this	Deleted: 3
1573	simulation despite crop area staying at its 1850 value since fertilizer application rates per unit	
1574	area increase over the historical period. In the absence of the LUC, vegetation C mass (Figure <u>4b</u>)	Deleted: 5
1575	and soil plus litter C (Figure 4d) and N (Figure 5c) are higher in the FULL-no-LUC compared to the	Deleted: 5
1576	FULL simulation. N demand (Figure 6a) is slightly higher in FULL-no LUC than in FULL simulation	Deleted: 6 Deleted: 7
1577	because there is more standing vegetation biomass that is responding to increasing CO_2 . The	
1578	increase in volatilization, leaching, and gaseous losses associated with nitrification and	
1579	denitrification (Figures <u>8c-8f</u>) are all primarily caused by increased fertilizer input over the	Deleted: 9
		Deleted: 9

Deleted: 9

Deleted: 5
Deleted: 7
Deleted: 7

specified 1850 crop area. The increase in N losses associated with these processes, over the
historical period, is much lower in the FULL-no-LUC simulation than in the FULL simulation since
crop area stays at its 1850 values.

1593 5.3 Comparison of FULL and ORIGINAL simulations

1594	We now compare the results from the FULL simulation that includes the N cycle with that	
1595	from the ORIGINAL simulation that does not include the N cycle. Both simulations are driven with	
1596	all forcings over the historical period. Figure 4 a shows that the global GPP values in the FULL (red	Deleted: 5
 1597	line) and ORIGINAL (purple line) simulations are quite similar although the rate of increase of GPP	
1598	in the FULL simulation is slightly higher than in the ORIGINAL simulation. As a result, simulated	
1599	global vegetation biomass is somewhat higher in the FULL simulation (Figure 4b). The simulated	Deleted: 5
1600	global litter and soil carbon mass (Figure 4d) is, however, lower in the FULL simulation (1073 Pg	Deleted: 5
1601	C) compared to the ORIGINAL simulation (1142 Pg C) and this decrease mainly comes from a	
1602	decrease at higher latitudes (not shown) due to a decrease in GPP (Figure 10a). The lower GPP in	Deleted: 1
1603	the FULL simulation, combined with the slow decomposition at cold high latitudes, results in a	
1604	lower equilibrium for litter and soil carbon compared with the ORIGINAL simulation. Litter mass	
1605	contributes about 80 Pg C to the total dead carbon mass. Overall both estimates of 1073 Pg C	Deleted: these
1606	and 1142 Pg C are somewhat lower than the bulk density corrected estimate of 1230 Pg C based	
1607	on the Harmonized World Soil Database (HWSD) v.1.2 (Köchy et al., 2015). One reason for this is	
1608	that CLASSIC does not yet represent permafrost related soil C processes.	
1609	Figure 1. Qa shows that the zonal distribution of GPP from the FULL and ORIGINAL	Deleted: 1
 1610	simulations, for the 1998-2017 period, compares reasonably well to the observation-based	

1617	estimate from Beer et al. (2010). The FULL simulation has slightly lower productivity at high-	
1618	latitudes than the ORIGINAL simulation, as mentioned above. Overall, however, the inclusion of	
1619	the N cycle does not change the zonal distribution of GPP in the model substantially, which is	
1620	determined primarily by the geographical distribution of climate. Figure 10b compares the zonal	Deleted:
1621	distribution of GPP from the pre-industrial simulation (corresponding to 1850s) from the FULL	
1622	and FULL-with-no-implicit-P-limitation simulations to illustrate the high GPP in the tropics where	
1623	P and not N limitation affects GPP and the reason for choosing a Jower value of Γ_1 in equation	Deleted:
1624	(31) for the broadleaf evergreen tree PFT.	
1625	The global GPP in the ORIGINAL and FULL simulations averaged over the period 1998-	
1626	2017 (120.0 and 120.4 PgC/yr, respectively) are around 15% lower compared to that in the ORIG-	
1627	UNCONST simulation (142 PgC/yr), as shown in Figure 4a, yielding a global downregulation factor	
1628	of about 0.85. Figure 10c shows how downregulation works in the ORIGINAL and FULL	
1629	simulations in a zonally-averaged sense. Ratios of annual GPP averaged over the 1998-2017	
1630	period from the ORIGINAL versus ORIG-UNCONST simulations, and FULL versus ORIG-UNCONST	
1631	simulations were first calculated for each grid cell and then zonally-averaged over the land grid	
1632	cells. Ratios can be misleading especially for grid cells with low values, for example, in the desert	
1633	regions. In addition, these ratios also depend on the specified V _{cmax} values in the ORIG-UNCONST	
1634	simulation. In Figure 10c, the purple line for the ORIGINAL simulation exhibits values around 0.8	
1635	consistent with the global downregulation of around 0.85 and the fact that the same scalar	
1636	downregulation multipler is used everywhere on the globe (equation 1). The red line for the FULL	
1637	simulation, however, indicates a pattern of higher downregulation at high-latitudes. The peaks	
1638	in red line, especially the one around 23°N (Sahara desert), are due to higher values in selected	

1641 grid cells in dry and arid regions where the build-up of NO₃⁻ in the soil (due to reduced
 1642 denitrification) increases V_{cmax} and thus GPP in the run with N cycle leading to higher ratios
 1643 although the absolute GPP values still remain low.

Figure 11a compares globally-summed net atmosphere-land CO₂ flux from the FULL, 1644 1645 FULL-no-LUC, and ORIGINAL simulations with quasi observation-based estimates from the 2019 1646 Global Carbon Project (Friedlingstein et al., 2019). There are two kinds of estimates in Figure 11a 1647 from Friedlingstein et al. (2019): the first is the net atmosphere-land CO₂ flux for the decades spanning the 1960s to the 2000s which are shown as rectangular boxes with their corresponding 1648 mean values and ranges, and the second is the terrestrial sink from 1959 to 2018 (dark yellow 1649 line). Positive values indicate a sink of carbon over land and negative values a source. The 1650 1651 difference between the net atmosphere-land CO_2 flux and the terrestrial sink is that the terrestrial sink minus the LUC emissions yields the net atmosphere-land CO₂ flux. The 1652 atmosphere-land CO₂ flux from the FULL-no-LUC simulation (blue line) is directly comparable to 1653 1654 the terrestrial sink since 1959, since the FULL-no-LUC simulation includes no LUC, and shows that the simulated terrestrial sink compares fairly well to the estimates from Friedlingstein et al. 1655 (2019). Averaged over the period 1959-2017, the modelled and Global Carbon Project values are 1656 2.0 and 2.1 Pg C/yr, respectively. The net atmosphere-land CO₂ flux from the FULL simulation 1657 1658 mostly lies within the uncertainty range for the five decades considered, although it is on the 1659 higher side compared to estimates from Friedlingstein et al. (2019). The reason for this is that 1660 LUC emissions in CLASSIC are much lower than observation-based estimates, as discussed below 1661 in context of Figure 11c. CLASSIC simulates LUC emissions only in response to changes in crop

Deleted: 1
Deleted: 2

Deleted: 2

Deleted: two

Deleted: 2

area whereas changes in pasture area and wood harvesting also contribute to LUC emissions. The

1662

net-atmosphere land CO₂ flux from the ORIGINAL simulation compares better with the estimates from Friedlingstein et al. (2019), than the FULL simulation, because the photosynthesis downregulation parameter in the ORIGINAL simulation has been adjusted despite discrepancies in simulated LUC processes.

Figure 11b compares the zonal distribution of simulated net atmosphere-land CO₂ flux from the FULL and ORIGINAL simulations with the model-mean and range from the terrestrial ecosystem models that participated in the 2019 TRENDY model intercomparison and contributed results to 2019 Global Carbon Project (Friedlingstein et al., 2019). The carbon sink simulated by CLASSIC in the northern hemisphere is broadly comparable to the model-mean estimate from the TRENDY models. However, in the tropics CLASSIC simulates a much stronger sink than the model-mean, likely because of its lower LUC emissions.

1679 5.4 Contribution of forcings to land C sink and sources

1680 Figure 11c shows cumulative net atmosphere-land CO₂ flux for the 1850-2017 period from the six primary simulations with N cycle. These simulations facilitate the attribution of carbon 1681 1682 uptake and release over the historical period to various forcings. The cumulative terrestrial sink 1683 in the FULL-no-LUC simulation for the period 1850-2017 is simulated to be ~153 Pg C and this compares reasonably well with the estimate of 185 ± 50 Pg C for the period 1850-2014 from Le 1684 1685 Quéré et al. (2018). Increase in CO₂ (~115 Pg C), change in climate (~3 Pg C), and N deposition (~19 Pg C) all contribute to this terrestrial sink. These three contributions add up to 137 Pg C so 1686 the additional 16 Pg C is contributed by the synergistic effects between the three forcings. 1687 Quantified in this way, the contribution of increasing CO₂ (115 out of 137 Pg C), climate change 1688

Deleted: 2

(3 out of 137 Pg C), and N deposition (19 out of 137 Pg C) to carbon uptake by land over the
historical period (1850-2017) is calculated to be 84%, 2%, and 14%, respectively. Cumulative LUC
emissions simulated for the period 1850-2017 by CLASSIC can be estimated using a negative
cumulative net-atmosphere-land CO₂ flux of ~66 Pg C from the LUC+FERT-only simulation or by
the differencing the FULL and FULL-no-LUC simulations (~71 Pg C). While LUC emissions are highly
uncertain, both of these estimates are much lower than the 195 ± 75 Pg C estimate from Le Quéré
et al. (2018).

1698 **6.0 Discussion and conclusions**

1699 The interactions between terrestrial C and N cycles are complex and our understanding 1700 of these interactions, and their representation in models, is based on empirical observations of 1701 various terrestrial ecosystem processes. In this paper, we have evaluated the response of these 1702 interactions by perturbing the coupled C and N cycle processes in the CLASSIC model with one 1703 forcing at a time over the historical period: 1) increase in CO₂, 2) change in climate, 3) increase in N deposition, and 4) LUC with increasing fertilizer input. These simulations are easier to interpret 1704 1705 and the model response can be evaluated against both our conceptual knowledge as well as empirical observation-based data. Our assumption is that, if the model response to individual 1706 1707 forcings is realistic and consistent with expectations based on empirical observations then the response of the model to all forcings combined will also be realistic and easier to interpret, 1708 although we do expect and see synergistic effects between forcings. 1709

The simulated response of coupled C and N cycles in CLASSIC to increasing atmospheric
 CO₂ is an increase in the C:N ratio of vegetation components due to an increase in their C content

1713 but also a decrease in their N content. This model response is conceptually consistent with a meta-analysis of 75 field experiments of elevated CO₂ as reported in Cotrufo et al. (1998) who 1714 find an average reduction in tissue N concentration of 14%. Most studies analyzed in the Cotrufo 1715 1716 et al. (1998) meta-analysis used ambient CO₂ of around 350 ppm and elevated CO₂ of around 1717 650-700 ppm. In comparison, the plant N concentration in CLASSIC reduces by <u>26</u>% in response 1718 to a gradual increase in atmospheric CO_2 from 285 ppm to 407 ppm (an increase of 122 ppm) 1719 over the 1850-2017 period (whole plant C:N ratio increases from 142.6 to 194.1 in the CO2-only 1720 simulation, Figure 7a). These two estimates cannot be compared directly - the majority (59%) of Free-Air Carbon dioxide Enrichment (FACE) experiments last less than 3 years (Jones et al., 2014) 1721 and the vegetation experiences a large CO₂ change of around 300-350 ppm while the duration of 1722 our historical simulation is 167 years and the gradual increase in CO2 of 122 ppm over the 1723 1724 historical period is much smaller.

1725 The response of our model to CO₂ increase over the historical period is also consistent 1726 with the meta-analysis of McGuire et al. (1995) who report an average decrease in leaf N concentration of 21% in response to elevated CO₂ based on 77 studies, which is the primary 1727 reason for downregulation of photosynthetic capacity. The simulated decrease in leaf N 1728 1729 concentration in our study for the CO2-only experiment is around 27% (leaf C:N ratio increases 1730 from 42.8 to 58.6 in the CO2-only simulation, Figure 7b). Although, the same caveats that apply 1731 to the comparison with the Cotrufo et al. (1998) study also apply to this comparison. The 1732 decrease in whole plant and leaf N concentrations in our results is conceptually consistent with 1733 the meta-analyses of McGuire et al. (1995) and Cotrufo et al. (1998). The decrease in whole plant 1734 N concentration in our CO2-only and FULL simulations is the result of an increase in both tissue

Deleted: vegetation
Deleted: content
Deleted: 18

Deleted: elevated

1	Deleted: mass
1	Deleted: also
1	Deleted: 1
4	Deleted: 6

1743C amount and a decrease in N amount. The decrease in tissue N amount is, in fact, necessary in1744our modelling framework to induce the required downregulation of photosynthesis to simulate

1745 the land carbon sink realistically over the historical period.

The meta-analysis of Liang et al. (2016) reports an increase in above and belowground 1746 1747 plant N pools in response to elevated CO₂ associated with increase in BNF but since their results 1748 are based on pool sizes they cannot be compared directly to the N concentration based results 1749 from McGuire et al. (1995) and Cotrufo et al. (1998), Liang et al. (2016) also report results from 1750 short-term (\leq 3 years) and long-term (between 3 to 15 years) studies separately (their Figure 3). 1751 They show that the increase in total plant and litter N pools become smaller for long-term studies. 1752 Regardless, the difference in time scales of empirical studies and the real world is a caveat that 1753 will always make it difficult to evaluate model results over long time scales.

1754 The response of C and N cycles to changes in climate in our model (in the CLIM-only 1755 simulation) is also conceptually realistic. Globally, GPP increases in response to climate that 1756 gradually gets warmer and wetter (see Figure A2) and as a result vegetation biomass increases. 1757 Soil carbon mass, however, decreases (despite increase in NPP inputs) since warmer 1758 temperatures also increase heterotrophic respiration (not shown). As a result of increased 1759 decomposition of soil organic matter, net N mineralization increases and together with increased 1760 BNF the overall C:N ratio of vegetation and leaves decreases, which leads to a V_{cmax} increase. The 1761 small increase in V_{cmax}, due to increased mineralization, thus also contributes to an increase in 1762 GPP over and above that due to a <u>change in climate alone</u>, and therefore compensates for the 1763 amount of carbon lost due to increased soil organic matter decomposition associated with warmer temperatures. This behaviour is consistent with land C cycle models showing a reduction 1764

Deleted: is Deleted: s

Deleted: However, the decrease in plant N in response to elevated CO_2 , found by

Deleted: , is inconsistent with the meta-analysis of Liang et al. (2016) who, in contrast, report an increase in above and belowground plant N pools in response to elevated CO_2 associated with increase in BNF. We are unable to reconcile this difference between the meta-analysis of Liang et al. (2016) and those from McGuire et al. (1995) and Cotrufo et al. (1998).

Deleted: T

۵۵	. hotal	the	change	in	climate	
ve	ieteu.	uie	change		ciiiiate	

ſ	Deleted: n
ſ	Deleted: increase
ſ	Deleted: temperature
ſ	Deleted: solely

in the absolute value of the strength of the carbon-climate feedback when they include couplingof C and N cycles (Arora et al., 2020).

1783 The modelled differences in PFT specific values of V_{cmax}, in our framework, come through 1784 differences in simulated values of leaf N content (N_L) that depend on BNF (given that BNF is the 1785 primary natural source of N input into the coupled soil-vegetation system) but also differences 1786 in mineralization that are governed by climate. N_L values, however, also depend on leaf 1787 phenology, allocation of carbon and nitrogen, turnover rates, transpiration (which brings in N 1788 through passive uptake), and almost every aspect of plant biogeochemistry which affects a PFT's 1789 net primary productivity and therefore N demand. Modelled increases in GPP in response to N 1790 deposition $\underline{come}_{through}$ an increase in leaf N content and therefore V_{cmax} values.

Finally, changes in land use associated with an increase in crop area, and the associated increase in fertilizer application rates lead to the largest increase in NO₃⁻ leaching, NH₃ volatilization, and gaseous losses associated with nitrification and denitrification among all forcings. Overall, the model response to perturbation by all individual forcings is realistic, conceptually expected, and of the right sign (positive or negative) although it is difficult to evaluate the magnitude of these responses in the absence of directly comparable observationbased estimates.

Despite the model responses to individual forcings that appears consistent with our conceptual understanding of coupled C and N cycles, our modelling framework misses an important feedback process that has been observed in the FACE and other experiments related to changes in natural BNF. FACE sites and other empirical studies report an increase in natural Deleted: increases

1803	BNF rates at elevated CO ₂ (McGuire et al., 1995; Liang et al., 2016) and a decrease in natural BNF	
1804	rates when additional N is applied to soils (Salvagiotti et al., 2008; Ochoa-Hueso et al., 2013). On	
1805	a broad scale this is intuitively expected but the biological processes behind changes in BNF rates	
1806	remain largely unclear. A response can still be parameterized even if the underlying physical and	
1807	biological processes are not well understood. For instance, Goll et al. (2012) parameterize BNF as	
1808	an increasing and saturating function of NPP, $BNF = 1.8 (1.0 - exp(-0.003 NPP))$. This	
1809	approach, however, does not account for the driver behind the increase in NPP - increasing	
1810	atmospheric CO ₂ , change in environmental conditions (e.g., wetter and warmer conditions), or	
1811	increased N deposition. Clearly, increasing BNF if the NPP increase is due to N deposition is	
1812	inconsistent with empirical observations. Over the historical period an increase in atmospheric	
1813	CO_2 has been associated with an increase in N deposition so to some extent changes in BNF due	
1814	to both forcings will cancel each other. We realize the importance of changes in BNF, given it is	
1815	the single largest natural flux of N into the coupled soil-vegetation system yet highly uncertain,	
1816	and aim to address these issues in a future version of the model by exploring existing BNF	Deleted: i
1817	formulations, Meyerholt et al. (2016), for example, demonstrate the uncertainty arising from the	Deleted: .
1818	use of five different BNF parameterizations in the context of the O-CN model. They use	Deleted: (Deleted:
1819	formulations that parameterize BNF as a function of 1) evapotranspiration, 2) NPP, 3) leaf C:N	
1820	ratio, that takes into account energy cost for N fixation (Fisher et al., 2010), 4) plant N demand,	
1821	and 5) an optimality-based approach that follows Rastetter et al. (2001) in which BNF only occurs	Deleted: (
1822	when the carbon cost of N fixation is lower than the carbon cost of root N uptake. The approach	1 Deleted: .,
1823	used in our study is closest to the one that is based on evapotranspiration but makes the	
1824	distinction in BNF rates over natural and agricultural areas.	

1831	The reduction of photosynthesis rates in response to N limitation is the most important	
1832	linkage between C and N cycles and yet it too is parameterized differently across models. Given	
1833	that leaf N content and photosynthetic capacity are strongly correlated (Evans, 1989; Field and	
1834	Mooney, 1986; Garnier et al., 1999), photosynthesis downregulation due to N limitation reduces	
1835	photosynthetic capacity, and thus the GPP flux. Yet models reduce both NPP (Wiltshire et al.,	
1836	2020) and V _{cmax} rates, and thus GPP, (Zaehle and Friend, 2010; Wania et al., 2012; von Bloh et al.,	
1837	2018) in reponse to N limitation. V _{cmax} rates may themselves be parameterized as a function leaf	
1838	<u>N content directly (</u> von Bloh et al., 2018; Zaehle and Friend, 2010 <u>) or leaf C:N ratio (</u> Wania et al.,	
1839	2012). In this study, we have parameterized V _{cmax} rates as a function of leaf N content (equation	
1840	31) since the use of leaf C:N ratio leads to an incorrect seasonal variation of V _{cmax} . If an increase	
1841	in leaf C:N ratio, as a result of increase in atmospheric CO_2 , leads to a decrease in V_{cmax} rates over	
1842	the historical period then it implies that V_{cmax} is inversely related to leaf C:N ratios. Since leaf C:N	
1843	ratio peak during the growing season (Li et al., 2017) this also implies V _{cmax} rates are lower during	
1844	the growing season than at its start and this is in contrast to observations that show an increase	
1845	in V _{cmax} during the growing season (e.g., see Fig. 1a of Bauerle et al. (2012)).	Deleted: (
1846	Our framework assumes a constant C:N ratio of 13 for soil organic matter (C: N_{μ}), an	Deleted: .,
1847	assumption also made in other models (e.g., Wania et al., 2012; Zhang et al., 2018). This	Deleted: (
1848	assumption is also broadly consistent with Zhao et al. (2019) who attempt to model C:N of soil	Field Code
1849	organic matter, among other soil properties, as a function of mean annual temperature and	.> (
1950	precipitation using machine learning algorithms (their Figure 2h). It is difficult to currently	
1020		
1851	establish if increasing atmospheric CO_2 is changing $C: N_H$ given the large heterogeneity in soil	
1852	organic C and N densities, and the difficulty in measuring small trends for such large global pools.	

de Changed

1857	A choice of a somewhat different value for all PFTs or had we chosen specified constant PFT-
1858	dependent values of $C: N_H$ is of relatively less importance in this context since the model is spun
1859	to equilibrium for 1850 conditions anyway. It is the change in $C:N_H$ over time that is of
1860	importance. The assumption of constant $C: N_H$ is <u>the</u> key to yielding a decrease in vegetation N
1861	mass, and therefore leaf N mass and V_{cmax} as CO_2 increases_ in our framework. Without a
1862	decrease in $V_{\mbox{\tiny cmax}}$ in our modelling framework, in response to elevated CO2, we cannot achieve
1863	the downregulation noted by McGuire et al. (1995) in their meta-analysis, and the simulated
1864	carbon sink over the historical period would be greater than observed as noted above. It is
1865	possible that we are simulating the reduction in leaf N mass, in response to elevated CO_2 , for a
1866	wrong reason in which case our model processes need to be revisited based on additional
1867	empirical data. If our assumption of constant or extremely slowly changing $\mathcal{C}:N_H$ is indeed
1868	severely unrealistic, this necessitates a point of caution that a realistic land carbon sink can be
1869	simulated over the historical period with such an assumption.

Related to this assumption is also the fact that we cannot make decomposition rates of soil organic matter a function of its C:N ratio since it is assumed to be a constant. It is well known that after climate, litter and soil organic matter decomposition rates are controlled by their C:N ratio (Manzoni et al., 2008). Litter decomposition rates can still be made a function of its C:N ratio and we aim to do this for a future model version.

The work presented in this study of coupling C and N cycles in CLASSIC yields a framework that we can build upon to make model processes more realistic, test the effect of various model assumptions, parameterize existing processes in other ways, include additional processes, and evaluate model response at FluxNet sites to constrain model parameters. **Deleted:** Since the C:N ratio of litter increases over the historical period, one implication of inclusion of this model feature will be an enhanced land carbon sink over the historical period due to decreasing litter decomposition rates.

1884	Appendix	Deleted: ¶
1885	_	1
	•	Deleted: ¶
1886	A1. Budget equations for N pools	
1887	The rates of change of N in the NH_4 ⁺ and NO ₃ ⁻ pools (in gN m ⁻²), N_{NH4} and N_{NO34}	Moved (insertion) [2]
1888	respectively, are given by	
1890	$\frac{d N_{NH4}}{dt} = B_{NH4} + F_{NH4} + P_{NH4} + M_{D,NH4} + M_{H,NH4}$	
1889	$-U_{NH4} - (I_{NO3} + I_{N20} + I_{N0}) - V_{NH3} - O_{NH4} $ (A1)	Deleted: 4
1891	$\frac{d N_{NO3}}{dt} = P_{NO3} + I_{NO3} - L_{NO3} - U_{NO3} - (E_{N2} + E_{N20} + E_{N0}) - O_{NO3} $ (A2)	Deleted:
		Deleted: 5
1892	and all fluxes are represented in units of gN m ^{-2} day ^{-1} . B_{NH4} is the rate of biological N fixation	
1893	which solely contributes to the NH_{4}^{+} pool, F_{NH4} is the fertilizer input which is assumed to	
1894	contribute only to the NH_4^+ pool, and P_{NH4} and P_{NO3} are atmospheric deposition rates that	
1895	contribute to the NH_4^+ and NO_3^- pools, respectively. Biological N fixation, fertilizer input, and	
1896	atmospheric deposition are the three routes through which N enters the coupled soil-vegetation	
1897	system. $M_{D,NH4}$ and $M_{H,NH4}$ are the mineralization flux from the litter and soil organic matter	
1898	pools, respectively, associated with their decomposition. We assume mineralization of humus	
1899	and litter pools only contributes to the NH_{4}^{+} pool. O_{NH4} and O_{NO3} indicate immobilization of N	
1900	from the NH_4^+ and NO_3^- pools, respectively, to the humus N pool which implies microbes (that	
1901	are not represented explicitly) are part of the humus pool. Combined together the terms	
1902	$(M_{D,NH4} + M_{H,NH4} - O_{NH4} - O_{NO3})$ yield the net mineralization rate. V_{NH3} is the rate of	
1903	ammonia (NH ₃) volatilization and L_{NO3} is the leaching of N that occurs only from the NO ₃ ⁻ pool.	

1911 The positively charged ammonium ions are attracted to the negatively charged soil particles and 1912 as a result it is primarily the negatively charged nitrate ions that leach through the soil (Porporato 1913 et al., 2003; Xu-Ri and Prentice, 2008). U_{NH4} and U_{NO3} are uptakes of NH₄⁺ and NO₃⁻ by plants, 1914 respectively. The nitrification flux from NH₄[±] to NO₃⁻ pool is represented by I_{NO3} which also results 1915 in the release of the nitrous oxide (N2O), a greenhouse gas, and nitric oxide (NO) through nitrifier 1916 denitrification represented by the terms I_{N20} and I_{N0} , respectively. Finally, E_{N21} , E_{N20} , and E_{N0} are the gaseous losses of N₂ (nitrogen gas), N₂O, and NO from the NO₃ pool associated with 1917 1918 denitrification. N is thus lost through the soil-vegetation system via leaching in runoff and 1919 <u>through gaseous losses of I_{N20} , I_{N0} , E_{N2} , E_{N20} , E_{N0} , and V_{NH3} .</u>

1920 <u>The structural and non-structural N pools in root are written as $N_{R,S}$ and $N_{R,NSL}$ </u> 1921 <u>respectively, and similarly for stem ($N_{S,S}$ and $N_{S,NS}$) and leaves ($N_{L,S}$ and $N_{L,NS}$), and together the 1922 <u>structural and non-structural pools make the total N pool in leaf ($N_L = N_{L,S} + N_{L,NS}$), root ($N_R =$ 1923 $N_{R,S} + N_{R,NS}$), and stem ($N_S = N_{S,S} + N_{S,NS}$) components. The rate change equation for</u></u>

1924 <u>structural and non-structural N pools in root are given by</u>

1925
$$\frac{d N_{R,NS}}{dt} = U_{NH4} + U_{NO3} + R_{L2R} - R_{R2L} - A_{R2S} - LF_{R,NS} - T_{R,NS2S} (A3)$$
Deleted:
Delet

1927Similar to the uptake of carbon by leaves and its subsequent allocation to root and stem1928components, N is taken up by roots and then allocated to leaves and stem. A_{R2L} and A_{R2S} 1929represent the allocation of N from roots to leaves and stem, respectively. The terms R_{L2R} and1930 R_{R2L} represent the reallocation of N between the non-structural components of root and leaves.1931 R_{L2R} is the N reallocated from leaves to root representing resorption of a fraction of leaf N during

1959	<u>where $LF_{S,NS}$ and $LF_{S,S}$ represent stem litter from the non-structural and structural components</u> ,	
1960	$T_{S,NS2S}$ is the one way transfer of N from the non-structural stem component to its structural N	
1961	pool. All other terms have been previously defined.	
1962 1963	Adding equations (6) through (11) yields rate of change of N in the entire vegetation pool (N_V) as	
1964	$\frac{d N_V}{dt} = \frac{d N_{R,NS}}{dt} + \frac{d N_{R,S}}{dt} + \frac{d N_{L,NS}}{dt} + \frac{d N_{L,S}}{dt} + \frac{d N_{S,NS}}{dt} + \frac{d N_{S,S}}{dt} = \frac{d N_R}{dt} + \frac{d N_L}{dt} + \frac{d N_S}{dt}$ $\frac{d N_V}{dt} = U_{NH4} + U_{NO3} - LF_{R,NS} - LF_{L,NS} - LF_{L,S} - LF_{S,NS} - LF_{S,S}$ $= U_{NH4} + U_{NO3} - LF_R - LF_L - LF_S$ (A9)	Deleted: 12
1965	which indicates how the dynamically varying vegetation N pool is governed by mineral N uptake	
1966	from the NH_{4}^{+} and NO_{3}^{-} pools and litterfall from the structural and non-structural components of	
1967	the leaves, stem, and root pools. LF_R is the total N litter generation from the root pool and sum	
1968	of litter generation from its structural and non-structural components ($LF_R = LF_{R,S} + LF_{R,NS}$).	
1969	and similarly for the leaves (LF_L) and the stem (LF_S) pools.	
1970 1971	<u>The rate change equations for the organic N pools in the litter (N_D) and soil (N_H) pools are written as follows.</u>	
1972	$\frac{d N_D}{dt} = LF_R + LF_L + LF_S - H_{N,D2H} - M_{D,NH4} $ (A10)	Deleted: 13
1973	$\frac{dN_H}{dt} = H_{N,D2H} + O_{NH4} + O_{NO3} - M_{H,NH4} $ (A11)	Deleted: 4
1974	where $H_{N,D2H}$ is the transfer of humidified organic matter from litter to the soil organic matter	
1975	pool, and all other terms have been previously defined.	
1976	65	

1980	¥	
1981	Acknowledgments	
1982 1983	We are grateful and thank Joe Melton and Paul Bartlett for their comments on an earlier version of this manuscript.	
1984		
1985	Code/Data availability	
1986 1987 1988 1989	Model code for the operational CLASSIC model can be obtained from https://gitlab.com/cccma/classic. Changes made to the operational version to include N cycle and the results shown here can be obtained from the second author.	
1990	Author contributions	
1991 1992	A.A. implemented the N cycle in the CLASSIC code, put together all the N cycle related input data, and performed all the simulations. V.A. and A.A. wrote the manuscript.	
1993		
1994	Competing interests	

1995 There are no competing interests.

1996

Deleted: A1. N inputs ¶ A1.1 Biological N fixation ¶

Biological N fixation (BNF, B_{NH4}) is caused by both free living bacteria in the soil and by bacteria symbiotically living within nodules of host plants' roots. Here, the bacteria convert free nitrogen from the atmosphere to ammonium, which is used by the host plants. Like any other microbial activity, BNF is limited both by drier soil moisture conditions and cold temperatures. Cleveland et al. (1999) attempt to capture this by parameterizing BNF as a function of actual evapotranspiration (AET). AET is a function primarily of soil moisture (through precipitation and soil water balance) and available energy. In places where vegetation exists, AET is also affected by vegetation characteristics including LAI and rooting depth. Here, we parameterize BNF ($B_{\rm NH4},$ gN $\rm m^{-2}$ day⁻¹) as a function of modelled soil moisture and temperature to depth of 0.5 m following Xu-Ri and Prentice (2008) which yields a very similar geographical distribution of BNF as the Cleveland et al. (1999) approach as seen in Figure 4c.¶

$$B_{NH4} = \left(\sum_{c} \alpha_{c} f_{c} + \sum_{n} \alpha_{n} f_{n} + \right) f(T_{0.5}) f(\theta_{0.5}) f(T_{0.5}) = 2^{(T_{0.5} - 25)/10} f(\theta_{0.5}) = \min\left(0, \max\left(1, \frac{\theta_{0.5} - \theta_{w}}{\theta_{fc} - \theta_{w}}\right)\right)$$

$$f(\theta_{0.5}) = 1$$

(A1)¶

where α_c and α_n (gN m^{-2} day^{-1}) are BNF coefficients for crop (c) and non-crop or natural (n) PFTs, which are area weighted using the fractional coverages f_c and f_n of crop and non-crop PFTs that are present in a grid cell, f(T) is the dependence on soil temperature based on a $\mathsf{Q}_{\mathtt{10}}$ formulation and $f(\theta)$ is the dependence on soil moisture which varies between 0 and 1. θ_{fc} and θ_w are the soil moisture at field capacity and wilting points, respectively. $T_{0.5}$ (°C) and $\theta_{0.5}$ (m³ m⁻³) in equation (A1) are averaged over the 0.5 m soil depth over which BNF is assumed to occur. We do not make the distinction between symbiotic and non-symbiotic BNF since this requires explicit knowledge of geographical distribution of N fixing PFTs which are not represented separately in our base set of nine PFTs. A higher value of α_c is used compared to α_n to account for the use of N fixing plants over agriculture areas. Biological nitrogen fixation has been an essential component of many farming systems for considerable periods, with evidence for the agricultural use of legumes dating back more than 4,000 years (O'Hara, 1998). A higher α_c than α_n is also consistent with Fowler et al. (2013) who report BNF of 58 and 60 Tg N yr $^{\!\!-1}$ for natural and agricultural ecosystems for present day. Since the area of natural ecosystems is about five times the current cropland area it implies BNF rate per unit land area is higher for crop ecosystems than for natural ecosystems. Values of α_c than α_n and other model parameters are summarized in Table A1.¶

Similar to Cleveland et al. (1999), our approach does not lead to a significant change in BNF with increasing atmospheric CO₂, other than through changes in soil moisture and temperature. At least two meta-analyses, however, suggest that an increase in atmospheric CO₂ does lead to an increase in BNF through increased symbiotic activity associated with an increase in both nodule mass and number (McGuire et al., 1995; Liang et al., 2016). Models have attempted to capture this by simulating BNF as a function of NPP (Thornton et al., 2007; Wania et al., 20 ... [3]

arameter a	ppears i	n the main text is also i	noted. Model pa	rameters may b	e scalar or an	array (if they		
ire PFT depe	endent)	in which <u>case</u> they <u>are</u>	written accordin	ng to the followir	ng structure in	<u>the table</u>	Deleted: are follow	
elow.							Deleted: .	
Needleleaf ev	ergreen	Needleleaf deciduous	Broadloaf docidu	ious drought				
	igieen		Bioauleai decidu	ious arought				
C ₂ grass		C ₄ grass						
							Deleted: ¶	
Model	Ean	Description	Units	Value(s)			Deleted: Corresponding equation in which	the parame
parameter							appears in the main text is also noted.¶	
Biological N	fixation						1	
α _c	3	BNF rate for crop PFTs	gN m ⁻² day ⁻¹	0.00217			Deleted: A1	
α _n	3	BNF rate for natural _ PFTs	$gN m^{-2} day^{-1}$	0.00037			Deleted: A1	
Plant N dem	and							
C·N.	4	Minimum C·N ratio	dimensionless	25	22		Deleted 42	
C. NL,min	¥	for leaves		$\frac{10}{20}$		18	Deleted: A2	
				16	20			
				13	18			
C: Nomin	4	Minimum C:N ratio	dimensionless	450	450		Deleted: A2	
erers,min		for stem		430	430	430	Deleted. Az	
				285	285			
$C: N_{R min}$	4	Minimum C:N ratio	dimensionless	45	45		Deleted: A2	
11,		for root		35	35	35		
				30	35			
Plant untaka				30	35			
ρ	6	Mineral N	dimensionless	0.5				
ρ	₩	distribution					Deleted: A4	
		coefficient						
ε	<u>8</u>	Fine root efficiency	gN gC ⁻¹ day ⁻¹	4.92E-5			Deleted: A6	
<i>k</i> _{<i>p</i>,½}	₽	Half saturation constant	gN m ⁻³	3			Deleted: A6	
Litterfall								
r_L	<u>11</u>	Leaf resorption	dimensionless	0.54			Deleted: A9	
Nitrificatio	<u> </u>	coemcient						
withijication	1	1 1		-				
	10	Nitrification	$d_{2}v^{-1}$	7 225 4				

η_{NO}	23	Fraction of	dimensionless	7.03E-5				Deleted: A	
		nitrification flux emitted as NO						Deleted: 1	
η_{N20}	23	Fraction of	dimensionless	2.57E-5				Deleted: A	
		emitted as N ₂ O						Deleted: 1	
Denitrificati	ion								
μ_{NO}	<u>24</u>	Fraction of denitrification flux emitted as NO	day	3.872E-4				Deleted: A22	
μ _{N20}	24	Fraction of denitrification flux emitted as N ₂ O	_day ^{_1}	1.408E-4				Deleted: A22	
μ_{N2}	24	Fraction of denitrification flux emitted as N ₂	day ¹	3.872E-3				Deleted: A22	
W _d	24	Soil wetness threshold below which very little denitrification occurs	dimensionless					Deleted: A23	
Leaching							-		
φ	26	Leaching coefficient	m² Kg ⁻¹	1.15E-3				Deleted: A24	
NH₃ volatiliz	zation		I.						
θ	<u>27</u>	NH ₃ volatilization	dimensionless	<u>0.54</u>				Deleted: A25	
		coefficient					- ``	Deleted: 1.8	
Coupling of	C and N c	ycles					_		
I_1'	<u>31</u>	calculating V _{cmax}	µmol_CO2 gN ⁻¹ s ⁻¹ _	13 (all PFTs e tree) 5.1 (for broad	xcept broadlea lleaf evergreei	n tree)		Deleted: 15	
Г2	<u>31</u>	Parameter for calculating V _{cmax} from leaf N content	<u></u>	8.5				Deleted: 15	
k_{Λ}	<u>32</u>	Parameter for constraining V _{cmax} increase when C:N ratios exceed their	<u>dimensionless</u>	<u>0.05</u>					
		<u>maximum limit</u>							
C: N _{L,max}	33	<u>maximum limit</u> <u>Maximum C:N ratio</u> for leaves	dimensionless	60 55 40 35	50 40 50 50	<u>40</u>			

I

I

I

I

L

Ì

Ì

ſ					=	=		
	C: N _{R,max}	<u>33</u>	Maximum C:N ratio for root	<u>dimensionless</u>	90 70 60 60	90 70 70 70 70	<u>70</u>	
•								Deleted: ¶

- **Table 1**: Historical simulations performed over the period 1851-2017 to evaluate the model's
- 2182 response to various forcings. All forcings are time varying. All forcings are also spatially explicit
- $\label{eq:2183} \mbox{except atmospheric CO}_2 \mbox{ for which a globally constant value is specified.}$

Simulation name	Forcing that varies over the historical period	N cycle						
Primary simulations performed to evaluate N cycle response to various forcings								
1. CO2-only	Atmospheric CO ₂ concentration	Runs with N cycle						
2. CLIM-only	1901-1925 meteorological data are used twice over							
	the 1850-1900 period. For the 1901-2017 period,							
	meteorological data for the correct year is used.							
3. LUC+FERT-only	Land cover with increasing crop area, and fertilizer							
	application rates over the crop area							
4. N-DEP-only	N deposition of ammonia and nitrate							
5. FULL	All forcings]						
6. FULL-no-LUC	All forcings except increasing crop area							

Other simulations								
7. ORIGINAL	All forcings	Runs without N						
8. ORIG-UNCONST	All forcings but with downregulation turned off	cycle using the						
		original model						
		configuration.						
9. FULL-no-implicit-P-	All forcings but using same Γ_1 and Γ_2 globally	Run with N cycle						
limitation								
Table 2: Comparison of simulated global N pools and fluxes, from the FULL simulation, with other modelling and quasi observation-based studies (references for which are noted as superscripts and listed below the table). The time-periods to which the other modelling and quasi observation-based estimates correspond are also noted, where available. The estimates are for land. Simulated fluxes and pool corresponds to the period 1997-2018.

2193

N pool and fluxes	This study (1998-2017)	Other model and quasi observation-based estimates
N inputs (Tg N yr ⁻¹)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•
BNF	119	118ª
		99 ^b (2001-2010)
		138.5 ^c (early 1990s)
		128.9 ^d (2000-2009)
		104-118 ^e
		92 ^f (year 2000)
Natural BNF	59	58ª
		107 ^c (early 1990s)
		30-130 ^e
		39 ^f (year 2000)
Anthropogenic BNF	60	60 ^a
		31.5 ^c (early 1990s)
		14-89 ^e
		53 ^f (year 2000)
Fertilizer input	91 (based on TRENDY protocol)	100ª
		100 ^b (2001-2010)
		100 ^c (early 1990s)
		83 ^f (year 2000)
N deposition	66 (based on TRENDY protocol)	70ª
		56-62 ^b
		63.5 ^c (early 1990s)
		69 ^f (year 2000)
N pools (Tg N yr ⁻¹)		
Vegetation	3034	1,780 ^d (2000s)
		3,800 ^g (1990s)
		5,300 ^h
		2,940 ⁱ (1990s)
Litter and soil	77161	106,000 ^d (2000s)
		100,000 ^g (1990s)
		56,800 ^h
		113,000 ⁱ (1990s)
Ammonia	1924	163.7 ^d (2000s)
		361 ^h
		1200 ⁱ (1990s)
Nitrate	2974	2 778 ^d (2000c)
	2371	2,778 (20003)
	2571	580 ^h
		580 ^h 14,800 ⁱ (1990s)
N fluxes related to N cyclin	g (Tg N yr ⁻¹)	580 ^h 14,800 ⁱ (1990s)
<i>N fluxes related to N cyclin</i> Plant uptake	g (Tg N yr ⁻¹) 940	580 ^h 14,800 ⁱ (1990s) 618 ^d (2000s)
<i>N fluxes related to N cyclin</i> Plant uptake	ן (Tg N yr ⁻¹) 940	580 ^h 14,800 ⁱ (1990s) 618 ^d (2000s) 1,127 ^g (1990s)
N fluxes related to N cyclin Plant uptake	<u>д (Тв N уг⁻¹)</u> 940	580 ^h 14,800 ⁱ (1990s) 618 ^d (2000s) 1,127 ^g (1990s) 1,084 ^h
N fluxes related to N cyclin Plant uptake	g (Tg N yr ⁻¹) 940	2,778 (2003) 580 ^h 14,800 ⁱ (1990s) 1,127 ^g (1990s) 1,084 ^h 873 ⁱ (1990s)
N fluxes related to N cyclin Plant uptake Net mineralization	9 (Tg N yr ⁻¹) 940 947	2,778 (2003) 580 ^h 14,800 ⁱ (1990s) 618 ^d (2000s) 1,127 ^g (1990s) 1,084 ^h 873 ⁱ (1990s)
N fluxes related to N cycling Plant uptake Net mineralization Mineralization	940 947 2045	2,775 (2003) 580 ^h 14,800 ⁱ (1990s) 618 ^d (2000s) 1,027 ^g (1990s) 1,084 ^h 873 ⁱ (1990s) 1,678 ^d (2000s)
N fluxes related to N cyclin Plant uptake Net mineralization Mineralization Immobilization	940 947 2045 1097	2,779 (2003) 580 ^h 14,800 ⁱ (1990s) 618 ^d (2000s) 1,127 ^g (1990s) 1,08 ^h 873 ⁱ (1990s) 1,678 ^d (2000s) 1,177 ^d (2000s)

N losses (Tg N yr ⁻¹)					
NO ₃ - Leaching	53.5		97.1 ^b (2001-2010)		
			62.8 ^d (2000s)		
			77.0 ^g (1990s)		
NH ₃ Volatilization	53.9		124.9 ^b (2001-2010)		
			52.6 ^c (early 1990s)		
			20.4 ^d (2000s)		
N ₂ from denitrification	114.2		105.8 ^b (2001-2010)		
			68 ^f (year 2000)		
N ₂ O from denitrification	4.2	12.6	8.7 ^b (2001-2010)		
N ₂ O from nitrification	8.4		10.9° (early 1990s)		
			13.0 ^a		
NO from denitrification	11.4	34.3	24.8° (early 1990s)		
NO from nitrification	22.9		26.8 ^g (1990s)		

2195	^a Fowler et al. (2013),	^b Zaehle (2013),	Galloway et al. (2004),	^d von Bloh et al. (2	018), ^e Galloway et al
2200		()	ounonay ce un (200 .))	,	

2196 (2013), ^fBouwman et al. (2013), ^gZaehle et al. (2010), ^hXu-Ri and Prentice (2008), ⁱWania et al. (2012)

Figure 1: The structure of CLASSIC model used in this study. The eight prognostic carbon pools

shown in orange colour and nitrogen fluxes are shown in blue colour.

are shown in green colour and carbon fluxes in red colour. The ten prognostic nitrogen pools are

Deleted: 2

2203 2204

2202

2217 Figure 2: Time series and geographical distribution of global annual values of externally specified 2218 N inputs. Fertilizer input (a, b), atmospheric deposition of ammonium (c, d) and atmospheric 2219 deposition of nitrate (e, f). The values in the parenthesis for legend entries in the time series plots 2220 show averages for the 1850s, the 1998-2017 period, and the change between these two periods. 2221 The thin lines in the time series plots show the annual values and the thick lines their 10-year 2222 moving average. The geographical plots show the average values over the last 20-years of the 2223 FULL simulation corresponding to the 1998-2017 period. Note that in the time series plots lines 2224 from some simulations are hidden behind lines from other simulations and this can be inferred 2225 from the legend entries which shows averages for the 1850s, the 1998-2017 period.

-	Delete	d:	3
---	--------	----	---

Deleted: Global annual values

Deleted: Biological N fixation

Deleted: and its break down into natural (c) and anthropogenic components (e). Fertilizer input (b) and

Deleted: 1850s and 1998-2017

2254 Figure 4; Global annual values of gross primary productivity (a), vegetation carbon (b), leaf

2255 carbon (c), and litter and soil carbon (d) for the primary simulations performed. The values in

the parenthesis for legend entries show averages for the 1850s, the 1998-2017 period, and the 2256

2257 change between 1850s and 1998-2017 periods. The thin lines show the annual values and the

2258 thick lines their 10-year moving average.

2259

Deleted: 5

Deleted: ¶

263Figure 5: Global annual values of N in vegetation (a), leaves (b), litter and soil organic matter (c)2264pools, V_{cmax} (d), and ammonium (e), and nitrate (f) pools for the primary simulations performed.2265The values in the parenthesis for legend entries show averages for the 1850s, the 1998-20172266period, and the change between 1850s and 1998-2017 periods. The thin lines show the annual2267values and the thick lines their 10-year moving average.

2268

2271

2272 Figure <u>6</u>: Global annual values of N demand (a), total plant N uptake (b) and its split into passive

2273 (c) and active (d) components for the primary simulations performed. The values in the

2274 parenthesis for legend entries show averages for the 1850s, the 1998-2017 period, and the

2275 change between 1850s and 1998-2017 periods. The thin lines show the annual values and the

thick lines their 10-year moving average.

2277

2278

2280

Figure 7: Global annual values of C:N ratios for whole plant (a), leaves (b), root (c), stem (d), litter (e) and soil organic matter (f) pools from the primary six simulations. The values in the parenthesis for legend entries show averages for the 1850s, the 1998-2017 period, and the change between 1850s and 1998-2017 periods. The thin lines show the annual values and the thick lines their 10-year moving average.

2287

Figure 8: Global annual values of net mineralization (a), nitrification (b), NO₃- leaching (c), NH₃ volatilization (d), and gaseous losses associated with nitrification (e) and denitrification (f) from the primary six simulations. The values in the parenthesis for legend entries show averages for the 1850s, the 1998-2017 period, and the change between 1850s and 1998-2017 periods. The thin lines show the annual values and the thick lines their 10-year moving average.

2296

2299 Figure <u>9</u>: Geographical distribution of primary C and N pools. Ammonium (a), nitrate (b),

2300 vegetation C mass (c), litter and soil C mass (d), vegetation N mass (e), and litter and soil N mass

2301 (f). The global total values shown are averaged over the 1998-2017 period.

2302

Deleted: 2

b)

60 75 90

2325

2326 Figure 11: Comparison of simulated net atmosphere-land CO₂ flux from various simulations. 2327 Panel (a) compares globally-summed values of net atmosphere-land CO₂ flux from FULL, FULL-2328 no-LUC simulation, and ORIGINAL simulations with estimate of terrestrial sink (dark yellow line) and net atmosphere-land CO2 flux (grey bars) from Friedlingstein et al. (2019). The thin lines 2329 show the annual values and the thick lines their 10-year moving average. Panel (b) compares 2330 zonal distribution of net atmosphere-land CO2 flux from FULL and ORIGINAL simulations with 2331 2332 the range from TRENDY models that contributed to the Friedlingstein et al. (2019) study. Panel 2333 (c) shows cumulative values of net atmosphere-land CO₂ flux from the six primary simulations 2334 to investigate the contribution of each forcing to the cumulative land carbon sink over the 2335 historical period.

2338 References

Alexandrov, G. and Oikawa, T.: TsuBiMo: a biosphere model of the CO2-fertilization effect, Clim. Res.,
 19(3), 265–270, 2002.

2341 Aragão, L. E. O. C., Malhi, Y., Metcalfe, D. B., Silva-Espejo, J. E., Jiménez, E., Navarrete, D., Almeida, S.,

2342 Costa, A. C. L., Salinas, N., Phillips, O. L., Anderson, L. O., Alvarez, E., Baker, T. R., Goncalvez, P. H.,
2343 Huamán-Ovalle, J., Mamani-Solórzano, M., Meir, P., Monteagudo, A., Patiño, S., Peñuela, M. C., Prieto,

2344 A., Quesada, C. A., Rozas-Dávila, A., Rudas, A., Silva Jr., J. A. and Vásquez, R.: Above- and below-ground

net primary productivity across ten Amazonian forests on contrasting soils, Biogeosciences, 6(12), 2759–
 2778, doi:10.5194/bg-6-2759-2009, 2009.

Arneth, A., Harrison, S. P., Zaehle, S., Tsigaridis, K., Menon, S., Bartlein, P. J., Feichter, J., Korhola, A.,
Kulmala, M., O'Donnell, D., Schurgers, G., Sorvari, S. and Vesala, T.: Terrestrial biogeochemical feedbacks
in the climate system, Nat. Geosci., 3(8), 525–532, doi:10.1038/ngeo905, 2010.

Arora, V. K.: Simulating energy and carbon fluxes over winter wheat using coupled land surface and
 terrestrial ecosystem models, Agric. For. Meteorol., 118(1), 21–47, doi:https://doi.org/10.1016/S0168 1923(03)00073-X, 2003.

Arora, V. K. and Boer, G. J.: A Representation of Variable Root Distribution in Dynamic Vegetation
 Models, Earth Interact., 7(6), 1–19, doi:10.1175/1087-3562(2003)007<0001:AROVRD>2.0.CO;2, 2003.

Arora, V. K. and Boer, G. J.: A parameterization of leaf phenology for the terrestrial ecosystem
component of climate models, Glob. Change Biol., 11(1), 39–59, doi:10.1111/j.1365-2486.2004.00890.x,
2005.

Arora, V. K. and Boer, G. J.: Uncertainties in the 20th century carbon budget associated with land use change, Glob. Change Biol., 16(12), 3327–3348, doi:10.1111/j.1365-2486.2010.02202.x, 2010.

Arora, V. K. and Melton, J. R.: Reduction in global area burned and wildfire emissions since 1930s
 enhances carbon uptake by land, Nat. Commun., 9(1), 1326, doi:10.1038/s41467-018-03838-0, 2018.

Arora, V. K., Boer, G. J., Christian, J. R., Curry, C. L., Denman, K. L., Zahariev, K., Flato, G. M., Scinocca, J.
F., Merryfield, W. J. and Lee, W. G.: The Effect of Terrestrial Photosynthesis Down Regulation on the
Twentieth-Century Carbon Budget Simulated with the CCCma Earth System Model, J. Clim., 22(22),
6066–6088, doi:10.1175/2009JCLI3037.1, 2009.

Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L., Flato, G. M., Kharin, V. V., Lee, W. G.
 and Merryfield, W. J.: Carbon emission limits required to satisfy future representative concentration
 pathways of greenhouse gases, Geophys. Res. Lett., 38(5), doi:10.1029/2010GL046270, 2011.

Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D., Christian, J. R., Bonan, G., Bopp, L.,
Brovkin, V., Cadule, P., Hajima, T., Ilyina, T., Lindsay, K., Tjiputra, J. F. and Wu, T.: Carbon–Concentration
and Carbon–Climate Feedbacks in CMIP5 Earth System Models, J. Clim., 26(15), 5289–5314,

2372 doi:10.1175/JCLI-D-12-00494.1, 2013.

Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., Schwinger, J., Bopp,
L., Boucher, O., Cadule, P., Chamberlain, M. A., Christian, J. R., Delire, C., Fisher, R. A., Hajima, T., Ilyina,

2375 T., Joetzjer, E., Kawamiya, M., Koven, C. D., Krasting, J. P., Law, R. M., Lawrence, D. M., Lenton, A.,

2376 Lindsay, K., Pongratz, J., Raddatz, T., Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T. and

2377Ziehn, T.: Carbon-concentration and carbon-climate feedbacks in CMIP6 models and their comparison2378to CMIP5 models, Biogeosciences, 17(16), 4173-4222, doi:10.5194/bg-17-4173-2020, 2020.

2379 Asaadi, A., Arora, V. K., Melton, J. R. and Bartlett, P.: An improved parameterization of leaf area index

(LAI) seasonality in the Canadian Land Surface Scheme (CLASS) and Canadian Terrestrial Ecosystem
 Model (CTEM) modelling framework, Biogeosciences, 15(22), 6885–6907, doi:10.5194/bg-15-6885-2018,
 2018.

Bauerle, W. L., Oren, R., Way, D. A., Qian, S. S., Stoy, P. C., Thornton, P. E., Bowden, J. D., Hoffman, F. M.
and Reynolds, R. F.: Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the
implications for carbon cycling, Proc. Natl. Acad. Sci., 109(22), 8612–8617,

2387 Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M. A.,

Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S.,
 Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I. and
 Papale, D.: Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate,

2391 Science, 329(5993), 834–838, 2010.

von Bloh, W., Schaphoff, S., Müller, C., Rolinski, S., Waha, K. and Zaehle, S.: Implementing the nitrogen
cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0), Geosci.
Model Dev., 11(7), 2789–2812, doi:10.5194/gmd-11-2789-2018, 2018.

Bouwman, A. F., Beusen, A. H. W., Griffioen, J., Van Groenigen, J. W., Hefting, M. M., Oenema, O., Van
Puijenbroek, P. J. T. M., Seitzinger, S., Slomp, C. P. and Stehfest, E.: Global trends and uncertainties in
terrestrial denitrification and N2O emissions, Philos. Trans. R. Soc. B Biol. Sci., 368(1621), 20130112,
doi:10.1098/rstb.2013.0112, 2013.

Cao, M., Zhang, Q. and Shugart, H. H.: Dynamic responses of African ecosystem carbon cycling to climate
 change, Clim. Res., 17(2), 183–193, 2001.

Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil hydraulic properties, Water
 Resour. Res., 14(4), 601–604, doi:10.1029/WR014i004p00601, 1978.

Cleveland, C. C., Townsend, A. R., Schimel, D. S., Fisher, H., Howarth, R. W., Hedin, L. O., Perakis, S. S.,
Latty, E. F., Von Fischer, J. C., Elseroad, A. and Wasson, M. F.: Global patterns of terrestrial biological
nitrogen (N2) fixation in natural ecosystems, Glob. Biogeochem. Cycles, 13(2), 623–645,

2406 doi:10.1029/1999GB900014, 1999.

Collatz, G., Ribas-Carbo, M. and Berry, J.: Coupled Photosynthesis-Stomatal Conductance Model for
 Leaves of C4 Plants, Funct. Plant Biol., 19(5), 519–538, 1992.

Cotrufo, M. F., Ineson, P. and Scott, AndY.: Elevated CO2 reduces the nitrogen concentration of plant
 tissues, Glob. Change Biol., 4(1), 43–54, doi:10.1046/j.1365-2486.1998.00101.x, 1998.

²³⁸⁶ doi:10.1073/pnas.1119131109, 2012.

- Croft, H., Chen, J. M., Luo, X., Bartlett, P., Chen, B. and Staebler, R. M.: Leaf chlorophyll content as a
 proxy for leaf photosynthetic capacity, Glob. Change Biol., 23(9), 3513–3524, doi:10.1111/gcb.13599,
 2017.
- 2414 Du, E., Terrer, C., Pellegrini, A. F. A., Ahlström, A., van Lissa, C. J., Zhao, X., Xia, N., Wu, X. and Jackson, R.
 2415 B.: Global patterns of terrestrial nitrogen and phosphorus limitation, Nat. Geosci., 13(3), 221–226,
- 2416 doi:10.1038/s41561-019-0530-4, 2020.
- Evans, J. R.: Photosynthesis and nitrogen relationships in leaves of C3 plants, Oecologia, 78(1), 9–19,
 doi:10.1007/BF00377192, 1989.
- Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J. and Taylor, K. E.: Overview of
 the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization,
 Geosci. Model Dev., 9(5), 1937–1958, doi:10.5194/gmd-9-1937-2016, 2016.
- Faria, T., Wilkins, D., Besford, R. T., Vaz, M., Pereira, J. S. and Chaves, M. M.: Growth at elevated CO2
 leads to down-regulation of photosynthesis and altered response to high temperature in Quercus suber
 L. seedlings, J. Exp. Bot., 47(11), 1755–1761, doi:10.1093/jxb/47.11.1755, 1996.
- Farquhar, G. D., von Caemmerer, S. and Berry, J. A.: A biochemical model of photosynthetic CO2
 assimilation in leaves of C3 species, Planta, 149(1), 78–90, doi:10.1007/BF00386231, 1980.
- Field, C. and Mooney, H.: The Photosynthesis-Nitrogen Relationship in Wild Plants, Biol. Int., 13, 25–56,
 1986.
- Fisher, J. B., Sitch, S., Malhi, Y., Fisher, R. A., Huntingford, C. and Tan, S.-Y.: Carbon cost of plant nitrogen
 acquisition: A mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and
 fixation: CARBON COST OF PLANT N ACQUISITION, Glob. Biogeochem. Cycles, 24(1), n/a-n/a,
- 2432 doi:10.1029/2009GB003621, 2010.

Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., Sheppard, L. J., Jenkins, A., Grizzetti,
B., Galloway, J. N., Vitousek, P., Leach, A., Bouwman, A. F., Butterbach-Bahl, K., Dentener, F., Stevenson,
D., Amann, M. and Voss, M.: The global nitrogen cycle in the twenty-first century, Philos. Trans. R. Soc. B
Biol. Sci., 368(1621), 20130164, doi:10.1098/rstb.2013.0164, 2013.

2437 Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M.,

- 2438 Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H.
- D., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K.-G., Schnur, R., Strassmann, K., Weaver,
 A. J., Yoshikawa, C. and Zeng, N.: Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP
- 2441 Model Intercomparison, J. Clim., 19(14), 3337–3353, doi:10.1175/JCLI3800.1, 2006.
- 2442 Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W.,
- 2443 Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P.,
- 2444 Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F.,
- 2445 Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N.,
- 2446 Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Joetzjer, E., Kaplan, J.
- 2447 O., Kato, E., Klein Goldewijk, K., Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A.,
 2448 Lienert, S., Lombardozzi, D., Marland, G., McGuire, P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, J.
- E. M. S., Nakaoka, S.-I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G.,

Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H.,
 Tilbrook, B., Tubiello, F. N., van der Werf, G. R., Wiltshire, A. J. and Zaehle, S.: Global Carbon Budget

2452 2019, Earth Syst. Sci. Data, 11(4), 1783–1838, doi:10.5194/essd-11-1783-2019, 2019.

2453 Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P.,

2454 Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R. and

2455 Vöosmarty, C. J.: Nitrogen Cycles: Past, Present, and Future, Biogeochemistry, 70(2), 153–226,

2456 doi:10.1007/s10533-004-0370-0, 2004.

2457Galloway, J. N., Leach, A. M., Bleeker, A. and Erisman, J. W.: A chronology of human understanding of2458the nitrogen cycle^{†}, Philos. Trans. R. Soc. B Biol. Sci., 368(1621), 20130120,

2459 doi:10.1098/rstb.2013.0120, 2013.

Garnier, E., Salager, J.-L., Laurent, G. and Sonie, L.: Relationships between photosynthesis, nitrogen and
 leaf structure in 14 grass species and their dependence on the basis of expression, New Phytol., 143(1),
 119–129, doi:10.1046/j.1469-8137.1999.00426.x, 1999.

2463 Gerber, S., Hedin, L. O., Oppenheimer, M., Pacala, S. W. and Shevliakova, E.: Nitrogen cycling and 2464 feedbacks in a global dynamic land model, Glob. Biogeochem. Cycles, 24(1),

2465 doi:10.1029/2008GB003336, 2010.

Goll, D. S., Brovkin, V., Parida, B. R., Reick, C. H., Kattge, J., Reich, P. B., van Bodegom, P. M. and
Niinemets, Ü.: Nutrient limitation reduces land carbon uptake in simulations with a model of combined
carbon, nitrogen and phosphorus cycling, Biogeosciences, 9(9), 3547–3569, doi:10.5194/bg-9-35472012, 2012.

2470 Goyal, S. S. and Huffaker, R. C.: Nitrogen toxicity in plants, in Nitrogen in Crop Production, pp. 97–118,
 2471 American Society of Agronomy, Madison, WI., 1984.

Hungate, B. A., Dukes, J. S., Shaw, M. R., Luo, Y. and Field, C. B.: Nitrogen and Climate Change, Science, 302(5650), 1512–1513, doi:10.1126/science.1091390, 2003.

Hurtt, G. C., Frolking, S., Fearon, M. G., Moore, B., Shevliakova, E., Malyshev, S., Pacala, S. W. and
 Houghton, R. A.: The underpinnings of land-use history: three centuries of global gridded land-use

transitions, wood-harvest activity, and resulting secondary lands, Glob. Change Biol., 12(7), 1208–1229,
 doi:10.1111/j.1365-2486.2006.01150.x, 2006.

Jiang, M., Zaehle, S., De Kauwe, M. G., Walker, A. P., Caldararu, S., Ellsworth, D. S. and Medlyn, B. E.: The
quasi-equilibrium framework revisited: analyzing long-term CO2 enrichment responses in plant–soil
models, Geosci. Model Dev., 12(5), 2069–2089, doi:10.5194/gmd-12-2069-2019, 2019.

2481Jones, A. G., Scullion, J., Ostle, N., Levy, P. E. and Gwynn-Jones, D.: Completing the FACE of elevated CO22482research, Environ. Int., 73, 252–258, doi:https://doi.org/10.1016/j.envint.2014.07.021, 2014.

2483 Jones, C. D., Arora, V., Friedlingstein, P., Bopp, L., Brovkin, V., Dunne, J., Graven, H., Hoffman, F., Ilyina,

2484 T., John, J. G., Jung, M., Kawamiya, M., Koven, C., Pongratz, J., Raddatz, T., Randerson, J. T. and Zaehle,

2485 S.: C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol

2486 for CMIP6, Geosci. Model Dev., 9(8), 2853–2880, doi:10.5194/gmd-9-2853-2016, 2016.

- Kattge, J., Knorr, W., Raddatz, T. and Wirth, C.: Quantifying photosynthetic capacity and its relationship
 to leaf nitrogen content for global-scale terrestrial biosphere models, Glob. Change Biol., 15(4), 976–
 991, doi:10.1111/j.1365-2486.2008.01744.x, 2009.
- Klein Goldewijk, K., Beusen, A., Doelman, J. and Stehfest, E.: Anthropogenic land use estimates for the
 Holocene HYDE 3.2, Earth Syst. Sci. Data, 9(2), 927–953, doi:10.5194/essd-9-927-2017, 2017.
- Köchy, M., Hiederer, R. and Freibauer, A.: Global distribution of soil organic carbon Part 1: Masses and
 frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world, SOIL,
- 2494 1(1), 351–365, doi:10.5194/soil-1-351-2015, 2015.
- Kurz, W. A., Beukema, S. J. and Apps, M. J.: Estimation of root biomass and dynamics for the carbon
 budget model of the Canadian forest sector, Can. J. For. Res., 26(11), 1973–1979, doi:10.1139/x26-223,
 1996.
- 2498 Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P. A., Korsbakken,
- 2499 J. I., Peters, G. P., Canadell, J. G., Arneth, A., Arora, V. K., Barbero, L., Bastos, A., Bopp, L., Chevallier, F.,
- 2500 Chini, L. P., Ciais, P., Doney, S. C., Gkritzalis, T., Goll, D. S., Harris, I., Haverd, V., Hoffman, F. M.,
- Hoppema, M., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Johannessen, T., Jones, C. D., Kato, E.,
 Keeling, R. F., Goldewijk, K. K., Landschützer, P., Lefèvre, N., Lienert, S., Liu, Z., Lombardozzi, D., Metzl,
- 2503 N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S., Neill, C., Olsen, A., Ono, T., Patra, P., Peregon, A., Peters,
- 2504 W., Peylin, P., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rocher, M.,
- 2505 Rödenbeck, C., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Steinhoff, T., Sutton, A., Tans, P. P.,
- 2506 Tian, H., Tilbrook, B., Tubiello, F. N., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A.
- 2507 P., Wiltshire, A. J., Wright, R., Zaehle, S. and Zheng, B.: Global Carbon Budget 2018, Earth Syst. Sci. Data,
- 2508 10(4), 2141–2194, doi:10.5194/essd-10-2141-2018, 2018.
- Leith, H.: Modeling the primary productivity of the world, in Primary Productivity of the Biosphere (H.
 Leith and R. H. Whittaker, Eds.), pp. 237–263, Springer-Verlag, Berlin and New York., 1975.
- Li, H., Crabbe, M., Xu, F., Wang, W., Niu, R., Gao, X., Zhang, P. and Chen, H.: Seasonal Variations in
 Carbon, Nitrogen and Phosphorus Concentrations and C:N:P Stoichiometry in the Leaves of Differently
- Aged Larix principis-rupprechtii Mayr. Plantations, Forests, 8(10), 373, doi:10.3390/f8100373, 2017.
- Liang, J., Qi, X., Souza, L. and Luo, Y.: Processes regulating progressive nitrogen limitation under elevated
 carbon dioxide: a meta-analysis, Biogeosciences, 13(9), 2689–2699, doi:10.5194/bg-13-2689-2016, 2016.
- Lin, B.-L., Sakoda, A., Shibasaki, R., Goto, N. and Suzuki, M.: Modelling a global biogeochemical nitrogen
 cycle in terrestrial ecosystems, Ecol. Model., 135(1), 89–110, doi:https://doi.org/10.1016/S03043800(00)00372-0, 2000.
- Manzoni, S., Jackson, R. B., Trofymow, J. A. and Porporato, A.: The Global Stoichiometry of Litter
 Nitrogen Mineralization, Science, 321(5889), 684–686, doi:10.1126/science.1159792, 2008.
- 2521 McGuire, A. D., Melillo, J. M. and Joyce, L. A.: The role of nitrogen in the response of forests net primary
- 2522 production to elevated atmospheric carbon dioxide, Annu. Rev. Ecol. Syst., 26(1), 473–503,
- 2523 doi:10.1146/annurev.es.26.110195.002353, 1995.

Melton, J. R. and Arora, V. K.: Competition between plant functional types in the Canadian Terrestrial
 Ecosystem Model (CTEM) v. 2.0, Geosci Model Dev, 9(1), 323–361, doi:10.5194/gmd-9-323-2016, 2016.

2526 Melton, J. R., Shrestha, R. K. and Arora, V. K.: The influence of soils on heterotrophic respiration exerts a

2527 strong control on net ecosystem productivity in seasonally dry Amazonian forests, Biogeosciences, 12(4),

2528 1151–1168, doi:10.5194/bg-12-1151-2015, 2015.

2529 Melton, J. R., Arora, V. K., Wisernig-Cojoc, E., Seiler, C., Fortier, M., Chan, E. and Teckentrup, L.: CLASSIC

2530 v1.0: the open-source community successor to the Canadian Land Surface Scheme (CLASS) and the

2531 Canadian Terrestrial Ecosystem Model (CTEM) – Part 1: Model framework and site-level performance,

2532 Geosci. Model Dev. Discuss., 2019, 1–40, doi:10.5194/gmd-2019-329, 2019.

2533 Meyerholt, J., Zaehle, S. and Smith, M. J.: Variability of projected terrestrial biosphere responses to 2534 elevated levels of atmospheric CO2 due to uncertainty in biological nitrogen fixation, Biogeosciences,

2535 13(5), 1491–1518, doi:10.5194/bg-13-1491-2016, 2016.

2536 Ochoa-Hueso, R., Maestre, F. T., Ríos, A. [de los, Valea, S., Theobald, M. R., Vivanco, M. G., Manrique, E.

2537 and Bowker, M. A.: Nitrogen deposition alters nitrogen cycling and reduces soil carbon content in low-

2538 productivity semiarid Mediterranean ecosystems, Environ. Pollut., 179, 185–193,

2539 doi:https://doi.org/10.1016/j.envpol.2013.03.060, 2013.

2540 O'Hara, G. W.: The Role of Nitrogen Fixation in Crop Production, J. Crop Prod., 1(2), 115–138,
 2541 doi:10.1300/J144v01n02_05, 1998.

Porporato, A., D'Odorico, P., Laio, F. and Rodriguez-Iturbe, I.: Hydrologic controls on soil carbon and
 nitrogen cycles. I. Modeling scheme, Adv. Water Resour., 26(1), 45–58,

2544 doi:https://doi.org/10.1016/S0309-1708(02)00094-5, 2003.

2545Rastetter, E. B., Vitousek, P. M., Field, C., Shaver, G. R., Herbert, D. and gren, G. I.: Resource Optimization2546and Symbiotic Nitrogen Fixation, Ecosystems, 4(4), 369–388, doi:10.1007/s10021-0018-z, 2001.

2547 Reich, P. B., Hungate, B. A. and Luo, Y.: Carbon-Nitrogen Interactions in Terrestrial Ecosystems in

2548 Response to Rising Atmospheric Carbon Dioxide, Annu. Rev. Ecol. Evol. Syst., 37(1), 611–636,

2549 doi:10.1146/annurev.ecolsys.37.091305.110039, 2006a.

Reich, P. B., Hobbie, S. E., Lee, T., Ellsworth, D. S., West, J. B., Tilman, D., Knops, J. M. H., Naeem, S. and
Trost, J.: Nitrogen limitation constrains sustainability of ecosystem response to CO2, Nature, 440(7086),
922–925, doi:10.1038/nature04486, 2006b.

2553 Riddick, S., Ward, D., Hess, P., Mahowald, N., Massad, R. and Holland, E.: Estimate of changes in

agricultural terrestrial nitrogen pathways and ammonia emissions from 1850 to present in

the\hack\newline Community Earth System Model, Biogeosciences, 13(11), 3397–3426, doi:10.5194/bg 13-3397-2016, 2016.

2557 Salvagiotti, F., Cassman, K. G., Specht, J. E., Walters, D. T., Weiss, A. and Dobermann, A.: Nitrogen

2558 uptake, fixation and response to fertilizer N in soybeans: A review, Field Crops Res., 108(1), 1–13,

2559 doi:https://doi.org/10.1016/j.fcr.2008.03.001, 2008.

- Sanz-Sáez, Á., Erice, G., Aranjuelo, I., Nogués, S., Irigoyen, J. J. and Sánchez-Díaz, M.: Photosynthetic
 down-regulation under elevated CO2 exposure can be prevented by nitrogen supply in nodulated alfalfa,
 J. Plant Physiol., 167(18), 1558–1565, doi:https://doi.org/10.1016/j.jplph.2010.06.015, 2010.
- 2563 Still, C. J., Berry, J. A., Collatz, G. J. and DeFries, R. S.: Global distribution of C3 and C4 vegetation: Carbon 2564 cycle implications, Glob. Biogeochem. Cycles, 17(1), 6–1, doi:10.1029/2001GB001807, 2003.
- 2565 Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V.,
- Christian, J. R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A.,
 Sigmond, M., Solheim, L., von Salzen, K., Yang, D. and Winter, B.: The Canadian Earth System Model
 version 5 (CanESM5.0.3), Geosci. Model Dev., 12(11), 4823–4873, doi:10.5194/gmd-12-4823-2019,
 2019.
- 2570 Thom, A. S.: Momentum, mass and heat exchange of plant communities, in Vegetation and the 2571 atmosphere, Vol. 1, Principles, edited by Monteith, J. L., Academic Press, London., 1975.
- Thornton, P. E., Lamarque, J.-F., Rosenbloom, N. A. and Mahowald, N. M.: Influence of carbon-nitrogen
 cycle coupling on land model response to CO2 fertilization and climate variability, Glob. Biogeochem.
 Cycles, 21(4), doi:10.1029/2006GB002868, 2007.
- 2575 Tian, H., Yang, J., Lu, C., Xu, R., Canadell, J. G., Jackson, R. B., Arneth, A., Chang, J., Chen, G., Ciais, P.,
- 2576 Gerber, S., Ito, A., Huang, Y., Joos, F., Lienert, S., Messina, P., Olin, S., Pan, S., Peng, C., Saikawa, E.,
- Thompson, R. L., Vuichard, N., Winiwarter, W., Zaehle, S., Zhang, B., Zhang, K. and Zhu, Q.: The Global
 N2O Model Intercomparison Project, Bull. Am. Meteorol. Soc., 99(6), 1231–1251, doi:10.1175/BAMS-D-
- 2579 17-0212.1, 2018.
- Tipping, E., Somerville, C. J. and Luster, J.: The C:N:P:S stoichiometry of soil organic matter,
 Biogeochemistry, 130(1), 117–131, doi:10.1007/s10533-016-0247-z, 2016.
- 2582 Tomasek, A., Kozarek, J. L., Hondzo, M., Lurndahl, N., Sadowsky, M. J., Wang, P. and Staley, C.:
- Environmental drivers of denitrification rates and denitrifying gene abundances in channels and riparian
 areas, Water Resour. Res., 53(8), 6523–6538, doi:10.1002/2016WR019566, 2017.
- Verseghy, D. L.: Class—A Canadian land surface scheme for GCMS. I. Soil model, Int. J. Climatol., 11(2),
 111–133, doi:10.1002/joc.3370110202, 1991.
- Verseghy, D. L., McFarlane, N. A. and Lazare, M.: Class—A Canadian land surface scheme for GCMS, II.
 Vegetation model and coupled runs, Int. J. Climatol., 13(4), 347–370, doi:10.1002/joc.3370130402,
- 2589 1993.
- Vitousek, P. M.: Litterfall, Nutrient Cycling, and Nutrient Limitation in Tropical Forests, Ecology, 65(1),
 285–298, doi:10.2307/1939481, 1984.
- Vitousek, P. M.: Beyond Global Warming: Ecology and Global Change, Ecology, 75(7), 1861–1876,
 doi:10.2307/1941591, 1994.
- Vitousek, P. M. and Howarth, R. W.: Nitrogen limitation on land and in the sea: How can it occur?,
 Biogeochemistry, 13(2), 87–115, doi:10.1007/BF00002772, 1991.

- Vitousek, P. M., Porder, S., Houlton, B. Z. and Chadwick, O. A.: Terrestrial phosphorus limitation:
 mechanisms, implications, and nitrogen–phosphorus interactions, Ecol. Appl., 20(1), 5–15,
- 2598 doi:10.1890/08-0127.1, 2010.
- 2599 Vitousek, P. M., Menge, D. N. L., Reed, S. C. and Cleveland, C. C.: Biological nitrogen fixation: rates,
- patterns and ecological controls in terrestrial ecosystems, Philos. Trans. R. Soc. B Biol. Sci., 368(1621),
 20130119, doi:10.1098/rstb.2013.0119, 2013.
- Wang, J., Liu, X., Zhang, X., Li, L., Lam, S. K. and Pan, G.: Changes in plant C, N and P ratios under elevated
 [CO2] and canopy warming in a rice-winter wheat rotation system, Sci. Rep., 9(1), 5424,
 doi:10.1038/s41598-019-41944-1, 2019.
- Wania, R., Meissner, K. J., Eby, M., Arora, V. K., Ross, I. and Weaver, A. J.: Carbon-nitrogen feedbacks in
 the UVic ESCM, Geosci. Model Dev., 5(5), 1137–1160, doi:10.5194/gmd-5-1137-2012, 2012.
- Wei, X., Shao, M., Gale, W. and Li, L.: Global pattern of soil carbon losses due to the conversion of
 forests to agricultural land, Sci. Rep., 4, 4062, 2014.
- Wiltshire, A. J., Burke, E. J., Chadburn, S. E., Jones, C. D., Cox, P. M., Davies-Barnard, T., Friedlingstein, P.,
 Harper, A. B., Liddicoat, S., Sitch, S. A. and Zaehle, S.: JULES-CN: a coupled terrestrial Carbon-Nitrogen
 Scheme (JULES vn5.1), Geosci. Model Dev. Discuss., 2020, 1–40, doi:10.5194/gmd-2020-205, 2020.
- Xu-Ri and Prentice, I. C.: Terrestrial nitrogen cycle simulation with a dynamic global vegetation model,
 Glob. Change Biol., 14(8), 1745–1764, doi:10.1111/j.1365-2486.2008.01625.x, 2008.
- Zaehle, S.: Terrestrial nitrogen and carbon cycle interactions at the global scale, Philos. Trans. R. Soc. B
 Biol. Sci., 368(1621), 20130125, doi:10.1098/rstb.2013.0125, 2013.
- Zaehle, S. and Friend, A. D.: Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1.
 Model description, site-scale evaluation, and sensitivity to parameter estimates: SITE-SCALE
 EVALUATION OF A C-N MODEL, Glob. Biogeochem. Cycles, 24(1), n/a-n/a, doi:10.1029/2009GB003521,
 2010.
- Zaehle, S., Friend, A. D., Friedlingstein, P., Dentener, F., Peylin, P. and Schulz, M.: Carbon and nitrogen
 cycle dynamics in the O-CN land surface model: 2. Role of the nitrogen cycle in the historical terrestrial
 carbon balance: NITROGEN EFFECTS ON GLOBAL C CYCLING, Glob. Biogeochem. Cycles, 24(1), n/a-n/a,
 doi:10.1029/2009GB003522, 2010.
- Zeng, H., Jia, G. and Epstein, H.: Recent changes in phenology over the northern high latitudes detected
 from multi-satellite data, Environ. Res. Lett., 6(4), 045508, 2011.
- Zhang, H., Goll, D. S., Manzoni, S., Ciais, P., Guenet, B. and Huang, Y.: Modeling the effects of litter
 stoichiometry and soil mineral N availability on soil organic matter formation using CENTURY-CUE (v1.0),
 Geosci. Model Dev., 11(12), 4779–4796, doi:10.5194/gmd-11-4779-2018, 2018.
- Zhao, X., Yang, Y., Shen, H., Geng, X. and Fang, J.: Global soil–climate–biome diagram: linking surface soil
 properties to climate and biota, Biogeosciences, 16(14), 2857–2871, doi:10.5194/bg-16-2857-2019,
 2019.

- Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais, P., Sitch, S., Friedlingstein, P.,
- Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S.,
- Penuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D., Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S. and Zeng, N.: Greening of the Earth and its drivers, Nat. Clim Change, 6(8), 791–795, 2016.
- Zinke, P. J., Stangenberger, A. G., Post, W. M., Emanuel, W. R. and Olson, J. S.: Global Organic Soil
- Carbon and Nitrogen, Tech. Rep. ORNL/TM-8857, Oak Ridge National Laboratory, Oak Ridge, Tennessee,
- USA. [online] Available from: https://doi.org/10.3334/ORNLDAAC/221, 1998.

Following earlier simpler approaches (Cao et al., 2001; Alexandrov and Oikawa, 2002), GPP can be expressed as a logarithmic function of $[CO_2]$

$$G_p(t) = G_0 \left(1 + \gamma_p \ln \frac{c(t)}{c_0} \right) \tag{1}$$

where the unconstrained or potential GPP at any given time, $G_p(t)$, is a function of its initial value G_0 , [CO₂] at time t, c(t), and its initial value c_0 . The rate of increase of GPP is determined by the parameter γ_p (where p indicates the "potential" rate of increase of GPP with [CO₂]). The parameter γ_p is calculated by fitting equation (1) to simulated GPP over the historical period. In the absence of any nutrient constraints, the rate of increase of carbon uptake per unit area of leaves is determined by the theoretical framework of Farquhar et al. (1980) and Collatz et al. (1992) for C_3 and C_4 photosynthetic pathways, respectively. The rate of increase of global GPP, however, also depends on how the model simulated LAI increases in response to increasing [CO₂], which in turn depends on how photosynthate is allocated between leaves, stem, and root. Arora et al. (2009) compared the unconstrained simulated rate of increase of GPP per unit increase in [CO₂] (their Figure 3) with that based on the theoretical framework to show that the model's response to increasing [CO₂] over the historical period is consistent with the theoretical framework, given specified time-independent V_{cmax} values for different PFTs. To parameterize downregulation of photosynthesis with increasing $[CO_2]$ for emulating nutrient constraints, the unconstrained or potential GPP (for each time step and each PFT in a grid cell) is multiplied by the global scalar $\xi(c)$

$$G = \xi(c) G_p$$

$$\xi(c) = \frac{1 + \gamma_d \ln(c/c_0)}{1 + \gamma_p \ln(c/c_0)}$$
(3)

where *t* is omitted for clarity and the parameter γ_d represents the downregulated rate of increase of GPP with [CO₂] (indicated by the subscript *d*). When $\gamma_d < \gamma_p$ the modelled gross primary productivity (*G*) increases in response to [CO₂] at a rate determined by the value of γ_d . In the absence of the N cycle, the term $\xi(c)$ thus emulates down-regulation of photosynthesis as CO₂ increases. For example, values of γ_d =0.42 and γ_p =0.90, from Arora et al. (2009), yield a value of $\xi(c) = 0.94$ (indicating a 6% downregulation) for *c*=390 ppm (corresponding to year 2010) and c_0 =285 ppm.

Page 33: [2] DeletedArora, Vivek [CCCMA]31/08/2020 9:38:00 AM
$$\frac{d N_{NH4}}{dt} = B_{NH4} + F_{NH4} + P_{NH4} + M_{D,NH4} + M_{H,NH4}$$
 $-U_{NH4} - (I_{NO3} + I_{N20} + I_{N0}) - V_{NH3} - O_{NH4}$ (4)

$$\frac{d N_{NO3}}{dt} = P_{NO3} + I_{NO3} - L_{NO3} - U_{NO3} - (E_{N2} + E_{N2O} + E_{NO}) - O_{NO3}$$
(5)

and all fluxes are represented in units of gN m⁻² day⁻¹. B_{NH4} is the rate of biological N fixation which solely contributes to the NH₄⁺ pool, F_{NH4} is the fertilizer input which is assumed to contribute only to the NH₄⁺ pool, and P_{NH4} and P_{NO3} are atmospheric deposition rates that contribute to the NH₄⁺ and NO₃⁻ pools, respectively. Biological N fixation, fertilizer input, and atmospheric deposition are the three routes through which N enters the coupled soil-vegetation system. $M_{D,NH4}$ and $M_{H,NH4}$ are the mineralization flux from the litter and soil organic matter pools, respectively, associated with their decomposition. We assume mineralization of humus and litter pools only contributes to the NH₄⁺ pool. O_{NH4} and O_{NO3} indicate immobilization of N from the NH₄⁺ and NO₃⁻ pools, respectively, to the humus N pool which implies microbes (that are not represented explicitly) are part of the humus pool. Combined together the terms $(M_{D,NH4} + M_{H,NH4} - O_{NH4} - O_{NO3})$ yield the net mineralization rate. V_{NH3} is the rate of ammonia (NH₃) volatilization and L_{NO3} is the leaching of N that occurs only from the NO₃⁻ pool. The positively charged ammonium ions are attracted to the negatively charged soil particles and as a result it is primarily the negatively charged nitrate ions that leach through the soil (Porporato et al., 2003; Xu-Ri and Prentice, 2008). U_{NH4} and U_{NO3} are uptakes of NH₄⁺ and NO₃⁻ by plants, respectively. The nitrification flux from NH₄ to NO₃ pool is represented by I_{NO3} which also results in the release of the nitrous oxide (N₂O), a greenhouse gas, and nitric oxide (NO) through nitrifier denitrification represented by the terms I_{N20} and I_{N0} , respectively. Finally, E_{N22} , E_{N20} , and E_{N0} are the gaseous losses of N₂ (nitrogen gas), N₂O, and NO from the NO₃⁻ pool associated with denitrification. N is thus lost through the soil-vegetation system via leaching in runoff and through gaseous losses of I_{N20} , I_{N0} , E_{N2} , E_{N20} , E_{N0} , and V_{NH3} .

The structural and non-structural N pools in root are written as $N_{R,S}$ and $N_{R,NS}$, respectively, and similarly for stem ($N_{S,S}$ and $N_{S,NS}$) and leaves ($N_{L,S}$ and $N_{L,NS}$), and together the structural and non-structural pools make the total N pool in leaf ($N_L = N_{L,S} + N_{L,NS}$), root ($N_R = N_{R,S} + N_{R,NS}$), and stem ($N_S = N_{S,S} + N_{S,NS}$) components. The rate change equation for structural and non-structural N pools in root are given by

$$\frac{d N_{R,NS}}{dt} = U_{NH4} + U_{NO3} + R_{L2R} - R_{R2L} - A_{R2L} - A_{R2S} - LF_{R,NS} - T_{R,NS2S}$$
(6)

$$\frac{d N_{R,S}}{dt} = T_{R,NS2S} - LF_{R,S} \tag{7}$$

Similar to the uptake of carbon by leaves and its subsequent allocation to root and stem components, N is taken up by roots and then allocated to leaves and stem. A_{R2L} and A_{R2S} represent the allocation of N from roots to leaves and stem, respectively. The terms R_{L2R} and R_{R2L} represent the reallocation of N between the non-structural components of root and leaves. R_{L2R} is the N reallocated from leaves to root representing resorption of a fraction of leaf N during leaf fall for deciduous tree PFTs. R_{R2L} indicates reallocation of N from roots to leaves (termed reallocation in Figure 2) at the time of leaf-out for deciduous tree PFTs. At times other than leaf-out and leaf-fall and for other PFTs these two terms are zero. $T_{R,NS2S}$ is the one way transfer of N from the non-structural to the structural root pool, and similar to the carbon pools, once N is converted to its structural form it cannot be converted back to its non-structural form. Finally, the litterfall due to turnover of roots occurs from both the structural ($LF_{R,S}$) and non-structural ($LF_{R,NS}$) N pools.

The rate change equations for non-structural and structural components of leaves are written as

$$\frac{d N_{L,NS}}{dt} = A_{R2L} - R_{L2R} - R_{L2S} + R_{R2L} + R_{S2L} - LF_{L,NS} - T_{L,NS2S}$$
(8)

$$\frac{d N_{L,S}}{dt} = T_{L,NS2S} - LF_{L,S} \tag{9}$$

where $T_{L,NS2S}$ is the one way transfer of N from the non-structural leaf component to its structural N pool and R_{S2L} indicates reallocation of N from stem to leaves (similar to R_{R2L}) at the time of leaf out for deciduous tree PFTs. Litterfall occurs from both the structural ($LF_{L,S}$) and nonstructural ($LF_{L,NS}$) N pools of leaves, and all other terms have been previously defined. Finally, the rate change equations for non-structural and structural components of stem are written as

$$\frac{dN_{S,NS}}{dt} = A_{R2S} + R_{L2S} - R_{S2L} - LF_{S,NS} - T_{S,NS2S}$$
(10)

$$\frac{dN_{S,S}}{dt} = T_{S,NS2S} - LF_{S,S} \tag{11}$$

where $LF_{S,NS}$ and $LF_{S,S}$ represent stem litter from the non-structural and structural components, $T_{S,NS2S}$ is the one way transfer of N from the non-structural stem component to its structural N pool. All other terms have been previously defined.

Adding equations (6) through (11) yields rate of change of N in the entire vegetation pool (N_V) as

$$\frac{d N_V}{dt} = \frac{d N_{R,NS}}{dt} + \frac{d N_{R,S}}{dt} + \frac{d N_{L,NS}}{dt} + \frac{d N_{L,S}}{dt} + \frac{d N_{S,NS}}{dt} + \frac{d N_{S,S}}{dt} = \frac{d N_R}{dt} + \frac{d N_L}{dt} + \frac{d N_S}{dt}$$

$$\frac{d N_V}{dt} = U_{NH4} + U_{NO3} - LF_{R,NS} - LF_{R,S} - LF_{L,NS} - LF_{L,S} - LF_{S,NS} - LF_{S,S}$$

$$= U_{NH4} + U_{NO3} - LF_R - LF_L - LF_S$$
(12)

which indicates how the dynamically varying vegetation N pool is governed by mineral N uptake from the NH₄⁺ and NO₃⁻ pools and litterfall from the structural and non-structural components of the leaves, stem, and root pools. LF_R is the total N litter generation from the root pool and sum of litter generation from its structural and non-structural components ($LF_R = LF_{R,S} + LF_{R,NS}$), and similarly for the leaves (LF_L) and the stem (LF_S) pools.

The rate change equations for the organic N pools in the litter (N_D) and soil (N_H) pools are written as follows.

$$\frac{dN_D}{dt} = LF_R + LF_L + LF_S - H_{N,D2H} - M_{D,NH4}$$
(13)

$$\frac{d N_H}{dt} = H_{N,D2H} + O_{NH4} + O_{NO3} - M_{H,NH4}$$
(14)

where $H_{N,D2H}$ is the transfer of humidified organic matter from litter to the soil organic matter pool, and all other terms have been previously defined.

Sections A.1, A.2, and A.3 in the appendix describe how the individual terms of the rate change equations of the 10 prognostic N pools (equations 4 through 11, and equations 13 and 14) are specified or parameterized. The treatment of these terms are briefly described here. Biological N fixation (BNF, B_{NH4}) is parameterized as a function of soil moisture and temperature with higher fixation rate per unit area for agricultural areas than natural vegetation. If externally specified information for ammonium (NH_4^+) and nitrate (NO_3^-) deposition rates is available then it is used otherwise deposition is assumed to be split equally between NH_4^+ and NO_3^- . Externally specified fertilizer application rates are same throughout the year in the tropics (between 30°S and 30°N), given multiple crop rotations in a given year in tropical regions. Between 30° and 90° latitudes in both northern and southern hemispheres, we assume that fertilizer application starts on the spring equinox and ends on the fall equinox. Plant N demand is calculated on the basis of the fraction of NPP allocated to leaves, stem, and root components and their specified minimum PFT-dependent C:N ratios. Both passive and active root uptakes of N are modelled. Passive uptake depends on transpiration and concentration of NH_4^+ and NO_3^- in the root zone water column. When passive N uptake cannot meet the N demand, active uptake compensates for reduced passive uptake though eventually they both depend on the amount of available N in the mineral pools. Plant N uptake by roots is allocated to stem and leaf components, which allows to

model leaf N content (N_L) as a prognostic variable. N contributions to litter through litterfall are based on C:N ratios of the vegetation components and the litterfall rates. Resorption of N before litterfall for deciduous tree species is also modelled. Decomposition of litter and soil organic matter releases C to the atmosphere as CO₂ and the mineralized N is moved to the NH₄⁺ pool. Immobilization of mineral N from NH₄⁺ and NO₃⁻ pools into the soil organic matter pool is meant to keep the soil organic matter C:N ratio ($C: N_H$) at its specified constant value of 13 for all PFTs.

Nitrification, the process converting ammonium to nitrate, is driven by microbial activity and depends both on soil temperature and moisture such that it is constrained both at high and low soil moisture contents. Gaseous fluxes of NO (I_{NO}) and N₂O (I_{N2O}) are associated with nitrification and assumed to be directly proportional to the nitrification flux. Denitrification is modelled to reduce NO₃⁻ to NO, N₂O, and ultimately to N₂. Unlike nitrification, however, denitrification is primarily an anaerobic process and therefore occurs primarily when soil is saturated. Leaching of NO₃⁻ (L_{NO3}) is parameterized to be directly proportional to baseflow from the bottommost soil layer and the size of the NO₃⁻ pool. Finally, NH₃ volatilization (V_{NH3}) is parametrized as a function of NH₄⁺ pool size, soil temperature, soil pH, and aerodynamic and boundary layer resistances.

Page 66: [3] DeletedArora, Vivek [CCCMA]24/08/2020 2:06:00 PMA1. N inputs

A1.1 Biological N fixation

Biological N fixation (BNF, B_{NH4}) is caused by both free living bacteria in the soil and by bacteria symbiotically living within nodules of host plants' roots. Here, the bacteria convert free

nitrogen from the atmosphere to ammonium, which is used by the host plants. Like any other microbial activity, BNF is limited both by drier soil moisture conditions and cold temperatures. Cleveland et al. (1999) attempt to capture this by parameterizing BNF as a function of actual evapotranspiration (AET). AET is a function primarily of soil moisture (through precipitation and soil water balance) and available energy. In places where vegetation exists, AET is also affected by vegetation characteristics including LAI and rooting depth. Here, we parameterize BNF (B_{NH4} , gN m⁻² day⁻¹) as a function of modelled soil moisture and temperature to depth of 0.5 m following Xu-Ri and Prentice (2008) which yields a very similar geographical distribution of BNF as the Cleveland et al. (1999) approach as seen in Figure 4c.

$$B_{NH4} = \left(\sum_{c} \alpha_{c} f_{c} + \sum_{n} \alpha_{n} f_{n} +\right) f(T_{0.5}) f(\theta_{0.5})$$

$$f(T_{0.5}) = 2^{(T_{0.5} - 25)/10}$$

$$f(\theta_{0.5}) = \min\left(0, \max\left(1, \frac{\theta_{0.5} - \theta_{w}}{\theta_{fc} - \theta_{w}}\right)\right)$$
(A1)

where α_c and α_n (gN m⁻² day⁻¹) are BNF coefficients for crop (c) and non-crop or natural (n) PFTs, which are area weighted using the fractional coverages f_c and f_n of crop and non-crop PFTs that are present in a grid cell, f(T) is the dependence on soil temperature based on a Q₁₀ formulation and $f(\theta)$ is the dependence on soil moisture which varies between 0 and 1. θ_{fc} and θ_w are the soil moisture at field capacity and wilting points, respectively. $T_{0.5}$ (°C) and $\theta_{0.5}$ (m³ m⁻³) in equation (A1) are averaged over the 0.5 m soil depth over which BNF is assumed to occur. We do not make the distinction between symbiotic and non-symbiotic BNF since this requires explicit knowledge of geographical distribution of N fixing PFTs which are not represented separately in our base set of nine PFTs. A higher value of α_c is used compared to α_n to account for the use of N fixing plants over agriculture areas. Biological nitrogen fixation has been an essential component of many farming systems for considerable periods, with evidence for the agricultural use of legumes dating back more than 4,000 years (O'Hara, 1998). A higher α_c than α_n is also consistent with Fowler et al. (2013) who report BNF of 58 and 60 Tg N yr⁻¹ for natural and agricultural ecosystems for present day. Since the area of natural ecosystems is about five times the current cropland area it implies BNF rate per unit land area is higher for crop ecosystems than for natural ecosystems. Values of α_c than α_n and other model parameters are summarized in Table A1.

Similar to Cleveland et al. (1999), our approach does not lead to a significant change in BNF with increasing atmospheric CO₂, other than through changes in soil moisture and temperature. At least two meta-analyses, however, suggest that an increase in atmospheric CO₂ does lead to an increase in BNF through increased symbiotic activity associated with an increase in both nodule mass and number (McGuire et al., 1995; Liang et al., 2016). Models have attempted to capture this by simulating BNF as a function of NPP (Thornton et al., 2007; Wania et al., 2012). The caveat with this approach and the implications of our BNF approach are discussed in Section 6.

A1.2 Atmospheric N deposition

Atmospheric N deposition is externally specified. The model reads in spatially- and temporally-varying annual deposition rates from a file. Deposition is assumed to occur at the same rate throughout the year so the same daily rate (gN m⁻² day⁻¹) is used for all days of a given year. If separate information for ammonium (NH₄⁺) and nitrate (NO₃⁻) deposition rates is available

then it is used otherwise deposition is assumed to be split equally between NH_4^+ and NO_3^- (indicated as P_{NH4} and P_{NO3} in equations 4 and 5).

A1.3 Fertilizer application

Geographically and temporally varying annual fertilizer application rates (F_{NH4}) are also specified externally and read in from a file. Fertilizer application occurs over the C₃ and C₄ crop fractions of grid cells. Agricultural management practices are difficult to model since they vary widely between countries and even from farmer to farmer. For simplicity, we assume fertilizer is applied at the same daily fertilizer application rate (gN m⁻² day⁻¹) throughout the year in the tropics (between 30°S and 30°N), given the possibility of multiple crop rotations in a given year. Between the 30° and 90° latitudes in both northern and southern hemispheres, we assume that fertilizer application rate is thus distributed over around 180 days. This provides somewhat more realism, than using the same treatment as in tropical regions, since extra-tropical agricultural areas typically do not experience multiple crop rotations in a given year.

A2. N cycling in plants and soil

Plant roots take up mineral N from soil and then allocate it to leaves and stem to maintain an optimal C:N ratio of each component. Litterfall from vegetation contributes to the litter pool and decomposition of litter transfers humified litter to the soil organic matter pool. Decomposition of litter and soil organic matter returns mineralized N back to the NH₄⁺ pool, closing the soil-vegetation N cycle loop. Both active and passive plant uptakes of N (from both the NH_4^+ and NO_3^- pools) are explicitly modelled. The modelled plant N uptake is a function of its N demand. Higher N demand leads to higher mineral N uptake from soil.

A2.1 Plant N demand

Plant N demand is calculated based on the fraction of NPP allocated to leaves, stem, and root components and their specified minimum PFT-dependent C:N ratios, similar to other models (Xu-Ri and Prentice, 2008; Jiang et al., 2019). The assumption is that plants always want to achieve their desired minimum C:N ratios if enough N is available.

$$\Delta_{WP} = \Delta_L + \Delta_R + \Delta_S$$

$$\Delta_i = \frac{\max\left(0, NPP \cdot a_{i,C}\right)}{C:N_{i,\min}}, \quad i = L, S, R$$
(A2)

where the whole plant N demand (Δ_{WP}) is the sum of N demand for the leaves (Δ_L), stem (Δ_S), and root (Δ_R) components, $a_{i,C}$, i = L, S, R is the fraction of NPP (i.e. carbon as indicated by letter C in the subscript) allocated to leaf, stem, and root components, and $C: N_{i,\min}$, i = L, S, Rare their specified minimum C:N ratios (see Table A1 for these and all other model parameters). A caveat with this approach when applied at the daily time step, for biogeochemical processes in our model, is that during periods of time when NPP is negative due to adverse climatic conditions (e.g. during winter or drought seasons), the calculated demand is negative. If positive NPP implies there is demand for N, negative NPP cannot be taken to imply that N must be lost from vegetation. As a result, from a plant's perspective, N demand is assumed to be zero during periods of negative NPP. N demand is also set to zero when all leaves have been shed (i.e., when GPP is zero). At the global scale, this leads to about 15% higher annual N demand than would be the case if negative NPP values were taken into consideration.

A2.2 Passive N uptake

N demand is weighed against passive and active N uptake. Passive N uptake depends on the concentration of mineral N in the soil and the water taken up by the plants through their roots as a result of transpiration. We assume that plants have no control over N that comes into the plant through this passive uptake. This is consistent with existing empirical evidence that too much N in soil will cause N toxicity (Goyal and Huffaker, 1984), although we do not model N toxicity in our framework. If the N demand for the current time step cannot be met by passive N uptake then a plant compensates for the deficit (i.e., the remaining demand) through active N uptake.

The NH_4^+ concentration in the soil moisture within the rooting zone, referred to as $[NH_4]$ (gN gH₂O⁻¹), is calculated as

$$[\mathrm{NH}_4] = \frac{N_{\mathrm{NH}4}}{\sum_{i=1}^{i \le r_d} 10^6 \,\theta_i \, z_i}$$
(A3)

where N_{NH4} is ammonium pool size (gN m⁻²), θ_i is the volumetric soil moisture content for soil layer *i* (m³ m⁻³), z_i is the thickness of soil layer *i* (m), r_d is the soil layer in which the 99% rooting depth lies as dynamically simulated by the biogeochemical module of CLASSIC following Arora and Boer (2003). The 10⁶ term converts units of the denominator term to gH₂O m⁻². NO₃⁻ concentration ([NO₃], gN gH₂O⁻¹) in the rooting zone is found in a similar fashion. The transpiration flux q_t (kgH₂O m⁻² s⁻¹) (calculated in the physics module of CLASSIC) is multiplied by [NH₄] and [NO₃] (gN gH₂O⁻¹) to obtain passive uptake of NH₄⁺ and NO₃⁻ (gN m⁻² day⁻¹) as

$$U_{p,NH4} = 86400 \times 10^{3} \beta q_{t} [\text{NH}_{4}]$$

$$U_{p,NO3} = 86400 \times 10^{3} \beta q_{t} [\text{NO}_{3}]$$
(A4)

where the multiplier 86400× 10^3 converts q_t to units of gH₂O m⁻² day⁻¹, and β (see Table A1) is the dimensionless mineral N distribution coefficient with value less than 1 that accounts for the fact that NH₄ and NO₃ available in the soil are not well mixed in the soil moisture solution, and not completely accessible to roots, to be taken up by plants.

A2.3 Active N uptake

The active plant N uptake is parameterized as a function of fine root biomass and the size of NH₄⁺ and NO₃⁻ pools in a manner similar to Gerber et al. (2010) and Wania et al (2012). CLASSIC does not explicitly models fine root biomass. We therefore calculate the fraction of fine root biomass using an empirical relationship that is very similar to the relationship developed by Kurz et al. (1996) (their equation 5) but also works below total root biomass of 0.33 Kg C m⁻² (the Kurz et al. (1996) relationship yields a fraction of fine root more than 1.0 below this threshold). The fraction of fine root biomass (f_r) is given by

$$f_r = 1 - \frac{c_R}{c_R + 0.6}$$
(A5)

where C_R is the root biomass (KgC m⁻²) simulated by the biogeochemical module of CLASSIC. Equation (A5) yields fine root fraction approaching 1.0 as C_R approaches 0, so at very low root biomass values all roots are considered fine roots. For grasses the fraction of fine root biomass is set to 1. The maximum or potential active N uptake is given by

$$U_{a,pot,NH4} = \frac{\varepsilon f_r C_R N_{NH4}}{k_{p,\frac{1}{2}} r_d + N_{NH4} + N_{NO3}}$$

$$U_{a,pot,NO3} = \frac{\varepsilon f_r C_R N_{NO3}}{k_{p,\frac{1}{2}} r_d + N_{NH4} + N_{NO3}}$$
(A6)

where ε is the efficiency of fine roots to take up N per unit fine root mass per day (gN gC⁻¹ day⁻¹), $k_{p,\frac{1}{2}}$ is the half saturation constant (gN m⁻³), and N_{NH4} and N_{NO3} are the ammonium and nitrate pool sizes (gN m⁻²) as mentioned earlier. Depending on the geographical location and the time of the year, if passive uptake alone can satisfy the plant demand the actual active N uptake of NH₄ ($U_{a,actual,NH4}$) and NO₃ ($U_{a,actual,NO3}$) is set to zero. Conversely, during other times both passive and potential active N uptakes may not be able to satisfy the demand and in this case actual active N uptake is equal to its potential rate. At times other than these, the actual active uptake is lower than its potential value. This adjustment of actual active uptake is illustrated in equation (A7).

$$\text{if} \left(\Delta_{WP} \leq U_{p,NH4} + U_{p,NO3} \right) \\ U_{a,actual,NH4} = 0 \\ U_{a,actual,NO3} = 0$$

$$\text{if } \left(\Delta_{WP} > U_{p,NH4} + U_{p,NO3} \right) \wedge \left(\Delta_{WP} < U_{p,NH4} + U_{p,NO3} + U_{a,pot,NH4} + U_{a,pot,NH4} \right) \\ U_{a,actual,NH4} = \left(\Delta_{WP} - U_{p,NH4} - U_{p,NO3} \right) \frac{U_{a,pot,NH4}}{U_{a,pot,NH4} + U_{a,pot,NH4}} \\ U_{a,actual,NO3} = \left(\Delta_{WP} - U_{p,NH4} - U_{p,NO3} \right) \frac{U_{a,pot,NH4}}{U_{a,pot,NH4} + U_{a,pot,NH4}}$$
(A7)

 $if (\Delta_{WP} \ge U_{p,NH4} + U_{p,NO3} + U_{a,pot,NH4} + U_{a,pot,NO3})$ $U_{a,actual,NH4} = U_{a,pot,NH4}$ $U_{a,actual,NO3} = U_{a,pot,NO3}$

Finally, the total N uptake (U), uptake of NH_4^+ (U_{NH4}) and NO_3^- (U_{NO3}), are calculated as
$$U = U_{p,NH4} + U_{p,NO3} + U_{a,actual,NH4} + U_{a,actual,NO3}$$

$$U_{NH4} = U_{p,NH4} + U_{a,actual,NH4}$$

$$U_{NO3} = U_{p,NO3} + U_{a,actual,NO3}$$
(A8)

A2.4 Litterfall

Nitrogen litterfall from the vegetation components is directly tied to the carbon litterfall calculated by the phenology module of CLASSIC through their current C:N ratios.

$$LF_i = \frac{(1 - r_L)LF_{i,C}}{C:N_i}, i = L, S, R$$
 (A9)

where $LF_{i,C}$ is the carbon litterfall rate (gC day⁻¹) for component *i*, calculated by the phenology module of CLASSIC, and division by its current C:N ratio yields the nitrogen litterfall rate, r_L is the leaf resorption coefficient that simulates the resorption of N from leaves of deciduous tree PFTs before they are shed and $r_i = 0$, i = R, S. Litter from each vegetation component is proportioned between structural and non-structural components according to their pool sizes.

A2.5 Allocation and reallocation

Plant N uptake by roots is allocated to leaves and stem to satisfy their N demand. When plant N demand is greater than zero, total N uptake (U) is divided between leaves, stem, and root components in proportion to their demands such that the allocation fractions for N (a_i , i = L, S, R) are calculated as

$$a_{i} = \frac{\Delta_{i}}{\Delta_{WP}}, i = L, S, R$$

$$A_{R2L} = a_{L} (U_{NH4} + U_{NO3})$$

$$A_{R2S} = a_{S} (U_{NH4} + U_{NO3})$$
(A10)

where A_{R2L} and A_{R2S} are the amounts of N allocated from root to leaves and stem components, respectively, as mentioned in the main text for equation (8). During periods of negative NPP due to adverse climatic conditions (e.g. during winter or drought seasons) the plant N demand is set to zero but passive N uptake, associated with transpiration, may still be occurring if the leaves are still on. Even though there is no N demand, passive N uptake still needs to be partitioned among the vegetation components. During periods of negative NPP allocation fractions for N are, therefore, calculated in proportion to the minimum PFT-dependent C:N ratios of the leaves, stem, and root components as follows.

$$a_i = \frac{1/C:N_{i,\min}}{1/C:N_{L,\min} + 1/C:N_{S,\min} + 1/C:N_{R,\min}}, i = L, S, R$$
(A11)

For grasses, which do not have a stem component, equations (A10) and (A11) are modified accordingly by removing the terms associated with the stem component.

Three additional rules override these general allocation rule specifically for deciduous tree PFTs (or deciduous PFTs in general). First, no N allocation is made to leaves once leaf fall is initiated for deciduous tree PFTs and plant N uptake is proportioned between stem and root components based on their demands in a manner similar to equation (A10). Second, for deciduous tree PFTs, a fraction of leaf N is resorbed from leaves back into stem and root as follows

$$R_{L2R} = r_L LF_L \frac{N_{R,NS}}{N_{R,NS} + N_{S,NS}}$$

$$R_{L2S} = r_L LF_L \frac{N_{S,NS}}{N_{R,NS} + N_{S,NS}}$$
(A12)

where r_L is the leaf resorption coefficient, as mentioned earlier, and LF_L is the leaf litter fall rate. Third, and similar to resorption, at the time of leaf onset for deciduous tree PFTs, N is reallocated to leaves (in conjunction with reallocated carbon as explained in Asaadi et al. (2018)) from stem and root components.

$$R_{R2L} = \frac{R_{R2L,C}}{C:N_L} \frac{N_{R,NS}}{N_{R,NS} + N_{S,NS}}$$

$$R_{S2L} = \frac{R_{S2L,C}}{C:N_L} \frac{N_{S,NS}}{N_{R,NS} + N_{S,NS}}$$
(A13)

where $R_{R2L,C}$ and $R_{S2L,C}$ represent reallocation of carbon from non-structural stem and root components to leaves and division by $C: N_L$ converts the flux into N units. The reallocation demand for N, at the time of leaf onset, is proportioned between non-structural pools of stem and root according to their sizes.

A2.6 N mineralization, immobilization, and humification

Decomposition of litter ($R_{h,D}$) and soil organic matter ($R_{h,H}$) releases C to the atmosphere and this flux is calculated by the heterotrophic respiration module of CLASSIC. The amount of N mineralized is calculated straightforwardly by division with the current C:N ratios of the respective pools and contributes to the NH₄⁺ pool.

$$M_{D,NH4} = \frac{R_{h,D}}{C:N_D}$$

$$M_{H,NH4} = \frac{R_{h,H}}{C:N_H}$$
(A14)

An implication of mineralization contributing to the NH_4^+ pool, in addition to BNF and fertilizer inputs that also contribute solely to the NH_4^+ pool, is that the simulated NH_4^+ pool is typically larger than the NO_3^- pool. The exception is the dry and arid regions where the lack of denitrification, as discussed below in Section A.3.2., leads to a build up of the NO_3^- pool.

Immobilization of mineral N from the NH_4^+ and NO_3^- pools into the soil organic matter pool is meant to keep the soil organic matter C:N ratio ($C: N_H$) at its specified value of 13 for all PFTs in a manner similar to Wania et al. (2012) and Zhang et al. (2018). A value of 13 is within the range of observation-based estimates which vary from about 8 to 25 (Zinke et al., 1998; Tipping et al., 2016). Although $C: N_H$ varies geographically, the driving factors behind this variability remain unclear. It is even more difficult to establish if increasing atmospheric CO₂ is changing $C: N_H$ given the large heterogeneity in soil organic C and N densities, and the difficulty in measuring small trends for such large global pools. We therefore make the assumption that the $C: N_H$ does not change with time. An implication of this assumption is that as GPP increases with increasing atmospheric CO₂ rises, and plant litter becomes enriched in C with increasing C:N ratio of litter, more and more N is locked up in the soil organic matter pool because its C:N ratio is fixed. As a result, mineral N pools of NH4⁺ and NO3⁻ decrease in size and plant N content subsequently follows. This is consistent with studies of plants grown in elevated CO2 environment. For example, Cotrufo et al. (1998) summarize results from 75 studies and find an average 14% reduction in N concentration for above-ground tissues. Wang et al. (2019) find increased C concentration by 0.8–1.2% and a reduction in N concentration by 7.4–10.7% for rice and winter wheat crop rotation system under elevated CO₂.

Immobilization from both the NH₄⁺ and NO₃⁻ pools is calculated in proportion to their pool sizes, employing the fixed $C: N_H$ ratio as

$$O_{NH4} = \max\left(0, \left(\frac{C_H}{C:N_H} - N_H\right) \frac{N_{NH4}}{N_{NH4} + N_{NO3}}\right)$$

$$O_{NO3} = \max\left(0, \left(\frac{C_H}{C:N_H} - N_H\right) \frac{N_{NO3}}{N_{NH4} + N_{NO3}}\right)$$
(A15)

Finally, the carbon flux of humified litter from the litter to the soil organic matter pool ($H_{C,D2H}$) is also associated with a corresponding N flux that depends on the C:N ratio of the litter pool.

$$H_{N,D2H} = \frac{H_{C,D2H}}{C:N_D}$$
(A16)

A3. N cycling in mineral pools and N outputs

This section presents the parameterizations of nitrification (which results in transfer of N from the NH_4^+ to the NO_3^- pool) and the associated gaseous fluxes of N_2O and NO (referred to as nitrifier denitrification), gaseous fluxes of N_2O , NO, and N_2 associated with denitrification, volatilization of NH_4 into NH_3 , and leaching of NO_3^- in runoff.

A3.1 Nitrification

Nitrification, the oxidative process converting ammonium to nitrate, is driven by microbial activity and as such constrained both by high and low soil moisture (Porporato et al., 2003). At high soil moisture content there is little aeration of soil and this constrains aerobic microbial activity, while at low soil moisture content microbial activity is constrained by moisture limitation. In CLASSIC, the heterotrophic respiration from soil carbon is constrained similarly but rather than using soil moisture the parameterization is based on soil matric potential (Arora, 2003; Melton et al., 2015). Here, we use the exact same parameterization. In addition to soil moisture, nitrification (gN m⁻² day⁻¹) is modelled as a function of soil temperature and the size of the NH₄⁺ pool as follows

$$I_{NO3} = \eta f_I(T_{0.5}) f_I(\psi) N_{NH4}$$
(A17)

where η is the nitrification coefficient (day⁻¹), $f_I(\psi)$ is the dimensionless soil moisture scalar that varies between 0 and 1 and depends on soil matric potential (ψ), $f_I(T_{0.5})$ is the dimensionless soil temperature scalar that depends on average soil temperature ($T_{0.5}$) over the top 0.5 m soil depth over which nitrification is assumed to occur (following Xu-Ri and Prentice, 2008), and N_{NH4} is the ammonium pool size (gN m⁻²), as mentioned earlier. Both $f_I(T_{0.5})$ and $f_I(\psi)$ are parameterized following Arora (2003) and Melton et al. (2015). $f_I(T_{0.5})$ is a Q₁₀ type function with a temperature dependent Q₁₀

$$f_I(T_{0.5}) = Q_{10,I}^{(T_{0.5}-20)/10}, Q_{10,I} = 1.44 + 0.56 \left(\tanh\left(0.075(46 - T_{0.5})\right) \right)$$
(A18)

The reference temperature for nitrification is set to 20 °C following Lin et al. (2000). $f_I(\psi)$ is parameterized as a step function of soil matric potential (ψ) as

$$f_{I}(\psi) = \begin{cases} 0.5 & \text{if } \psi \leq \psi_{sat} \\ 1 - 0.5 \frac{\log(0.4) - \log(\psi)}{\log(0.4) - \log(\psi_{sat})} & \text{if } 0.4 > \psi \geq \psi_{sat} \\ 1 & \text{if } 0.6 \geq \psi \geq 0.4 \\ 1 - 0.8 \frac{\log(\psi) - \log(0.6)}{\log(100) - \log(0.6)} & \text{if } 100 > \psi > 0.6 \\ 0.2 & \text{if } \psi > 100 \end{cases}$$
(A19)

where the soil matric potential (ψ) is found, following Clapp and Hornberger (1978), as a function of soil moisture (θ)

$$\psi(\theta) = \psi_{sat} \left(\frac{\theta}{\theta_{sat}}\right)^{-B}.$$
 (A20)

Saturated matric potential (ψ_{sat}), soil moisture at saturation (i.e. porosity) (θ_{sat}), and the parameter *B* are calculated as functions of percent sand and clay in soil following Clapp and

Hornberger (1978) as shown in Melton et al. (2015). The soil moisture scalar $f_I(\psi)$ is calculated individually for each soil layer and then averaged over the soil depth of 0.5 m over which nitrification is assumed to occur.

Gaseous fluxes of NO (I_{NO}) and N₂O (I_{N2O}) associated with nitrification, and generated through nitrifier denitrification, are assumed to be directly proportional to the nitrification flux (I_{NO3}) as

$$I_{NO} = \eta_{NO} \ I_{NO3} \\ I_{N2O} = \eta_{N2O} \ I_{NO3}.$$
(A21)

where η_{NO} and η_{N2O} are dimensionless fractions which determine what fractions of nitrification flux are emitted as NO and N₂O.

A3.2 Denitrification

Denitrification is the stepwise microbiological reduction of nitrate to NO, N₂O, and ultimately to N₂ in complete denitrification. Unlike nitrification, however, denitrification is primarily an anaerobic process (Tomasek et al., 2017) and therefore occurs when soil is saturated. As a result, we use a different soil moisture scalar than for nitrification. Similar to nitrification, denitrification is modelled as a function of soil moisture, soil temperature and the size of the NO₃⁻ pool as follows to calculate the gaseous fluxes of NO, N₂O, and N₂.

$$E_{NO} = \mu_{NO} f_E(T_{0.5}) f_E(\theta) N_{NO3}$$

$$E_{N2O} = \mu_{N2O} f_E(T_{0.5}) f_E(\theta) N_{NO3}$$

$$E_{N2} = \mu_{N2} f_E(T_{0.5}) f_E(\theta) N_{NO3}$$
(A22)

where μ_{NO} , μ_{N2O} , and μ_{N2} are coefficients (day⁻¹) that determine daily rates of emissions of NO, N₂O, and N₂. The temperature scalar $f_E(T_{0.5})$ is exactly the same as the one for nitrification $(f_I(T_{0.5}))$ since denitrification is also assumed to occur over the same 0.5 soil depth. The soil moisture scalar $f_E(\theta)$ is given by

$$f_E(\theta) = 1 - \tanh\left(2.5 \left(\frac{1 - w(\theta)}{1 - w_d}\right)^2\right)$$

$$w(\theta) = \max\left(0, \min\left(1, \frac{\theta - \theta_w}{\theta_f - \theta_w}\right)\right)$$
(A23)

where w is the soil wetness that varies between 0 and 1 as soil moisture varies between wilting point (θ_w) and field capacity (θ_f), and w_d is the threshold soil wetness for denitrification below which very little denitrification occurs. Since very little denitrification occurs when soil wetness is below w_d this leads to build up of the NO₃⁻ pool in arid regions.

A3.3 NO₃⁻ leaching

Leaching is the loss of water-soluble ions through runoff. In contrast to positively charged NH₄⁺ ions (i.e. cations), the NO₃⁻ ions do not bond to soil particles because of the limited exchange capacity of soil for negatively charged ions (i.e. anions). As a result, leaching of N in the form of NO₃⁻ ions is a common water quality problem, particularly over cropland regions. The leaching flux (L_{NO3} , gN m⁻² day⁻¹) is parameterized to be directly proportional to baseflow (b_t , Kg m⁻² s⁻¹) calculated by the physics module of CLASSIC and the size of the NO₃ pool (N_{NO3} , gN m⁻²). Baseflow is the runoff rate from the bottommost soil layer.

$$L_{NO3} = 86400 \ \varphi \ b_t \ N_{NO3} \tag{A24}$$

where the multiplier 86400 converts units to per day, and φ is the leaching coefficient (m² Kg⁻¹) that can be thought of as the soil particle surface area (m²) that 1 Kg of water (or about 0.001 m³) can effectively wash to leach the nutrients.

A3.4 NH₃ volatilization

NH₃ volatilization (V_{NH3} , gN m⁻² day⁻¹) is parametrized as a function of pool size of NH₄⁺, soil temperature, soil pH, aerodynamic and boundary layer resistances, and atmospheric NH₃ concentration in a manner similar to Riddick et al. (2016) as

$$V_{NH4} = \vartheta \ 86400 \ \frac{1}{r_a + r_b} \left(\chi - [\mathrm{NH}_{3,a}] \right) \tag{A25}$$

where ϑ is the dimensionless NH₃ volatilization coefficient which is set to less than 1 to account for the fact that a fraction of ammonia released from the soil is captured by vegetation, r_a (s m⁻¹) is the aerodynamic resistance calculated by the physics module of CLASSIC, χ is the ammonia (NH₃) concentration at the interface of the top soil layer and the atmosphere (g m⁻³), [NH_{3,a}] is the atmospheric NH₃ concentration specified at 0.3×10^{-6} g m⁻³ following Riddick et al. (2016), 86400 converts flux units from gN m⁻² s⁻¹ to gN m⁻² day⁻¹, and r_b (s m⁻¹) is the boundary layer resistance calculated following Thom (1975) as

$$r_b = 6.2 \, u_*^{-0.67} \tag{A26}$$

where u_* (m/s) is the friction velocity provided by the physics module of CLASSIC. The ammonia (NH₃) concentration at surface (χ), in a manner similar to Riddick et al. (2016), is calculated as

$$\chi = 0.26 \frac{N_{NH4}}{1 + K_H + K_H [H^+] / K_{NH4}}$$
(A27)

where the coefficient 0.26 is the fraction of ammonium in the top 10 cm soil layer assuming exponential distribution of ammonium along the soil depth (given by $3e^{-3z}$, where z is the soil depth), K_H (dimensionless) is the Henry's law constant for NH₃, K_{NH4} (mol L⁻¹) is the dissociation equilibrium constant for aqueous NH₃, and H^+ (mol L⁻¹) is the concentration of hydrogen ion that depends on the soil pH ($H^+ = 10^{-pH}$). K_H and K_{NH4} are modelled as functions of soil temperature of the top 10 cm soil layer ($T_{0.1}$) following Riddick et al. (2016) as

$$K_{H} = 4.59 T_{0.1} \exp\left(4092 \left(\frac{1}{T_{0.1}} - \frac{1}{T_{ref,v}}\right)\right)$$
(A28)
$$K_{NH4} = 5.67 \times 10^{-10} \exp\left(-6286 \left(\frac{1}{T_{0.1}} - \frac{1}{T_{ref,v}}\right)\right)$$

where $T_{ref,v}$ is the reference temperature of 298.15 K.