

Implementation of nitrogen cycle in the CLASSIC land model

Ali Asaadi and Vivek. K. Arora

Canadian Centre for Climate Modelling and Analysis, Environment Canada, University of Victoria,
Victoria, B.C., V8W 2Y2, Canada

1 **Abstract**

2

3 A terrestrial nitrogen (N) cycle model is coupled to carbon (C) cycle in the framework of the Canadian Land
4 Surface Scheme Including biogeochemical Cycles (CLASSIC). CLASSIC currently models physical and
5 biogeochemical processes and simulates fluxes of water, energy, and CO_2 at the land-atmosphere
6 boundary. Similar to most models, gross primary productivity in CLASSIC increases in response to
7 increasing atmospheric CO_2 concentration. In the current model version, a downregulation
8 parameterization emulates the effect of nutrient constraints and scales down potential photosynthesis
9 rates, using a globally constant scalar, as a function of increasing CO_2 . In the new model when nitrogen
10 (N) and carbon (C) cycles are coupled, cycling of N through the coupled soil-vegetation system facilitates
11 the simulation of leaf N amount and maximum carboxylation capacity (V_{cmax}) prognostically. An increase
12 in atmospheric CO_2 decreases leaf N amount, and therefore V_{cmax} , allowing the simulation of
13 photosynthesis downregulation as a function of N supply. All primary N cycle processes, that represent
14 the coupled soil-vegetation system, are modelled explicitly. These include biological N fixation, treatment
15 of externally specified N deposition and fertilization application, uptake of N by plants, transfer of N to
16 litter via litterfall, mineralization, immobilization, nitrification, denitrification, ammonia volatilization,
17 leaching, and the gaseous fluxes of NO , N_2O , and N_2 . The interactions between terrestrial C and N cycles
18 are evaluated by perturbing the coupled soil-vegetation system in CLASSIC with one forcing at a time over
19 the 1850-2017 historical period. These forcings include the increase in atmospheric CO_2 , change in
20 climate, increase in N deposition, and increasing crop area and fertilizer input, over the historical period.
21 Increase in atmospheric CO_2 increases the C:N ratio of vegetation; climate warming over the historical
22 period increases N mineralization and leads to a decrease in vegetation C:N ratio; N deposition also
23 decreases vegetation C:N ratio; and fertilizer input increases leaching, NH_3 volatilization, and gaseous
24 losses of N_2 , N_2O , and NO . These model responses are consistent with conceptual understanding of the
25 coupled C and N cycles. The simulated terrestrial carbon sink over the 1959-2017 period, from the
26 simulation with all forcings, is 2.0 Pg C/yr and compares reasonably well with the quasi observation-based
27 estimate from the 2019 Global Carbon Project (2.1 Pg C/yr). The contribution of increasing CO_2 , climate
28 change, and N deposition to carbon uptake by land over the historical period (1850-2017) is calculated to
29 be 84%, 2%, and 14%, respectively.

30

31 **1. Introduction**

32 The uptake of carbon (C) by land and ocean in response to the increase in anthropogenic
33 fossil fuel emissions of CO₂ has served to slow down the growth rate of atmospheric CO₂ since
34 the start of the industrial revolution. At present, about 55% of total carbon emitted into the
35 atmosphere is taken up by land and ocean (Le Quéré et al., 2018; Friedlingstein et al., 2019). It is
36 of great policy, societal, and scientific relevance whether land and ocean will continue to provide
37 this ecosystem service. Over land, as long as photosynthesis is not water limited, the uptake of
38 carbon in response to increasing anthropogenic CO₂ emissions is driven by two primary factors,
39 1) the CO₂ fertilization of the terrestrial biosphere, and 2) the increase in temperature, both of
40 which are associated with increasing [CO₂]. The CO₂ fertilization effect increases photosynthesis
41 rates for about 80% of the world's vegetation that uses the C₃ photosynthetic pathway and is
42 currently limited by [CO₂] (Still et al., 2003; Zhu et al., 2016). The remaining 20% of vegetation
43 uses the C₄ photosynthetic pathway that is much less sensitive to [CO₂]. Warming increases
44 carbon uptake by vegetation in mid-high latitude regions where growth is currently limited by
45 low temperatures (Zeng et al., 2011).

46 Even when atmospheric CO₂ is not limiting for photosynthesis, and near surface air
47 temperature is optimal, vegetation cannot photosynthesize at its maximum possible rate if
48 available water and nutrients (most importantly nitrogen (N) and phosphorus (P)) constrain
49 photosynthesis (Vitousek and Howarth, 1991; Reich et al., 2006b). In the absence of water and
50 nutrients, photosynthesis simply cannot occur. N is a major component of chlorophyll (the
51 compound through which plants photosynthesize) and amino acids (that are the building blocks
52 of proteins). The constraint imposed by available water and nutrients implies that the carbon

53 uptake by land over the historical period in response to increasing [CO₂] is lower than what it
54 would have been if water and nutrients were not limiting. This lower than maximum theoretically
55 possible rate of increase of photosynthesis in response to increasing atmospheric CO₂ is referred
56 to as downregulation (Faria et al., 1996; Sanz-Sáez et al., 2010). Typically, however, the term
57 downregulation of photosynthesis is used only in the context of nutrients and not water.
58 Downregulation is defined as a decrease in photosynthetic capacity of plants grown at elevated
59 CO₂ in comparison to plants grown at baseline CO₂ (McGuire et al., 1995). However, despite the
60 decrease in photosynthetic capacity, the photosynthesis rate for plants grown at elevated CO₂ is
61 still higher than the rate for plants grown and measured at baseline CO₂ because of higher
62 background CO₂.

63 Earth system models (ESMs) that explicitly represent coupling of the global carbon cycle
64 and physical climate system processes are the only tools available at present that, in a physically
65 consistent way, are able to project how land and ocean carbon cycles will respond to future
66 changes in [CO₂]. Such models are routinely compared to one another under the auspices of the
67 Coupled Model Intercomparison Project (CMIP) every 6-7 years. The most recent and sixth phase
68 of CMIP (CMIP6) is currently underway (Eyring et al., 2016). Interactions between carbon cycle
69 and climate in ESMs have been compared under the umbrella of the Coupled Climate-Carbon
70 Cycle Model Intercomparison Project (C⁴MIP) (Jones et al., 2016) which is an approved MIP of
71 the CMIP. Comparison of land and ocean carbon uptake in C⁴MIP studies (Friedlingstein et al.,
72 2006; Arora et al., 2013, 2020) indicate that the inter-model uncertainty in future land carbon
73 uptake across ESMs is more than three times than the uncertainty for the ocean carbon uptake.
74 The reason for widely varying estimates of future land carbon uptake is that our understanding

75 of biological processes that determine land carbon uptake is much less advanced than the
76 physical processes which primarily determine carbon uptake over the ocean. In the current
77 generation of terrestrial ecosystem models, other than leaf level photosynthesis for which a
78 theoretical framework exists, almost all of the other biological processes are represented on the
79 basis of empirical observations and parameterized in one way or another. In addition, not all
80 models include nutrient cycles. In the absence of an explicit representation of nutrient
81 constraints on photosynthesis, land models in ESMs parameterize downregulation of
82 photosynthesis in other ways that reduce the rate of increase of photosynthesis to values below
83 its theoretically maximum possible rate, as $[CO_2]$ increases (e.g., Arora et al., 2009). Comparison
84 of models across 5th and 6th phase of CMIP shows that the fraction of models with land N cycle is
85 increasing (Arora et al., 2013, 2020).

86 The nutrient constraints on photosynthesis are well recognized (Vitousek and Howarth,
87 1991; Arneth et al., 2010). Terrestrial carbon cycle models neglect of nutrient limitation on
88 photosynthesis has been questioned from an ecological perspective (Reich et al., 2006a) and it
89 has been argued that without nutrient constraints these models will overestimate future land
90 carbon uptake (Hungate et al., 2003). Since in the real world photosynthesis downregulation does
91 indeed occur due to nutrient constraints, it may be argued that more confidence can be placed
92 in future projections of models that explicitly model the interactions between the terrestrial C
93 and N cycles rather than parameterize it in some other way.

94 Here, we present the implementation of N cycle in the Canadian Land Surface Scheme
95 Including biogeochemical Cycles (CLASSIC) model, which serves as the land component in the
96 family of Canadian Earth System Models (Arora et al., 2009, 2011; Swart et al., 2019). Section 2

97 briefly describes existing physical and carbon cycle components and processes of the CLASSIC
98 model. The conceptual basis of the new N cycle model and its parameterizations are described
99 in Section 3. Section 4 outlines the methodology and data sets that we have used to perform
100 various simulations over the 1850-2017 historical period to assess the realism of the coupled C
101 and N cycles in CLASSIC in response to various forcings. Results from these simulations over the
102 historical period are presented in Section 5 and finally discussion and conclusions are presented
103 in Section 6.

104 **2. The CLASSIC land model**

105 **2.1 The physical and carbon biogeochemical processes**

106 The CLASSIC model is the successor to, and based on, the coupled Canadian Land Surface
107 Scheme (CLASS; Verseghy, 1991; Verseghy et al., 1993) and Canadian Terrestrial Ecosystem
108 Model (CTEM; Arora and Boer, 2005; Melton and Arora, 2016). CLASS and CTEM model physical
109 and biogeochemical processes in CLASSIC, respectively. Both CLASS and CTEM have a long history
110 of development as described in Melton et al. (2019) who also provide an overview of the CLASSIC
111 land model and describe its new technical developments that launched CLASSIC as a community
112 model. CLASSIC simulates land-atmosphere fluxes of water, energy, momentum, CO₂, and CH₄.
113 The CLASSIC model can be run at a point scale, e.g. using meteorological and geophysical data
114 from a FluxNet site, or over a spatial domain, that may be global or regional, using gridded data.
115 We briefly summarize the primary physical and carbon biogeochemical processes of CLASSIC here
116 that are relevant in the context of implementation of the N cycle in the model.

117 **2.1.1 Physical processes**

118 The physical processes of CLASSIC which simulate fluxes of water, energy and momentum,
119 are calculated over vegetated, snow, and bare fractions on a model grid at a sub-daily time step
120 of 30 minutes. The vegetation is described in terms of four plant functional types (PFTs):
121 needleleaf trees, broadleaf trees, crops, and grasses. In the current study, the fractional coverage
122 of these four PFTs are specified over the historical period. The structural attributes of vegetation
123 are described by leaf area index (LAI), vegetation height, canopy mass, and rooting distribution
124 through the soil layers and these are all simulated dynamically by the biogeochemical module of
125 CLASSIC. In the model version used here, 20 ground layers starting with 10 layers of 0.1 m
126 thickness are used. The thickness of layers gradually increases to 30 m for a total ground depth
127 of over 61 m. The depth to bedrock varies geographically and is specified based on a soil depth
128 data set. Liquid and frozen soil moisture contents, and soil temperature, are determined
129 prognostically for permeable soil layers. CLASSIC also prognostically models the temperature,
130 mass, albedo, and density of a single layer snow pack (when the climate permits snow to exist).
131 Interception and throughfall of rain and snow by the canopy, and the subsequent unloading of
132 snow, are also modelled. The energy and water balance over the land surface, and the transfer
133 of heat and moisture through soil, affect the temperature and soil moisture content of soil layers
134 all of which consequently affect the carbon and nitrogen cycle processes.

135

136 **2.1.2 Biogeochemical processes**

137 The biogeochemical processes in CLASSIC are based on CTEM, and described in detail in
138 the appendix of Melton and Arora (2016). The biogeochemical component of CLASSIC simulates

139 the land-atmosphere exchange of CO₂ and while doing so simulates vegetation as a dynamic
140 component. The biogeochemical module of CLASSIC uses information about net radiation, and
141 liquid and frozen soil moisture contents of all the soil layers along with air temperature to
142 simulate photosynthesis and prognostically calculates amount of carbon in the model's three live
143 (leaves, stem, and root) and two dead (litter and soil) carbon pools for each PFT. The C amount
144 in these pools is represented as amount of C per unit land area (kg C/m²). The litter and soil carbon
145 pools are not tracked for each soil layer. Litter is assumed to be near surface and an exponential
146 distribution for soil carbon is assumed with values decreasing with soil depth. Photosynthesis in
147 CLASSIC is modelled at the same sub-daily time as the physical processes. The remainder of the
148 biogeochemical processes are modelled at a daily time step. These include: 1) autotrophic and
149 heterotrophic respirations from all the live and dead carbon pools, respectively, 2) allocation of
150 photosynthate from leaves to stem and roots, 3) leaf phenology, 4) turnover of live vegetation
151 components that generates litter, 5) mortality, 6) land use change (LUC), 7) fire (Arora and
152 Melton, 2018), and 8) competition between PFTs for space (not switched on in this study).

153 Figure A1 in the appendix shows the existing structure of CLASSIC's carbon pools along
154 with the addition of non-structural carbohydrate pools for each of the model's live vegetation
155 components. The non-structural pools are not yet represented in the current operational version
156 of CLASSIC (Melton et al., 2019). The addition of non-structural carbohydrate pools is explained
157 in Asaadi et al. (2018) and helps improve leaf phenology for cold deciduous tree PFTs. The N cycle
158 model presented here is built on the research version of CLASSIC that consists of non-structural
159 and structural carbon pools for the leaves (L), stem (S), and root (R) components and the two
160 dead carbon pools in litter or detritus (D) and soil or humus (H) (Figure A1). We briefly describe

161 these carbon pools and fluxes between them, since N cycle pools and fluxes are closely tied to
162 carbon pools and fluxes. The gross primary productivity (GPP) flux enters the leaves from the
163 atmosphere. This non-structural photosynthate is allocated between leaves, stem, and roots. The
164 non-structural carbon then moves into the structural carbohydrates pool. Once this conversion
165 occurs structural carbon cannot be converted back to non-structural labile carbon. The model
166 attempts to maintain a minimum fraction of non-structural to total carbon in each component of
167 about 0.05 (Asaadi et al., 2018). Non-structural carbon is moved from stem and root components
168 to leaves, at the time of leaf onset for deciduous PFTs, and this is termed reallocation. The
169 movement of non-structural carbon is indicated by red arrows. Maintenance and growth
170 respiration (indicated by subscript *m* and *g* in Figure A1), which together constitute autotrophic
171 respiration, occur from the non-structural components of the three live vegetation components.
172 Litterfall from the structural and non-structural components of the vegetation components
173 contributes to the litter pool. Leaf litterfall is generated due to normal turnover of leaves as well
174 as cold and drought stresses, and reduction in day length. Stem and root litter is generated due
175 to their turnover based on their specified life spans. Heterotrophic respiration occurs from the
176 litter and soil carbon pools depending on soil moisture and temperature, and humified litter is
177 moved from litter to the soil carbon pool.

178 All these terrestrial ecosystem processes and the amount of carbon in the live and dead
179 carbon pools are modelled explicitly for nine PFTs that map directly onto the four base PFTs used
180 in the physics module of CLASSIC. Needleleaf trees are divided into their deciduous and
181 evergreen phenotypes, broadleaf trees are divided into cold deciduous, drought deciduous, and
182 evergreen phenotypes, and crops and grasses are divided based on their photosynthetic

183 pathways into C₃ and C₄ versions. The sub-division of PFTs is required for modelling
184 biogeochemical processes. For instance, simulating leaf phenology requires the distinction
185 between evergreen and deciduous phenotypes of needleleaf and broadleaf trees. However, once
186 LAI is known, a physical process (such as the interception of rain and snow by canopy leaves) does
187 not need to know the underlying evergreen or deciduous nature of leaves.

188 The prognostically determined biomasses in leaves, stem, and roots are used to calculate
189 structural vegetation attributes that are required by the physics module. Leaf biomass is used to
190 calculate LAI using PFT-dependent specific leaf area. Stem biomass is used to calculate vegetation
191 height for tree and crop PFTs, and LAI is used to calculate vegetation height for grasses. Finally,
192 root biomass is used to calculate rooting depth and distribution which determines the fraction of
193 roots in each soil layer. Only total root biomass is tracked; fine and coarse root biomasses are not
194 separately tracked. Fraction of fine roots is calculated as a function of total root biomass, as
195 shown later.

196 The approach for calculating photosynthesis in CLASSIC is based on the standard Farquhar
197 et al. (1980) model for C₃ photosynthetic pathway, and Collatz et al. (1992) for the C₄
198 photosynthetic pathway and presented in detail in Arora (2003). The model calculates gross
199 photosynthesis rate that is co-limited by the photosynthetic enzyme Rubisco, by the amount of
200 available light, and by the capacity to transport photosynthetic products for C₃ plants or the CO₂-
201 limited capacity for C₄ plants. In the real world, the maximum Rubisco limited rate (V_{cmax}) depends
202 on the leaf N amount since photosynthetic capacity and leaf N are strongly correlated (Evans,
203 1989; Field and Mooney, 1986; Garnier et al., 1999). Leaf N amount may be represented per unit
204 leaf area (gN/m²), per unit ground area (gN/m²), or per unit leaf mass (gN/gC or %) (Loomis, 1997;

205 Li et al., 2018). In the current operational version of CLASSIC, the N cycle is not represented and
206 the PFT-dependent values of V_{cmax} are therefore specified based on Kattge et al. (2009) who
207 compile V_{cmax} values using observation-based data from more than 700 measurements. Along
208 with available light, and the capacity to transport photosynthetic products, the GPP in the model
209 is determined by specified PFT-dependent values of V_{cmax} .

210 In the current CLASSIC version a parameterization of photosynthesis downregulation is included
211 which, in the absence of the N cycle, implicitly attempts to simulate the effects of nutrient
212 constraints. This parameterization, based on approaches which express GPP as a logarithmic
213 function of $[CO_2]$ (Cao et al., 2001; Alexandrov and Oikawa, 2002), is explained in detail in Arora
214 et al. (2009) and briefly summarized here. To parameterize photosynthesis downregulation with
215 increasing $[CO_2]$ the unconstrained or potential GPP (for each time step and each PFT in a grid
216 cell) is multiplied by the global scalar $\xi(c)$

217
$$G = \xi(c) G_p \quad (1)$$

218
$$\xi(c) = \frac{1+\gamma_d \ln(c/c_0)}{1+\gamma_p \ln(c/c_0)} \quad (2)$$

219 where c is $[CO_2]$ at time t and its initial value is c_0 , the parameter γ_p indicates the “potential” rate
220 of increase of GPP with $[CO_2]$ (indicated by the subscript p), the parameter γ_d represents the
221 downregulated rate of increase of GPP with $[CO_2]$ (indicated by the subscript d). When $\gamma_d < \gamma_p$
222 the modelled gross primary productivity (G) increases in response to $[CO_2]$ at a rate determined
223 by the value of γ_d . In the absence of the N cycle, the term $\xi(c)$ thus emulates down-regulation
224 of photosynthesis as CO_2 increases. For example, values of $\gamma_d=0.35$ and $\gamma_p=0.90$, yield a value of

225 $\xi(c) = 0.87$ (indicating a 13% downregulation) for $c=390$ ppm (corresponding to year 2010) and
226 $c_0=285$ ppm.

227 Note that while the original model version does not include N cycle, it is capable of
228 simulating realistic geographical distribution of GPP that partly comes from the specification of
229 observation-based V_{cmax} values (which implicitly takes into account C and N interactions in a non-
230 dynamic way) but more so the fact that the geographical distribution of GPP (and therefore net
231 primary productivity, NPP), to the first order, depends on climate. The specified V_{cmax} values for
232 the 9 PFTs in CLASSIC vary by about 2 times, from about 35 to 75 $\mu\text{-mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$. The simulated
233 GPP in the model, however, varies from zero in the Sahara desert to about $3000 \text{ gC m}^{-2} \text{ year}^{-1}$ in
234 the Amazonian rainforest indicating the overarching control of climate in determining the
235 geographical distribution of GPP. This is further illustrated by the Miami NPP model, for instance,
236 which is able to simulate the geographical distribution of NPP using only mean annual
237 temperature and precipitation (Leith, 1975) since both the C and N cycles are governed primarily
238 by climate. The current version of CLASSIC is also able to reasonably simulate the terrestrial C
239 sink over the second half of the 20th century and early 21st century. CLASSIC (with its former
240 CLASS-CTEM name) has regularly contributed to the annual Trends in Net Land–Atmosphere
241 Carbon Exchange (TRENDY) model intercomparison since 2016 which contributes results to the
242 Global Carbon Project’s annual assessments – the most recent one being Friedlingstein et al.
243 (2019). What is then the purpose of coupling C and N cycles?

244

245 **3. Implementation of the N cycle in CLASSIC**

246 The primary objective of implementation of the N cycle is to model V_{cmax} as a function of
247 leaf N amount so as to make the use of multiplier $\xi(c)$ obsolete in the model, and allow to project
248 future carbon uptake that is constrained by available N. Modelling of leaf N as a prognostic
249 variable, however, requires modelling the full N cycle over land. N enters the soil in the inorganic
250 mineral form through biological fixation of N, fertilizer application, and atmospheric N deposition
251 in the form of ammonium and nitrate. N cycling through plants implies uptake of inorganic
252 mineral N by plants, its return to soil through litter generation in the organic form, and its
253 conversion back to mineral form during decomposition of organic matter in litter and soil. Finally,
254 N leaves the coupled soil-vegetation system through leaching in runoff and through various
255 gaseous forms to the atmosphere. This section describes how these processes are implemented
256 and parameterized in the CLASSIC modelling framework. While the first order interactions
257 between C and N cycles are described well by the current climate, their temporal dynamics over
258 time require to explicitly model these processes.

259 Globally, terrestrial N cycle processes are even less constrained than the C cycle
260 processes. As a result, the model structure and parameterizations are based on conceptual
261 understanding and mostly empirical observations of N cycle related biological processes. We
262 attempt to achieve balance between a parsimonious and simple model structure and the ability
263 to represent the primary feedbacks and interactions between different model components.

264 **3.1 Model structure, and N pools and fluxes**

265 N is associated with each of the model's three live vegetation components and the two
266 dead carbon pools (shown in Figure A1). In addition, separate mineral pools of ammonium (NH_4^+)

267 and nitrate (NO_3^-) are considered. Similar to the C pools, the N pools are represented as N amount
268 per unit land area. Given the lower absolute amounts of N than C, over land, we represent them
269 in units of grams as opposed to kilograms (gN/m^2). Figure 1 shows the C and N pools together in
270 one graphic along with the fluxes of N and C between various pools. The structural and non-
271 structural N pools in root are written as $N_{R,S}$ and $N_{R,NS}$, respectively, and similarly for stem ($N_{S,S}$
272 and $N_{S,NS}$) and leaves ($N_{L,S}$ and $N_{L,NS}$), and together the structural and non-structural pools make
273 up the total N pools in leaf ($N_L = N_{L,S} + N_{L,NS}$), root ($N_R = N_{R,S} + N_{R,NS}$), and stem ($N_S = N_{S,S} +$
274 $N_{S,NS}$) components. The fluxes between the pools in Figure 1 characterize the prognostic nature
275 of the pools as defined by the rate change equations summarized in section A1 in the appendix.
276 The model structure allows the C:N ratio of the live leaves ($C:N_L = C_L/N_L$), stem ($C:N_S =$
277 C_S/N_S), and root ($C:N_R = C_R/N_R$) components, and the dead litter (or debris) pool ($C:N_D =$
278 C_D/N_D) to evolve prognostically. The C:N ratio of soil organic matter ($C:N_H = C_H/N_H$), however,
279 is assumed to be constant at 13 following Wania et al. (2012) (see also references therein). The
280 implications of this assumption are discussed later.

281 The individual terms of the rate change equations of the 10 prognostic N pools (equations
282 A1 through A8, and equations A10 and A11 in the appendix), corresponding to Figure 1, are
283 specified or parameterized as explained in the following sections. These parameterizations are
284 divided into three groups and related to 1) N inputs, 2) N cycling in vegetation and soil, and 3) N
285 cycling in mineral pools and N outputs.

286

287 **3.2 N inputs**

288 **3.2.1 Biological N fixation**

289 Biological N fixation (BNF, B_{NH_4}) is caused by both free living bacteria in the soil and by
 290 bacteria symbiotically living within nodules of host plants' roots. Here, the bacteria convert free
 291 nitrogen from the atmosphere to ammonium, which is used by the host plants. Like any other
 292 microbial activity, BNF is limited both by drier soil moisture conditions and cold temperatures.
 293 Cleveland et al. (1999) attempt to capture this by parameterizing BNF as a function of actual
 294 evapotranspiration (AET). AET is a function primarily of soil moisture (through precipitation and
 295 soil water balance) and available energy. In places where vegetation exists, AET is also affected
 296 by vegetation characteristics including LAI and rooting depth. Here, we parameterize BNF (B_{NH_4} ,
 297 $\text{gN m}^{-2} \text{ day}^{-1}$) as a function of modelled soil moisture and temperature to depth of 0.5 m
 298 (following the use of similar depth by Xu-Ri and Prentice (2008)) which yields a very similar
 299 geographical distribution of BNF as the Cleveland et al. (1999) approach as seen later in Section
 300 4.

$$301 \quad \begin{aligned} B_{NH_4} &= (\sum_c \alpha_c f_c + \sum_n \alpha_n f_n) f(T_{0.5}) f(\theta_{0.5}) \\ f(T_{0.5}) &= 2^{(T_{0.5}-25)/10} \\ f(\theta_{0.5}) &= \min\left(0, \max\left(1, \frac{\theta_{0.5}-\theta_w}{\theta_{fc}-\theta_w}\right)\right) \end{aligned} \quad (3)$$

302 where α_c and α_n ($\text{gN m}^{-2} \text{ day}^{-1}$) are BNF coefficients for crop (c) and non-crop or natural (n) PFTs,
 303 which are area weighted using the fractional coverages f_c and f_n of crop and non-crop PFTs that
 304 are present in a grid cell, $f(T)$ is the dependence on soil temperature based on a Q_{10} formulation
 305 and $f(\theta)$ is the dependence on soil moisture which varies between 0 and 1. θ_{fc} and θ_w are the
 306 soil moisture at field capacity and wilting points, respectively. $T_{0.5}$ ($^{\circ}\text{C}$) and $\theta_{0.5}$ ($\text{m}^3 \text{ m}^{-3}$) in
 307 equation (3) are averaged over the 0.5 m soil depth over which BNF is assumed to occur. We do

308 not make the distinction between symbiotic and non-symbiotic BNF since this requires explicit
309 knowledge of geographical distribution of N fixing PFTs which are not represented separately in
310 our base set of nine PFTs. A higher value of α_c is used compared to α_n to account for the use of
311 N fixing plants over agricultural areas. Biological nitrogen fixation has been an essential
312 component of many farming systems for considerable periods, with evidence for the agricultural
313 use of legumes dating back more than 4,000 years (O'Hara, 1998). A higher α_c than α_n is also
314 consistent with Fowler et al. (2013) who report BNF of 58 and 60 Tg N yr⁻¹ for natural and
315 agricultural ecosystems for present day. Since the area of natural ecosystems is about five times
316 the current cropland area, this implies BNF rate per unit land area is higher for crop ecosystems
317 than for natural ecosystems. Values of α_c than α_n and other model parameters are summarized
318 in Table A1.

319 Similar to Cleveland et al. (1999), our approach does not lead to a significant change in
320 BNF with increasing atmospheric CO₂, other than through changes in soil moisture and
321 temperature. At least two meta-analyses, however, suggest that an increase in atmospheric CO₂
322 does lead to an increase in BNF through increased symbiotic activity associated with an increase
323 in both nodule mass and number (McGuire et al., 1995; Liang et al., 2016). Models have
324 attempted to capture this by simulating BNF as a function of NPP (Thornton et al., 2007; Wania
325 et al., 2012). The caveat with this approach and the implications of our BNF approach are
326 discussed in Section 6.

327 **3.2.2 Atmospheric N deposition**

328 Atmospheric N deposition is externally specified. The model reads in spatially- and
329 temporally-varying annual deposition rates from a file. Deposition is assumed to occur at the
330 same rate throughout the year so the same daily rate ($\text{gN m}^{-2} \text{ day}^{-1}$) is used for all days of a given
331 year. If separate information for ammonium (NH_4^+) and nitrate (NO_3^-) deposition rates is available
332 then it is used otherwise deposition is assumed to be split equally between NH_4^+ and NO_3^-
333 (indicated as P_{NH_4} and P_{NO_3} in equations A1 and A2).

334 **3.2.3 Fertilizer application**

335 Geographically and temporally varying annual fertilizer application rates (F_{NH_4}) are also
336 specified externally and read in. Fertilizer application occurs over the C₃ and C₄ crop fractions of
337 grid cells. Agricultural management practices are difficult to model since they vary widely
338 between countries and even from farmer to farmer. For simplicity, we assume fertilizer is applied
339 at the same daily fertilizer application rate ($\text{gN m}^{-2} \text{ day}^{-1}$) throughout the year in the tropics
340 (between 30°S and 30°N), given the possibility of multiple crop rotations in a given year. Between
341 the 30° and 90° latitudes in both northern and southern hemispheres, we assume that fertilizer
342 application starts on the spring equinox and ends on the fall equinox. The annual fertilizer
343 application rate is thus distributed over around 180 days. This provides somewhat more realism,
344 than using the same treatment as in tropical regions, since extra-tropical agricultural areas
345 typically do not experience multiple crop rotations in a given year. The prior knowledge of start
346 and end days for fertilizer application makes it easier to figure out how much fertilizer is to be
347 applied each day and helps ensure that the annual amount read from the externally specified file
348 is consistently applied.

349

350 **3.3 N cycling in plants and soil**

351 Plant roots take up mineral N from soil and then allocate it to leaves and stem to maintain
352 an optimal C:N ratio of each component. Both active and passive plant uptakes of N (from both
353 the NH_4^+ and NO_3^- pools; explained in Sections 3.3.2 and 3.3.3) are explicitly modelled. The active
354 N uptake is modelled as a function of fine root biomass, and passive N uptake depends on the
355 transpiration flux. The modelled plant N uptake also depends on its N demand. Higher N demand
356 leads to higher mineral N uptake from soil as explained below. Litterfall from vegetation
357 contributes to the litter pool and decomposition of litter transfers humified litter to the soil
358 organic matter pool. Decomposition of litter and soil organic matter returns mineralized N back
359 to the NH_4^+ pool, closing the soil-vegetation N cycle loop.

360 **3.3.1 Plant N demand**

361 Plant N demand is calculated based on the fraction of NPP allocated to leaves, stem, and
362 root components and their specified minimum PFT-dependent C:N ratios, similar to other models
363 (Xu-Ri and Prentice, 2008; Jiang et al., 2019). The assumption is that plants always want to
364 achieve their desired minimum C:N ratios if enough N is available.

$$\Delta_{WP} = \Delta_L + \Delta_R + \Delta_S$$
$$\Delta_i = \frac{\max(0, NPP \cdot a_{i,C})}{C:N_{i,\min}}, \quad i = L, S, R \quad (4)$$

366 where the whole plant N demand (Δ_{WP}) is the sum of N demand for the leaves (Δ_L), stem (Δ_S),
367 and root (Δ_R) components, $a_{i,C}$, $i = L, S, R$ is the fraction of NPP (i.e., carbon as indicated by
368 letter C in the subscript, $\text{gC m}^{-2} \text{ day}^{-1}$) allocated to leaf, stem, and root components, and

369 $C: N_{i,\min}, i = L, S, R$ are their specified minimum C:N ratios (see Table A1 for these and all other
370 model parameters). A caveat with this approach when applied at the daily time step, for
371 biogeochemical processes in our model, is that during periods of time when NPP is negative due
372 to adverse climatic conditions (e.g., during winter or drought seasons), the calculated demand is
373 negative. If positive NPP implies there is demand for N, negative NPP cannot be taken to imply
374 that N must be lost from vegetation. As a result, from a plant's perspective, N demand is assumed
375 to be zero during periods of negative NPP. N demand is also set to zero when all leaves have been
376 shed (i.e., when GPP is zero). At the global scale, this leads to about 15% higher annual N demand
377 than would be the case if negative NPP values were taken into consideration.

378

379 **3.3.2 Passive N uptake**

380 N demand is weighed against passive and active N uptake. Passive N uptake depends on
381 the concentration of mineral N in the soil and the water taken up by the plants through their
382 roots as a result of transpiration. We assume that plants have no control over N that comes into
383 the plant through this pathway. This is consistent with existing empirical evidence that too much
384 N in soil will cause N toxicity (Goyal and Huffaker, 1984), although we do not model N toxicity in
385 our framework. If the N demand for the current time step cannot be met by passive N uptake
386 then a plant compensates for the deficit (i.e., the remaining demand) through active N uptake.

387 The NH_4^+ concentration in the soil moisture within the rooting zone, referred to as $[\text{NH}_4]$
388 ($\text{gN gH}_2\text{O}^{-1}$), is calculated as

$$389 [\text{NH}_4] = \frac{N_{\text{NH}_4}}{\sum_{i=1}^{i \leq r_I} 10^6 \theta_i z_i} \quad (5)$$

390 where N_{NH_4} is ammonium pool size (gN m^{-2}), θ_i is the volumetric soil moisture content for soil
391 layer i ($\text{m}^3 \text{m}^{-3}$), z_i is the thickness of soil layer i (m), r_i is the soil layer in which the 99% rooting
392 depth lies as dynamically simulated by the biogeochemical module of CLASSIC following Arora
393 and Boer (2003). The 10^6 term converts units of the denominator term to $\text{gH}_2\text{O m}^{-2}$. NO_3^-
394 concentration ($[\text{NO}_3]$, $\text{gN gH}_2\text{O}^{-1}$) in the rooting zone is found in a similar fashion. The
395 transpiration flux q_t ($\text{kg H}_2\text{O m}^{-2} \text{s}^{-1}$) (calculated in the physics module of CLASSIC) is multiplied
396 by $[\text{NH}_4]$ and $[\text{NO}_3]$ ($\text{gN gH}_2\text{O}^{-1}$) to obtain passive uptake of NH_4^+ and NO_3^- ($\text{gN m}^{-2} \text{day}^{-1}$) as

397

$$\begin{aligned} U_{p,NH_4} &= 86400 \times 10^3 \beta q_t [\text{NH}_4] \\ U_{p,NO_3} &= 86400 \times 10^3 \beta q_t [\text{NO}_3] \end{aligned} \quad (6)$$

398 where the multiplier 86400×10^3 converts q_t to units of $\text{gH}_2\text{O m}^{-2} \text{day}^{-1}$, and β (see Table A1) is
399 the dimensionless mineral N distribution coefficient with a value less than 1 that accounts for the
400 fact that NH_4^+ and NO_3^- available in the soil are not well mixed in the soil moisture solution, and
401 not completely accessible to roots, to be taken up by plants.

402 **3.3.3 Active N uptake**

403 The active plant N uptake is parameterized as a function of fine root biomass and the size
404 of NH_4^+ and NO_3^- pools in a manner similar to Gerber et al. (2010) and Wania et al. (2012). The
405 distribution of fine roots across the soil layers is ignored. CLASSIC does not explicitly model fine
406 root biomass. We therefore calculate the fraction of fine root biomass using an empirical
407 relationship that is very similar to the relationship developed by Kurz et al. (1996) (their equation
408 5) but also works below total root biomass of 0.33 Kg C m^{-2} (the Kurz et al. (1996) relationship

409 yields a fraction of fine root more than 1.0 below this threshold). The fraction of fine root biomass
 410 (f_r) is given by

411

$$f_r = 1 - \frac{C_R}{C_R + 0.6} \quad (7)$$

412 where C_R is the root biomass (KgC m^{-2}) simulated by the biogeochemical module of CLASSIC.
 413 Equation (7) yields fine root fraction approaching 1.0 as C_R approaches 0, so at very low root
 414 biomass values all roots are considered fine roots. For grasses the fraction of fine root biomass is
 415 set to 1. The maximum or potential active N uptake for NH_4^+ and NO_3^- is given by

416

$$U_{a,pot,\text{NH}_4} = \frac{\varepsilon f_r C_R N_{\text{NH}_4}}{k_{p,1/2} r_d + N_{\text{NH}_4} + N_{\text{NO}_3}} \quad (8)$$

$$U_{a,pot,\text{NO}_3} = \frac{\varepsilon f_r C_R N_{\text{NO}_3}}{k_{p,1/2} r_d + N_{\text{NH}_4} + N_{\text{NO}_3}}$$

417 where ε (see Table A1) is the efficiency of fine roots to take up N per unit fine root mass per day
 418 ($\text{gN gC}^{-1} \text{ day}^{-1}$), $k_{p,1/2}$ (see Table A1) is the half saturation constant (gN m^{-3}), r_d is the 99% rooting
 419 depth (m), and N_{NH_4} and N_{NO_3} are the ammonium and nitrate pool sizes (gN m^{-2}) as mentioned
 420 earlier. Depending on the geographical location and the time of the year, if passive uptake alone
 421 can satisfy plant N demand the actual active N uptake of NH_4^+ ($U_{a,actual,\text{NH}_4}$) and NO_3^-
 422 ($U_{a,actual,\text{NO}_3}$) is set to zero. Conversely, during other times both passive and potential active N
 423 uptakes may not be able to satisfy the demand and in this case actual active N uptake is equal to
 424 its potential rate. At times other than these, the actual active uptake is lower than its potential
 425 value. This adjustment of actual active uptake is illustrated in equation (9).

$$\begin{aligned}
& \text{if } (\Delta_{WP} \leq U_{p,NH4} + U_{p,NO3}) \\
& \quad U_{a,actual,NH4} = 0 \\
& \quad U_{a,actual,NO3} = 0 \\
& \text{if } (\Delta_{WP} > U_{p,NH4} + U_{p,NO3}) \wedge (\Delta_{WP} < U_{p,NH4} + U_{p,NO3} + U_{a,pot,NH4} + U_{a,pot,NO3}) \\
& \quad U_{a,actual,NH4} = (\Delta_{WP} - U_{p,NH4} - U_{p,NO3}) \frac{U_{a,pot,NH4}}{U_{a,pot,NH4} + U_{a,pot,NO3}} \\
& \quad U_{a,actual,NO3} = (\Delta_{WP} - U_{p,NH4} - U_{p,NO3}) \frac{U_{a,pot,NO3}}{U_{a,pot,NH4} + U_{a,pot,NO3}} \\
& \text{if } (\Delta_{WP} \geq U_{p,NH4} + U_{p,NO3} + U_{a,pot,NH4} + U_{a,pot,NO3}) \\
& \quad U_{a,actual,NH4} = U_{a,pot,NH4} \\
& \quad U_{a,actual,NO3} = U_{a,pot,NO3}
\end{aligned} \tag{9}$$

427 Finally, the total N uptake (U), uptake of NH_4^+ (U_{NH4}) and NO_3^- (U_{NO3}), are calculated as

$$\begin{aligned}
& U = U_{p,NH4} + U_{p,NO3} + U_{a,actual,NH4} + U_{a,actual,NO3} \\
& U_{NH4} = U_{p,NH4} + U_{a,actual,NH4} \\
& U_{NO3} = U_{p,NO3} + U_{a,actual,NO3}
\end{aligned} \tag{10}$$

429

430 **3.3.4 Litterfall**

431 Nitrogen litterfall from the vegetation components is directly tied to the carbon litterfall
 432 calculated by the phenology module of CLASSIC through their current C:N ratios.

$$433 \quad LF_i = \frac{(1-r_L) LF_{i,C}}{C:N_i}, i = L, S, R \tag{11}$$

434 where $LF_{i,C}$ is the carbon litterfall rate (gC day^{-1}) for component i , calculated by the phenology
 435 module of CLASSIC, and division by its current C:N ratio yields the nitrogen litterfall rate, r_L (see
 436 Table A1) is the leaf resorption coefficient that simulates the resorption of N from leaves of
 437 deciduous tree PFTs before they are shed and $r_i = 0, i = R, S$. Litter from each vegetation

438 component is proportioned between structural and non-structural components according to
439 their pool sizes.

440 **3.3.5 Allocation and reallocation**

441 Plant N uptake by roots is allocated to leaves and stem to satisfy their N demand. When
442 plant N demand is greater than zero, total N uptake (U) is divided between leaves, stem, and root
443 components in proportion to their demands such that the allocation fractions for N ($a_i, i =$
444 L, S, R) are calculated as

$$445 \quad \begin{aligned} a_i &= \frac{\Delta_i}{\Delta_{WP}}, i = L, S, R \\ A_{R2L} &= a_L (U_{NH4} + U_{NO3}) \\ A_{R2S} &= a_S (U_{NH4} + U_{NO3}) \end{aligned} \quad (12)$$

446 where A_{R2L} and A_{R2S} are the amounts of N allocated from root to leaves and stem components,
447 respectively, as shown in equations (A5) and (A7). During periods of negative NPP due to adverse
448 climatic conditions (e.g., during winter or drought seasons) the plant N demand is set to zero but
449 passive N uptake, associated with transpiration, may still be occurring if the leaves are still on.
450 Even though there is no N demand, passive N uptake still needs to be partitioned among the
451 vegetation components. During periods of negative NPP allocation fractions for N are, therefore,
452 calculated in proportion to the minimum PFT-dependent C:N ratios of the leaves, stem, and root
453 components as follows.

$$454 \quad a_i = \frac{1/C:N_{i,\min}}{1/C:N_{L,\min} + 1/C:N_{S,\min} + 1/C:N_{R,\min}}, i = L, S, R \quad (13)$$

455 For grasses, which do not have a stem component, equations (12) and (13) are modified
456 accordingly by removing the terms associated with the stem component.

457 Three additional rules override these general allocation rule specifically for deciduous
 458 tree PFTs (or deciduous PFTs in general). First, no N allocation is made to leaves once leaf fall is
 459 initiated for deciduous tree PFTs and plant N uptake is proportioned between stem and root
 460 components based on their demands in a manner similar to equation (12). Second, for deciduous
 461 tree PFTs, a fraction of leaf N is resorbed from leaves back into stem and root as follows

$$462 \quad R_{L2R} = r_L LF_L \frac{N_{R,NS}}{N_{R,NS} + N_{S,NS}} \quad (14)$$

$$R_{L2S} = r_L LF_L \frac{N_{S,NS}}{N_{R,NS} + N_{S,NS}}$$

463

464 where r_L is the leaf resorption coefficient, as mentioned earlier, and LF_L is the leaf litter fall rate.
 465 Third, and similar to resorption, at the time of leaf onset for deciduous tree PFTs, N is reallocated
 466 to leaves (in conjunction with reallocated carbon as explained in Asaadi et al. (2018)) from stem
 467 and root components.

$$468 \quad R_{R2L} = \frac{R_{R2L,C}}{C:N_L} \frac{N_{R,NS}}{N_{R,NS} + N_{S,NS}} \quad (15)$$

$$R_{S2L} = \frac{R_{S2L,C}}{C:N_L} \frac{N_{S,NS}}{N_{R,NS} + N_{S,NS}}$$

469 where $R_{R2L,C}$ and $R_{S2L,C}$ represent reallocation of carbon from non-structural stem and root
 470 components to leaves and division by $C:N_L$ converts the flux into N units. This reallocated N, at
 471 the time of leaf onset, is proportioned between non-structural pools of stem and root according
 472 to their sizes.

473 **3.3.6 N mineralization, immobilization, and humification**

474 Decomposition of litter ($R_{h,D}$) and soil organic matter ($R_{h,H}$) releases C to the atmosphere
475 and this flux is calculated by the heterotrophic respiration module of CLASSIC. The litter and soil
476 carbon decomposition rates used here are the same as in the standard model version (Melton
477 and Arora, 2016; their Table A3). The amount of N mineralized is calculated straightforwardly by
478 division with the current C:N ratios of the respective pools and contributes to the NH_4^+ pool.

479

$$M_{D,NH4} = \frac{R_{h,D}}{C:N_D} \quad (16)$$
$$M_{H,NH4} = \frac{R_{h,H}}{C:N_H}$$

480 An implication of mineralization contributing to the NH_4^+ pool, in addition to BNF and fertilizer
481 inputs that also contribute solely to the NH_4^+ pool, is that the simulated NH_4^+ pool is typically
482 larger than the NO_3^- pool. The exception is the dry and arid regions where the lack of
483 denitrification, as discussed below in Section 3.4.2., leads to a build-up of the NO_3^- pool.

484 Immobilization of mineral N from the NH_4^+ and NO_3^- pools into the soil organic matter
485 pool is meant to keep the soil organic matter C:N ratio ($C:N_H$) at its specified value of 13 for all
486 PFTs in a manner similar to Wania et al. (2012) and Zhang et al. (2018). A value of 13 is within the
487 range of observation-based estimates which vary from about 8 to 25 (Zinke et al., 1998; Tipping
488 et al., 2016). Although $C:N_H$ varies geographically, the driving factors behind this variability
489 remain unclear. It is even more difficult to establish if increasing atmospheric CO_2 is changing
490 $C:N_H$ given the large heterogeneity in soil organic C and N densities, and the difficulty in
491 measuring small trends for such large global pools. We therefore make the assumption that the
492 $C:N_H$ does not change with time. An implication of this assumption is that as GPP increases with
493 increasing atmospheric CO_2 rises, and plant litter becomes enriched in C with increasing C:N ratio

494 of litter, more and more N is locked up in the soil organic matter pool because its C:N ratio is
 495 fixed. As a result, mineral N pools of NH_4^+ and NO_3^- decrease in size and plant N amount
 496 subsequently follows. This is consistent with studies of plants grown in elevated CO_2
 497 environment. For example, Cotrufo et al. (1998) summarize results from 75 studies and find an
 498 average 14% reduction in N concentration (gN/gC) for above-ground tissues. Wang et al. (2019)
 499 find increased C concentration by 0.8–1.2% and a reduction in N concentration by 7.4–10.7% for
 500 rice and winter wheat crop rotation system under elevated CO_2 . Another implication of using
 501 specified fixed $C:N_H$ is that it does not matter if plant N uptake or immobilization is given
 502 preferred access to the mineral N pool since in the long term, by design, N will accumulate in the
 503 soil organic matter in response to atmospheric CO_2 increase.

504 Immobilization from both the NH_4^+ and NO_3^- pools ($\text{gN m}^{-2} \text{ day}^{-1}$) is calculated in
 505 proportion to their pool sizes, employing the fixed $C:N_H$ ratio as

$$506 \quad \begin{aligned} O_{\text{NH}_4} &= \max \left(0, \left(\frac{C_H}{C:N_H} - N_H \right) \frac{N_{\text{NH}_4}}{N_{\text{NH}_4} + N_{\text{NO}_3}} \right) k_O \\ O_{\text{NO}_3} &= \max \left(0, \left(\frac{C_H}{C:N_H} - N_H \right) \frac{N_{\text{NO}_3}}{N_{\text{NH}_4} + N_{\text{NO}_3}} \right) k_O \end{aligned} \quad (17)$$

507 where k_O is rate constant with a value of 1.0 day^{-1} . Finally, the carbon flux of humified litter from
 508 the litter to the soil organic matter pool ($H_{C,D2H}$) is also associated with a corresponding N flux
 509 that depends on the C:N ratio of the litter pool.

$$510 \quad H_{N,D2H} = \frac{H_{C,D2H}}{C:N_D} \quad (18)$$

511 **3.4 N cycling in mineral pools and N outputs**

512 This section presents the parameterizations of nitrification (which results in transfer of N
513 from the NH_4^+ to the NO_3^- pool) and the associated gaseous fluxes of N_2O and NO (referred to as
514 nitrifier denitrification), gaseous fluxes of N_2O , NO , and N_2 associated with denitrification,
515 volatilization of NH_4^+ into NH_3 , and leaching of NO_3^- in runoff.

516 **3.4.1 Nitrification**

517 Nitrification, the oxidative process converting ammonium to nitrate, is driven by microbial
518 activity and as such constrained both by high and low soil moisture (Porporato et al., 2003). At
519 high soil moisture content there is little aeration of soil and this constrains aerobic microbial
520 activity, while at low soil moisture content microbial activity is constrained by moisture
521 limitation. In CLASSIC, the heterotrophic respiration from soil carbon is constrained similarly but
522 rather than using soil moisture the parameterization is based on soil matric potential (Arora,
523 2003; Melton et al., 2015). Here, we use the exact same parameterization. In addition to soil
524 moisture, nitrification ($\text{gN m}^{-2} \text{ day}^{-1}$) is modelled as a function of soil temperature and the size
525 of the NH_4^+ pool as follows

526
$$I_{\text{NO}_3} = \eta f_I(T_{0.5}) f_I(\psi) N_{\text{NH}_4} \quad (19)$$

527 where η is the nitrification coefficient (day^{-1} , see Table A1), $f_I(\psi)$ is the dimensionless soil
528 moisture scalar that varies between 0 and 1 and depends on soil matric potential (ψ), $f_I(T_{0.5})$ is
529 the dimensionless soil temperature scalar that depends on soil temperature ($T_{0.5}$) averaged over
530 the top 0.5 m soil depth over which nitrification is assumed to occur (following Xu-Ri and Prentice,
531 2008), and N_{NH_4} is the ammonium pool size (gN m^{-2}), as mentioned earlier. Both $f_I(T_{0.5})$ and

532 $f_I(\psi)$ are parameterized following Arora (2003) and Melton et al. (2015). $f_I(T_{0.5})$ is a Q_{10} type
 533 function with a temperature dependent Q_{10}

534
$$f_I(T_{0.5}) = Q_{10,I}^{(T_{0.5}-20)/10}, Q_{10,I} = 1.44 + 0.56 (\tanh(0.075(46 - T_{0.5}))) \quad (20)$$

535 The reference temperature for nitrification is set to 20 °C following Lin et al. (2000). $f_I(\psi)$ is
 536 parameterized as a step function of soil matric potential (ψ) as

537
$$f_I(\psi) = \begin{cases} 0.5 & \text{if } \psi \leq \psi_{sat} \\ 1 - 0.5 \frac{\log(0.4) - \log(\psi)}{\log(0.4) - \log(\psi_{sat})} & \text{if } 0.4 > \psi \geq \psi_{sat} \\ 1 & \text{if } 0.6 \geq \psi \geq 0.4 \\ 1 - 0.8 \frac{\log(\psi) - \log(0.6)}{\log(100) - \log(0.6)} & \text{if } 100 > \psi > 0.6 \\ 0.2 & \text{if } \psi > 100 \end{cases} \quad (21)$$

538 where the soil matric potential (ψ) is found, following Clapp and Hornberger (1978), as a function
 539 of soil moisture (θ)

540
$$\psi(\theta) = \psi_{sat} \left(\frac{\theta}{\theta_{sat}} \right)^{-B}. \quad (22)$$

541 Saturated matric potential (ψ_{sat}), soil moisture at saturation (i.e., porosity) (θ_{sat}), and the
 542 parameter B are calculated as functions of percent sand and clay in soil following Clapp and
 543 Hornberger (1978) as shown in Melton et al. (2015). The soil moisture scalar $f_I(\psi)$ is calculated
 544 individually for each soil layer and then averaged over the soil depth of 0.5 m over which
 545 nitrification is assumed to occur.

546 Gaseous fluxes of NO (I_{NO}) and N₂O (I_{N2O}) associated with nitrification, and generated
 547 through nitrifier denitrification, are assumed to be directly proportional to the nitrification flux
 548 (I_{NO3}) as

549
$$\begin{aligned} I_{NO} &= \eta_{NO} I_{NO3} \\ I_{N2O} &= \eta_{N2O} I_{NO3} \end{aligned} \quad (23)$$

550 where η_{NO} and η_{N2O} are dimensionless fractions (see Table A1) which determine what fractions
 551 of nitrification flux are emitted as NO and N₂O.

552 **3.4.2 Denitrification**

553 Denitrification is the stepwise microbiological reduction of nitrate to NO, N₂O, and ultimately to
 554 N₂ in complete denitrification. Unlike nitrification, however, denitrification is primarily an
 555 anaerobic process (Tomasek et al., 2017) and therefore occurs when soil is saturated. As a result,
 556 we use a different soil moisture scalar than for nitrification. Similar to nitrification, denitrification
 557 is modelled as a function of soil moisture, soil temperature and the size of the NO₃⁻ pool as follows
 558 to calculate the gaseous fluxes of NO, N₂O, and N₂.

559
$$\begin{aligned} E_{NO} &= \mu_{NO} f_E(T_{0.5}) f_E(\theta) N_{NO3} \\ E_{N2O} &= \mu_{N2O} f_E(T_{0.5}) f_E(\theta) N_{NO3} \\ E_{N2} &= \mu_{N2} f_E(T_{0.5}) f_E(\theta) N_{NO3} \end{aligned} \quad (24)$$

560 where μ_{NO} , μ_{N2O} , and μ_{N2} are coefficients (day⁻¹, see Table A1) that determine daily rates of
 561 emissions of NO, N₂O, and N₂. The temperature scalar $f_E(T_{0.5})$ is exactly the same as the one for
 562 nitrification ($f_I(T_{0.5})$) since denitrification is also assumed to occur over the same 0.5 m soil
 563 depth. The soil moisture scalar $f_E(\theta)$ is given by

564
$$\begin{aligned} f_E(\theta) &= 1 - \tanh \left(2.5 \left(\frac{1-w(\theta)}{1-w_d} \right)^2 \right) \\ w(\theta) &= \max \left(0, \min \left(1, \frac{\theta-\theta_w}{\theta_f-\theta_w} \right) \right) \end{aligned} \quad (25)$$

565 where w is the soil wetness that varies between 0 and 1 as soil moisture varies between wilting
566 point (θ_w) and field capacity (θ_f), and w_d (see Table A1) is the threshold soil wetness for
567 denitrification below which very little denitrification occurs. Since arid regions are characterized
568 by low soil wetness values, typically below w_d , this leads to build up of the NO_3^- pool in arid
569 regions.

570 **3.4.3 NO_3^- leaching**

571 Leaching is the loss of water-soluble ions through runoff. In contrast to positively charged
572 NH_4^+ ions (i.e. cations), the NO_3^- ions do not bond to soil particles because of the limited exchange
573 capacity of soil for negatively charged ions (i.e., anions). As a result, leaching of N in the form of
574 NO_3^- ions is a common water quality problem, particularly over cropland regions. The leaching
575 flux (L_{NO_3} , $\text{gN m}^{-2} \text{ day}^{-1}$) is parameterized to be directly proportional to baseflow (b_t , $\text{Kg m}^{-2} \text{ s}^{-1}$)
576 calculated by the physics module of CLASSIC and the size of the NO_3^- pool (N_{NO_3} , gN m^{-2}).
577 Baseflow is the runoff rate from the bottommost soil layer.

578
$$L_{\text{NO}_3} = 86400 \varphi b_t N_{\text{NO}_3} \quad (26)$$

579 where the multiplier 86400 converts units to per day, and φ is the leaching coefficient ($\text{m}^2 \text{ Kg}^{-1}$,
580 see Table A1) that can be thought of as the soil particle surface area (m^2) that 1 Kg of water (or
581 about 0.001 m^3) can effectively wash to leach the nutrients.

582 **3.4.4 NH_3 volatilization**

583 NH₃ volatilization (V_{NH_3} , gN m⁻² day⁻¹) is parametrized as a function of pool size of NH₄⁺,
 584 soil temperature, soil pH, aerodynamic and boundary layer resistances, and atmospheric NH₃
 585 concentration in a manner similar to Riddick et al. (2016) as

$$586 \quad V_{NH4} = \vartheta \cdot 86400 \cdot \frac{1}{r_a + r_b} (\chi - [\text{NH}_{3,a}]) \quad (27)$$

587 where ϑ is the dimensionless NH_3 volatilization coefficient (see Table A1) which is set to less than
 588 1 to account for the fact that a fraction of ammonia released from the soil is captured by
 589 vegetation, r_a (s m^{-1}) is the aerodynamic resistance calculated by the physics module of CLASSIC,
 590 χ is the ammonia (NH_3) concentration at the interface of the top soil layer and the atmosphere
 591 (g m^{-3}), $[\text{NH}_{3,a}]$ is the atmospheric NH_3 concentration specified at $0.3 \times 10^{-6} \text{ g m}^{-3}$ following
 592 Riddick et al. (2016), 86400 converts flux units from $\text{gN m}^{-2} \text{ s}^{-1}$ to $\text{gN m}^{-2} \text{ day}^{-1}$, and r_b (s m^{-1}) is
 593 the boundary layer resistance calculated following Thom (1975) as

$$r_b = 6.2 u_*^{-0.67} \quad (28)$$

595 where u_* (m/s) is the friction velocity provided by the physics module of CLASSIC. The ammonia
 596 (NH_3) concentration at surface (χ), in a manner similar to Riddick et al. (2016), is calculated as

$$597 \quad \chi = 0.26 \frac{N_{NH_4}}{1 + K_H + K_H[H^+]/K_{NH_4}} \quad (29)$$

598 where the coefficient 0.26 is the fraction of ammonium in the top 10 cm soil layer assuming
 599 exponential distribution of ammonium along the soil depth (given by $3e^{-3z}$, where z is the soil
 600 depth), K_H (dimensionless) is the Henry's law constant for NH_3 , K_{NH_4} (mol L^{-1}) is the dissociation
 601 equilibrium constant for aqueous NH_3 , and H^+ (mol L^{-1}) is the concentration of hydrogen ion

602 that depends on the soil pH ($H^+ = 10^{-pH}$). K_H and K_{NH4} are modelled as functions of soil
 603 temperature of the top 10 cm soil layer ($T_{0.1}$) following Riddick et al. (2016) as

$$604 \quad K_H = 4.59 T_{0.1} \exp \left(4092 \left(\frac{1}{T_{0.1}} - \frac{1}{T_{ref,v}} \right) \right) \quad (30)$$

$$K_{NH4} = 5.67 \times 10^{-10} \exp \left(-6286 \left(\frac{1}{T_{0.1}} - \frac{1}{T_{ref,v}} \right) \right)$$

605 where $T_{ref,v}$ is the reference temperature of 298.15 K.

606

607 **3.5 Coupling of C and N cycles**

608 As mentioned earlier, the primary objective of coupling of C and N cycles is to be able to
 609 simulate V_{cmax} as a function of leaf N amount (N_L , gN/m² land) for each PFT. This coupling is
 610 represented through the following relationship

$$611 \quad V_{cmax} = \Lambda \left(\frac{\Gamma_1 N_L}{3} + \Gamma_2 \right) \quad (31)$$

612 where Γ_1 (39 $\mu\text{mol CO}_2 \text{ gN}^{-1} \text{ s}^{-1}$) and Γ_2 (8.5 $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$) are global constants, except for
 613 the broadleaf evergreen tree PFT for which a lower value of Γ_1 (15.3 $\mu\text{mol CO}_2 \text{ gN}^{-1} \text{ s}^{-1}$) is used
 614 as discussed below, and the number 3 represents an average LAI over vegetated areas (m^2
 615 leaves/ m^2 land). Λ (≤ 1) is a scalar that reduces calculated V_{cmax} when C:N ratio of any plant
 616 component ($C:N_i, i = L, S, R$) exceeds its specified maximum value ($C:N_{i,\max}, i = L, S, R$) (see
 617 Table A1).

$$618 \quad \begin{aligned} \Lambda &= \exp(-\omega k_\Lambda) \\ \omega &= e_L b_L + e_S b_S + e_R b_R \end{aligned} \quad (32)$$

619

$$e_i = \max(0, C:N_i - C:N_{i,\max})$$

$$b_i = \frac{1/C:N_{i,\max}}{1/C:N_{L,\max} + 1/C:N_{S,\max} + 1/C:N_{R,\max}}, i = L, S, R \quad (33)$$

620 where k_Λ is a dimensionless parameter (see Table A1) and ω is dimensionless term that
 621 represents excess C:N ratios above specified maximum thresholds ($e_i, i = L, S, R$) weighted by
 622 $b_i, i = L, S, R$. When plant components do not exceed their specified maximum C:N ratio
 623 thresholds, e_i is zero and Λ is one. When plants components exceed their specified maximum
 624 C:N ratio thresholds, Λ starts reducing below one. This decreases V_{cmax} and thus photosynthetic
 625 uptake which limits the rate of increase of C:N ratio of plant components, depending on the value
 626 of k_Λ .

627 The linear relationship between photosynthetic capacity and N_L (Evans, 1989; Field and
 628 Mooney, 1986; Garnier et al., 1999) (used in equation 31) and between photosynthetic capacity
 629 and leaf chlorophyll amount (Croft et al., 2017) is empirically observed. We have avoided using
 630 PFT-dependent values of Γ_1 and Γ_2 for easy optimization of these parameter values but also
 631 because such an optimization can potentially hide other model deficiencies. More importantly,
 632 using PFT-independent values of Γ_1 and Γ_2 yields a more elegant framework whose successful
 633 evaluation will provide confidence in the overall model structure.

634 As shown later in the results section, using Γ_1 and Γ_2 as global constants yields GPP values
 635 that are higher in the tropical region than an observation-based estimate. This is not surprising
 636 since tropical and mid-latitude regions are known to be limited by P (Vitousek, 1984; Aragão et
 637 al., 2009; Vitousek et al., 2010; Du et al., 2020) and our framework currently doesn't model P
 638 cycle explicitly. An implication of productivity that is limited by P is that changes in N_L are less

639 important. In the absence of explicit treatment of the P cycle, we therefore simply use a lower
640 value of Γ_1 for the broadleaf evergreen tree PFT which, in our modelling framework, exclusively
641 represents a tropical PFT. Although, a simple way to express P limitation, this approach yields the
642 best comparison with observation-based GPP, as shown later, because the effect of P limitation
643 is most pronounced in the high productivity tropical regions.

644 The second pathway of coupling between the C and N cycles occurs through
645 mineralization of litter and soil organic matter. During periods of higher temperature,
646 heterotrophic C respiration fluxes increase from the litter and soil organic matter pools and this
647 in turn implies an increased mineralization flux (via equation 16) leading to more mineral N
648 available for plants to uptake.

649 **4.0 Methodology**

650 **4.1 Model simulations and input data sets**

651 We perform CLASSIC model simulations with the N cycle for the pre-industrial period
652 followed by several simulations for the historical 1851-2017 period to evaluate the model's
653 response to different forcings, as summarized below. The simulation for the pre-industrial period
654 uses forcings that correspond to year 1850 and the model is run for thousands of years until its
655 C and N pools come into equilibrium. Global thresholds of net atmosphere-land C flux of 0.05
656 Pg/yr and net atmosphere-land N flux of 0.5 Tg N/yr are used to ensure the model pools have
657 reached equilibrium. The pre-industrial simulation, therefore, yields the initial conditions from
658 which the historical simulations for the period 1851-2017 are launched. To spin the mineral N
659 pools to their initial values, the plant N uptake and other organic processes were turned off while

660 the model used specified values of V_{cmax} and only the inorganic part of N cycle was operative.
661 Once the inorganic mineral soil N pools reached near equilibrium, the organic processes were
662 turned on. The model also uses an accelerated spin up procedure for the slow pools of soil organic
663 matter and mineral N. The input and output terms are multiplied by a factor greater than one
664 and this magnifies the change in pool size and therefore accelerates the spin up. Once the model
665 pools reach near equilibrium, the factor is set back to one.

666 To evaluate the model's response to various forcings over the historical period we
667 perform several simulations turning on one forcing at a time as summarized in Table 1. The
668 objective of these simulations is to see if the model response to individual forcings is consistent
669 with expectations. For example, in the CO₂-only simulation only atmospheric CO₂ concentration
670 increases over the historical period, while all other forcings stay at their 1850 levels. In the N-
671 DEP-only simulation only N deposition increases over the historical period, and similarly for other
672 runs in Table 1. A "FULL" simulations with all forcings turned on is then also performed which we
673 compare to the original model without a N cycle which uses the photosynthesis downregulation
674 parameterization (termed "ORIGINAL" in Table 1). Finally, a separate pre-industrial simulation is
675 also performed that uses the same Γ_1 and Γ_2 globally (FULL-no-implicit-P-limitation). This
676 simulation is used to illustrate the effect of neglecting P limitation for the broadleaf evergreen
677 tree PFT in the tropics.

678 For the historical period, the model is driven with time-varying forcings that include CO₂
679 concentration, population density (used by the fire module of the model for calculating
680 anthropogenic fire ignition and suppression), land cover, and meteorological data. In addition,
681 for the N cycle module, the model requires time-varying atmospheric N deposition and fertilizer

682 data. The atmospheric CO₂ and meteorological data (CRU-JRA) are same as those used for the
683 TRENDY model intercomparison project for terrestrial ecosystem models for year 2018 (Le Quéré
684 et al., 2018). The CRU-JRA meteorological data is based on 6-hourly Japanese Reanalysis (JRA).
685 However, since reanalysis data typically do not match observations they are adjusted for monthly
686 values based on the Climate Research Unit (CRU) data. This yields a blended product with sub-
687 daily temporal resolution that comes from the reanalysis and monthly means/sums that match
688 the CRU data to yield a meteorological product that can be used by models that require sub-daily
689 or daily meteorological forcing. These data are available for the period 1901-2017. Since no
690 meteorological data are available for the 1850-1900 period, we use 1901-1925 meteorological
691 data repeatedly for this duration and also for the pre-industrial spin up. The assumption is that
692 since there is no significant trend in the CRU-JRA data over this period, these data can be reliably
693 used to spin up the model to equilibrium. The land cover data used to force the model are based
694 on a geographical reconstruction of the historical land cover driven by the increase in crop area
695 following Arora and Boer (2010) but using the crop area data prepared for the Global Carbon
696 Project (GCP) 2018 following Hurt et al. (2020). Since land cover is prescribed, the competition
697 between PFTs for space for the simulations reported here is switched off. The population data
698 for the period 1850-2017 are based on Klein Goldewijk et al. (2017) and obtained from
699 <ftp://ftp.pbl.nl/..../hyde/hyde3.2/baseline/zip/>. The time-independent forcings consist of soil
700 texture and permeable depth data.

701 Time-varying atmospheric N deposition and fertilizer data used over the historical period
702 are also specified as per the TRENDY protocol. The fertilizer data are based on the N₂O model
703 intercomparison project (NMIP) (Tian et al., 2018) and available for the period 1860-2014. For

704 the period before 1860, 1860 fertilizer application rates are used. For the period after 2014,
705 fertilizer application rates for 2014 are used. Atmospheric N deposition data are from input4MIPs
706 (<https://esgf-node.llnl.gov/search/input4mips/>) and are the same as used by models
707 participating in CMIP6 for the historical period (1850-2014). For years 2015-2017 the N
708 deposition data corresponding to those from representative concentration pathway (RCP) 8.5
709 scenario are used. Figure 2 shows the time series of global annual values of externally specified
710 fertilizer input, and deposition of ammonium and nitrate, based on the TRENDY protocol, for the
711 six primary simulations. Geographical distribution of these inputs are also shown for the last 20
712 years from the FULL simulation corresponding to the 1998-2017 period. In Figure 2 (panels a, c
713 and e) ammonium and nitrate deposition, and fertilizer input stay at their pre-industrial level for
714 simulations in which these forcings do not increase over the historical period. As mentioned
715 earlier, N deposition is split evenly into ammonium and nitrate. The values in parenthesis in
716 Figure 2a legend, and in subsequent time series plots, show average values over the 1850s, the
717 last 20 years (1998-2017) of the simulations, and the change between these two periods. The
718 present day values of fertilizer input and N deposition are consistent with other estimates
719 available in the literature (Table 2). The fertilizer input rate in the simulation with all forcings
720 except land use change (FULL-no-LUC, blue line), that is with no increase in crop area over its
721 1850 value, is 50 Tg N yr⁻¹ compared to 91 Tg N yr⁻¹ in the FULL simulation, averaged over the
722 1998-2017 period. The additional 41 Tg N yr⁻¹ of fertilizer input occurs in the FULL simulation due
723 to the increase in crop area but also due to the increasing fertilizer application rates over the
724 historical period. Geographical distribution of the fertilizer application rates in Figure 2b shows
725 that they are concentrated in regions with crop area and with values as high as 16 gN m⁻² yr⁻¹

726 especially in eastern China. The N deposition rates (Figure 2d, 2f) are more evenly distributed
727 geographically than the fertilizer applications rates, as would be expected, since emissions are
728 transported downstream from their point sources. Areas with high emissions like the eastern
729 United States, India, eastern China, and Europe, however, still stand out as areas that receive
730 higher N deposition.

731 **4.2 Evaluation data sources**

732 We compare globally-summed annual values of N pools and fluxes with observations and
733 other models, and where available their geographical distribution and seasonality. In general,
734 however, much less observation-based data are available to evaluate simulated terrestrial N
735 cycle components than for C cycle components. As a result, N pools and fluxes are primarily
736 compared to results from both observation-based studies and other modelling studies
737 (Bouwman et al., 2013; Fowler et al., 2013; Galloway et al., 2004; Vitousek et al., 2013; Zaehle,
738 2013). Since the primary purpose of the N cycle in our framework is to constrain the C cycle, we
739 also compare globally-summed annual values of GPP and net atmosphere-land CO₂ flux, and their
740 zonal distribution with available observation-based and other estimates. The observation-based
741 estimate of GPP is from Beer et al. (2010), who apply diagnostic models to extrapolate ground-
742 based carbon flux tower observations from about 250 stations to the global scale. Observation-
743 based net atmosphere-land CO₂ flux is from Global Carbon Project's 2019 assessment
744 (Friedlingstein et al., 2019).

745 **5.0 Results**

746 **5.1 N inputs – biological N fixation**

747 Figure 3 (panels a, c, e) shows the time series of annual values BNF and its natural and
748 anthropogenic components from the six primary simulations summarized in Table 1. BNF stays
749 at its pre-industrial value of around 80 Tg N yr⁻¹ in the CO2-only and N-DEP-only simulations. In
750 the CLIM-only (indicated by magenta coloured line) and the FULL-no-LUC (blue line) simulations
751 the change in climate, associated with increases in temperature and precipitation over the 1901-
752 2017 period (see Figure A2 in the appendix), increases BNF to about 85 Tg N yr⁻¹. In our
753 formulation (equation 3) BNF is positively impacted by increases in temperature and
754 precipitation. In the LUC+FERT-only simulation (dark green line) the increase in crop area
755 contributes to an increase in global BNF with a value around 110 Tg N yr⁻¹ for the present day,
756 since a higher BNF per unit crop area is assumed than for natural vegetation. Finally, in the FULL
757 simulation (red line) the 1998-2017 average value is around 117 Tg N yr⁻¹ due both to changes in
758 climate over the historical period and the increase in crop area. Our present day value of global
759 BNF is broadly consistent with other modelling and data-based studies as summarized in Table 2.
760 Panels c and e in Figure 3 show the decomposition of the total terrestrial BNF into its natural
761 (over non-crop PFTs) and anthropogenic (over C₃ and C₄ crop PFTs) components. The increase in
762 crop area over the historical period decreases natural BNF from its pre-industrial value of 59 to
763 54 Tg N yr⁻¹ for the present day as seen for the LUC+FERT-only simulation (green line) in Figure
764 3c, while anthropogenic BNF over agricultural area increases from 21 to 56 Tg N yr⁻¹ (Figure 3e).
765 Figure 3c and 3e show that the increase in BNF (Figure 3a) in the FULL simulation is caused
766 primarily by an increase in crop area. Our present day values of natural and anthropogenic BNF
767 are also broadly consistent with other modelling and data-based studies as summarized in Table
768 2.

769 Figure 3 (panels b, d, and f) shows the geographical distribution of simulated BNF and its
770 natural and anthropogenic components. The geographical distribution of BNF (Figure 3a) looks
771 very similar to the current distribution of vegetation (not shown) with warm and wet regions
772 showing higher values than cold and dry regions since BNF is parameterized as a function of soil
773 temperature and soil moisture. Anthropogenic BNF only occurs in regions where crop area exists
774 according to the specified land cover and it exhibits higher values than natural BNF in some
775 regions because of its higher value per unit area (see section 3.2.1).

776 At the global scale, and for the present day, natural BNF (59 Tg N yr^{-1}) is overwhelmed by
777 anthropogenic sources: anthropogenic BNF (60 Tg N yr^{-1}), fertilizer input ($91.7 \text{ Tg N yr}^{-1}$), and
778 atmospheric N deposition increase since the pre-industrial era ($\sim 45 \text{ Tg N yr}^{-1}$). Currently humanity
779 fixes more N than the natural processes (Vitousek, 1994).

780 **5.2 C and N pools, fluxes response to historical changes in forcings**

781 To understand the model response to changes in various forcings over the historical
782 period we first look at the evolution of global values of primary C and N pools, and fluxes, shown
783 in Figures 4 through 8. Figure 4a shows the time evolution of global annual GPP values, the
784 primary flux of C into the land surface, for the six primary simulations, the ORIGINAL simulation
785 performed with the model version with no N cycle, and the ORIG-UNCONST simulation with no
786 photosynthesis downregulation (see Table 1). The unconstrained increase in GPP ($35.6 \text{ Pg C yr}^{-1}$
787 over the historical period) in the ORIG-UNCONST simulation (dark cyan line) is governed by the
788 standard photosynthesis model equations following Farquhar et al. (1980) and Collatz et al.
789 (1992) for C_3 and C_4 plants, respectively. Downregulation of photosynthesis in the ORIGINAL

790 simulation (purple line) is modelled on the basis of equation (1), while in the FULL simulation (red
791 line) photosynthesis downregulation results from a decrease in V_{cmax} values (Figure 5d) due to a
792 decrease in leaf N amount (Figure 5b). We will compare the FULL and ORIGINAL simulations in
793 more detail later. The simulations with individual forcings, discussed below, provide insight into
794 the combined response of GPP to all forcings in the FULL simulation.

795 **5.2.1 Response to increasing CO₂**

796 The response of C and N cycles to increasing CO₂ in the CO₂-only simulation (orange lines
797 in Figure 4) is the most straightforward to interpret. A CO₂ increase causes GPP to increase by 7.5
798 Pg C yr⁻¹ above its pre-industrial value (Figure 4a), which in turn causes vegetation (Figure 4b),
799 leaf (Figure 4c), and soil (Figure 4d) carbon mass to increase as well. The vegetation and leaf N
800 amounts (orange line, Figures 5a and 5b), in contrast, decrease in response to increasing CO₂.
801 This is because N gets locked up in the soil organic matter pool (Figure 5c) in response to an
802 increase in the soil C mass (due to the increasing GPP), litter inputs which are now rich in C (due
803 to CO₂ fertilization) but poor in N (since N inputs are still at their pre-industrial level), and the fact
804 that the C:N ratio of the soil organic matter is fixed at 13. This response to elevated CO₂ which
805 leads to increased C and decreased N in vegetation is consistent with meta-analysis of 75 field
806 experiments of elevated CO₂ (Cotrufo et al., 1998). A decrease in N in leaves (orange line, Figure
807 5b) leads to a concomitant decrease in maximum carboxylation capacity (V_{cmax}) (orange line,
808 Figure 5d) and as a result GPP increases at a much slower rate in the CO₂-only simulation than in
809 the ORIG-UNCONST simulation (Figure 4a). Due to the N accumulation in the soil organic matter
810 pool, the NH₄⁺ and NO₃⁻ (Figures 5e and 5f) pools also decrease in size in the CO₂-only simulation.

811 Figure 6 shows the time series of N demand, plant N uptake and its split between passive
812 and active N uptakes. The plant N demand in the CO₂-only simulation (Figure 6a, orange line)
813 increases from its pre-industrial value of 1512 Tg N/yr to 1639 Tg N/yr for the present day since
814 the increasing C input from increasing GPP requires higher N input to maintain preferred
815 minimum C:N ratio of plant tissues. However, since mineral N pools decrease in size over the
816 historical period in this simulation (Figures 5e and 5f), the total plant N uptake (Figure 6b)
817 reduces. Passive plant N uptake is directly proportional to pool sizes of NH₄⁺ and NO₃⁻ and
818 therefore it reduces in response to increasing CO₂. Active plant N uptake, which compensates for
819 insufficient passive N uptake compared to the N demand, also eventually starts to decline as it
820 also depends on mineral N pool sizes. The eventual result of increased C supply and reduced N
821 supply is an increase in the C:N ratio of all plant components and litter (Figure 7). The
822 preindustrial total N uptake of around 960 Tg N/yr (Figure 6b) is lower than the preindustrial N
823 demand (1512 Tg N/yr, Figure 6a) despite the sum of global NH₄ and NO₃ pool sizes being around
824 4000 Tg N (Figures 5e and 5f). This is because of the mismatch between where the pools are high
825 and where the vegetation actually grows and the fact that plant N uptake is limited by its rate.
826 As a result, in our model, even in the preindustrial era vegetation is N limited.

827 Figure 8 shows the net mineralization flux (the net transfer of mineralized N from litter
828 and humus pools to the mineral N pools as a result of the decomposition of organic matter),
829 nitrification (N flux from NH₄⁺ to the NO₃⁻ pool), and the gaseous and leaching losses from the
830 mineral pools. The net mineralization flux reduces in the CO₂-only simulation (Figure 8a, orange
831 line) as N gets locked up in the soil organic matter. A reduction in the NH₄⁺ pool size in response
832 to increasing CO₂ also yields a reduction in the nitrification flux over the historical period (Figure

833 8b, orange line) since nitrification depends on the NH_4^+ pool size (equation 19). Finally, leaching
834 from the NO_3^- pool (Figure 8c), NH_3 volatilization (Figure 8d), and the gaseous losses associated
835 with nitrification from the NH_4^+ pool (Figure 8e) and denitrification from the NO_3^- pool (Figure 8f)
836 all reduce in response to reduction in pool sizes of NH_4^+ and NO_3^- in the CO₂-only simulation.

837 **5.2.2 Response to changing climate**

838 The perturbation due to climate change alone over the historical period in the CLIM-only
839 simulation (magenta coloured lines in Figures 4 to 8) is smaller than that due to increasing CO₂.
840 In Figure 4a, changes in climate over the historical period increase GPP slightly by 3.60 Pg C yr⁻¹
841 which in turn slightly increases vegetation (including leaf) C mass (Figure 4b,c). The litter and soil
842 carbon mass (Figure 4d), however, decrease slightly due to increased decomposition rates
843 associated with increasing temperature (see Figure A2b). Both the increase in BNF due to
844 increasing temperature (magenta line in Figure 2a), and the reduction in litter and soil N mass
845 (Figure 5c) due to increasing decomposition and higher net N mineralization (Figure 8a, magenta
846 line), make more N available. This results in a slight increase in vegetation and leaf N mass
847 (Figures 5a and 5b) and the NH_4^+ (Figure 5e) pool which is the primary mineral pool in soils under
848 vegetated regions. The global NO_3^- pool, in contrast, decreases in the CLIM-only simulation
849 (Figure 5f) with the reduction primarily occurring in arid regions where the NO_3^- amounts are very
850 large (see Figure 9 that shows the geographical distribution of the primary C and N pools). The
851 geographical distribution of NH_4^+ (Figure 9a) generally follows the geographical distribution of
852 BNF, but with higher values in areas where cropland exists and where N deposition is high. The
853 geographical distribution of NO_3^- (Figure 9b) generally shows lower values than NH_4^+ except in
854 the desert regions where lack of denitrification leads to a large buildup of the NO_3^- pool (as

855 explained earlier in section 3.4.2). Although Figure 9 shows the geographical distribution of
856 mineral N pools from the FULL simulation, the geographical distribution of pools are broadly
857 similar between different simulations with obvious differences such as lack of hot spots of N
858 deposition and fertilizer input in simulations in which these forcings stay at their pre-industrial
859 levels. Figure 9 also shows the simulated geographical distribution of C and N pools in the
860 vegetation and soil organic matter. The increase in GPP due to changing climate increases the N
861 demand (Figure 6a, magenta line) but unlike the CO2-only simulation, the plant N uptake
862 increases since the NH_4^+ and NO_3^- pools increase in size over the vegetated area in response to
863 increased mineralization (Figure 8a, magenta line) and increased BNF (Figure 3a, magenta line).
864 The increase in plant N uptake comes from the increase in passive plant N uptake (Figure 6c)
865 while the active plant N uptake reduces (Figure 6d). Active and passive plant N uptakes are
866 inversely correlated. This is by design since active plant N uptake increases when passive plant N
867 uptake reduces and vice-versa, although eventually both depend on the size of available mineral
868 N pools. Enhancement of plant N uptake due to changes in climate, despite increases in GPP
869 associated with a small increase in V_{cmax} (Figure 5d), leads to a small reduction in the C:N ratio of
870 all plant tissues (Figure 7). The litter C:N, in contrast, shows a small increase since not all N makes
871 its way to the litter as a specified fraction of 0.54 (Table A1) leaf N is resorbed from deciduous
872 trees leaves prior to leaf fall (Figure 7e). Although the leaf C:N ratio decreases in the CLIM only
873 simulation, in response to increased BNF and increased mineralization, this decrease is not large
874 enough to overcome the effect of resorption and as a result the C:N litter increases.

875 Finally, the small increase in pool sizes of NH_4^+ and NO_3^- leads to a small increase in
876 leaching, volatilization, and gaseous losses associated with nitrification and denitrification (Figure
877 8).

878 **5.2.3 Response to N deposition**

879 The simulated response of GPP to changes in N deposition (brown line) over the historical
880 period is smaller than that for CO_2 and climate (Figure 4a). The small increase in GPP of 2.0 Pg C
881 yr^{-1} leads to commensurately small increases in vegetation (Figure 4b) and litter plus soil (Figure
882 4d) C mass. Vegetation and leaf N mass (Figure 5a,b) also increase in response to N deposition
883 and so do mineral pools of NH_4^+ and NO_3^- (Figure 5e,f). The increase in GPP in the simulation with
884 N deposition results from an increase in V_{cmax} rates (Figure 5d) associated with an increase in leaf
885 N amount (Figure 5b). N demand increases marginally and so does plant N uptake in response to
886 N deposition (Figure 6). As would be intuitively expected, the C:N ratio of the whole plant, its
887 components of leaves, stem, and root, and litter decreases slightly in response to N deposition
888 (Figure 7). Net N mineralization, nitrification, leaching, volatilization, and gaseous losses
889 associated with nitrification and denitrification all increase in response to N deposition (Figure
890 8).

891 **5.2.4 Response to LUC and fertilizer input**

892 The simulated response to LUC, which reflects an increase in crop area, and increased
893 fertilizer deposition rates over the historical period is shown by dark green lines in Figures 4
894 through 8. The increase in fertilizer input is a much bigger perturbation to the N cycle system
895 than N deposition. Figure 2 shows that at the global scale the fertilizer inputs increase from 0 to

896 ~92 Tg N/yr over the historical period, while the combined NH_4^+ and NO_3^- N deposition rate
897 increases from around 20 to 65 Tg N/yr. In addition, because of higher per unit area BNF rates
898 over crop area than natural vegetation, the increase in crop area in this simulation leads to an
899 increase in anthropogenic BNF from about 20 to 56 Tg N/yr over the historical period. All together
900 increasing crop area and fertilizer inputs imply an additional ~130 Tg N/yr being input into the
901 terrestrial N cycle at the present day since the pre-industrial period, compared to an increase of
902 only 45 Tg N/yr for the N deposition forcing.

903 The global increase in fertilizer input over the historical period leads to higher NH_4^+ and
904 NO_3^- pools (Figures 5e and 5f). Although both fertilizer and BNF contribute to the NH_4^+ pool, the
905 NO_3^- pool also increases through the nitrification flux (Figure 8b). An increase in crop area over
906 the historical period results in deforestation of natural vegetation that reduces vegetation
907 biomass (Figure 4b). However, soil carbon mass also decreases (Figure 4d) despite higher litter
908 inputs. This is because a higher soil decomposition rate is assumed over cropland areas to
909 simulate soil carbon loss as empirical measurements of soil carbon show over deforested areas
910 which are converted to croplands (Wei et al., 2014). Fertilizer application only occurs over crop
911 areas which increases the V_{cmax} rates for crops and, as expected, this yields an increase in globally-
912 averaged V_{cmax} (Figure 5d). A corresponding large increase in leaf N amount (Figure 5b) is,
913 however, not seen because vegetation (and therefore leaf) N (Figure 5a,b) is also lost through
914 deforestation. In addition, V_{cmax} is essentially a flux (expressed per unit leaf area) that is averaged
915 over the whole year while leaf and vegetation N pools are sampled at the end of each year and
916 all crops in the northern hemisphere above 30° N are harvested before the year end. Vegetation
917 N mass, in fact, decreases in conjunction with vegetation C mass (Figure 4b). Plant N demand

918 reduces (Figure 6a) and plant N uptake increases (Figure 6b) driven by crop PFTs in response to
919 fertilizer input, as would be intuitively expected. The increase in plant N uptake comes from the
920 increase in passive N uptake, in response to increases in pool sizes of NH_4^+ and NO_3^- over crop
921 areas, while active plant N uptake decreases since passive uptake can more than keep up with
922 the demand over cropland area. While the C:N ratio of vegetation biomass decreases over
923 cropland area in response to fertilizer input (not shown) this is not seen in the globally-averaged
924 C:N ratio of vegetation (Figure 7a) and its components because C and N are also lost through
925 deforestation and the fact that crop biomass is harvested. The C:N of the global litter pool,
926 however, decreases in response to litter from crops which gets rich in N as fertilizer application
927 rates increase. Finally, in Figure 8, global net N mineralization, nitrification, leaching,
928 volatilization, and gaseous losses associated with nitrification and denitrification all increase by
929 a large amount in response to an increase in fertilizer input.

930 **5.2.5 Response to all forcings**

931 We can now evaluate and understand the simulated response of the FULL simulation to
932 all forcings (red line in Figures 4 through 8). The increase in GPP in the FULL simulation (14.5 Pg
933 C/yr) in Figure 4a over the historical period is driven by GPP increase associated with increase in
934 CO_2 (7.5 Pg C/yr), changing climate (3.6 Pg C/yr), and N deposition (2.0 Pg C/yr). The increases
935 associated with these individual forcings add up to 13.1 Pg C/yr indicating that synergistic effects
936 between forcings contribute to the additional 1.4 Pg C/yr increase in GPP. The changes in
937 vegetation and soil plus litter carbon mass (Figures 4b and 4d) in the FULL simulation are similarly
938 driven by these three factors but, in addition, LUC contributes to decreases in vegetation and soil
939 carbon mass as natural vegetation is deforested to accommodate for increases in crop area.

940 Vegetation and leaf N mass (Figures 5a and 5b) decrease in the FULL simulation driven primarily
941 by the response to increasing CO₂ (orange line compared to the red line) while changes in litter
942 and soil N mass are affected variably by all forcings (Figure 5c). Changes in V_{cmax} (Figure 5d) are
943 similarly affected by all forcings: increasing CO₂ leads to a decrease in globally-averaged V_{cmax}
944 values while changes in climate, N deposition, and fertilizer inputs lead to increases in V_{cmax}
945 values with the net result being a small decrease over the historical period. The increase in global
946 NH₄⁺ mass in the FULL simulation is driven primarily by the increase in fertilizer input (Figure 5e,
947 red versus green line) while the changes in NO₃⁻ mass are primarily the result of changes in
948 climate (Figure 5f, magenta line) which causes a decrease in NO₃⁻ mass from about 1940 to 1970
949 and N deposition and fertilizer input (Figure 5f, green and brown lines) which contribute to the
950 increase in NO₃⁻ mass later on in the historical period. The increase in N demand (Figure 6a) over
951 the historical period is also driven primarily by the increase in atmospheric CO₂. Plant N uptake
952 (Figure 6b) decreases in response to increasing CO₂ but increases in response to changes in
953 climate, N deposition, and fertilizer inputs such that the net change over the historical is a small
954 decrease. The increase in the C:N ratio of vegetation and its components (leaves, stem, and root)
955 is driven primarily by an increase in atmospheric CO₂ (Figure 7a, red versus orange line). Litter
956 C:N in the FULL simulation, in contrast, does not change substantially over the historical period
957 in a globally-averaged sense as the increase in the C:N ratio of litter associated with an increase
958 in atmospheric CO₂ is mostly compensated by the decrease associated with an increase in N
959 deposition and fertilizer application. The simulated change in global net N mineralization (Figure
960 8a) in the FULL simulation, over the historical period, is small since the decrease in net N
961 mineralization due to increasing CO₂ (orange line) is compensated by the increase caused by

962 changes in climate, N deposition, and fertilizer inputs (magenta, brown, and green lines
963 respectively). The remaining fluxes of nitrification, NO_3^- leaching, NH_3 volatilization, and gaseous
964 losses associated with nitrification and denitrification in the FULL simulation (Figure 8) are all
965 strongly influenced by fertilizer input (green line compared to red line).

966 Table 2 compares simulated values of all primary N pools and fluxes from the FULL
967 simulation with other modelling and quasi observation-based studies. Simulated values are
968 averaged over the 1998-2017 period. Where available, time-periods for other modelling and
969 quasi observation-based studies to which estimates correspond are also noted. For the most part
970 simulated pools and fluxes lie within the range of existing studies with the exception of N_2 and
971 NO emissions that are somewhat higher.

972 **5.2.6 Response to all forcings except LUC**

973 The FULL-no-LUC simulation includes all forcings except LUC (blue line in Figures 4
974 through 8) and corroborates several of the points mentioned above. In this simulation crop area
975 stays at its 1850 value. Figure 2b (blue line) shows increasing global fertilizer input in this
976 simulation despite crop area staying at its 1850 value since fertilizer application rates per unit
977 area increase over the historical period. In the absence of the LUC, vegetation C mass (Figure 4b)
978 and soil plus litter C (Figure 4d) and N (Figure 5c) are higher in the FULL-no-LUC compared to the
979 FULL simulation. N demand (Figure 6a) is slightly higher in FULL-no LUC than in FULL simulation
980 because there is more standing vegetation biomass that is responding to increasing CO_2 . The
981 increase in volatilization, leaching, and gaseous losses associated with nitrification and
982 denitrification (Figures 8c-8f) are all primarily caused by increased fertilizer input over the

983 specified 1850 crop area. The increase in N losses associated with these processes, over the
984 historical period, is much lower in the FULL-no-LUC simulation than in the FULL simulation since
985 crop area stays at its 1850 values.

986 **5.3 Comparison of FULL and ORIGINAL simulations**

987 We now compare the results from the FULL simulation that includes the N cycle with that
988 from the ORIGINAL simulation that does not include the N cycle. Both simulations are driven with
989 all forcings over the historical period. Figure 4a shows that the global GPP values in the FULL (red
990 line) and ORIGINAL (purple line) simulations are quite similar although the rate of increase of GPP
991 in the FULL simulation is slightly higher than in the ORIGINAL simulation. As a result, simulated
992 global vegetation biomass is somewhat higher in the FULL simulation (Figure 4b). The simulated
993 global litter and soil carbon mass (Figure 4d) is, however, lower in the FULL simulation (1073 Pg
994 C) compared to the ORIGINAL simulation (1142 Pg C) and this decrease mainly comes from a
995 decrease at higher latitudes (not shown) due to a decrease in GPP (Figure 10a). The lower GPP in
996 the FULL simulation, combined with the slow decomposition at cold high latitudes, results in a
997 lower equilibrium for litter and soil carbon compared with the ORIGINAL simulation. Litter mass
998 contributes about 80 Pg C to the total dead carbon mass. Overall both estimates of 1073 Pg C
999 and 1142 Pg C are somewhat lower than the bulk density corrected estimate of 1230 Pg C based
1000 on the Harmonized World Soil Database (HWSD) v.1.2 (Köchy et al., 2015). One reason for this is
1001 that CLASSIC does not yet represent permafrost related soil C processes.

1002 Figure 10a shows that the zonal distribution of GPP from the FULL and ORIGINAL
1003 simulations, for the 1998-2017 period, compares reasonably well to the observation-based

1004 estimate from Beer et al. (2010). The FULL simulation has slightly lower productivity at high-
1005 latitudes than the ORIGINAL simulation, as mentioned above. Overall, however, the inclusion of
1006 the N cycle does not change the zonal distribution of GPP in the model substantially, which is
1007 determined primarily by the geographical distribution of climate. Figure 10b compares the zonal
1008 distribution of GPP from the pre-industrial simulation (corresponding to 1850s) from the FULL
1009 and FULL-with-no-implicit-P-limitation simulations to illustrate the high GPP in the tropics where
1010 P and not N limitation affects GPP and the reason for choosing a lower value of Γ_1 in equation
1011 (31) for the broadleaf evergreen tree PFT.

1012 The global GPP in the ORIGINAL and FULL simulations averaged over the period 1998-
1013 2017 (120.0 and 120.4 PgC/yr, respectively) are around 15% lower compared to that in the ORIG-
1014 UNCONST simulation (142 PgC/yr), as shown in Figure 4a, yielding a global downregulation factor
1015 of about 0.85. Figure 10c shows how downregulation works in the ORIGINAL and FULL
1016 simulations in a zonally-averaged sense. Ratios of annual GPP averaged over the 1998-2017
1017 period from the ORIGINAL versus ORIG-UNCONST simulations, and FULL versus ORIG-UNCONST
1018 simulations were first calculated for each grid cell and then zonally-averaged over the land grid
1019 cells. Ratios can be misleading especially for grid cells with low values, for example, in the desert
1020 regions. In addition, these ratios also depend on the specified V_{cmax} values in the ORIG-UNCONST
1021 simulation. In Figure 10c, the purple line for the ORIGINAL simulation exhibits values around 0.8
1022 consistent with the global downregulation of around 0.85 and the fact that the same scalar
1023 downregulation multiplier is used everywhere on the globe (equation 1). The red line for the FULL
1024 simulation, however, indicates a pattern of higher downregulation at high-latitudes. The peaks
1025 in red line, especially the one around 23°N (Sahara desert), are due to higher values in selected

1026 grid cells in dry and arid regions where the build-up of NO_3^- in the soil (due to reduced
1027 denitrification) increases V_{cmax} and thus GPP in the run with N cycle leading to higher ratios
1028 although the absolute GPP values still remain low.

1029 Figure 11a compares globally-summed net atmosphere-land CO_2 flux from the FULL,
1030 FULL-no-LUC, and ORIGINAL simulations with quasi observation-based estimates from the 2019
1031 Global Carbon Project (Friedlingstein et al., 2019). There are two kinds of estimates in Figure 11a
1032 from Friedlingstein et al. (2019): the first is the net atmosphere-land CO_2 flux for the decades
1033 spanning the 1960s to the 2000s which are shown as rectangular boxes with their corresponding
1034 mean values and ranges, and the second is the terrestrial sink from 1959 to 2018 (dark yellow
1035 line). Positive values indicate a sink of carbon over land and negative values a source. The
1036 difference between the net atmosphere-land CO_2 flux and the terrestrial sink is that the
1037 terrestrial sink minus the LUC emissions yields the net atmosphere-land CO_2 flux. The
1038 atmosphere-land CO_2 flux from the FULL-no-LUC simulation (blue line) is directly comparable to
1039 the terrestrial sink since 1959, since the FULL-no-LUC simulation includes no LUC, and shows that
1040 the simulated terrestrial sink compares fairly well to the estimates from Friedlingstein et al.
1041 (2019). Averaged over the period 1959-2017, the modelled and Global Carbon Project values are
1042 2.0 and 2.1 Pg C/yr, respectively. The net atmosphere-land CO_2 flux from the FULL simulation
1043 mostly lies within the uncertainty range for the five decades considered, although it is on the
1044 higher side compared to estimates from Friedlingstein et al. (2019). The reason for this is that
1045 LUC emissions in CLASSIC are much lower than observation-based estimates, as discussed below
1046 in context of Figure 11c. CLASSIC simulates LUC emissions only in response to changes in crop
1047 area whereas changes in pasture area and wood harvesting also contribute to LUC emissions. The

1048 net-atmosphere land CO₂ flux from the ORIGINAL simulation compares better with the estimates
1049 from Friedlingstein et al. (2019), than the FULL simulation, because the photosynthesis down-
1050 regulation parameter in the ORIGINAL simulation has been adjusted despite discrepancies in
1051 simulated LUC processes.

1052 Figure 11b compares the zonal distribution of simulated net atmosphere-land CO₂ flux
1053 from the FULL and ORIGINAL simulations with the model-mean and range from the terrestrial
1054 ecosystem models that participated in the 2019 TRENDY model intercomparison and contributed
1055 results to 2019 Global Carbon Project (Friedlingstein et al., 2019). The carbon sink simulated by
1056 CLASSIC in the northern hemisphere is broadly comparable to the model-mean estimate from
1057 the TRENDY models. However, in the tropics CLASSIC simulates a much stronger sink than the
1058 model-mean, likely because of its lower LUC emissions.

1059 **5.4 Contribution of forcings to land C sink and sources**

1060 Figure 11c shows cumulative net atmosphere-land CO₂ flux for the 1850-2017 period from
1061 the six primary simulations with N cycle. These simulations facilitate the attribution of carbon
1062 uptake and release over the historical period to various forcings. The cumulative terrestrial sink
1063 in the FULL-no-LUC simulation for the period 1850-2017 is simulated to be ~153 Pg C and this
1064 compares reasonably well with the estimate of 185 ± 50 Pg C for the period 1850-2014 from Le
1065 Quéré et al. (2018). Increase in CO₂ (~115 Pg C), change in climate (~3 Pg C), and N deposition
1066 (~19 Pg C) all contribute to this terrestrial sink. These three contributions add up to 137 Pg C so
1067 the additional 16 Pg C is contributed by the synergistic effects between the three forcings.
1068 Quantified in this way, the contribution of increasing CO₂ (115 out of 137 Pg C), climate change

1069 (3 out of 137 Pg C), and N deposition (19 out of 137 Pg C) to carbon uptake by land over the
1070 historical period (1850-2017) is calculated to be 84%, 2%, and 14%, respectively. Cumulative LUC
1071 emissions simulated for the period 1850-2017 by CLASSIC can be estimated using a negative
1072 cumulative net-atmosphere-land CO₂ flux of ~66 Pg C from the LUC+FERT-only simulation or by
1073 the differencing the FULL and FULL-no-LUC simulations (~71 Pg C). While LUC emissions are highly
1074 uncertain, both of these estimates are much lower than the 195 ± 75 Pg C estimate from Le Quéré
1075 et al. (2018).

1076 **6.0 Discussion and conclusions**

1077 The interactions between terrestrial C and N cycles are complex and our understanding
1078 of these interactions, and their representation in models, is based on empirical observations of
1079 various terrestrial ecosystem processes. In this paper, we have evaluated the response of these
1080 interactions by perturbing the coupled C and N cycle processes in the CLASSIC model with one
1081 forcing at a time over the historical period: 1) increase in CO₂, 2) change in climate, 3) increase in
1082 N deposition, and 4) LUC with increasing fertilizer input. These simulations are easier to interpret
1083 and the model response can be evaluated against both our conceptual knowledge as well as
1084 empirical observation-based data. Our assumption is that, if the model response to individual
1085 forcings is realistic and consistent with expectations based on empirical observations then the
1086 response of the model to all forcings combined will also be realistic and easier to interpret,
1087 although we do expect and see synergistic effects between forcings.

1088 The simulated response of coupled C and N cycles in CLASSIC to increasing atmospheric
1089 CO₂ is an increase in the C:N ratio of vegetation components due to an increase in their C content

1090 but also a decrease in their N content. This model response is conceptually consistent with a
1091 meta-analysis of 75 field experiments of elevated CO₂ as reported in Cotrufo et al. (1998) who
1092 find an average reduction in tissue N concentration of 14%. Most studies analyzed in the Cotrufo
1093 et al. (1998) meta-analysis used ambient CO₂ of around 350 ppm and elevated CO₂ of around
1094 650-700 ppm. In comparison, the plant N concentration in CLASSIC reduces by ~26% in response
1095 to a gradual increase in atmospheric CO₂ from 285 ppm to 407 ppm (an increase of 122 ppm)
1096 over the 1850-2017 period (whole plant C:N ratio increases from 142.6 to 194.1 in the CO₂-only
1097 simulation, Figure 7a). These two estimates cannot be compared directly - the majority (59%) of
1098 Free-Air Carbon dioxide Enrichment (FACE) experiments last less than 3 years (Jones et al., 2014)
1099 and the vegetation experiences a large CO₂ change of around 300-350 ppm while the duration of
1100 our historical simulation is 167 years and the gradual increase in CO₂ of 122 ppm over the
1101 historical period is much smaller.

1102 The response of our model to CO₂ increase over the historical period is also consistent
1103 with the meta-analysis of McGuire et al. (1995) who report an average decrease in leaf N
1104 concentration of 21% in response to elevated CO₂ based on 77 studies, which is the primary
1105 reason for downregulation of photosynthetic capacity. The simulated decrease in leaf N
1106 concentration in our study for the CO₂-only experiment is around 27% (leaf C:N ratio increases
1107 from 42.8 to 58.6 in the CO₂-only simulation, Figure 7b). Although, the same caveats that apply
1108 to the comparison with the Cotrufo et al. (1998) study also apply to this comparison. The
1109 decrease in whole plant and leaf N concentrations in our results is conceptually consistent with
1110 the meta-analyses of McGuire et al. (1995) and Cotrufo et al. (1998). The decrease in whole plant
1111 N concentration in our CO₂-only and FULL simulations is the result of an increase in both tissue

1112 C amount and a decrease in N amount. The decrease in tissue N amount is, in fact, necessary in
1113 our modelling framework to induce the required downregulation of photosynthesis to simulate
1114 the land carbon sink realistically over the historical period.

1115 The meta-analysis of Liang et al. (2016) reports an increase in above and belowground
1116 plant N pools in response to elevated CO₂ associated with increase in BNF but since their results
1117 are based on pool sizes they cannot be compared directly to the N concentration based results
1118 from McGuire et al. (1995) and Cotrufo et al. (1998). Liang et al. (2016) also report results from
1119 short-term (≤ 3 years) and long-term (between 3 to 15 years) studies separately (their Figure 3).
1120 They show that the increase in total plant and litter N pools become smaller for long-term studies.
1121 Regardless, the difference in time scales of empirical studies and the real world is a caveat that
1122 will always make it difficult to evaluate model results over long time scales.

1123 The response of C and N cycles to changes in climate in our model (in the CLIM-only
1124 simulation) is also conceptually realistic. Globally, GPP increases in response to climate that
1125 gradually gets warmer and wetter (see Figure A2) and as a result vegetation biomass increases.
1126 Soil carbon mass, however, decreases (despite increase in NPP inputs) since warmer
1127 temperatures also increase heterotrophic respiration (not shown). As a result of increased
1128 decomposition of soil organic matter, net N mineralization increases and together with increased
1129 BNF the overall C:N ratio of vegetation and leaves decreases, which leads to a V_{cmax} increase. The
1130 small increase in V_{cmax} , due to increased mineralization, thus also contributes to an increase in
1131 GPP over and above that due to a change in climate alone, and therefore compensates for the
1132 amount of carbon lost due to increased soil organic matter decomposition associated with
1133 warmer temperatures. This behaviour is consistent with land C cycle models showing a reduction

1134 in the absolute value of the strength of the carbon-climate feedback when they include coupling
1135 of C and N cycles (Arora et al., 2020).

1136 The modelled differences in PFT specific values of V_{cmax} , in our framework, come through
1137 differences in simulated values of leaf N amount (N_L) that depend on BNF (given that BNF is the
1138 primary natural source of N input into the coupled soil-vegetation system) but also differences
1139 in mineralization that are governed by climate. N_L values, however, also depend on leaf
1140 phenology, allocation of carbon and nitrogen, turnover rates, transpiration (which brings in N
1141 through passive uptake), and almost every aspect of plant biogeochemistry which affects a PFT's
1142 net primary productivity and therefore N demand. Modelled increases in GPP in response to N
1143 deposition come through an increase in leaf N amount and therefore V_{cmax} values.

1144 Finally, changes in land use associated with an increase in crop area, and the associated
1145 increase in fertilizer application rates lead to the largest increase in NO_3^- leaching, NH_3
1146 volatilization, and gaseous losses associated with nitrification and denitrification among all
1147 forcings. Overall, the model response to perturbation by all individual forcings is realistic,
1148 conceptually expected, and of the right sign (positive or negative) although it is difficult to
1149 evaluate the magnitude of these responses in the absence of directly comparable observation-
1150 based estimates.

1151 Despite the model responses to individual forcings that appear consistent with our
1152 conceptual understanding of coupled C and N cycles, our modelling framework misses an
1153 important feedback process that has been observed in the FACE and other experiments related
1154 to changes in natural BNF. FACE sites and other empirical studies report an increase in natural

1155 BNF rates at elevated CO₂ (McGuire et al., 1995; Liang et al., 2016) and a decrease in natural BNF
1156 rates when additional N is applied to soils (Salvagiotti et al., 2008; Ochoa-Hueso et al., 2013). On
1157 a broad scale this is intuitively expected but the biological processes behind changes in BNF rates
1158 remain largely unclear. A response can still be parameterized even if the underlying physical and
1159 biological processes are not well understood. For instance, Goll et al. (2012) parameterize BNF as
1160 an increasing and saturating function of NPP, $BNF = 1.8 (1.0 - \exp(-0.003 NPP))$. This
1161 approach, however, does not account for the driver behind the increase in NPP - increasing
1162 atmospheric CO₂, change in environmental conditions (e.g., wetter and warmer conditions), or
1163 increased N deposition. Clearly, increasing BNF if the NPP increase is due to N deposition is
1164 inconsistent with empirical observations. Over the historical period an increase in atmospheric
1165 CO₂ has been associated with an increase in N deposition so to some extent changes in BNF due
1166 to both forcings will cancel each other. We realize the importance of changes in BNF, given it is
1167 the single largest natural flux of N into the coupled soil-vegetation system yet highly uncertain,
1168 and aim to address these issues in a future version of the model by exploring existing BNF
1169 formulations. Meyerholt et al. (2016), for example, demonstrate the uncertainty arising from the
1170 use of five different BNF parameterizations in the context of the O-CN model. They use
1171 formulations that parameterize BNF as a function of 1) evapotranspiration, 2) NPP, 3) leaf C:N
1172 ratio, that takes into account energy cost for N fixation (Fisher et al., 2010), 4) plant N demand,
1173 and 5) an optimality-based approach that follows Rastetter et al. (2001) in which BNF only occurs
1174 when the carbon cost of N fixation is lower than the carbon cost of root N uptake. The approach
1175 used in our study is closest to the one that is based on evapotranspiration but makes the
1176 distinction in BNF rates over natural and agricultural areas.

1177 The reduction of photosynthesis rates in response to N limitation is the most important
1178 linkage between C and N cycles and yet it too is parameterized differently across models. Given
1179 that leaf N amount and photosynthetic capacity are strongly correlated (Evans, 1989; Field and
1180 Mooney, 1986; Garnier et al., 1999), photosynthesis downregulation due to N limitation reduces
1181 photosynthetic capacity, and thus the GPP flux. Yet models reduce both NPP (Wiltshire et al.,
1182 2020) and V_{cmax} rates, and thus GPP, (Zaehle and Friend, 2010; Wania et al., 2012; von Bloh et al.,
1183 2018) in response to N limitation. V_{cmax} rates may themselves be parameterized as a function leaf
1184 N amount directly (von Bloh et al., 2018; Zaehle and Friend, 2010) or leaf C:N ratio (Wania et al.,
1185 2012). In this study, we have parameterized V_{cmax} rates as a function of leaf N amount (equation
1186 31) since the use of leaf C:N ratio leads to an incorrect seasonal variation of V_{cmax} . If an increase
1187 in leaf C:N ratio, as a result of increase in atmospheric CO₂, leads to a decrease in V_{cmax} rates over
1188 the historical period then it implies that V_{cmax} is inversely related to leaf C:N ratios. Since leaf C:N
1189 ratio peak during the growing season (Li et al., 2017) this also implies V_{cmax} rates are lower during
1190 the peak growing season than at its start and this is in contrast to observations that show an
1191 increase in V_{cmax} during the growing season (e.g., see Fig. 1a of Bauerle et al. (2012)).

1192 Our framework assumes a constant C:N ratio of 13 for soil organic matter ($C:N_H$), an
1193 assumption also made in other models (e.g., Wania et al., 2012; Zhang et al., 2018). This
1194 assumption is also broadly consistent with Zhao et al. (2019) who attempt to model C:N of soil
1195 organic matter, among other soil properties, as a function of mean annual temperature and
1196 precipitation using machine learning algorithms (their Figure 2h). It is difficult to currently
1197 establish if increasing atmospheric CO₂ is changing $C:N_H$ given the large heterogeneity in soil
1198 organic C and N densities, and the difficulty in measuring small trends for such large global pools.

1199 A choice of a somewhat different value for all PFTs or had we chosen specified constant PFT-
1200 dependent values of $C:N_H$ is of relatively less importance in this context since the model is spun
1201 to equilibrium for 1850 conditions anyway. It is the change in $C:N_H$ over time that is of
1202 importance. The assumption of constant $C:N_H$ is the key to yielding a decrease in vegetation N
1203 mass, and therefore leaf N mass and V_{cmax} , as CO_2 increases, in our framework. Without a
1204 decrease in V_{cmax} in our modelling framework, in response to elevated CO_2 , we cannot achieve
1205 the downregulation noted by McGuire et al. (1995) in their meta-analysis, and the simulated
1206 carbon sink over the historical period would be greater than observed as noted above. It is
1207 possible that we are simulating the reduction in leaf N mass, in response to elevated CO_2 , for a
1208 wrong reason in which case our model processes need to be revisited based on additional
1209 empirical data. If our assumption of constant or extremely slowly changing $C:N_H$ is indeed
1210 severely unrealistic, this necessitates a point of caution that a realistic land carbon sink can be
1211 simulated over the historical period with such an assumption.

1212 Related to this assumption is also the fact that we cannot make decomposition rates of
1213 soil organic matter a function of its C:N ratio since it is assumed to be a constant. It is well known
1214 that after climate, litter and soil organic matter decomposition rates are controlled by their C:N
1215 ratio (Manzoni et al., 2008). Litter decomposition rates can still be made a function of its C:N ratio
1216 and we aim to do this for a future model version.

1217 The work presented in this study of coupling C and N cycles in CLASSIC yields a framework
1218 that we can build upon to make model processes more realistic, test the effect of various model
1219 assumptions, parameterize existing processes in other ways, include additional processes, and
1220 evaluate model response at FluxNet sites to constrain model parameters.

1221 **Appendix**

1222

1223 **A1. Budget equations for N pools**

1224 The rates of change of N in the NH_4^+ and NO_3^- pools (in gN m^{-2}), N_{NH_4} and N_{NO_3} ,
1225 respectively, are given by

1227

$$\frac{d N_{\text{NH}_4}}{dt} = B_{\text{NH}_4} + F_{\text{NH}_4} + P_{\text{NH}_4} + M_{D,\text{NH}_4} + M_{H,\text{NH}_4} - U_{\text{NH}_4} - (I_{\text{NO}_3} + I_{\text{N}_2\text{O}} + I_{\text{NO}}) - V_{\text{NH}_3} - O_{\text{NH}_4} \quad (\text{A1})$$

1226

1228

$$\frac{d N_{\text{NO}_3}}{dt} = P_{\text{NO}_3} + I_{\text{NO}_3} - L_{\text{NO}_3} - U_{\text{NO}_3} - (E_{\text{N}_2} + E_{\text{N}_2\text{O}} + E_{\text{NO}}) - O_{\text{NO}_3} \quad (\text{A2})$$

1229 and all fluxes are represented in units of $\text{gN m}^{-2} \text{ day}^{-1}$. B_{NH_4} is the rate of biological N fixation
1230 which solely contributes to the NH_4^+ pool, F_{NH_4} is the fertilizer input which is assumed to
1231 contribute only to the NH_4^+ pool, and P_{NH_4} and P_{NO_3} are atmospheric deposition rates that
1232 contribute to the NH_4^+ and NO_3^- pools, respectively. Biological N fixation, fertilizer input, and
1233 atmospheric deposition are the three routes through which N enters the coupled soil-vegetation
1234 system. M_{D,NH_4} and M_{H,NH_4} are the mineralization flux from the litter and soil organic matter
1235 pools, respectively, associated with their decomposition. We assume mineralization of humus
1236 and litter pools only contributes to the NH_4^+ pool. O_{NH_4} and O_{NO_3} indicate immobilization of N
1237 from the NH_4^+ and NO_3^- pools, respectively, to the humus N pool which implies microbes (that
1238 are not represented explicitly) are part of the humus pool. Combined together the terms
1239 ($M_{D,\text{NH}_4} + M_{H,\text{NH}_4} - O_{\text{NH}_4} - O_{\text{NO}_3}$) yield the net mineralization rate. V_{NH_3} is the rate of
1240 ammonia (NH_3) volatilization and L_{NO_3} is the leaching of N that occurs only from the NO_3^- pool.

1241 The positively charged ammonium ions are attracted to the negatively charged soil particles and
 1242 as a result it is primarily the negatively charged nitrate ions that leach through the soil (Porporato
 1243 et al., 2003; Xu-Ri and Prentice, 2008). U_{NH4} and U_{NO3} are uptakes of NH_4^+ and NO_3^- by plants,
 1244 respectively. The nitrification flux from NH_4^+ to NO_3^- pool is represented by I_{NO3} which also results
 1245 in the release of the nitrous oxide (N_2O), a greenhouse gas, and nitric oxide (NO) through nitrifier
 1246 denitrification represented by the terms I_{N2O} and I_{NO} , respectively. Finally, E_{N2} , E_{N2O} , and E_{NO}
 1247 are the gaseous losses of N_2 (nitrogen gas), N_2O , and NO from the NO_3^- pool associated with
 1248 denitrification. N is thus lost through the soil-vegetation system via leaching in runoff and
 1249 through gaseous losses of I_{N2O} , I_{NO} , E_{N2} , E_{N2O} , E_{NO} , and V_{NH3} .

1250 The structural and non-structural N pools in root are written as $N_{R,S}$ and $N_{R,NS}$,
 1251 respectively, and similarly for stem ($N_{S,S}$ and $N_{S,NS}$) and leaves ($N_{L,S}$ and $N_{L,NS}$), and together the
 1252 structural and non-structural pools make the total N pool in leaf ($N_L = N_{L,S} + N_{L,NS}$), root ($N_R =$
 1253 $N_{R,S} + N_{R,NS}$), and stem ($N_S = N_{S,S} + N_{S,NS}$) components. The rate change equation for
 1254 structural and non-structural N pools in root are given by

$$1255 \quad \frac{dN_{R,NS}}{dt} = U_{NH4} + U_{NO3} + R_{L2R} - R_{R2L} - A_{R2L} - A_{R2S} - LF_{R,NS} - T_{R,NS2S} \quad (\text{A3})$$

$$1256 \quad \frac{dN_{R,S}}{dt} = T_{R,NS2S} - LF_{R,S} \quad (\text{A4})$$

1257 Similar to the uptake of carbon by leaves and its subsequent allocation to root and stem
 1258 components, N is taken up by roots and then allocated to leaves and stem. A_{R2L} and A_{R2S}
 1259 represent the allocation of N from roots to leaves and stem, respectively. The terms R_{L2R} and
 1260 R_{R2L} represent the reallocation of N between the non-structural components of root and leaves.
 1261 R_{L2R} is the N reallocated from leaves to root representing resorption of a fraction of leaf N during

1262 leaf fall for deciduous tree PFTs. R_{R2L} indicates reallocation of N from roots to leaves (termed
 1263 reallocation in Figure 2) at the time of leaf-out for deciduous tree PFTs. At times other than leaf-
 1264 out and leaf-fall and for other PFTs these two terms are zero. $T_{R,NS2S}$ is the one way transfer of
 1265 N from the non-structural to the structural root pool, and similar to the carbon pools, once N is
 1266 converted to its structural form it cannot be converted back to its non-structural form. Finally,
 1267 the litterfall due to turnover of roots occurs from both the structural ($LF_{R,S}$) and non-structural
 1268 ($LF_{R,NS}$) N pools.

1269 The rate change equations for non-structural and structural components of leaves are
 1270 written as

$$1271 \frac{dN_{L,NS}}{dt} = A_{R2L} - R_{L2R} - R_{L2S} + R_{R2L} + R_{S2L} - LF_{L,NS} - T_{L,NS2S} \quad (A5)$$

$$1272 \frac{dN_{L,S}}{dt} = T_{L,NS2S} - LF_{L,S} \quad (A6)$$

1273 where $T_{L,NS2S}$ is the one way transfer of N from the non-structural leaf component to its
 1274 structural N pool and R_{S2L} indicates reallocation of N from stem to leaves (similar to R_{R2L}) at the
 1275 time of leaf out for deciduous tree PFTs. Litterfall occurs from both the structural ($LF_{L,S}$) and non-
 1276 structural ($LF_{L,NS}$) N pools of leaves, and all other terms have been previously defined.

1277 Finally, the rate change equations for non-structural and structural components of stem
 1278 are written as

$$1279 \frac{dN_{S,NS}}{dt} = A_{R2S} + R_{L2S} - R_{S2L} - LF_{S,NS} - T_{S,NS2S} \quad (A7)$$

$$1280 \frac{dN_{S,S}}{dt} = T_{S,NS2S} - LF_{S,S} \quad (A8)$$

1281 where $LF_{S,NS}$ and $LF_{S,S}$ represent stem litter from the non-structural and structural components,
 1282 $T_{S,NS2S}$ is the one way transfer of N from the non-structural stem component to its structural N
 1283 pool. All other terms have been previously defined.

1284 Adding equations (6) through (11) yields rate of change of N in the entire vegetation pool
 1285 (N_V) as

$$\frac{d N_V}{dt} = \frac{d N_{R,NS}}{dt} + \frac{d N_{R,S}}{dt} + \frac{d N_{L,NS}}{dt} + \frac{d N_{L,S}}{dt} + \frac{d N_{S,NS}}{dt} + \frac{d N_{S,S}}{dt} = \frac{d N_R}{dt} + \frac{d N_L}{dt} + \frac{d N_S}{dt}$$

1286

$$\begin{aligned} \frac{d N_V}{dt} &= U_{NH4} + U_{NO3} - LF_{R,NS} - LF_{R,S} - LF_{L,NS} - LF_{L,S} - LF_{S,NS} - LF_{S,S} \\ &= U_{NH4} + U_{NO3} - LF_R - LF_L - LF_S \end{aligned} \quad (A9)$$

1287 which indicates how the dynamically varying vegetation N pool is governed by mineral N uptake
 1288 from the NH_4^+ and NO_3^- pools and litterfall from the structural and non-structural components of
 1289 the leaves, stem, and root pools. LF_R is the total N litter generation from the root pool and sum
 1290 of litter generation from its structural and non-structural components ($LF_R = LF_{R,S} + LF_{R,NS}$),
 1291 and similarly for the leaves (LF_L) and the stem (LF_S) pools.

1292 The rate change equations for the organic N pools in the litter (N_D) and soil (N_H) pools
 1293 are written as follows.

$$\frac{d N_D}{dt} = LF_R + LF_L + LF_S - H_{N,D2H} - M_{D,NH4} \quad (A10)$$

$$\frac{d N_H}{dt} = H_{N,D2H} + O_{NH4} + O_{NO3} - M_{H,NH4} \quad (A11)$$

1296 where $H_{N,D2H}$ is the transfer of humidified organic matter from litter to the soil organic matter
 1297 pool, and all other terms have been previously defined.

1298

1299

1300 **Acknowledgments**

1301 We are grateful and thank Joe Melton and Paul Bartlett for their comments on an earlier version
1302 of this manuscript. We are grateful to one anonymous reviewer, and David Wårlind, for their
1303 reviewer comments which greatly improved this manuscript. We also gratefully acknowledge
1304 Sönke Zaehle, the handling editor for this paper, for his time and effort.

1305

1306 **Code/Data availability**

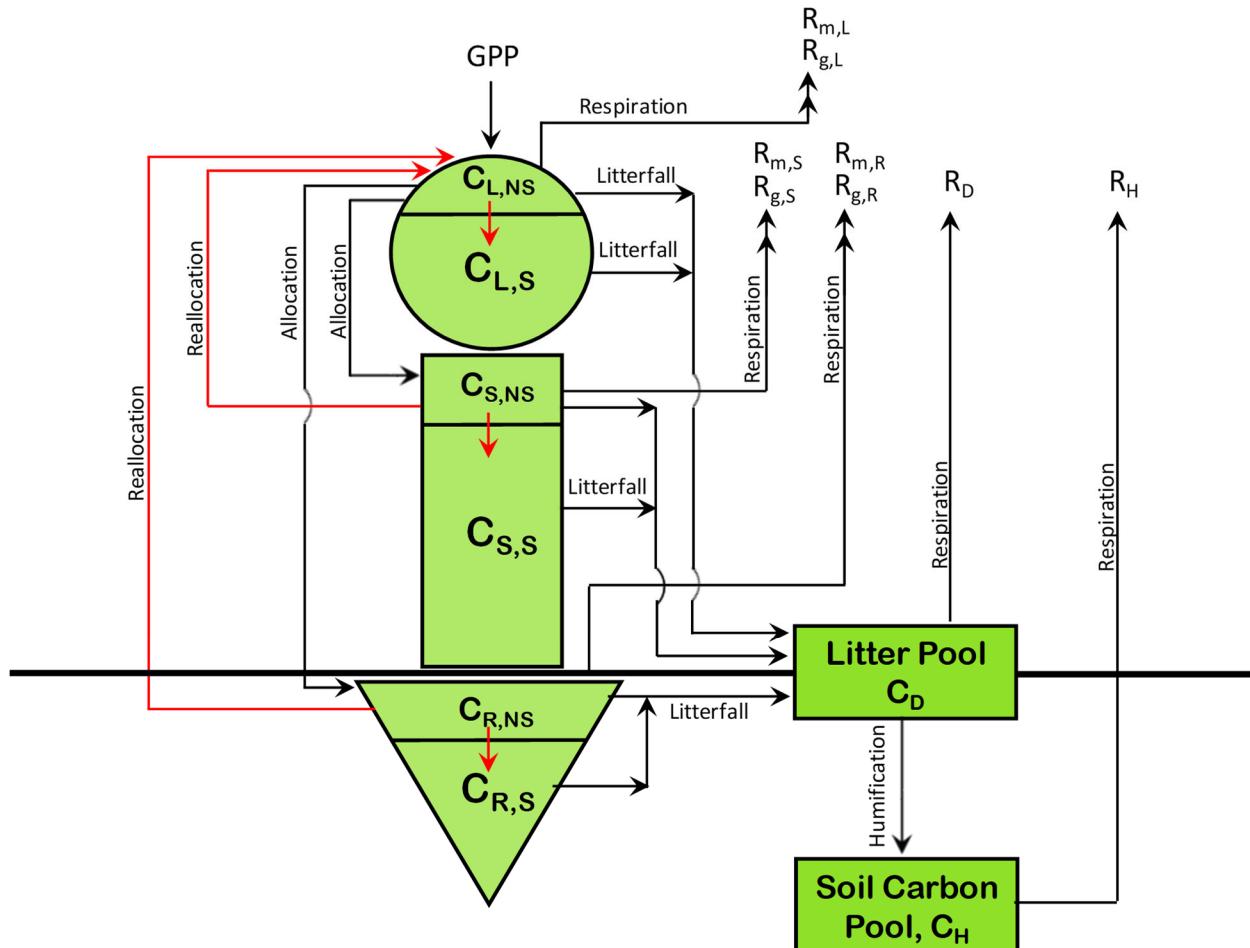
1307 Model code for the operational CLASSIC model can be obtained from
1308 <https://gitlab.com/cccma/classic>. Changes made to the operational version to include N cycle
1309 and the results shown here can be obtained from the second author.

1310

1311 **Author contributions**

1312 A.A. implemented the N cycle in the CLASSIC code, put together all the N cycle related input
1313 data, and performed all the simulations. V.A. and A.A. wrote the manuscript.

1314


1315 **Competing interests**

1316 There are no competing interests.

1317

1318

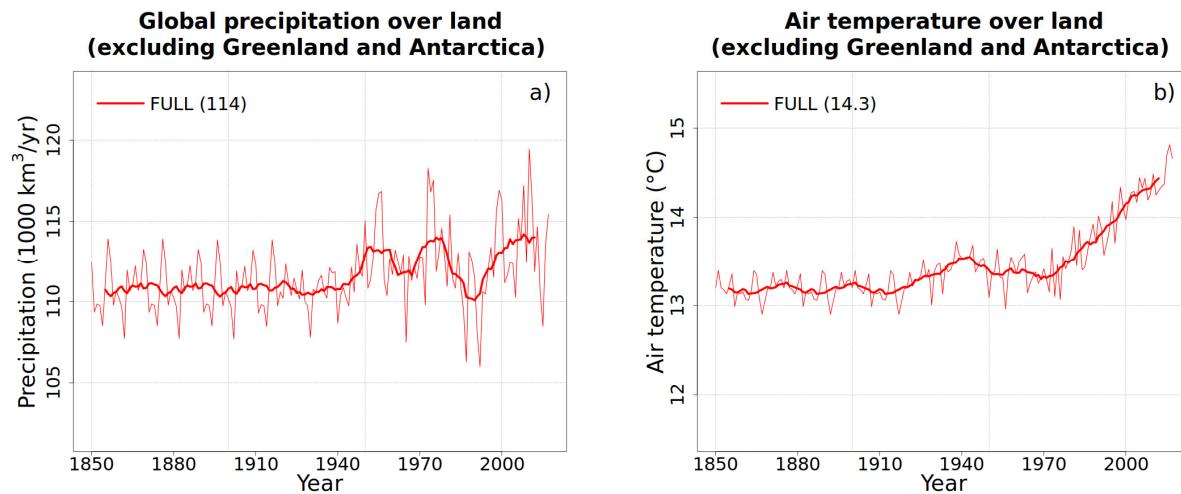
1319

1320

1321

1322 Figure A1: The structure of CLASSIC model used in this study, upon which the N cycle is
1323 implemented, with its carbon pools and fluxes. The fluxes of non-structural carbon are shown in
1324 red colour.

1325


1326

1327

1328

1329

1330

1331

1332

1333 Figure A2: Annual values of global precipitation (a) and air temperature (b) over land in the
1334 CRU-JRA reanalysis data that are used to drive the model. The data are available for the period
1335 1901-2017. In the absence of meteorological data for the period 1851-1900, data from the
1336 period 1901-1925 are used twice. The thin lines are the annual values and the thick line their 10
1337 year running mean. The values in the brackets in the legend show average values over the last
1338 20 years.

1339

1340 **Table A1:** Model parameters for various model parameterizations. Corresponding equation in which the
 1341 parameter appears in the main text is also noted. Model parameters may be scalar or an array (if they
 1342 are PFT dependent) in which case they are written according to the following structure in the table
 1343 below.

Needleleaf evergreen	Needleleaf deciduous	
Broadleaf evergreen	Broadleaf deciduous cold	Broadleaf deciduous drought
C_3 crop	C_4 crop	
C_3 grass	C_4 grass	

1344 .

Model parameter	Eqn	Description	Units	Value(s)
<i>Biological N fixation</i>				
α_c	3	BNF rate for crop PFTs	$gN\ m^{-2}\ day^{-1}$	0.00217
α_n	3	BNF rate for natural PFTs	$gN\ m^{-2}\ day^{-1}$	0.00037
<i>Plant N demand</i>				
$C: N_{L,min}$	4	Minimum C:N ratio for leaves	dimensionless	25 20 16 13 22 18 20 18
$C: N_{S,min}$	4	Minimum C:N ratio for stem	dimensionless	450 430 285 450 430 285 – 18 –
$C: N_{R,min}$	4	Minimum C:N ratio for root	dimensionless	45 35 30 45 35 35 35
<i>Plant uptake</i>				
β	6	Mineral N distribution coefficient	dimensionless	0.5
ε	8	Fine root efficiency	$gN\ gC^{-1}\ day^{-1}$	4.92E-5
$k_{p,\gamma/2}$	8	Half saturation constant	$gN\ m^{-3}$	3
<i>Litterfall</i>				
r_L	11	Leaf resorption coefficient	dimensionless	0.54
<i>Nitrification</i>				
η	19	Nitrification coefficient	day^{-1}	7.33E-4

η_{NO}	23	Fraction of nitrification flux emitted as NO	dimensionless	7.03E-5
η_{N2O}	23	Fraction of nitrification flux emitted as N ₂ O	dimensionless	2.57E-5
<i>Denitrification</i>				
μ_{NO}	24	Fraction of denitrification flux emitted as NO	day ⁻¹	3.872E-4
μ_{N2O}	24	Fraction of denitrification flux emitted as N ₂ O	day ⁻¹	1.408E-4
μ_{N2}	24	Fraction of denitrification flux emitted as N ₂	day ⁻¹	3.872E-3
w_d	24	Soil wetness threshold below which very little denitrification occurs	dimensionless	0.3
<i>Leaching</i>				
φ	26	Leaching coefficient	m ² Kg ⁻¹	1.15E-3
<i>NH₃ volatilization</i>				
ϑ	27	NH ₃ volatilization coefficient	dimensionless	0.54
<i>Coupling of C and N cycles</i>				
Γ_1	31	Parameter for calculating V _{cmax} from leaf N amount	μmol CO ₂ gN ⁻¹ s ⁻¹	39 (all PFTs except broadleaf evergreen tree) 15.3 (for broadleaf evergreen tree)
Γ_2	31	Parameter for calculating V _{cmax} from leaf N amount	μmol CO ₂ m ⁻² s ⁻¹	8.5
k_Λ	32	Parameter for constraining V _{cmax} increase when C:N ratios exceed their maximum limit	dimensionless	0.05
$C:N_{L,max}$	33	Maximum C:N ratio for leaves	dimensionless	60 55 40 35 50 50 40
$C:N_{S,max}$	33	Maximum C:N ratio for stem	dimensionless	800 670 500 800 670 500 670

				-	-
$C: N_{R,max}$	33	Maximum C:N ratio for root	dimensionless	90 70 60 60	90 70 70 70

1345

1346

1347 **Table 1:** Historical simulations performed over the period 1851-2017 to evaluate the model's
 1348 response to various forcings. All forcings are time varying. All forcings are also spatially explicit
 1349 except atmospheric CO₂ for which a globally constant value is specified.

1350

Simulation name	Forcing that varies over the historical period	N cycle
<i>Primary simulations performed to evaluate N cycle response to various forcings</i>		
1. CO ₂ -only	Atmospheric CO ₂ concentration	Runs with N cycle
2. CLIM-only	1901-1925 meteorological data are used twice over the 1850-1900 period. For the 1901-2017 period, meteorological data for the correct year is used.	
3. LUC+FERT-only	Land cover with increasing crop area, and fertilizer application rates over the crop area	
4. N-DEP-only	N deposition of ammonia and nitrate	
5. FULL	All forcings	
6. FULL-no-LUC	All forcings except increasing crop area	
<i>Other simulations</i>		
7. ORIGINAL	All forcings	Runs without N cycle using the original model configuration.
8. ORIG-UNCONST	All forcings but with downregulation turned off	
9. FULL-no-implicit-P-limitation	All forcings but using same Γ_1 and Γ_2 globally	Run with N cycle

1351

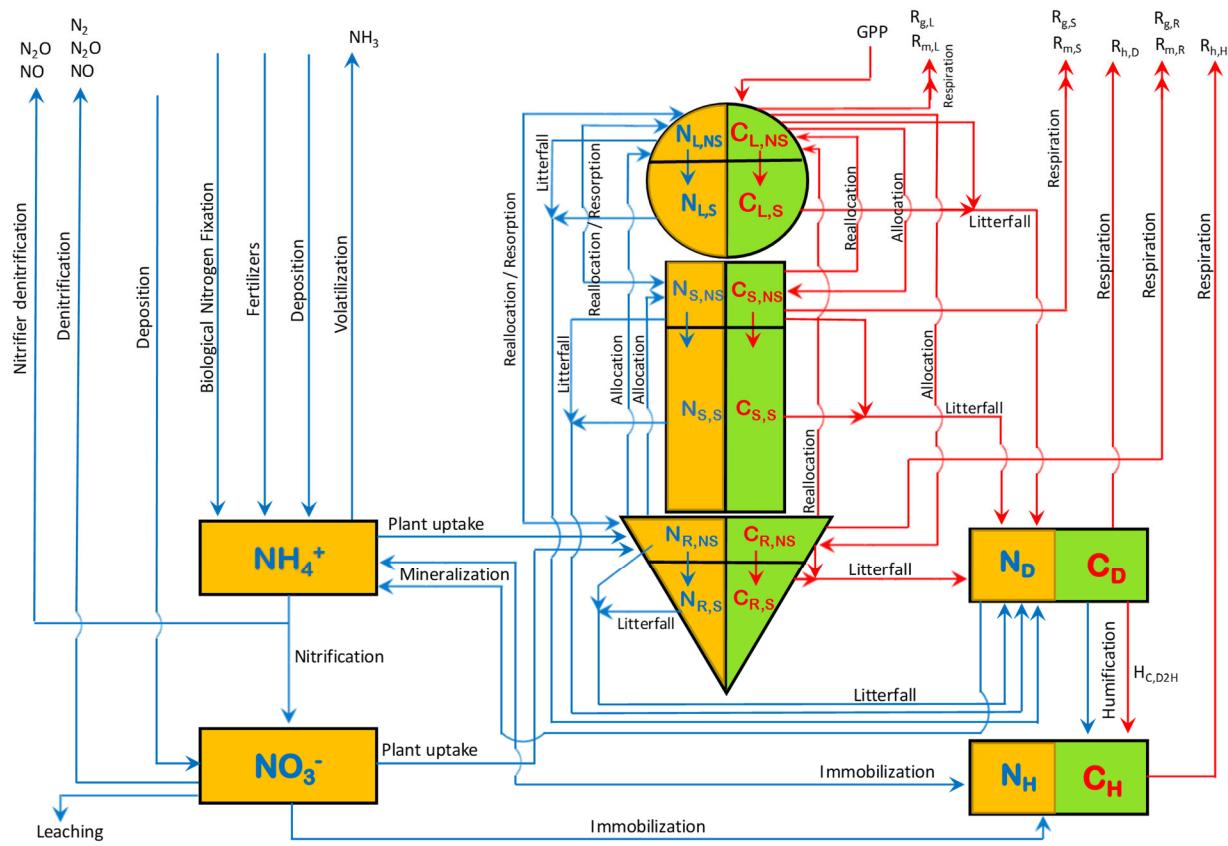
1352

1353

1354 **Table 2:** Comparison of simulated global N pools and fluxes, from the FULL simulation, with other
 1355 modelling and quasi observation-based studies (references for which are noted as superscripts
 1356 and listed below the table). The time-periods to which the other modelling and quasi
 1357 observation-based estimates correspond are also noted, where available. The estimates are for
 1358 land. Simulated fluxes and pool corresponds to the period 1997-2018.

1359

N pool and fluxes		This study (1998-2017)	Other model and quasi observation-based estimates
<i>N inputs (Tg N yr⁻¹)</i>			
BNF	119	118	Fowler et al. (2013)
		99 (2001-2010)	Zaehle (2013)
		138.5 (early 1990s)	Galloway et al. (2004)
		128.9 (2000-2009)	von Bloh et al. (2018)
		104-118	Galloway et al. (2013)
		92 (year 2000)	Bouwman et al. (2013)
Natural BNF	59	58	Fowler et al. (2013)
		107 (early 1990s)	Galloway et al. (2004)
		30-130	Galloway et al. (2013)
		39 (year 2000)	Bouwman et al. (2013)
Anthropogenic BNF	60	60	Fowler et al. (2013)
		31.5 (early 1990s)	Galloway et al. (2004)
		14-89	Galloway et al. (2013)
		53 (year 2000)	Bouwman et al. (2013)
Fertilizer input	91 (based on the TRENDY protocol)	100	Fowler et al. (2013)
		100 (2001-2010)	Zaehle (2013)
		100 (early 1990s)	Galloway et al. (2004)
		83 (year 2000)	Bouwman et al. (2013)
N deposition	66 (based on the TRENDY protocol)	70	Fowler et al. (2013)
		56-62	Zaehle (2013)
		63.5 (early 1990s)	Galloway et al. (2004)
		69 (year 2000)	Bouwman et al. (2013)
<i>N pools (Tg N yr⁻¹)</i>			
Vegetation	3034	1,780 (2000s)	von Bloh et al. (2018)
		3,800 (1990s)	Zaehle et al. (2010)
		5,300	Xu-Ri and Prentice (2008)
		2,940 (1990s)	Wania et al. (2012)
Litter and soil	77161	106,000 (2000s)	von Bloh et al. (2018)
		100,000 (1990s)	Zaehle et al. (2010)
		56,800	Xu-Ri and Prentice (2008)
		113,000 (1990s)	Wania et al. (2012)
Ammonia	1924	163.7 (2000s)	von Bloh et al. (2018)
		361	Xu-Ri and Prentice (2008)
		1200 (1990s)	Wania et al. (2012)
Nitrate	2974	2,778 (2000s)	von Bloh et al. (2018)
		580	Xu-Ri and Prentice (2008)
		14,800 (1990s)	Wania et al. (2012)

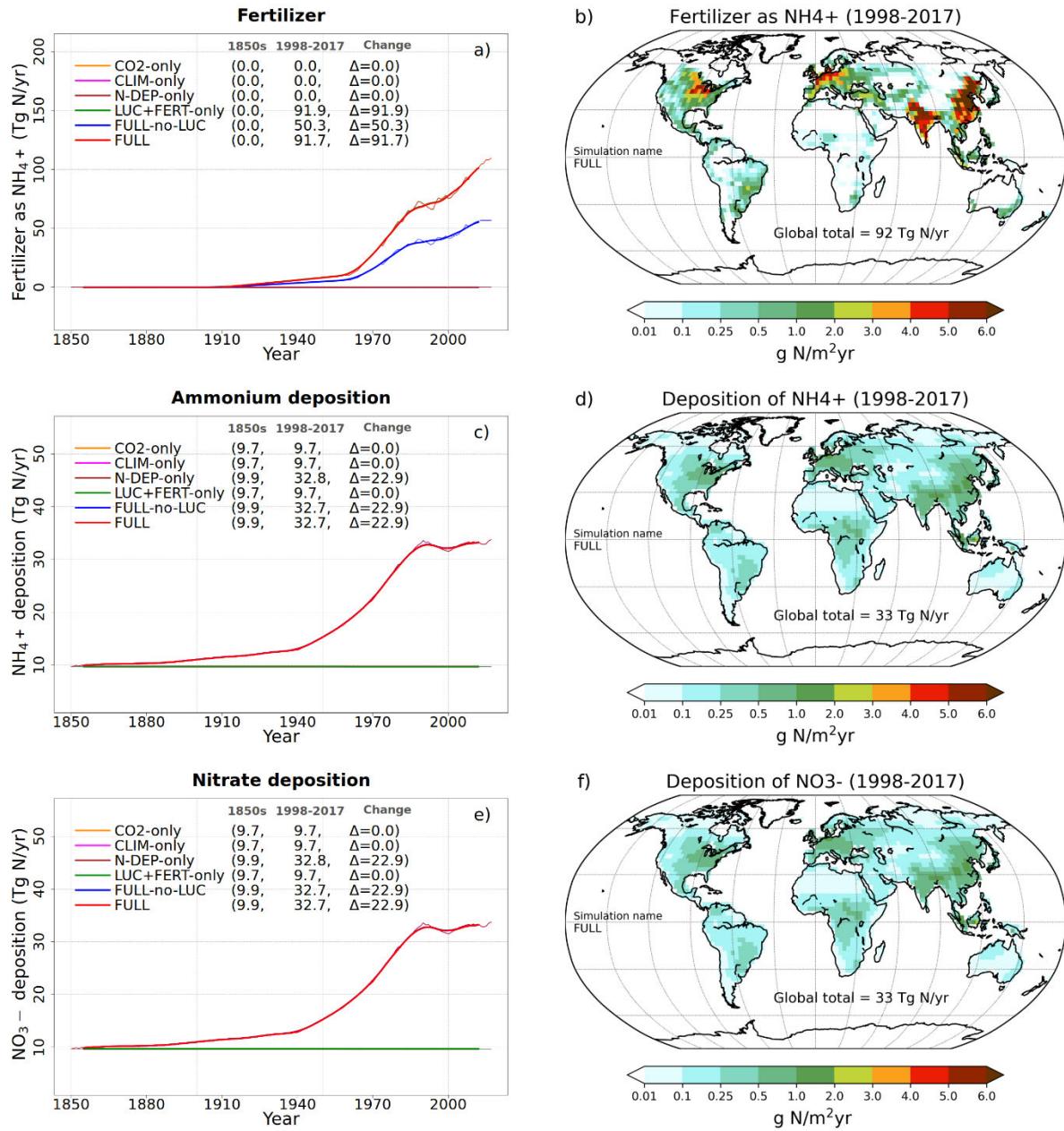

<i>N fluxes related to N cycling (Tg N yr⁻¹)</i>			
Plant uptake	940	618 (2000s)	von Bloh et al. (2018)
		1,127 (1990s)	Zaehle et al. (2010)
		1,084	Xu-Ri and Prentice (2008)
		873 (1990s)	Wania et al. (2012)
Net mineralization	947		
Mineralization	2045	1,678 (2000s)	von Bloh et al. (2018)
Immobilization	1097	1,177 (2000s)	von Bloh et al. (2018)
Nitrification	239		
<i>N losses (Tg N yr⁻¹)</i>			
NO ₃ - Leaching	53.5	97.1 (2001-2010)	Zaehle (2013)
		62.8 (2000s)	von Bloh et al. (2018)
		77.0 (1990s)	Zaehle et al. (2010)
NH ₃ Volatilization	53.9	124.9 (2001-2010)	Zaehle (2013)
		52.6 (early 1990s)	Galloway et al. (2004)
		20.4 (2000s)	von Bloh et al. (2018)
N ₂ from denitrification	114.2	105.8 (2001-2010)	Zaehle (2013)
		68 (year 2000)	Bouwman et al. (2013)
N ₂ O from denitrification	4.2	8.7 (2001-2010)	Zaehle (2013)
N ₂ O from nitrification	8.4	10.9 (early 1990s)	Galloway et al. (2004)
		13.0	Fowler et al. (2013)
NO from denitrification	11.4	24.8 (early 1990s)	Galloway et al. (2004)
NO from nitrification	22.9	26.8 (1990s)	Zaehle et al. (2010)

1360

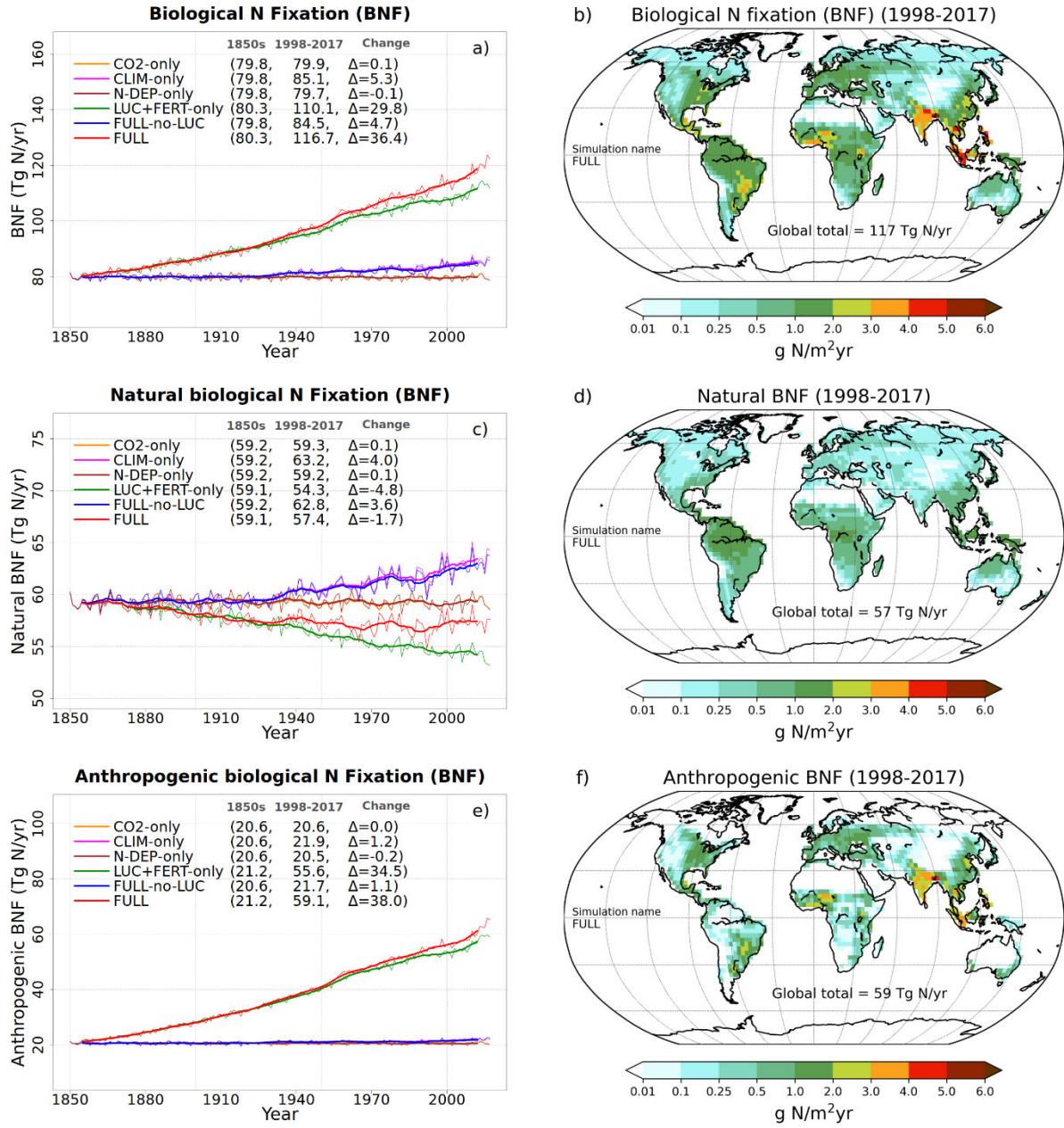
1361

1362

1363

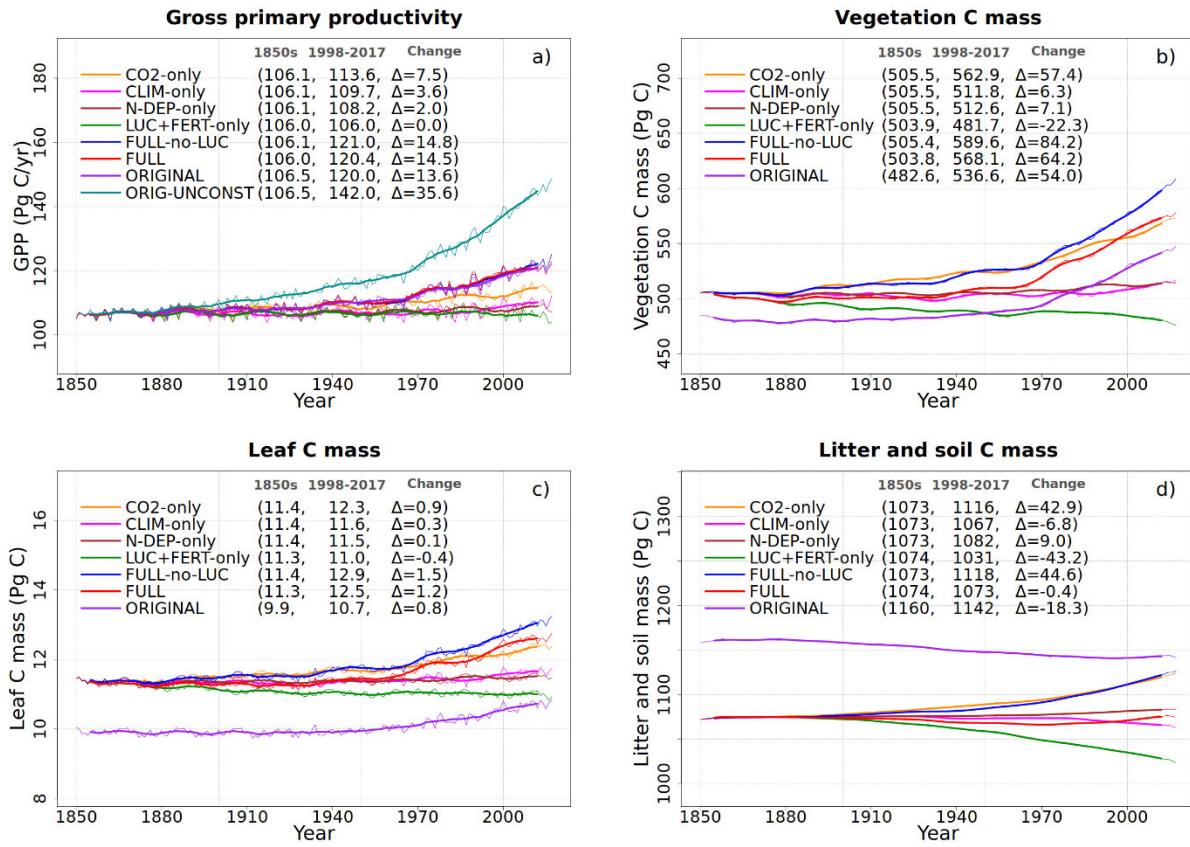


1364

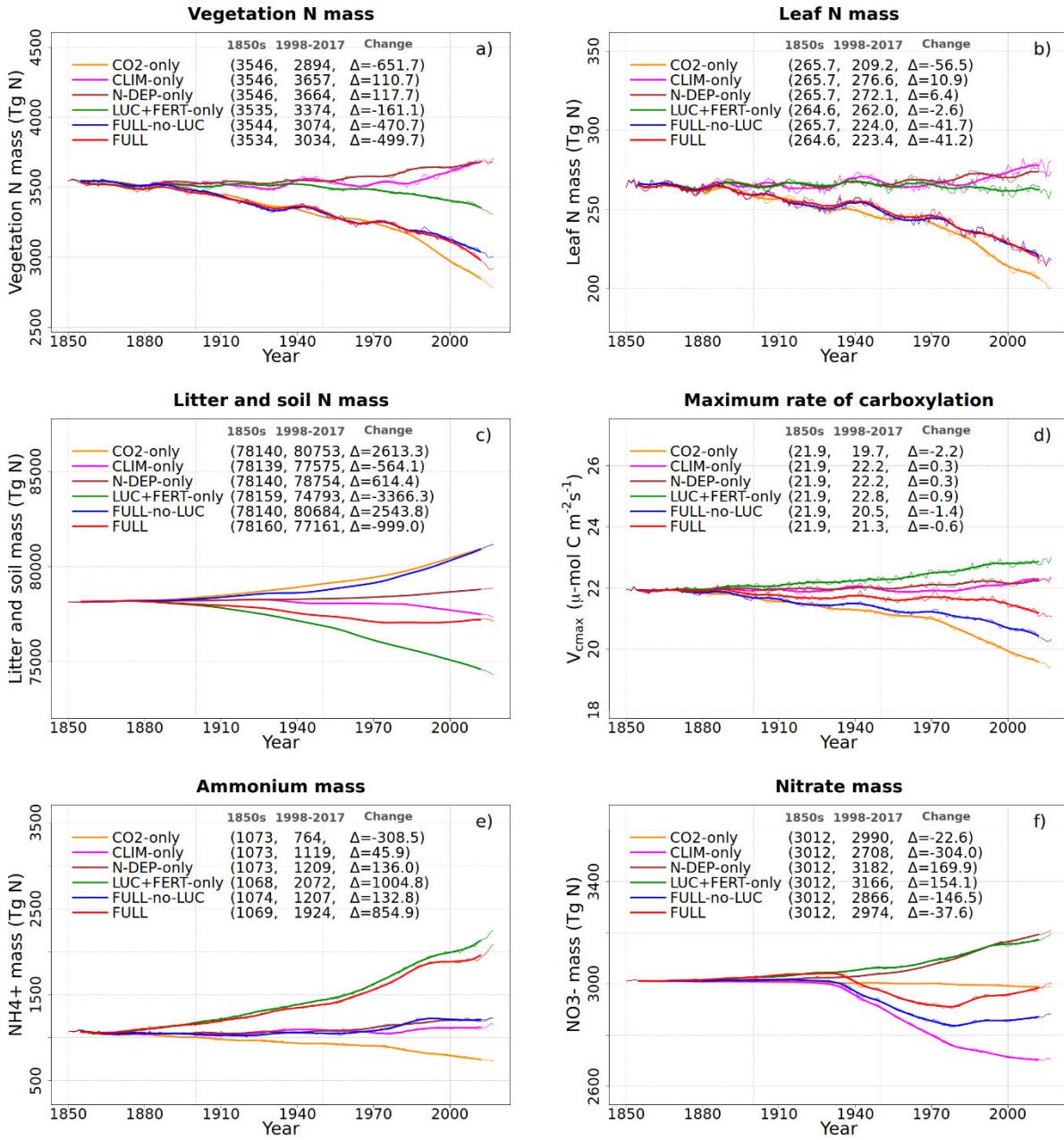

1365 Figure 1: The structure of CLASSIC model used in this study. The eight prognostic carbon pools
1366 are shown in green colour and carbon fluxes in red colour. The ten prognostic nitrogen pools are
1367 shown in orange colour and nitrogen fluxes are shown in blue colour.

1368

1369

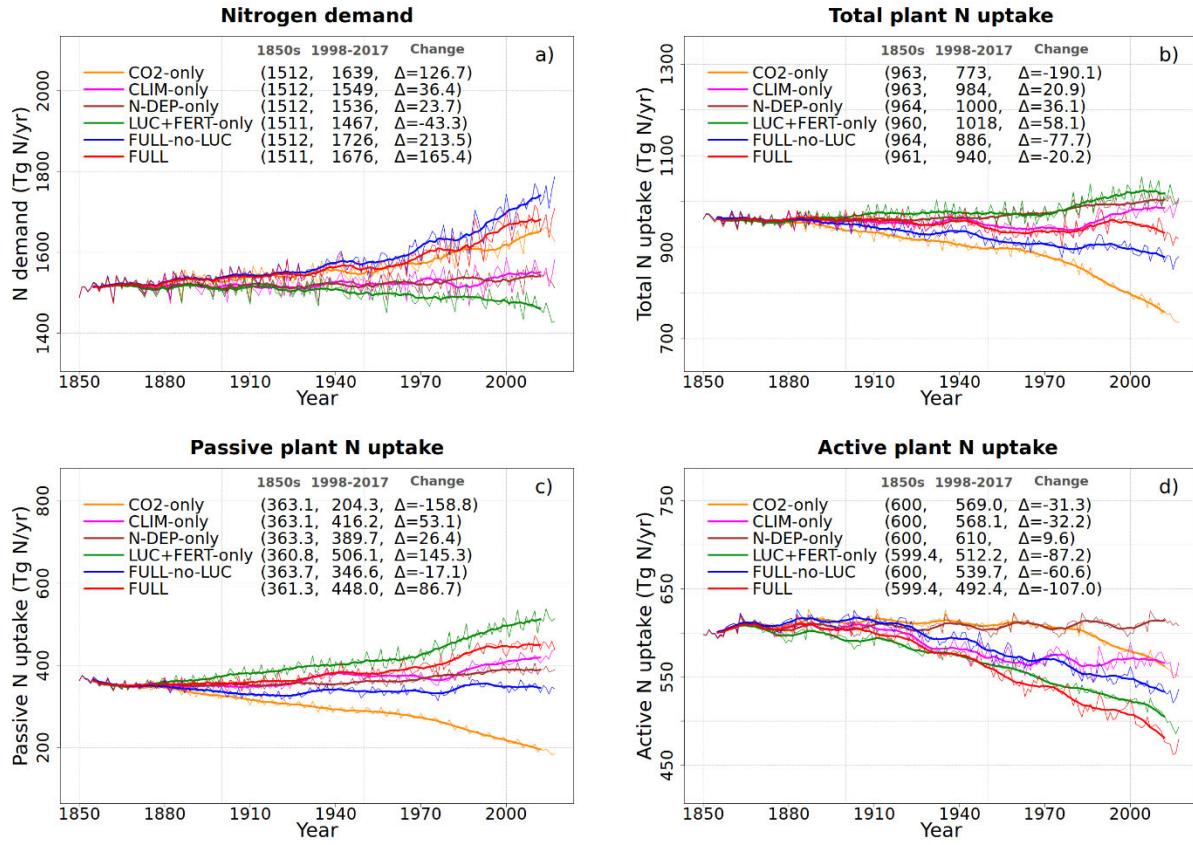


1370 Figure 2: Time series and geographical distribution of global annual values of externally specified
 1371 N inputs. Fertilizer input (a, b), atmospheric deposition of ammonium (c, d) and atmospheric
 1372 deposition of nitrate (e, f). The values in the parenthesis for legend entries in the time series plots
 1373 show averages for the 1850s, the 1998-2017 period, and the change between these two periods.
 1374 The thin lines in the time series plots show the annual values and the thick lines their 10-year
 1375 moving average. The geographical plots show the average values over the last 20-years of the
 1376 FULL simulation corresponding to the 1998-2017 period. Note that in the time series plots lines
 1377 from some simulations are hidden behind lines from other simulations and this can be inferred
 1378 from the legend entries which shows averages for the 1850s, the 1998-2017 period.



1379

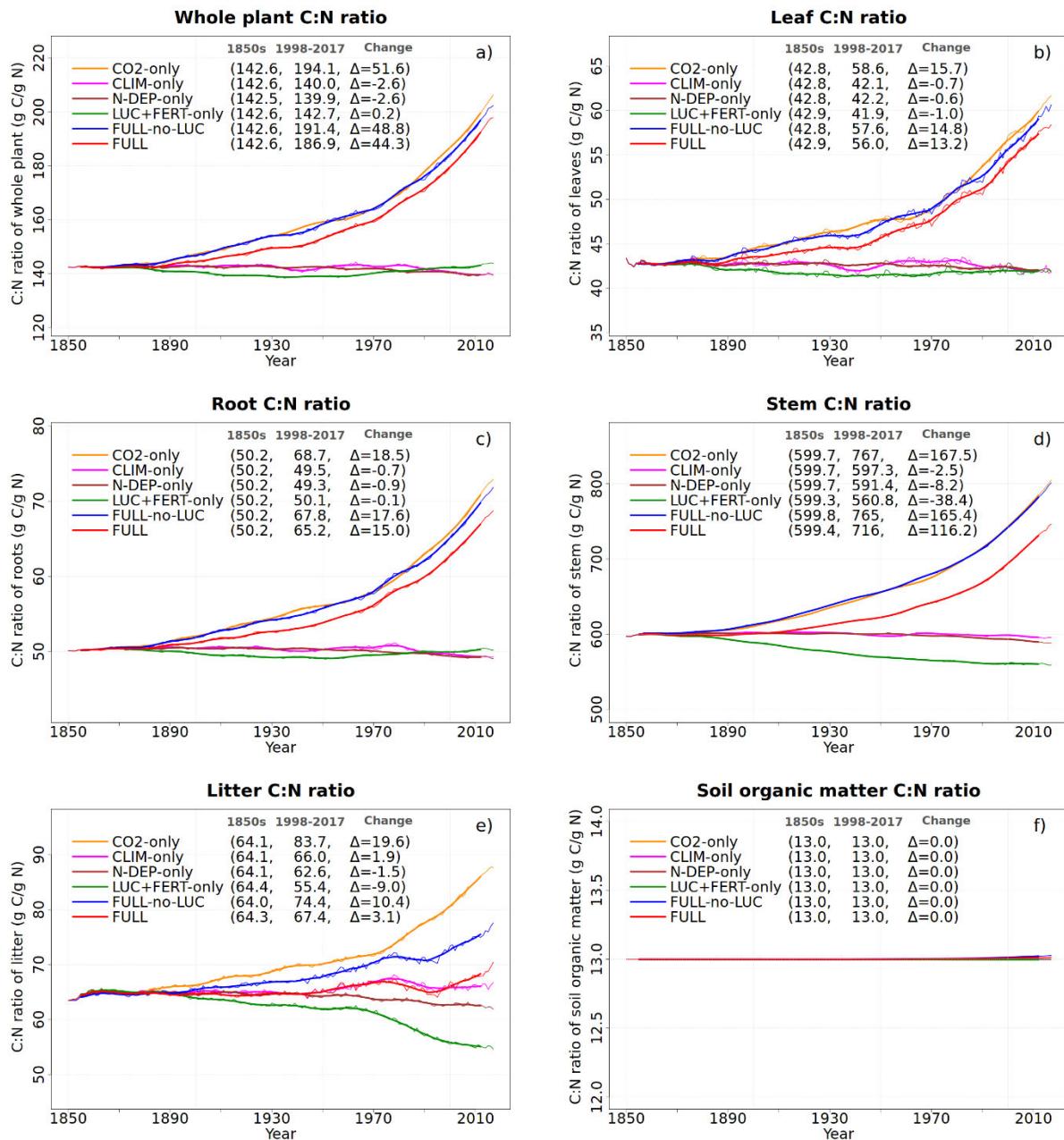
1380 Figure 3: Time series and geographical distribution of annual values biological N fixation (BNF)
 1381 (a,b) and its natural (c, d) and anthropogenic (e, f) components. The values in the parenthesis for
 1382 legend entries in the time series plots show averages for the 1850s, the 1998-2017 period, and
 1383 the change between these two periods. The thin lines in the time series plots show the annual
 1384 values and the thick lines their 10-year moving average. The geographical plots show the average
 1385 values over the last 20-years of the FULL simulation corresponding to the 1998-2017 period. Note
 1386 that in the time series plots lines from some simulations are hidden behind lines from other
 1387 simulations and this can be inferred from the legend entries which shows averages for the 1850s,
 1388 the 1998-2017 period.


1391 Figure 4: Global annual values of gross primary productivity (a), vegetation carbon (b), leaf
 1392 carbon (c), and litter and soil carbon (d) for the primary simulations performed. The values in
 1393 the parenthesis for legend entries show averages for the 1850s, the 1998-2017 period, and the
 1394 change between 1850s and 1998-2017 periods. The thin lines show the annual values and the
 1395 thick lines their 10-year moving average.

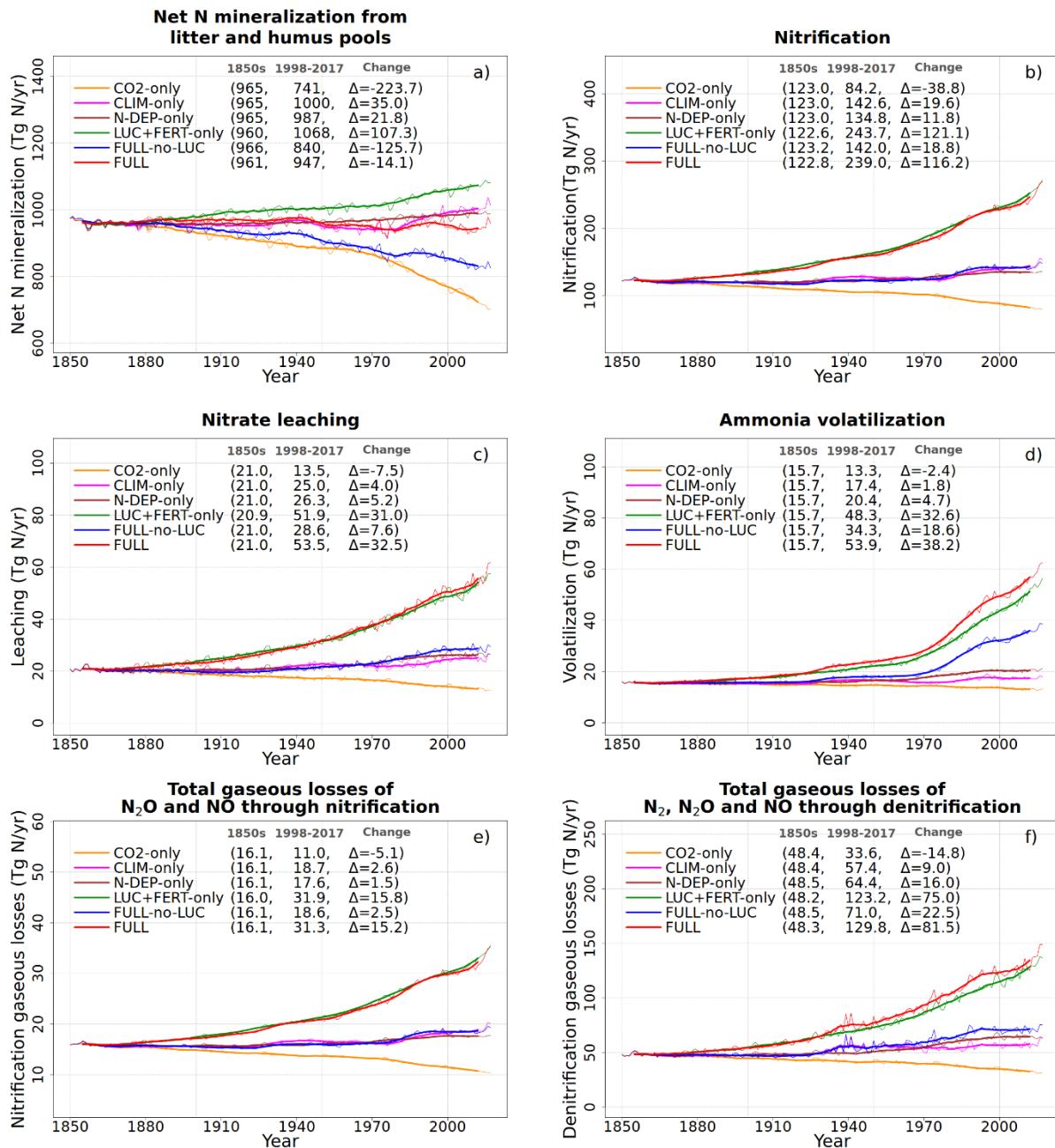
1397

1398 Figure 5: Global annual values of N in vegetation (a), leaves (b), litter and soil organic matter (c)
1399 pools, V_{cmax} (d), and ammonium (e), and nitrate (f) pools for the primary simulations performed.
1400 The values in the parenthesis for legend entries show averages for the 1850s, the 1998-2017
1401 period, and the change between 1850s and 1998-2017 periods. The thin lines show the annual
1402 values and the thick lines their 10-year moving average.

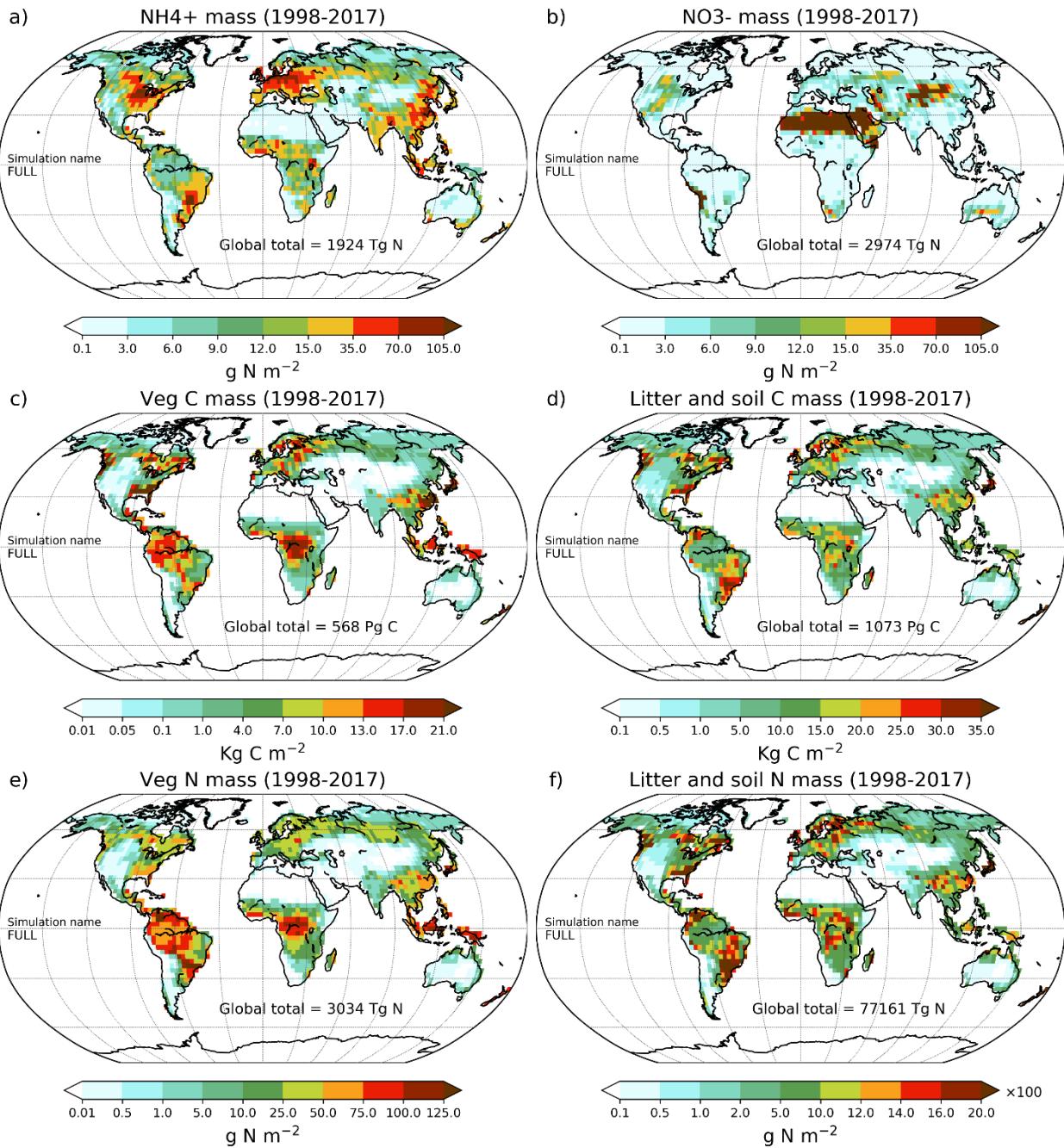
1403


1404

1405

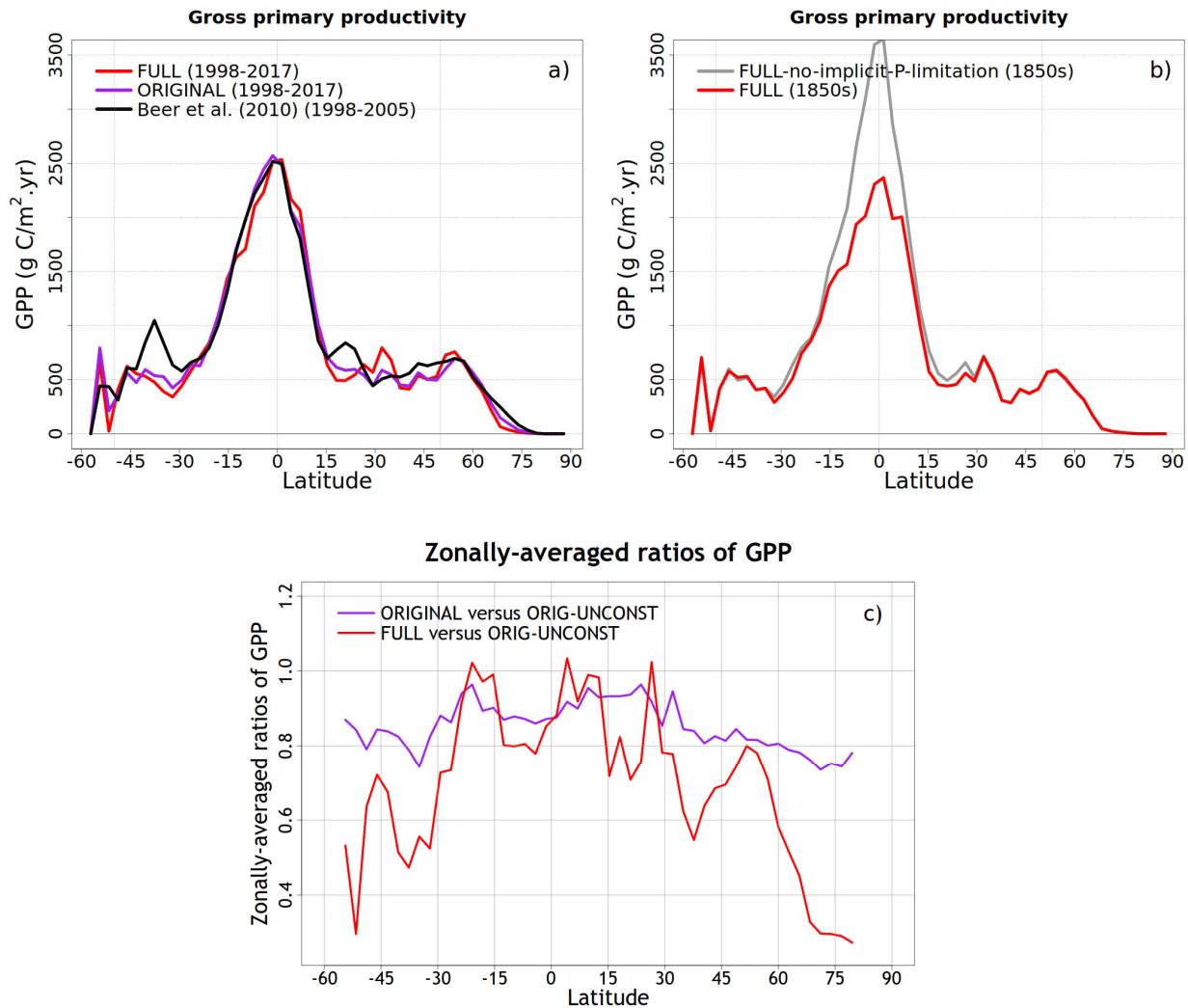

1406 Figure 6: Global annual values of N demand (a), total plant N uptake (b) and its split into passive
 1407 (c) and active (d) components for the primary simulations performed. The values in the
 1408 parenthesis for legend entries show averages for the 1850s, the 1998-2017 period, and the
 1409 change between 1850s and 1998-2017 periods. The thin lines show the annual values and the
 1410 thick lines their 10-year moving average.

1411


1412

1415 Figure 7: Global annual values of C:N ratios for whole plant (a), leaves (b) , root (c), stem (d),
1416 litter (e) and soil organic matter (f) pools from the primary six simulations. The values in the
1417 parenthesis for legend entries show averages for the 1850s, the 1998-2017 period, and the
1418 change between 1850s and 1998-2017 periods. The thin lines show the annual values and the
1419 thick lines their 10-year moving average.

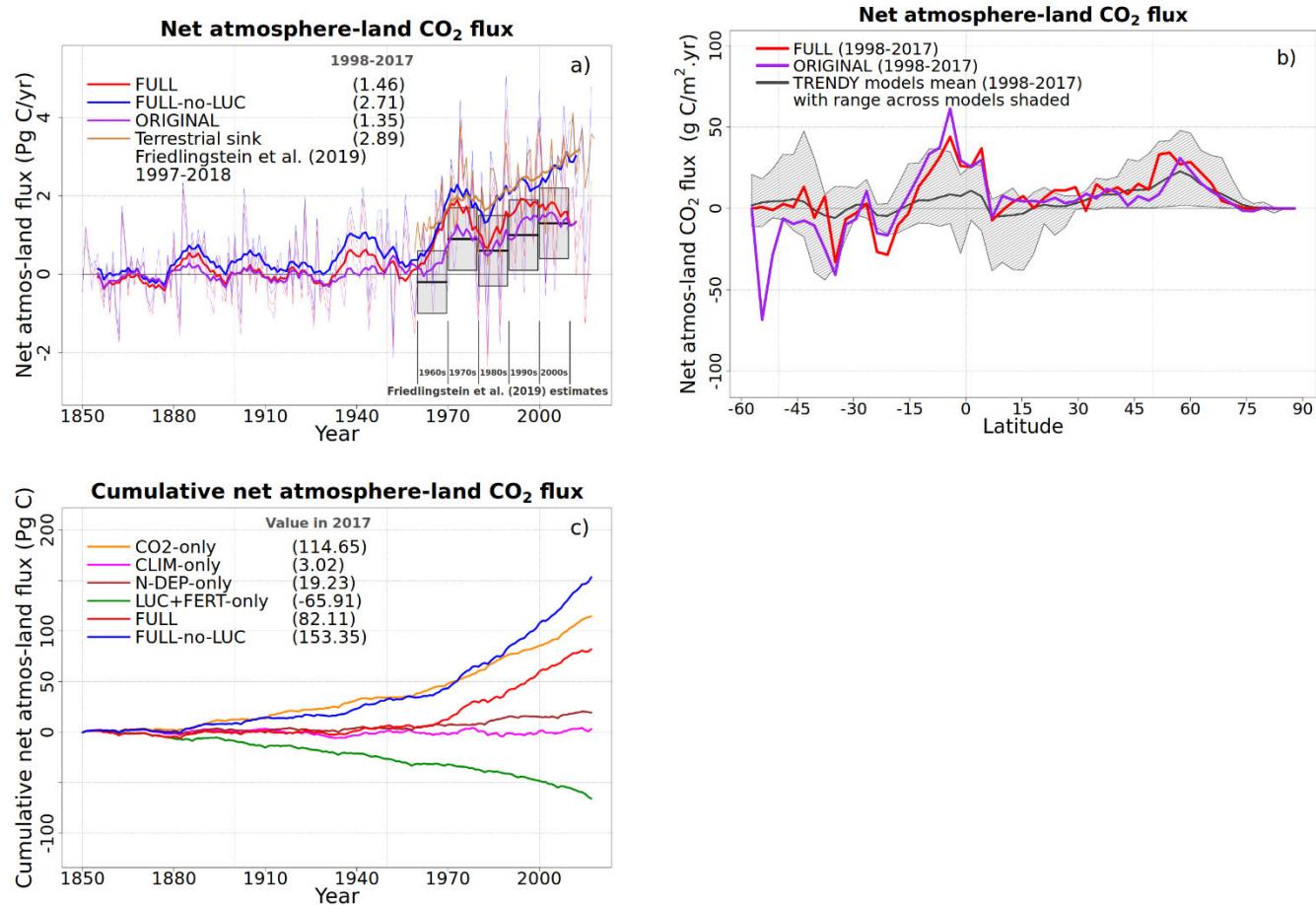
1423 Figure 8: Global annual values of net mineralization (a), nitrification (b), NO₃- leaching (c), NH₃
 1424 volatilization (d), and gaseous losses associated with nitrification (e) and denitrification (f) from
 1425 the primary six simulations. The values in the parenthesis for legend entries show averages for
 1426 the 1850s, the 1998-2017 period, and the change between 1850s and 1998-2017 periods. The
 1427 thin lines show the annual values and the thick lines their 10-year moving average.



1429

1430 Figure 9: Geographical distribution of primary C and N pools. Ammonium (a), nitrate (b),
 1431 vegetation C mass (c), litter and soil C mass (d), vegetation N mass (e), and litter and soil N mass
 1432 (f). The global total values shown are averaged over the 1998-2017 period.

1433


1434

1435

1436 Figure 10: Comparison of zonal distribution of gross primary productivity (GPP) and the effect of
1437 GPP downregulation compared to the ORIG-UNCONST simulation. Panel (a) compares zonal
1438 distribution of GPP from FULL and ORIGINAL simulations with observation-based estimate from
1439 Beer et al. (2010) for the present day. Panel (b) compares the zonal distribution of GPP from the
1440 pre-industrial simulation, corresponding to 1850 conditions, from the FULL and FULL-no-
1441 implicit-P-limitation simulations to illustrate the effect of not reducing the Γ_1 parameter for
1442 calculating V_{cmax} for the broadleaf evergreen tree PFT that implicitly accounts for phosphorus
1443 limitation. Panel (c) shows the zonally-averaged ratios of GPP from the ORIGINAL and FULL
1444 simulations versus those from the ORIG-UNCONST simulations to illustrate how downregulation
1445 acts in the ORIGINAL and FULL simulations.

1446

1449 Figure 11: Comparison of simulated net atmosphere-land CO_2 flux from various simulations.
 1450 Panel (a) compares globally-summed values of net atmosphere-land CO_2 flux from FULL, FULL-
 1451 no-LUC simulation, and ORIGINAL simulations with estimate of terrestrial sink (dark yellow line)
 1452 and net atmosphere-land CO_2 flux (grey bars) from Friedlingstein et al. (2019). The thin lines
 1453 show the annual values and the thick lines their 10-year moving average. Panel (b) compares
 1454 zonal distribution of net atmosphere-land CO_2 flux from FULL and ORIGINAL simulations with
 1455 the range from TRENDY models that contributed to the Friedlingstein et al. (2019) study. Panel
 1456 (c) shows cumulative values of net atmosphere-land CO_2 flux from the six primary simulations
 1457 to investigate the contribution of each forcing to the cumulative land carbon sink over the
 1458 historical period.

1460 **References**

1461 1462 Alexandrov, G. and Oikawa, T.: TsuBiMo: a biosphere model of the CO₂-fertilization effect, *Clim. Res.*, 19(3), 265–270, 2002.

1463 1464 1465 1466 1467 1468 Aragão, L. E. O. C., Malhi, Y., Metcalfe, D. B., Silva-Espejo, J. E., Jiménez, E., Navarrete, D., Almeida, S., Costa, A. C. L., Salinas, N., Phillips, O. L., Anderson, L. O., Alvarez, E., Baker, T. R., Goncalvez, P. H., Huamán-Ovalle, J., Mamani-Solórzano, M., Meir, P., Monteagudo, A., Patiño, S., Peñuela, M. C., Prieto, A., Quesada, C. A., Rozas-Dávila, A., Rudas, A., Silva Jr., J. A. and Vásquez, R.: Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils, *Biogeosciences*, 6(12), 2759–2778, doi:10.5194/bg-6-2759-2009, 2009.

1469 1470 1471 Arneth, A., Harrison, S. P., Zaehle, S., Tsigaridis, K., Menon, S., Bartlein, P. J., Feichter, J., Korhola, A., Kulmala, M., O'Donnell, D., Schurgers, G., Sorvari, S. and Vesala, T.: Terrestrial biogeochemical feedbacks in the climate system, *Nat. Geosci.*, 3(8), 525–532, doi:10.1038/ngeo905, 2010.

1472 1473 1474 Arora, V. K.: Simulating energy and carbon fluxes over winter wheat using coupled land surface and terrestrial ecosystem models, *Agric. For. Meteorol.*, 118(1), 21–47, doi:https://doi.org/10.1016/S0168-1923(03)00073-X, 2003.

1475 1476 Arora, V. K. and Boer, G. J.: A Representation of Variable Root Distribution in Dynamic Vegetation Models, *Earth Interact.*, 7(6), 1–19, doi:10.1175/1087-3562(2003)007<0001:AROVRD>2.0.CO;2, 2003.

1477 1478 1479 Arora, V. K. and Boer, G. J.: A parameterization of leaf phenology for the terrestrial ecosystem component of climate models, *Glob. Change Biol.*, 11(1), 39–59, doi:10.1111/j.1365-2486.2004.00890.x, 2005.

1480 1481 Arora, V. K. and Boer, G. J.: Uncertainties in the 20th century carbon budget associated with land use change, *Glob. Change Biol.*, 16(12), 3327–3348, doi:10.1111/j.1365-2486.2010.02202.x, 2010.

1482 1483 Arora, V. K. and Melton, J. R.: Reduction in global area burned and wildfire emissions since 1930s enhances carbon uptake by land, *Nat. Commun.*, 9(1), 1326, doi:10.1038/s41467-018-03838-0, 2018.

1484 1485 1486 1487 Arora, V. K., Boer, G. J., Christian, J. R., Curry, C. L., Denman, K. L., Zahariev, K., Flato, G. M., Scinocca, J. F., Merryfield, W. J. and Lee, W. G.: The Effect of Terrestrial Photosynthesis Down Regulation on the Twentieth-Century Carbon Budget Simulated with the CCCma Earth System Model, *J. Clim.*, 22(22), 6066–6088, doi:10.1175/2009JCLI3037.1, 2009.

1488 1489 1490 Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L., Flato, G. M., Kharin, V. V., Lee, W. G. and Merryfield, W. J.: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases, *Geophys. Res. Lett.*, 38(5), doi:10.1029/2010GL046270, 2011.

1491 1492 1493 1494 Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D., Christian, J. R., Bonan, G., Bopp, L., Brovkin, V., Cadule, P., Hajima, T., Ilyina, T., Lindsay, K., Tjiputra, J. F. and Wu, T.: Carbon–Concentration and Carbon–Climate Feedbacks in CMIP5 Earth System Models, *J. Clim.*, 26(15), 5289–5314, doi:10.1175/JCLI-D-12-00494.1, 2013.

1495 1496 Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., Cadule, P., Chamberlain, M. A., Christian, J. R., Delire, C., Fisher, R. A., Hajima, T., Ilyina,

1497 T., Joetzjer, E., Kawamiya, M., Koven, C. D., Krasting, J. P., Law, R. M., Lawrence, D. M., Lenton, A.,
1498 Lindsay, K., Pongratz, J., Raddatz, T., Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T. and
1499 Ziehn, T.: Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison
1500 to CMIP5 models, *Biogeosciences*, 17(16), 4173–4222, doi:10.5194/bg-17-4173-2020, 2020.

1501 Asaadi, A., Arora, V. K., Melton, J. R. and Bartlett, P.: An improved parameterization of leaf area index
1502 (LAI) seasonality in the Canadian Land Surface Scheme (CLASS) and Canadian Terrestrial Ecosystem
1503 Model (CTEM) modelling framework, *Biogeosciences*, 15(22), 6885–6907, doi:10.5194/bg-15-6885-2018,
1504 2018.

1505 Bauerle, W. L., Oren, R., Way, D. A., Qian, S. S., Stoy, P. C., Thornton, P. E., Bowden, J. D., Hoffman, F. M.
1506 and Reynolds, R. F.: Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the
1507 implications for carbon cycling, *Proc. Natl. Acad. Sci.*, 109(22), 8612–8617,
1508 doi:10.1073/pnas.1119131109, 2012.

1509 Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M. A.,
1510 Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S.,
1511 Margolis, H., Oleson, K. W., Rouspard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I. and
1512 Papale, D.: Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate,
1513 *Science*, 329(5993), 834–838, 2010.

1514 von Bloh, W., Schaphoff, S., Müller, C., Rolinski, S., Waha, K. and Zaehle, S.: Implementing the nitrogen
1515 cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0), *Geosci.
1516 Model Dev.*, 11(7), 2789–2812, doi:10.5194/gmd-11-2789-2018, 2018.

1517 Bouwman, A. F., Beusen, A. H. W., Griffioen, J., Van Groenigen, J. W., Hefting, M. M., Oenema, O., Van
1518 Puijenbroek, P. J. T. M., Seitzinger, S., Slomp, C. P. and Stehfest, E.: Global trends and uncertainties in
1519 terrestrial denitrification and N2O emissions, *Philos. Trans. R. Soc. B Biol. Sci.*, 368(1621), 20130112,
1520 doi:10.1098/rstb.2013.0112, 2013.

1521 Cao, M., Zhang, Q. and Shugart, H. H.: Dynamic responses of African ecosystem carbon cycling to climate
1522 change, *Clim. Res.*, 17(2), 183–193, 2001.

1523 Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil hydraulic properties, *Water
1524 Resour. Res.*, 14(4), 601–604, doi:10.1029/WR014i004p00601, 1978.

1525 Cleveland, C. C., Townsend, A. R., Schimel, D. S., Fisher, H., Howarth, R. W., Hedin, L. O., Perakis, S. S.,
1526 Latty, E. F., Von Fischer, J. C., Elseroad, A. and Wasson, M. F.: Global patterns of terrestrial biological
1527 nitrogen (N2) fixation in natural ecosystems, *Glob. Biogeochem. Cycles*, 13(2), 623–645,
1528 doi:10.1029/1999GB900014, 1999.

1529 Collatz, G., Ribas-Carbo, M. and Berry, J.: Coupled Photosynthesis-Stomatal Conductance Model for
1530 Leaves of C4 Plants, *Funct. Plant Biol.*, 19(5), 519–538, 1992.

1531 Cotrufo, M. F., Ineson, P. and Scott, AndY.: Elevated CO2 reduces the nitrogen concentration of plant
1532 tissues, *Glob. Change Biol.*, 4(1), 43–54, doi:10.1046/j.1365-2486.1998.00101.x, 1998.

1533 Croft, H., Chen, J. M., Luo, X., Bartlett, P., Chen, B. and Staebler, R. M.: Leaf chlorophyll content as a
1534 proxy for leaf photosynthetic capacity, *Glob. Change Biol.*, 23(9), 3513–3524, doi:10.1111/gcb.13599,
1535 2017.

1536 Du, E., Terrer, C., Pellegrini, A. F. A., Ahlström, A., van Lissa, C. J., Zhao, X., Xia, N., Wu, X. and Jackson, R.
1537 B.: Global patterns of terrestrial nitrogen and phosphorus limitation, *Nat. Geosci.*, 13(3), 221–226,
1538 doi:10.1038/s41561-019-0530-4, 2020.

1539 Evans, J. R.: Photosynthesis and nitrogen relationships in leaves of C3 plants, *Oecologia*, 78(1), 9–19,
1540 doi:10.1007/BF00377192, 1989.

1541 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J. and Taylor, K. E.: Overview of
1542 the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization,
1543 *Geosci. Model Dev.*, 9(5), 1937–1958, doi:10.5194/gmd-9-1937-2016, 2016.

1544 Faria, T., Wilkins, D., Besford, R. T., Vaz, M., Pereira, J. S. and Chaves, M. M.: Growth at elevated CO₂
1545 leads to down-regulation of photosynthesis and altered response to high temperature in *Quercus suber*
1546 L. seedlings, *J. Exp. Bot.*, 47(11), 1755–1761, doi:10.1093/jxb/47.11.1755, 1996.

1547 Farquhar, G. D., von Caemmerer, S. and Berry, J. A.: A biochemical model of photosynthetic CO₂
1548 assimilation in leaves of C3 species, *Planta*, 149(1), 78–90, doi:10.1007/BF00386231, 1980.

1549 Field, C. and Mooney, H.: The Photosynthesis-Nitrogen Relationship in Wild Plants, *Biol. Int.*, 13, 25–56,
1550 1986.

1551 Fisher, J. B., Sitch, S., Malhi, Y., Fisher, R. A., Huntingford, C. and Tan, S.-Y.: Carbon cost of plant nitrogen
1552 acquisition: A mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and
1553 fixation: CARBON COST OF PLANT N ACQUISITION, *Glob. Biogeochem. Cycles*, 24(1), n/a-n/a,
1554 doi:10.1029/2009GB003621, 2010.

1555 Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., Sheppard, L. J., Jenkins, A., Grizzetti,
1556 B., Galloway, J. N., Vitousek, P., Leach, A., Bouwman, A. F., Butterbach-Bahl, K., Dentener, F., Stevenson,
1557 D., Amann, M. and Voss, M.: The global nitrogen cycle in the twenty-first century, *Philos. Trans. R. Soc. B
1558 Biol. Sci.*, 368(1621), 20130164, doi:10.1098/rstb.2013.0164, 2013.

1559 Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M.,
1560 Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H.
1561 D., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K.-G., Schnur, R., Strassmann, K., Weaver,
1562 A. J., Yoshikawa, C. and Zeng, N.: Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP
1563 Model Intercomparison, *J. Clim.*, 19(14), 3337–3353, doi:10.1175/JCLI3800.1, 2006.

1564 Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W.,
1565 Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P.,
1566 Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F.,
1567 Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N.,
1568 Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurt, G., Ilyina, T., Jain, A. K., Joetzjer, E., Kaplan, J.
1569 O., Kato, E., Klein Goldewijk, K., Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A.,
1570 Liñer, S., Lombardozzi, D., Marland, G., McGuire, P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, J.
1571 E. M. S., Nakaoka, S.-I., Neill, C., Omar, A. M., Ono, T., Peregón, A., Pierrot, D., Poulter, B., Rehder, G.,

1572 Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H.,
1573 Tilbrook, B., Tubiello, F. N., van der Werf, G. R., Wiltshire, A. J. and Zaehle, S.: Global Carbon Budget
1574 2019, *Earth Syst. Sci. Data*, 11(4), 1783–1838, doi:10.5194/essd-11-1783-2019, 2019.

1575 Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P.,
1576 Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R. and
1577 Vöosmarty, C. J.: Nitrogen Cycles: Past, Present, and Future, *Biogeochemistry*, 70(2), 153–226,
1578 doi:10.1007/s10533-004-0370-0, 2004.

1579 Galloway, J. N., Leach, A. M., Bleeker, A. and Erisman, J. W.: A chronology of human understanding of
1580 the nitrogen cycle^{†}, *Philos. Trans. R. Soc. B Biol. Sci.*, 368(1621), 20130120,
1581 doi:10.1098/rstb.2013.0120, 2013.

1582 Garnier, E., Salager, J.-L., Laurent, G. and Sonie, L.: Relationships between photosynthesis, nitrogen and
1583 leaf structure in 14 grass species and their dependence on the basis of expression, *New Phytol.*, 143(1),
1584 119–129, doi:10.1046/j.1469-8137.1999.00426.x, 1999.

1585 Gerber, S., Hedin, L. O., Oppenheimer, M., Pacala, S. W. and Shevlakova, E.: Nitrogen cycling and
1586 feedbacks in a global dynamic land model, *Glob. Biogeochem. Cycles*, 24(1),
1587 doi:10.1029/2008GB003336, 2010.

1588 Goll, D. S., Brovkin, V., Parida, B. R., Reick, C. H., Kattge, J., Reich, P. B., van Bodegom, P. M. and
1589 Niinemets, Ü.: Nutrient limitation reduces land carbon uptake in simulations with a model of combined
1590 carbon, nitrogen and phosphorus cycling, *Biogeosciences*, 9(9), 3547–3569, doi:10.5194/bg-9-3547-
1591 2012, 2012.

1592 Goyal, S. S. and Huffaker, R. C.: Nitrogen toxicity in plants, in *Nitrogen in Crop Production*, pp. 97–118,
1593 American Society of Agronomy, Madison, WI., 1984.

1594 Hungate, B. A., Dukes, J. S., Shaw, M. R., Luo, Y. and Field, C. B.: Nitrogen and Climate Change, *Science*,
1595 302(5650), 1512–1513, doi:10.1126/science.1091390, 2003.

1596 Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori,
1597 S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J.
1598 O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter,
1599 B., Riahi, K., Shevlakova, E., Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren, D. P. and Zhang, X.:
1600 Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6,
1601 *Geosci. Model Dev.*, 13(11), 5425–5464, doi:10.5194/gmd-13-5425-2020, 2020.

1602 Jiang, M., Zaehle, S., De Kauwe, M. G., Walker, A. P., Calderaru, S., Ellsworth, D. S. and Medlyn, B. E.: The
1603 quasi-equilibrium framework revisited: analyzing long-term CO₂ enrichment responses in plant–soil
1604 models, *Geosci. Model Dev.*, 12(5), 2069–2089, doi:10.5194/gmd-12-2069-2019, 2019.

1605 Jones, A. G., Scullion, J., Ostle, N., Levy, P. E. and Gwynn-Jones, D.: Completing the FACE of elevated CO₂
1606 research, *Environ. Int.*, 73, 252–258, doi:<https://doi.org/10.1016/j.envint.2014.07.021>, 2014.

1607 Jones, C. D., Arora, V., Friedlingstein, P., Bopp, L., Brovkin, V., Dunne, J., Graven, H., Hoffman, F., Ilyina,
1608 T., John, J. G., Jung, M., Kawamiya, M., Koven, C., Pongratz, J., Raddatz, T., Randerson, J. T. and Zaehle,

1609 S.: C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol
1610 for CMIP6, *Geosci. Model Dev.*, 9(8), 2853–2880, doi:10.5194/gmd-9-2853-2016, 2016.

1611 Kattge, J., Knorr, W., Raddatz, T. and Wirth, C.: Quantifying photosynthetic capacity and its relationship
1612 to leaf nitrogen content for global-scale terrestrial biosphere models, *Glob. Change Biol.*, 15(4), 976–
1613 991, doi:10.1111/j.1365-2486.2008.01744.x, 2009.

1614 Klein Goldewijk, K., Beusen, A., Doelman, J. and Stehfest, E.: Anthropogenic land use estimates for the
1615 Holocene – HYDE 3.2, *Earth Syst. Sci. Data*, 9(2), 927–953, doi:10.5194/essd-9-927-2017, 2017.

1616 Köchy, M., Hiederer, R. and Freibauer, A.: Global distribution of soil organic carbon – Part 1: Masses and
1617 frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world, *SOIL*,
1618 1(1), 351–365, doi:10.5194/soil-1-351-2015, 2015.

1619 Kurz, W. A., Beukema, S. J. and Apps, M. J.: Estimation of root biomass and dynamics for the carbon
1620 budget model of the Canadian forest sector, *Can. J. For. Res.*, 26(11), 1973–1979, doi:10.1139/x26-223,
1621 1996.

1622 Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P. A., Korsbakken,
1623 J. I., Peters, G. P., Canadell, J. G., Arneth, A., Arora, V. K., Barbero, L., Bastos, A., Bopp, L., Chevallier, F.,
1624 Chini, L. P., Ciais, P., Doney, S. C., Gkritzalis, T., Goll, D. S., Harris, I., Haverd, V., Hoffman, F. M.,
1625 Hoppema, M., Houghton, R. A., Hurt, G., Ilyina, T., Jain, A. K., Johannessen, T., Jones, C. D., Kato, E.,
1626 Keeling, R. F., Goldewijk, K. K., Landschützer, P., Lefèvre, N., Lienert, S., Liu, Z., Lombardozzi, D., Metzl,
1627 N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S., Neill, C., Olsen, A., Ono, T., Patra, P., Peregon, A., Peters,
1628 W., Peylin, P., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rocher, M.,
1629 Rödenbeck, C., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Steinhoff, T., Sutton, A., Tans, P. P.,
1630 Tian, H., Tilbrook, B., Tubiello, F. N., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A.
1631 P., Wiltshire, A. J., Wright, R., Zaehle, S. and Zheng, B.: Global Carbon Budget 2018, *Earth Syst. Sci. Data*,
1632 10(4), 2141–2194, doi:10.5194/essd-10-2141-2018, 2018.

1633 Leith, H.: Modeling the primary productivity of the world, in Primary Productivity of the Biosphere (H.
1634 Leith and R. H. Whittaker, Eds.), pp. 237–263, Springer-Verlag, Berlin and New York., 1975.

1635 Li, D., Wang, X., Zheng, H., Zhou, K., Yao, X., Tian, Y., Zhu, Y., Cao, W. and Cheng, T.: Estimation of area-
1636 and mass-based leaf nitrogen contents of wheat and rice crops from water-removed spectra using
1637 continuous wavelet analysis, *Plant Methods*, 14(1), 76, doi:10.1186/s13007-018-0344-1, 2018.

1638 Li, H., Crabbe, M., Xu, F., Wang, W., Niu, R., Gao, X., Zhang, P. and Chen, H.: Seasonal Variations in
1639 Carbon, Nitrogen and Phosphorus Concentrations and C:N:P Stoichiometry in the Leaves of Differently
1640 Aged *Larix principis-rupprechtii* Mayr. *Plantations, Forests*, 8(10), 373, doi:10.3390/f8100373, 2017.

1641 Liang, J., Qi, X., Souza, L. and Luo, Y.: Processes regulating progressive nitrogen limitation under elevated
1642 carbon dioxide: a meta-analysis, *Biogeosciences*, 13(9), 2689–2699, doi:10.5194/bg-13-2689-2016, 2016.

1643 Lin, B.-L., Sakoda, A., Shibasaki, R., Goto, N. and Suzuki, M.: Modelling a global biogeochemical nitrogen
1644 cycle in terrestrial ecosystems, *Ecol. Model.*, 135(1), 89–110, doi:[https://doi.org/10.1016/S0304-3800\(00\)00372-0](https://doi.org/10.1016/S0304-3800(00)00372-0), 2000.

1646 Loomis, R. S.: On the utility of nitrogen in leaves, *Proc. Natl. Acad. Sci.*, 94(25), 13378–13379,
1647 doi:10.1073/pnas.94.25.13378, 1997.

1648 Manzoni, S., Jackson, R. B., Trofymow, J. A. and Porporato, A.: The Global Stoichiometry of Litter
1649 Nitrogen Mineralization, *Science*, 321(5889), 684–686, doi:10.1126/science.1159792, 2008.

1650 McGuire, A. D., Melillo, J. M. and Joyce, L. A.: The role of nitrogen in the response of forests net primary
1651 production to elevated atmospheric carbon dioxide, *Annu. Rev. Ecol. Syst.*, 26(1), 473–503,
1652 doi:10.1146/annurev.es.26.110195.002353, 1995.

1653 Melton, J. R. and Arora, V. K.: Competition between plant functional types in the Canadian Terrestrial
1654 Ecosystem Model (CTEM) v. 2.0, *Geosci Model Dev*, 9(1), 323–361, doi:10.5194/gmd-9-323-2016, 2016.

1655 Melton, J. R., Shrestha, R. K. and Arora, V. K.: The influence of soils on heterotrophic respiration exerts a
1656 strong control on net ecosystem productivity in seasonally dry Amazonian forests, *Biogeosciences*, 12(4),
1657 1151–1168, doi:10.5194/bg-12-1151-2015, 2015.

1658 Melton, J. R., Arora, V. K., Wisernig-Cojoc, E., Seiler, C., Fortier, M., Chan, E. and Teckentrup, L.: CLASSIC
1659 v1.0: the open-source community successor to the Canadian Land Surface Scheme (CLASS) and the
1660 Canadian Terrestrial Ecosystem Model (CTEM) – Part 1: Model framework and site-level performance,
1661 *Geosci. Model Dev. Discuss.*, 2019, 1–40, doi:10.5194/gmd-2019-329, 2019.

1662 Meyerholt, J., Zaehle, S. and Smith, M. J.: Variability of projected terrestrial biosphere responses to
1663 elevated levels of atmospheric CO₂ due to uncertainty in biological nitrogen fixation, *Biogeosciences*,
1664 13(5), 1491–1518, doi:10.5194/bg-13-1491-2016, 2016.

1665 Ochoa-Hueso, R., Maestre, F. T., Ríos, A. [de los, Valea, S., Theobald, M. R., Vivanco, M. G., Manrique, E.
1666 and Bowker, M. A.: Nitrogen deposition alters nitrogen cycling and reduces soil carbon content in low-
1667 productivity semiarid Mediterranean ecosystems, *Environ. Pollut.*, 179, 185–193,
1668 doi:<https://doi.org/10.1016/j.envpol.2013.03.060>, 2013.

1669 O'Hara, G. W.: The Role of Nitrogen Fixation in Crop Production, *J. Crop Prod.*, 1(2), 115–138,
1670 doi:10.1300/J144v01n02_05, 1998.

1671 Porporato, A., D'Odorico, P., Laio, F. and Rodriguez-Iturbe, I.: Hydrologic controls on soil carbon and
1672 nitrogen cycles. I. Modeling scheme, *Adv. Water Resour.*, 26(1), 45–58,
1673 doi:[https://doi.org/10.1016/S0309-1708\(02\)00094-5](https://doi.org/10.1016/S0309-1708(02)00094-5), 2003.

1674 Rastetter, E. B., Vitousek, P. M., Field, C., Shaver, G. R., Herbert, D. and gren, G. I.: Resource Optimization
1675 and Symbiotic Nitrogen Fixation, *Ecosystems*, 4(4), 369–388, doi:10.1007/s10021-001-0018-z, 2001.

1676 Reich, P. B., Hungate, B. A. and Luo, Y.: Carbon-Nitrogen Interactions in Terrestrial Ecosystems in
1677 Response to Rising Atmospheric Carbon Dioxide, *Annu. Rev. Ecol. Evol. Syst.*, 37(1), 611–636,
1678 doi:10.1146/annurev.ecolsys.37.091305.110039, 2006a.

1679 Reich, P. B., Hobbie, S. E., Lee, T., Ellsworth, D. S., West, J. B., Tilman, D., Knops, J. M. H., Naeem, S. and
1680 Trost, J.: Nitrogen limitation constrains sustainability of ecosystem response to CO₂, *Nature*, 440(7086),
1681 922–925, doi:10.1038/nature04486, 2006b.

1682 Riddick, S., Ward, D., Hess, P., Mahowald, N., Massad, R. and Holland, E.: Estimate of changes in
1683 agricultural terrestrial nitrogen pathways and ammonia emissions from 1850 to present in
1684 the\hack\newline Community Earth System Model, *Biogeosciences*, 13(11), 3397–3426, doi:10.5194/bg-
1685 13-3397-2016, 2016.

1686 Salvagiotti, F., Cassman, K. G., Specht, J. E., Walters, D. T., Weiss, A. and Dobermann, A.: Nitrogen
1687 uptake, fixation and response to fertilizer N in soybeans: A review, *Field Crops Res.*, 108(1), 1–13,
1688 doi:<https://doi.org/10.1016/j.fcr.2008.03.001>, 2008.

1689 Sanz-Sáez, Á., Erice, G., Aranjuelo, I., Nogués, S., Irigoyen, J. J. and Sánchez-Díaz, M.: Photosynthetic
1690 down-regulation under elevated CO₂ exposure can be prevented by nitrogen supply in nodulated alfalfa,
1691 *J. Plant Physiol.*, 167(18), 1558–1565, doi:<https://doi.org/10.1016/j.jplph.2010.06.015>, 2010.

1692 Still, C. J., Berry, J. A., Collatz, G. J. and DeFries, R. S.: Global distribution of C3 and C4 vegetation: Carbon
1693 cycle implications, *Glob. Biogeochem. Cycles*, 17(1), 6–1, doi:10.1029/2001GB001807, 2003.

1694 Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V.,
1695 Christian, J. R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A.,
1696 Sigmond, M., Solheim, L., von Salzen, K., Yang, D. and Winter, B.: The Canadian Earth System Model
1697 version 5 (CanESM5.0.3), *Geosci. Model Dev.*, 12(11), 4823–4873, doi:10.5194/gmd-12-4823-2019,
1698 2019.

1699 Thom, A. S.: Momentum, mass and heat exchange of plant communities, in *Vegetation and the*
1700 *atmosphere*, Vol. 1, *Principles*, edited by Monteith, J. L., Academic Press, London., 1975.

1701 Thornton, P. E., Lamarque, J.-F., Rosenbloom, N. A. and Mahowald, N. M.: Influence of carbon-nitrogen
1702 cycle coupling on land model response to CO₂ fertilization and climate variability, *Glob. Biogeochem.*
1703 *Cycles*, 21(4), doi:10.1029/2006GB002868, 2007.

1704 Tian, H., Yang, J., Lu, C., Xu, R., Canadell, J. G., Jackson, R. B., Arneth, A., Chang, J., Chen, G., Ciais, P.,
1705 Gerber, S., Ito, A., Huang, Y., Joos, F., Lienert, S., Messina, P., Olin, S., Pan, S., Peng, C., Saikawa, E.,
1706 Thompson, R. L., Vuichard, N., Winiwarter, W., Zaehle, S., Zhang, B., Zhang, K. and Zhu, Q.: The Global
1707 N₂O Model Intercomparison Project, *Bull. Am. Meteorol. Soc.*, 99(6), 1231–1251, doi:10.1175/BAMS-D-
1708 17-0212.1, 2018.

1709 Tipping, E., Somerville, C. J. and Luster, J.: The C:N:P:S stoichiometry of soil organic matter,
1710 *Biogeochemistry*, 130(1), 117–131, doi:10.1007/s10533-016-0247-z, 2016.

1711 Tomasek, A., Kozarek, J. L., Hondzo, M., Lurndahl, N., Sadowsky, M. J., Wang, P. and Staley, C.:
1712 Environmental drivers of denitrification rates and denitrifying gene abundances in channels and riparian
1713 areas, *Water Resour. Res.*, 53(8), 6523–6538, doi:10.1002/2016WR019566, 2017.

1714 Verseghy, D. L.: Class—A Canadian land surface scheme for GCMS. I. Soil model, *Int. J. Climatol.*, 11(2),
1715 111–133, doi:10.1002/joc.3370110202, 1991.

1716 Verseghy, D. L., McFarlane, N. A. and Lazare, M.: Class—A Canadian land surface scheme for GCMS, II.
1717 Vegetation model and coupled runs, *Int. J. Climatol.*, 13(4), 347–370, doi:10.1002/joc.3370130402,
1718 1993.

1719 Vitousek, P. M.: Litterfall, Nutrient Cycling, and Nutrient Limitation in Tropical Forests, *Ecology*, 65(1),
1720 285–298, doi:10.2307/1939481, 1984.

1721 Vitousek, P. M.: Beyond Global Warming: Ecology and Global Change, *Ecology*, 75(7), 1861–1876,
1722 doi:10.2307/1941591, 1994.

1723 Vitousek, P. M. and Howarth, R. W.: Nitrogen limitation on land and in the sea: How can it occur?,
1724 *Biogeochemistry*, 13(2), 87–115, doi:10.1007/BF00002772, 1991.

1725 Vitousek, P. M., Porder, S., Houlton, B. Z. and Chadwick, O. A.: Terrestrial phosphorus limitation:
1726 mechanisms, implications, and nitrogen–phosphorus interactions, *Ecol. Appl.*, 20(1), 5–15,
1727 doi:10.1890/08-0127.1, 2010.

1728 Vitousek, P. M., Menge, D. N. L., Reed, S. C. and Cleveland, C. C.: Biological nitrogen fixation: rates,
1729 patterns and ecological controls in terrestrial ecosystems, *Philos. Trans. R. Soc. B Biol. Sci.*, 368(1621),
1730 20130119, doi:10.1098/rstb.2013.0119, 2013.

1731 Wang, J., Liu, X., Zhang, X., Li, L., Lam, S. K. and Pan, G.: Changes in plant C, N and P ratios under elevated
1732 [CO₂] and canopy warming in a rice-winter wheat rotation system, *Sci. Rep.*, 9(1), 5424,
1733 doi:10.1038/s41598-019-41944-1, 2019.

1734 Wania, R., Meissner, K. J., Eby, M., Arora, V. K., Ross, I. and Weaver, A. J.: Carbon-nitrogen feedbacks in
1735 the UVic ESCM, *Geosci. Model Dev.*, 5(5), 1137–1160, doi:10.5194/gmd-5-1137-2012, 2012.

1736 Wei, X., Shao, M., Gale, W. and Li, L.: Global pattern of soil carbon losses due to the conversion of
1737 forests to agricultural land, *Sci. Rep.*, 4, 4062, 2014.

1738 Wiltshire, A. J., Burke, E. J., Chadburn, S. E., Jones, C. D., Cox, P. M., Davies-Barnard, T., Friedlingstein, P.,
1739 Harper, A. B., Liddicoat, S., Sitch, S. A. and Zaehle, S.: JULES-CN: a coupled terrestrial Carbon-Nitrogen
1740 Scheme (JULES vn5.1), *Geosci. Model Dev. Discuss.*, 2020, 1–40, doi:10.5194/gmd-2020-205, 2020.

1741 Xu-Ri and Prentice, I. C.: Terrestrial nitrogen cycle simulation with a dynamic global vegetation model,
1742 *Glob. Change Biol.*, 14(8), 1745–1764, doi:10.1111/j.1365-2486.2008.01625.x, 2008.

1743 Zaehle, S.: Terrestrial nitrogen and carbon cycle interactions at the global scale, *Philos. Trans. R. Soc. B
1744 Biol. Sci.*, 368(1621), 20130125, doi:10.1098/rstb.2013.0125, 2013.

1745 Zaehle, S. and Friend, A. D.: Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1.
1746 Model description, site-scale evaluation, and sensitivity to parameter estimates: SITE-SCALE
1747 EVALUATION OF A C-N MODEL, *Glob. Biogeochem. Cycles*, 24(1), n/a-n/a, doi:10.1029/2009GB003521,
1748 2010.

1749 Zaehle, S., Friend, A. D., Friedlingstein, P., Dentener, F., Peylin, P. and Schulz, M.: Carbon and nitrogen
1750 cycle dynamics in the O-CN land surface model: 2. Role of the nitrogen cycle in the historical terrestrial
1751 carbon balance: NITROGEN EFFECTS ON GLOBAL C CYCLING, *Glob. Biogeochem. Cycles*, 24(1), n/a-n/a,
1752 doi:10.1029/2009GB003522, 2010.

1753 Zeng, H., Jia, G. and Epstein, H.: Recent changes in phenology over the northern high latitudes detected
1754 from multi-satellite data, *Environ. Res. Lett.*, 6(4), 045508, 2011.

1755 Zhang, H., Goll, D. S., Manzoni, S., Ciais, P., Guenet, B. and Huang, Y.: Modeling the effects of litter
1756 stoichiometry and soil mineral N availability on soil organic matter formation using CENTURY-CUE (v1.0),
1757 *Geosci. Model Dev.*, 11(12), 4779–4796, doi:10.5194/gmd-11-4779-2018, 2018.

1758 Zhao, X., Yang, Y., Shen, H., Geng, X. and Fang, J.: Global soil–climate–biome diagram: linking surface soil
1759 properties to climate and biota, *Biogeosciences*, 16(14), 2857–2871, doi:10.5194/bg-16-2857-2019,
1760 2019.

1761 Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais, P., Sitch, S., Friedlingstein, P.,
1762 Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S.,
1763 Penuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D., Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H.,
1764 Zaehle, S. and Zeng, N.: Greening of the Earth and its drivers, *Nat. Clim Change*, 6(8), 791–795, 2016.

1765 Zinke, P. J., Stangenberger, A. G., Post, W. M., Emanuel, W. R. and Olson, J. S.: Global Organic Soil
1766 Carbon and Nitrogen, Tech. Rep. ORNL/TM-8857, Oak Ridge National Laboratory, Oak Ridge, Tennessee,
1767 USA. [online] Available from: <https://doi.org/10.3334/ORNLDAAC/221>, 1998.

1768

1769

1770