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Dear Referees,  

On behalf of all the co-authors I thank you for the insightful and constructive comments directed to the 

manuscript “Improving the representation of high-latitude vegetation in Dynamic Global Vegetation 

Models”. We have prepared point-by-point responses to each of the comments and amended the 

manuscript in line with these comments. For convenience and reference, we have numbered the Referee 

comments with “RC-x.x”, where the first “x” corresponds to the referee number and the second “x” to the 

respective comment. Each of our responses is offered below the respective comment emphasized in blue 

italics. Please note that the line numbers point to the “marked-up” version of the manuscript attached 

below the responses. 

Kind Regards,  

 

Peter Horvath 
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1 Anonymous Referee #1 
Received and published: 30 June 2020 

General comments 
The overall objective of this paper was to identify biases in a dynamic global vegetation model (DGVM) 

and, if possible, to find ways of reducing the biases. The analysis focused primarily on relatively 

undisturbed landscapes in Norway. The target model output was the within-gridcell plant functional type 

(PFT) distribution. One unique and valuable aspect of the manuscript was that the PFT distributions 

predicted by the DGVM were compared to multiple products, including field surveys, satellite products, 

and the output of species distribution models. Field surveys were much more similar to the satellite 

products and distribution models than to the DGVM. Improvement to the DGVM was realized by 

incorporation of a precipitation seasonality index, although it was clear that this improvement would not 

be the end of the story. 

Given that PFT distribution is an important quantity that is still challenging for DGVMs to predict, I think 

that the manuscript covers a topic that will be interesting and useful to readers of Biogeosciences. I also 

appreciated how the DGVM was compared to multiple products and how the distribution model was 

leveraged. However, I think that the value of the manuscript could be increased by being more thorough 

with the methods (see below). Also, I think that more could be done to make the manuscript interesting 

to readers who use models other than CLM. 

We are thankful to Referee #1 for his/her positive response and constructive comments.  

Specific comments 
RC-1.1 - The title should be modified. It mentions “Dynamic Global Vegetation Models” in the plural, but 

only one model is discussed. I also think the title is too general. I would suggestion “high-latitude 

vegetation distributions” rather than simply “high-latitude vegetation”. 

This is a good suggestion. We have adjusted the title to specify that high-latitude vegetation distributions 

are considered. With regard to the plural mention of DGVMs, we believe that even though we tested this 

particular exercise only on one DGVM (namely CLM4.5BGCDV), the procedures/methods of implementing 

variables from DM as new parameters in DGVM can be used in several DGVMs not just the tested one 

(thus the plural form). 

RC-1.2 - Lines 83-84: This point is overstated. There are publications that have evaluated PFT distributions 

from dynamic vegetation models against field-based datasets, at least on regional and national scales. 

In line with response to Referee #3 on this same point (see also comment RC-3.6), we have adjusted the 

formulation of the sentence and added a reference (line 95).  

RC-1.3 - Methods: I am puzzled by the limitation of the study to only 20 plots. Certainly these 20 plots 

span the range of mean annual temperature and precipitation, but other factors are also commonly 

perceived to be important. Indeed, the distribution model seems to take 100+ inputs. Some questions 

that come to mind is whether the plots span the range of observed precipitation seasonality (identified 

by this study as an important factor!), soil texture, and soil nutrients. 

We agree that a higher number of plots would have been beneficial. Ideally, we would want 1000+ plots 

or perhaps a regional/global simulation. However, labor-demanding preparation of all data layers for each 



   
 

 3  
 

plot was one of the critical factors for this study and we had to find a compromise between what was 

practically possible and what was considered robust in terms of the aim of the study. From a 

methodological perspective, our opinion is clearly that a representative sample of 20 plots is sufficient to 

demonstrate the differences between the three methods of representing the vegetation distribution.  

The gradients of precipitation and temperature are known to be among the most influential for vegetation 

distribution (e.g., Ahti et al. 1968; Bakkestuen et al. 2008), thus we have chosen to include these particular 

two variables when selecting the 20 plots. However, we also agree with the Referee #1 in the argument 

that the 20 plots’ representativity across the range of precipitation seasonality should be tested (since this 

is identified as an important factor). We have clarified this more thoroughly, included a comparative test 

and added a third diagram to the Supplementary Figure S2 (lines 145-161 -chapter 2.3 and Fig S2 lines 20-

30 in the supplement). Please also see the response RC-2.6 to Referee #2 with a similar request. 

RC-1.4 - Line 157: Why not assign the observed soil texture to the 20 plots? 

The observed data on the 20 plots unfortunately do not include information about soil texture. The plots 

were mapped using wall-to-wall vegetation mapping, where only data about the type of vegetation cover 

are available. 

RC-1.5 - Section 2.4.3: I am concerned that the DGVM and the DM uses different driver data to represent 

the same phenomenon. For example, does one use SeNorge2 and the other reanalysis to represent 

precipitation? Does one use observed soil texture and the other “default” soil texture? If so, might 

differences in inputs account for differences in the DGVM and DM predictions? 

Absolutely. Ideally, we would use the same climate input data for both DM and DGVM. However, there are 

technical obstacles: DM uses multi-year monthly averaged climate data as input, while DGVM requires 3- 

hourly meteorological data as the input. SeNorge2 dataset, which is used in DM, has only daily data 

available, therefore can only be used for DM but not for driving DGVM. For DGVM, we had to use available 

reanalysis or regional climate model data for present day climate (CORDEX data in this manuscript). To 

compare the differences between the driving data for DGVM and DM, we have listed mean annual 

temperature and precipitation for both datasets in the Table S1 and Figure S4 of the supplement (lines 5-

8 and 50-55). There are indeed some minor differences between the two sets of driving data, however it is 

beyond this study to quantify the effect of these differences. We have devoted a paragraph to clarify the 

potential bias this may imply in the discussion (lines 542 - 550). 

Soil texture does not come in as an explanatory variable in the DM, whereas DGVM is using soil texture as 

an important parameter affecting various processes in soil, such as soil temperature, moisture and organic 

matter decomposition. We have added a comment on the differences between the input data in the paper 

and discuss its potential implications (lines 542 - 550). 

 RC-1.6 - Line 183: Was the DM model previously tuned to these 20 plots? To Norway? 

The DM was not tuned specifically to these 20 plots. The training data for DM included the whole set of 

1081 plots (across Norway) at a different thematic resolution (detailed vegetation types instead of PFTs) 

and at a scale of one point per polygon. Although the 20 plots were included as a subset of the total 1081 

plots, we believe the influence is minimal, since they have gone through a spatial and thematic conversion. 

Moreover, the DM was evaluated with a completely independent dataset. 
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RC-1.7 - Line 414: Might phenology also be an issue? Further, what is the light compensation point of the 

PFTs? Perhaps the authors can use the light compensation point to directly evaluate the relative shade 

tolerance of the different PFTs. 

Please also see comments to Referee #2 (RC-2.14) and Referee #3 (RC-3.26) regarding this paragraph in 

the discussion. Phenology is likely to be an issue, as evergreen plants seem to have advantage in competing 

with deciduous plants in general in the high-latitude region in the model. It is therefore suggested that 

stress for evergreen plants in winter and spring may not be well represented in the model to limit the 

growth of boreal NET in some regions. However, we admit that this issue is not well documented through 

our results and therefore have decided to remove this paragraph from the discussion. 

RC-1.8 - Discussion: Are there lessons for people who use other models? The more the authors can draw 

out such lessons, the broader the audience this paper would appeal to. The TEM model, which has a more 

detailed representation of boreal PFT diversity than CLM, immediately comes to mind as one example. 

Thanks for the suggestions. The present-day vegetation distribution outputs from dynamical vegetation 

models could more often be evaluated by use of multiple products complementing the RS, such as by 

including DM and AR as presented in this study. We also believe that the procedure of identifying new 

parameter values from DM, running a set of sensitivity tests and implementing the sensible new 

parameters into a DGVM is not limited to CLM4.5BGCDV (the DGVM tested here) but transferrable also to 

other DGVMs, such as the TEM model. We have clarified this and included more thorough discussion with 

regard to applicability to other models in the revised manuscript (lines 575-579, 614-619).  

Technical corrections 
RC-1.9 - The manuscript is very readable, but it should still be reviewed for grammar. 

We have carefully searched the manuscript for grammatical errors and corrected where applicable. 

RC-1.10 - Page 3, Lines 43-45: There is a problem with word choice in this sentence. Vegetation 

distributions are not implemented in ESMs, but rather are predicted by ESMs. The ESM predictions can 

then be evaluated with satellite products (as done in the present analysis). 

We have rewritten the sentence according to the referee’s comment (lines 50-51). 

RC-1.11 - Section 2.4.1: It would be useful for the authors to briefly describe how the DGVM determines 

the amount of area to each PFT. 

We have added a brief description on how the area of each PFT (i.e. percentage cover fraction %) is 

determined by DGVM in the revised manuscript (lines 212-217). The percentage cover fraction of each PFT 

is equal to the average individual’s fraction projective cover (FPCind) multiplied by the number of 

individuals (Nind) and average individual’s crown area (CROWNind). FPCind is a function of the maximum 

leaf carbon achieved in a year, while CROWNind is related to dead stem carbon simulated by the model. 

Nind is mainly determined by establishment and survival rate controlled by establishment and survival 

threshold conditions. 

RC-1.12 - Data availability: Note that the GitHub link not up yet. I understand if the authors do not want 

to release the link prior to manuscript acceptance, but it is still important not to forget to release the link.  
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This is an important point. We have made all the available data accessible on the following repositories 

(link to DGVM scripts: https://github.com/huitang-earth/Horvath_etal_BG2020; link to script for analysis: 

https://github.com/geco-nhm/DGVM_RS_DM_Norway; and link to larger spatial data outputs from RS 

and DM on DRYAD: https://doi.org/10.5061/dryad.dfn2z34xn). 

2 Anonymous Referee #2  
Received and published: 19 August 2020 

General Comments 
This study evaluates estimates of PFT distributions from a DGVM in comparison to those of remote sensing 

and empirical models, and against a field-based dataset, for 20 plots of high-latitude vegetation types 

across Norway. The topic investigated, approach taken, and results reported will be of interest to the 

modeling community. The paper could benefit from more or better explanation of the methods, especially 

the CLM simulations. For example, it is unclear whether or not this is intended to be any kind of 

‘temporally-explicit’ analysis; this seems a sort of model estimation of some ‘average’ PFT distribution 

from the spin-up results that was compared to field plots and remote sensing data, both of which 

presumably represent a specific point in time (that is not specified in either case in the methods here). 

Thank you for this to-the-point comment. We agree that more careful explanation of some aspects of the 

methods is necessary. We have adjusted the manuscript with respect to the specific comments you 

provided here.  

This study represents a temporally explicit analysis of the ‘present-day’ vegetation distribution. We agree 

and have emphasized this more clearly. In line with further replies to RC-2.10, the temporal context has 

been specified for each of the three modelling methods as well as for the AR in the respective sub-chapter 

2.4 (lines 102, 170, 206-207 and 226).  

RC-2.1 - To properly interpret the results, the sensitivity tests need more explanation and clarification to 

justify and understand what was done here in this study (vs. previous work). 

We have added a much more detailed explanation of the sensitivity tests in the revised manuscript (chapter 

4 - lines 348-397). Also, we shall review the formulations of what was done in this study vs previous work.  

RC-2.2 - The “RS method” as one of the three methods compared here seems kind of out of place in this 

analysis since it is not a method for predicting future PFT distributions as with the DGVM and DM methods. 

What is the reasoning / purpose behind including RS in this comparison? Or could / should it be used in 

this study more as a ‘reference’ data set, like the AR data? 

We understand the concern of Referee #2 on this point. We also agree that RS is often being used as a 

verification/reference dataset in land surface modelling. However, the emphasis of this work is on 

improving the DGVM for the ‘present-day’, based on the premise that the better DGVM are able to predict 

the present-day distribution of vegetation (based on the processes/parameters driving the DGVM), the 

more reliable vegetation predictions for the future will the model be able to produce. Moreover, RS is also 

of interest from the perspective that products derived from RS data may also be burdened with 

uncertainties, needing evaluation - just as DM and DGVM - against a ground-truth/reference data set, 

which in this case is AR (see also our response to RC-3.5). We have devoted lines 79-84 to making this 

clearer in the revised version of the manuscript.  

https://github.com/huitang-earth/Horvath_etal_BG2020
https://github.com/geco-nhm/DGVM_RS_DM_Norway
https://doi.org/10.5061/dryad.dfn2z34xn
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Specific Comments 
RC-2.3 - 25-26. please consider this statement carefully; numerous authors could claim that this is untrue  

Thank you for pointing this out. This comment accords with a comment of Referee #3 (RC-3.6) and we have 

modified this statement in the abstract of the revised manuscript (lines 25) as well as the introduction 

(lines 95-96) where the amended sentence is now supported by references (e.g., Druel et al 2017). 

RC-2.4 - 34. can these three thresholds be named here, or at least hint at what they are (e.g. “. . . based 

on . . .)? 

Yes, we agree that the thresholds should be mentioned here. Also, in line with another of your comments 

(RC-2.15), we have adjusted the text to clarify that only precipitation seasonality (bioclim_15) is influential 

(lines 36-41). 

RC-2.5 - 115-116. this is not quite clear and perhaps needs to be specified or qualified; i.e. don’t many 

“countries” have national-scale inventory programs? 

This has been re-worded (lines 130-131). What is meant here is that wall-to-wall vegetation surveys on 

national scale are rarely made. AR (the reference dataset) is an example of an area-representative survey. 

RC-2.6 - 126-131. Selecting only 20 plots seems limited, even if deemed acceptable for bioclimatic 

variation. There needs to be better explanation / justification for this choice, how “acceptable” was 

determined, and whether a kriging of temperature and precipitation really captures “bioclimatic” 

variation across the country. 

We agree that a set of 20 plots is a rather limited number. Referee #1 raises the same issue (RC-1.3), and 

our response (and justification for the choice) is given in comments to Referee #1. We have amended the 

text to explain our choice better (section 2.3 - lines 145-161).  

The representativeness was tested for and explained in supplements S2 and S3 (see also Fig.S2 and Table 

S3 – lines 17-49). By acceptable representativeness we mean that the selection of 20 plots does capture 

the variation across the whole range of temperature and precipitation (in the revised version we have also 

added “precipitation seasonality” - Fig.S2 – following comment RC-1.3) compared to the full set of 1081 

AR plots. The representativeness of the 20 plots was also tested against the full dataset of 1081 AR plots 

with regard to PFT coverage, where a Chi-square test showed that the two datasets are much more similar 

than expected by chance (Supplement S3 – lines 35-49). 

We have reformulated the sentence on line 131. Also, in line with the comment RC-2.1, we have clarified 

what was done in this study vs. previous studies. Kriging was used in a previous study to interpolate the 

original SeNorge2 dataset from 1km down to 100m for the purpose of distribution modelling (a procedure 

which was done and described in Horvath et al. 2019). We agree that this information is not relevant for 

the representativeness comparison, and it is more important to include a specific description of how the 

representativeness test was done in this study (in addition to the existing description in supplement S3). 

We have reformulated this paragraph and revised manuscript accordingly (section 2.3 - lines 143-161). 

RC-2.7 - 150. curious decision to give a new acronym to CLM. why not just refer to it as “CLM”? and 

actually, you do, somewhat, as it seems to switch back-and-forth between “DGVM” and “CLM4.5” for the 

rest of the manuscript. I see the idea to associate the results from CLM as representative of the “DGVM” 

approach, but when describing or referring to the specifics of CLM then just call it “CLM” (or “CLM4.5”) 
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We understand the confusion here. This has been clarified and we have explained the terms further in lines 

180-182. CLM has an option to run will full vegetation dynamics (CLM4.5BGCDV), this option is further 

referred to as DGVM. The abbreviation of DGVM is used throughout the manuscript to refer to this 

particular setup of CLM. Consistency in the use of terms have be carefully checked. 

RC-2.8 - 154. it may be useful here to point out what these simple assumptions are, and how different (or 

not) they are from those for which the DM method is based on. 

We have added more details about the assumptions used in DGVM in describing establishment, survival, 

mortality and light competitions (lines 185-186). Compared to DM which uses statistical relationships (line 

231-232) to predict the probability of VTs/PFTs from environmental variables, DGVM assume a simple 

environmental threshold for establishment, survival and mortality of a PFT to occur (see supplement S7).  

RC-2.9 - 171. was soil C initialized somehow, or was it a separate (longer) spin-up? are these mostly 

undisturbed sites or was that taken into consideration for the vegetation spin-up at each site? was the 

CORDEX climate used for the spin-up? average or de-trended? 

Thanks for pointing this out. In our experiments, soil C and N were firstly initialized using the restart file 

from an existing global present-day spin-up simulation with prescribed vegetation. Then, they were spun-

up together with vegetation for 400 years. All the selected sites are mostly undisturbed. The 30-year 

CORDEX data were cycled during the spin-up. A 30-year period is consistent with WMO climatological 

normals based on the rational that 30 year is short enough to avoid large long-term trends while long 

enough to include the range of variability. Thus, the data were not de-trended or averaged. We noticed 

that vegetation distribution was insensitive to interannual variation or decadal variation of the climate 

forcing when it reached equilibrium state in most of our study sites (see supplement S10). This has now 

been specified in more detail in the manuscript (section 2.4.1 - lines 195-207). 

RC-2.10 - 174. what year / era does this RS map represent? Table 2. I don’t think all of this detail is 

necessary in the main text. 

A very good point, which should be clarified indeed. The RS product used in this study is created from 

satellite images covering the period of 1999-2006 (Johansen, 2009). This has been clarified in the 

manuscript (line 226). 

We agree that Table 2 might be too detailed for the main text. We have moved Table 2 into the supplement 

S5 (lines 60-64 in the supplement).  

RC-2.11 - 278, 279 & 305 are confusing uses of sub-headings 

We agree that further splitting the chapter 4 (Sensitivity experiments and model improvement) into 

methods and results might seem untraditional. We suppose that it has not been made clear that the paper 

falls into two parts: an analysis of data, and a sensitivity analysis which is based upon the results of the 

analysis. We have added a motivation sentence at the end of the introduction (line 106), clarifying that 

the sensitivity experiments are a separate chapter, which builds upon the results of the analyses. Chapter 

4 describing the sensitivity experiments has remained, but the sub-headings have been removed and the 

text into separate paragraphs (lines 342-402) (see also reply to RC-3.23). 

RC-2.12 - 287. swe_10 and tmin_5 make sense as described but can “precipitation seasonality” be 

explained? “bioclim_15” is not as obvious as the other two parameters 
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A very good point. We have now included a description and a reference to how “precipitation seasonality” 

is calculated (O’Donnell & Ignizio, 2012) on lines 357-359. “Precipitation seasonality” is defined as the ratio 

of the standard deviation of the monthly total precipitation to the mean monthly total precipitation (also 

known as the coefficient of variation) and is expressed as a percentage. 

RC-2.13 - 293-299. there just seems like so much of the justification and explanation of decisions and 

approaches for the sensitivity test are glossed over here. For example, why are these particular 

parameters chosen, how was bioclim calculated, is the stepwise order important, what does it mean 

“three PFTs at the same time”, how were the thresholds determined, etc etc. Perhaps a little more 

explanation than just “see Horvath et al 2019” (line 286) would be helpful. 

We agree with the Referee #2. Since a lot of the sensitivity experiments are based on the results from the 

previous study by Horvath et al. 2019, referring to this article is necessary. However, we agree that 

explicitly describing the sensitivity experiments is important. We have now added more detailed 

explanation on the reasoning behind the set-up of the sensitivity experiments, including the specific topics 

that Referee #2 is pointing to in this comment (lines 342-402).  

RC-2.14 - 414-415. this seems like a bit of a leap without a more direct connection to the results of this 

study. 

We agree that the arguments in this paragraph are not supported by the results of this study. In line with 

the comments from Referee #3 (RC-3.26) and request from Referee #1 (RC-1.7) we have removed this 

argument from the revised version of the manuscript (lines 508-513).  

RC-2.15 - 468. but in line 312 it was stated that two of those three “had little effect” 

Yes, this must be a remnant of a previous formulation. We have removed the two parameters that did not 

improve the DGVM performance from this sentence (line 587). We have also amended lines 36-41 the 

abstract with regard to this (see also reply to a comment for RC-2.4 and RC-2.17). 

RC-2.16 - 498-499. when are high-quality RS products ever not available anymore in this day-and-age? 

We agree that this needs to be reformulated to explain the challenges clearly. It is not the “high-quality” 

of RS products in terms of resolution or coverage that we are concerned about, but rather in terms of being 

able to supply proxies of other properties (such as deriving parameter improvements, traits or in some 

cases vegetation distribution in high enough thematic resolution). In particular, at high latitudes low sun-

angle results in large shadow effects. Furthermore, our results show that analyses of high spatial resolution 

RS images have limitations when it comes to thematic precision and resolution. We have now reformulated 

this sentence (lines 628-629). 

RC-2.17 - 503. Just to be clear, it seems that these parameters were identified in a previous study, not this 

one, correct? And actually in this study only one of them (bioclim_15) was found to be useful, no? This 

same claim is made in the abstract, as well, and should be used with care. 

Yes, we agree, and we have carefully re-formulated the sentences with this regard both in the conclusion 

and abstract. Please see also related comment RC-2.4 and RC-2.15.  

Technical Corrections 
RC-2.18 - - please review the grammar, wording and sentence structure throughout 
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All the technical and wording amendments suggested below have been implemented in the revised version 

of the manuscript. The text has been carefully searched and corrected for erroneous grammar.  

42. please re-word and fix the grammar of this sentence one way or the other 

55. remove “the” before DGVMs 

60. latitudes 

150. replace “further” with “hereafter” 

170. “recalculated” 

Table 2. “AR” is missing from the caption 

292. change “NEB” to “NET”, I think 

341. “spectre” should be “spectrum”? 

412. “overprediction of Boreal NET”? 

 

 

3 Anonymous Referee #3 
Received and published: 25 August 2020 

The manuscript "Improving the representation of high-latitude vegetation in Dynamic Global Vegetation 

Models" by Horvath et al analyses the performance of three different vegetation modeling approaches 

with regard to the spatial distribution and relative abundance of plant functional types (PFT) in Norway. 

The modeling approaches include a dynamic global vegetation model (DGVM), remote sensing (RM), and 

a statistical distribution model (DM), which relates occurrences of vegetation types to multiple 

environmental variables. The authors found that both RM and DM showed a better performance than the 

DGVM when compared to observational data from a range of field sites. They then tested if it was possible 

to use the DM to improve the predictions of the DGVM with regard to PFT composition and distribution. 

It was found that, through inclusion of three further bioclimatic constraints based on the analysis of the 

DM, the performance of the DGVM could be improved. The authors recommend DM as a complementary 

tool for the assessment and improvement of DGVMs. 

RC-3.1 - The manuscript is well written and easy to understand in general. The research topic (assessing 

and improving DGVMs at high latitudes) is certainly relevant, and the chosen approach is original and 

seems useful to me. However, the description of the methods needs to be improved, with regard to the 

chosen statistical approaches, and also the motivation to carry out certain analyses. It often becomes clear 

only later in the manuscript why a certain method was applied. I therefore recommend minor revisions 

before a new version of the manuscript may be submitted. 

We thank Referee#3 for a set of thorough comments. We have improved the sections of the manuscript in 

line with these comments.  
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Comments: 
RC-3.2 - L 28 While the term ’DGVM’ is explained at the beginning of the abstract, the term ’distribution 

model (DM)’ is used in this sentence without previous explanation. Please explain shortly in the abstract 

what a DM is and how it differs from a DGVM, since some readers may not be familiar with the concept. 

Good point. We have added a sentence about the difference between process based (DGVM) and 

correlative (DM) models (lines 29-31).  

RC-3.3 - L 58 Please define or explain in more detail what you mean by ’thematic resolution’. Furthermore, 

it should be mentioned that recently, specific high-latitude PFTs, such as mosses, for instance, have been 

added to a number of DGVMs, e.g. Jules (Chadburn et al, 2015, The Cryosphere), JSBACH (Porada et al 

2016, The Cryosphere), or ORCHIDEE (Druel et al 2017, Geoscientific Model Development) and several 

more. 

The term thematic resolution is meant to refer to number of classes (ex. PFTs) in a model. This has now 

been explained in line 66. Thank you for pointing to these references, we have included them as examples 

in this paragraph (line 64).  

RC-3.4 - L 60 Three examples are given for the difficulties of DGVMs to simulate extents of high-latitude 

PFTs correctly. However, I do not see how the underestimation of forest carbon storage by DGVMs relates 

to this, since this is rather a consequence, and not a reason for the incorrectly predicted extent. Please 

explain in more detail. 

Good point. The sentence about carbon storage underestimation has been reformulated (line 68) to clarify 

that discrepancies in the DGVM have implications on different systems (e.g. carbon storage).  

RC-3.5 - L 71 Please add a short statement to describe in which regard the RS products are not consistent. 

The study by Myers-Smith et al. (2011) reports a mismatch in the spatial resolution between satellite 

observations and the spatial heterogeneity of vegetation patches in tundra ecosystems. This will be 

clarified in the introduction. Also, different satellite products produce varying results with regard to 

vegetation classification (Majasalmi, T. et al. 2018). We have devoted lines 80-81 to describing these 

inconsistencies in the manuscript (please, also see RC-2.2).  

RC-3.6 - L 83 At least one study (Druel et al 2017, Geoscientific Model Development), uses site data to 

assess the DGVM’s performance with regard to plant traits. Please be more specific in this regard, and 

explain what exactly is new in the validation method. 

Yes, we have reformulated this sentence to make clear that our study focuses on evaluation of vegetation 

distributions between different models/methods (lines 94-99). Also, we mention the study by Druel et al. 

(2017) as an example of evaluation with field data.  

RC-3.7 - L 121 I do not understand this sentence: If one plot is 0.9 km2 large, then 1081 plots are around 

1000 km2, but 18x18 km are only 324 km2. Also, the plots are distributed throughout Norway, so the 

18x18 km area has to mean something else. Is it the distance between the plots on a grid which covers 

Norway? Please explain. 

Thank you for pointing this out! For us, having worked with these data for so long time, it is easy to forget 

that it is not obvious how they are structured! There is a regular grid covering the whole land area of 
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Norway on which the plots (in total 1081 plots), each with a size of 0.9km2, is placed every 18 km (in 

latitude) by 18 km (in longitude). This has now been explained in more details in lines 136-139. 

RC-3.8 - L 129 To me it seems that low values of temperature and precipitation are underrepresented in 

the 20 selected plots compared to the full data set. This should be mentioned here briefly and then 

considered later in the Discussion section. 

We agree that there is a slight underrepresentation in the frequency of plots with the lower values for 

temperature and precipitation. However, the most important factor was to include plots covering the 

range of the temperature and precipitation values experienced, which we have succeeded in (Fig S3). We 

have added a brief description in lines 155-156. 

RC-3.9 - L 156ff By using the default surface parameter values for CLM, the DGVM may miss some relevant 

information to correctly predict PFT distribution, compared to RS and DM. Furthermore, by using climate 

forcing from 1980-2010 and running the DGVM into a steady state with regard to this period, historical 

climatic effects, which may influence today’s PFT distribution are not considered. These points should be 

mentioned in the Discussion section of the manuscript. 

We understand the concern of the Referee #3 regarding this aspect. In line with replies to the RC-1.5 we 

have added a more detailed discussion on the issues raised in this comment (lines 542-550). As to the 

concern on the usage of the climate forcing data, we indeed overlooked the historical climate effects on 

vegetation distribution, which usually lag several years or decades behind climate changes. However, this 

is considered to have minor impacts on the large biases observed in DGVM (e.g., too much boreal NET and 

too few shrubs), even though historical climate effects (such as cooler temperature in the past) might favor 

more boreal shrub than boreal NET (please, also see our reasoning to comment RC-2.9). We have devoted 

a paragraph to clarify this in the Discussion (lines 536-542). 

RC-3.10 - L 162 Why was the CORDEX data not also used for the DM method? This should be briefly 

mentioned here. 

In a previous study (Horvath et al. 2019) the authors have created distribution models for vegetation types 

with a range of predictors (including SeNorgre2 data), where the statistically important predictors were 

selected in a forward selection procedure. At that point the SeNorge2 was the most reliable climate dataset 

available for the whole study area. We have now added a comment on the choice of climate data sets in 

DM in the section 2.4.3 (lines 235-237). Also see the paragraph in discussion on lines 536-642.  

RC-3.11 - L 175 Please explain ’supervised’ and ’unsupervised’ in more detail. 

While in supervised classification, training data are based on well labeled data from part of the study area, 

unsupervised classification is only supplied with the number of output classes. ’Supervised’ and 

’unsupervised’ classification methods are now shortly explained on lines 226-228.  

RC-3.12 - L 182 the number of explanatory variables (116) is rather high. It should be shortly explained 

what these are, and why such a large number is necessary for the regression. Even if this information is 

provided in Horvath et al (2019), it should be summarized here. 

We have added a short description of the explanatory variables (grouped into categories) on lines 232-

233. Also, a sentence about forward variable selection procedure has been added, to make clear that only 

a few of the 116 variables were actually included in each final DM (lines 233-237). 
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RC-3.13 - L 183 It would be good to add a short summary of the evaluation method for the DM here, so 

the reader can assess the DM better. 

We have now added a short summary of the evaluation procedure on lines 237-242. Evaluation of each 

model was carried out using an independent evaluation data set and by calculating the area under the 

receiver operator curve (AUC), a threshold‐independent measure of model performance commonly used 

in Distribution modelling. AUC can be interpreted as the probability that the model predicts a higher 

suitability value for a random presence grid cell than for a random absence grid cell (Fielding & Bell, 1997). 

RC-3.14 - L 186 I wonder if, by discarding all other VT except the most probable one, biases in the 

distribution of the VTs are introduced. Let us assume the logistic regression predicts a certain VT always 

with a slightly higher probability than a second one; according to the description, only the first VT would 

occur in the predicted map at all pixels, and all observations of the second one would be discarded, 

although this VT occurs quite frequently in reality. Please explain this in more detail. 

This is an interesting and intriguing topic. As the Referee #3 rightfully points out, there is a possibility of 

slight biases in certain regions, for the reason outlined. However, as far as we are aware, this has not yet 

been closely investigated. We are preparing a manuscript covering this topic in more detail - The results 

so far suggest that the approach for compiling the wall-to-wall map from 31 DMs, which we also use here, 

is performing the best out of the tested approaches (Horvath et al., manuscript in prep.). Additionally, as 

the probability of presence for each VT is predicted separately for each grid-cell, the probability values for 

every VT varies independently of the probabilities for the other VTs, throughout the study area. Thus, we 

regard the chance that one VT consistently outperforms another VT over all the grid cells to be negligible. 

We have now explained this more carefully in the discussion (lines 477-482). 

RC-3.15 - L 200 I don’t understand why an aggregated PFT profile is needed, I thought that the comparison 

of the 3 modeling approaches and the AR data is done for each of the 20 plots? 

Indeed, the main comparison is between the 3 modelling approaches and AR on each of the 20 plots (this 

can be found in figure 2 and 3). But besides, it was also worth investigating the overall performance of the 

three methods across the study area. In order to do that, we needed the aggregated PFT profiles. We have 

now clarified this in the sentence (line 259). 

RC-3.16 - L 208ff This sounds like one comparison was done with the aggregated profiles (one for each 

method, aggregated over all 20 plots), using the chi-square test. Then, for each of the 20 plots the profiles 

were compared regarding their dissimilarity. It is not clear to me, why two different statistical methods 

were used to compare the models (DM, RS, DGVM) to AR. 

The point here is that we wanted to compare the three models (DM, RS, DGVM) to AR both with respect 

to the overall pattern (represented by the aggregated profiles) and with respect to their performance on 

each plot; the latter in order to identify the circumstances under which some of the models deviated 

strongly from the reference. Accordingly, the chi-square test was used to formally test if the models overall 

deviated from the reference, while the proportional dissimilarity index (which does not come with a 

statistical test) was calculated to address the purpose of identifying strongly deviating modelling results 

at plot scale. This is now clarified in lines 267-271. 
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RC-3.17 - L 222 I thought the dissimilarity index was used to assess the similarity between the 3 modeling 

approaches and the AR data. Why is it then necessary to do a pairwise Wilcoxon-Mann-Whitney test in 

addition? Please explain the reasons for the chosen statistical approach in a more detailed way. 

Our statistical analyses serve several purposes of which one is to assess the goodness-of-fit of the modeling 

results to the reference (I.e., to assess their performance); another (which is addressed by the Wilcoxon-

Mann-Whitney tests) is to assess the degree to which the models produce pairwise similar differences. We 

have added a sentence to explain this in the paragraph (lines 283-284).  

RC-3.18 - L 230ff As mentioned above (L200), by aggregating the PFT profiles of the 20 plots, differences 

in profiles between plots are lost. Hence, it is not possible to evaluate the 3 models with respect to the 

correct prediction of differences in profiles between individual plots. Also, while the AR data (for each 

plot) can be interpreted as a random sample, it is not clear to me how the model approaches can be 

consistently included in this Chi-square test. Moreover, the number of elements (6 PFTs) is actually too 

small for a Chi-square test. The authors need to justify this better, or change their testing approach. 

The mere purpose of analyzing the aggregated profiles is to assess the models’ ability to produce overall 

predictions of PFTs that accord with the PFTs’ overall frequency (as given by the reference). We do not see 

any reason why the chi-square test should not be useful for a contingency table of 6 classes. 

RC-3.19 - L 249 If I understand Fig. 2 correctly, the lines which connect the dots denote the individual 

plots, which means that for one method (e.g. DGVM), the dissimilarity can be high (1.0), while for another 

method (e.g. RS) it can be much lower. The result that the goodness of the fit between a given method 

and AR data depends on the set of chosen plots may point to some underlying systematic deficiencies of 

each method and should be discussed later. 

Exactly as you describe, the values of dissimilarity index portrayed as dots connected by lines in Fig.2 

represent the similarity of each plot between a particular method and the reference dataset AR for that 

plot. While the individual dissimilarities may be high, we have good reasons to believe that the selection 

of 20 plots is sufficiently representative for the study area that the major patterns emerging from the 

analyses reflect real major patterns. Furthermore, you are right that systematic deficiencies in some of the 

methods are reflected in the single-plot patterns shown in Fig. 2. Some of these topics were discussed in 

the previous version of our manuscript and we have now expanded on some of the aspects (sections 5.1.1., 

5.1.2., 5.1.4., and section 5.1.5 of the discussion chapter). 

RC-3.20 - L 252 The statement in this sentence is not evident to me in Fig. 3, because this figure simply 

shows the profiles for each plot (which is a good way of illustrating the results, in my opinion). Wrong 

reference? 

Absolutely. This typo has been corrected to Fig.2. 

RC-3.21 - L 254 Please see also my comment to L 222; I assume that the authors use the Wilcoxon test to 

assess if the median values of the dissimilarity indices for the 3 models are significantly different from 

each other. However, I think it is more relevant how the models differ to each other with regard to the 

AR data. This information is contained in the values of the dissimilarity index, and it should be reported 

more clearly here. The pairwise comparison of the 3 models seems to me of secondary importance to 

assess the goodness of the fit to AR data. 
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This is correct. The core result we report in this paragraph is the dissimilarity between the methods and 

the reference dataset. This is reported on lines 311-315 “While RS had the lowest median proportional 

dissimilarity with the AR reference (0.19, compared to 0.26 for DM and 0.41 for DGVM), …".  

The pairwise comparison results of the Wilcoxon rank-sum tests are mentioned only after the core findings 

to support the similarity between RS and DM at most plots (lines 315-319). 

RC-3.22 - L 262ff The visual comparison of the 3 models in Fig.3 and the associated description is more 

helpful to assess the modeling approaches than the statistical methods described before. 

The paragraph on lines 325-336 summarizes the visual inspection of Fig. 3 in terms of performance of the 

three methods and describes the regional deviations of DGVM and DM from the reference. The issues are 

further discussed on lines 446-471 and in paragraph 5.1.5.   

RC-3.23 - L 279ff This belongs into the Methods section. Explaining the sensitivity analysis earlier also 

makes it much easier to understand the goal of the overall approach. 

We agree. Please see also our reply to RC-2.11. We have added a clarification in the introduction (line 106), 

that the sensitivity experiments are described in a separate chapter, which builds upon the results of the 

analyses. We have deleted the subheadings 4.1 Methods and 4.2. Results to avoid confusion. 

RC-3.24 - L 287 The term ’precipitation seasonality’ should be better described, in particular since it is 

found later that it is important to improve DGVM parameterization. 

Please see also our reply to RC-2.12. “Precipitation seasonality” is defined as the ratio of the standard 

deviation of the monthly total precipitation to the mean monthly total precipitation (also known as the 

coefficient of variation) and is expressed as a percentage. This has now been explained on lines 357 -359.  

RC-3.25 - L 379ff The point about ’good’ and ’poor’ DMs is not clear to me. Why should poor DMs be used 

at all? Please explain, and also consider my comment above (L 186). 

The terms ‘good’ and ‘poor’ refer to the predictive performance of the individual DMs (i.e. AUC - see also 

reply to comment RC-3.13). The study by Horvath et al. (2019) provides predictions of the distribution of a 

total of 31 vegetation types across the study area of Norway (with AUC values ranging from 0.671 to 

0.989). Reasons for the low predictive performance of some DM may vary, but in this case is most likely 

caused by missing important predictors. The set of predictor variables used in the study (n=116) might 

seem excessive, but nevertheless the authors conclude that several important factors are not represented 

among these 116 (soil nutrients, NDVI, LiDAR etc.). The reason for this is that variables representing these 

factors were not available in the required formats/resolution/coverage at the time-point the study was 

carried out; a general problem in distribution modelling. By using the chosen set of predictor variables, 

statistical approach and settings, the authors obtained the best possible distribution models, even though 

with regard to the AUC values, some might be considered weak/poor. The direct answer to the comment 

is that the DM method requires estimates for the probabilities of occurrence for (almost) all vegetation 

types to create a seamless vegetation map, which in turn is required for making estimates for the PFT 

profiles as robust as possible. Thus, in this context, ‘poor’ models are better than no model. We have 

devoted the paragraph on (lines 455-465) to making this (important) point more clear. 
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RC-3.26 - L 411 It may not be clear to readers why the lack of a shade-intolerant birch-PFT in the DGVM 

leads to the over-representation of NET in plots 17 and 18. The birch-PFT should rather have an advantage 

in mountainous regions compared to NET, which is currently lacking in DGVMs. Please clarify. 

Please see also our reply to RC-1.7 and RC-2.14. We agree with the Referee #3 that this argument is not 

clear and without a clear support from our results. We have decided to remove the argument from the 

revised manuscript.  

RC-3.27 - L 450 Please check the literature for the recent progress in including high-latitude vegetation 

types into the PFT scheme of DGMVs, and add this to the discussion. 

We have added recent studies about this topic in the discussion (lines 572-575). See also our reply to RC-

1.8.  

RC-3.28 - L 467 This sentence is hard to understand, please reformulate. 

Yes, this has been reformulated. 

RC-3.29 - L 475 It should be mentioned if increased seasonality promotes or impedes growth of NET. 

Thanks for pointing this out. By applying the new threshold, the growth of NET is impeded if the value for 

precipitation seasonality is larger than 50 (Table 4, Supplement S6 and S11). This is now mentioned in the 

lines 597-598.  

Supplement: 
RC-3.30 - L 40 missing reference L 51 missing reference L 52 missing reference 

Thanks for pointing this out. This is a remnant of splitting the document into manuscript and supplement. 

All the references are now fixed. 

RC-3.31 - L 55 The PFTs for this study are not in bold font, but shaded grey, please make this consistent. 

This has been fixed. 

RC-3.32 - L 56 The caption of Tab. S6 should be a bit more detailed: Is zbot the bottom height of the canopy 

(11.5 m above ground)? How is the coefficient of variation in precipitation seasonality computed? 

We have adjusted the caption to clarify all the mentioned abbreviations. 

RC-3.33 - L 90 The cover fractions in plots 801,2108,4268 are clearly not in a steady state. Please check if 

this significantly affects the results (e.g. by extrapolating the trends in cover), and repeat the DGVM runs, 

if necessary. 

Thanks for pointing this out. We have now extended the running time of our simulations for these three 

plots by 400, 200 and 200 years respectively to check the vegetation distribution at the equilibrium state. 

We found that the average of the last 20 years at the end of each simulation does not deviate substantially 

from our previous results at the end of 400 years (see the new plots added in the supplement S11.2). We 

have therefore decided to consistently use the original 400 year spin-up data for the analysis for all 20 

plots. This is also clarified in lines 204-207). 

RC-3.34 - L 122 missing reference 
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Comments on style: 
All the following comments on style have been implemented in the revised version of the manuscript. 

L 42 I think ’an’ is not needed here. 

L 55 ’DGVMs’ instead of ’the DGVMs’ 

L 60 ’at high latitudes’ instead of ’in the high latitude’ 

L 66 ’in’ not necessary 

L 138 the second "of the" is not necessary 

L 373 add ’the’ before ’reason’ 

L 401 ’differ’ instead of ’differs’ 
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Abstract. Vegetation is an important component in global ecosystems, affecting the physical, hydrological and 19 

biogeochemical properties of the land surface. Accordingly, the way vegetation is parameterised strongly 20 

influences predictions of future climate by Earth system models. To capture future spatial and temporal changes 21 

in vegetation cover and its feedbacks to the climate system, dynamic global vegetation models (DGVM) are 22 

included as important components of land surface models. Variation in the predicted vegetation cover from 23 

DGVMs therefore has large impacts on modelled radiative and non-radiative properties, especially over high-24 

latitude regions. DGVMs are mostly evaluated by remotely sensed products, but rarelyless often by other 25 

vegetation products or by in-situ field observations. In this study, we evaluate the performance of three methods 26 

for spatial representation of present-day vegetation cover with respect to prediction of plant functional type (PFT) 27 

profiles – one based upon distribution models (DM), one that uses a remote sensing (RS) dataset and a DGVM 28 

(CLM4.5BGCDV). While DGVMs predicts PFT profiles based on are physiological and ecological processes, 29 

DM relies on a statistical correlations between a set of predictors and the modelled target, and the RS dataset is 30 

based on classification of spectral reflectance patterns of satellite images. PFT profiles obtained from an 31 

independently collected field-based vegetation data set from Norway were used for the evaluation. We found that 32 

RS-based PFT profiles matched the reference dataset best, closely followed by DM, whereas predictions from 33 

DGVM often deviated strongly from the reference. DGVM predictions overestimated the area covered by boreal 34 

needleleaf evergreen trees and bare ground at the expense of boreal broadleaf deciduous trees and shrubs. Based 35 

on environmental predictors identified by DM as important, three new environmental variables (e.g. minimum 36 

temperature in May, snow water equivalent in October and precipitation seasonality) were selected as the threshold 37 

for the establishment of these high-latitude PFTs. We performed a series of sensitivity experiments to 38 

demonstrateinvestigate whetherif thatthese thresholds improve the performance of the DGVM. Based on our 39 

results, we suggest implementation of one of thesethree novel PFT-specific thresholds (i.e., precipitation 40 

seasonality) for establishment in the DGVM. We performed a series of sensitivity experiments to demonstrate that 41 

these thresholds improve the performance of the DGVM. The results highlight the potential of using PFT-specific 42 

thresholds obtained by DM in development and benchmarking of also other of DGVMs forin broader regions. 43 

Also, we emphasize the potential of establishing DM as a reliable method for providing PFT distributions for 44 

evaluation of DGVMs alongside RS.  45 
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1 Introduction 46 

Vegetation plays an important role in the climate system, as changes in the vegetation cover alter the 47 

biogeophysical and biogeochemical properties of the land surface (Davin and de Noblet-Ducoudré, 2010; 48 

Duveiller et al., 2018). Therefore an accurate descriptions of the vegetation distribution hold a key role in Earth 49 

system models (ESM) (Bonan, 2016; Poulter et al., 2015). Historical and present vegetation distributions are can 50 

be implemented prescribed in ESMs by means of datasets prepared from satellite observations (Lawrence and 51 

Chase, 2007; Li et al., 2018; Lawrence et al., 2011). However, in order to predict the future temporal and spatial 52 

changes in natural vegetation cover and subsequently the processes, dynamics and feedbacks to the climate system, 53 

dynamic global vegetation models (DGVMs) are needed.  54 

DGVMs have been implemented as components of ESMs (Bonan et al., 2003) to represent long-term vegetation 55 

changes by a set of parameterizations describing general physiological principles, including ecological 56 

disturbances, successions (Seo and Kim, 2019) and species interactions (Scheiter et al., 2013). DGVMs represent 57 

the heterogeneity of land surface processes and interactions with other components of the Earth system by 58 

characterising land areas by their composition of type units defined by plant functional types (PFTs) (Bonan et al., 59 

2003; Oleson et al., 2013). PFTs are groupings of plant species with similar eco-physiological properties – which 60 

express differences in growth form (woody vs herbaceous), leaf longevity (deciduous vs evergreen) and 61 

photosynthetic pathway (C3 and C4) (Wullschleger et al., 2014). Even though the DGVMs are being constantly 62 

developed and improved to incorporate more complex plant processes (Fisher et al., 2010), and more PFTs 63 

(Chadburn et al., 2015; Porada et al., 2016; Druel et al., 2017), there are still fundamental challenges for DGVMs 64 

to correctly simulate the extents of the PFTs that characterise boreal and Arctic ecoregions (Gotangco Castillo et 65 

al., 2012). For instance, the thematic resolution (i.e. the number of classes or PFTs in a model) of high-latitude 66 

PFTs is still limited (Wullschleger et al., 2014), important interactions between vegetation and fire in at high 67 

latitudes are still missing (Seo and Kim, 2019) which in turn has implications on the , and forest carbon storage in 68 

the high latitudes is still being underestimated by most DGVMs (Song et al., 2013). The large uncertainties in 69 

simulating high-latitude PFT distributions may also lead to discrepancies between modelled and observed energy 70 

fluxes and hydrology (Hartley et al., 2017), orcarbon cycles (Sitch et al., 2008) or surface albedo (Shi et al., 2018). 71 

Accordingly, systematic evaluation of PFT distributions modelled by DGVMs is required to improve the DGVMs 72 

and, subsequently, to reduce uncertainties in estimates of climate sensitivity and in predictions by ESMs.  73 

Remote sensing (RS) is often used for evaluation, benchmarking and improvement of parameters in of DGVMs 74 

(Zhu et al., 2018). RS products are commonly used to describe vegetation cover using vegetation classes derived 75 

from multispectral images based on vegetation indices, such as the normalized difference vegetation index (NDVI) 76 

(Xie et al., 2008; Franklin and Wulder, 2002). For evaluation, RS products are translated into distributions of the 77 

PFT classes used in the DGVMs (Lawrence and Chase, 2007; Poulter et al., 2011). However, inconsistencies 78 

between various available RS-based land cover or vegetation products have been reported(Majasalmi et al., 2018) 79 

as well as mismatch between the spatial resolution in RS observations and the spatial heterogeneity of vegetation 80 

patches (Myers-Smith et al., 2011; Lantz et al., 2010) have been reported. ThereforeThe fact that and 81 

benchmarking DGVMs only to these RS-based products may therefore lead to different conclusions in ESMs 82 

(Poulter et al., 2015), motivates for exploring and other vegetation products are worth exploring as a to supplement 83 

to RS.  84 
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Among the less explored methods to generate wall-to-wall vegetation cover predictions is distribution modelling. 85 

Distribution models (DMs) are most often used to predict the distribution of a target, by establishment of statistical 86 

relationship between the target (response) and the environment (predictors) (e.g. Halvorsen, 2012). The most 87 

common use of DM in ecology is for prediction of species distributions (Henderson et al., 2014), but DM methods 88 

have proved valuable also for prediction of targets at higher levels of bio-, geo- or eco-diversity (i.e. vegetation 89 

types and land-cover types) (Ullerud et al., 2016; Horvath et al., 2019; Simensen et al., 2020). DM methods are 90 

inherently static, in contrast to the dynamic DGVMs (Snell et al., 2014). Nevertheless, they may be a useful 91 

corrective to DGVMs by providing insights into important environmental factors driving the distribution of 92 

individual targets, which may, in turn, improve PFT parameter settingsization in DGVMs.  93 

Comparative studies that evaluate the present-day PFT distributions of DGVMs in a systematic manner, with 94 

reference to a field-based evaluation dataset, areare, with apart some exceptions so far lacking (Druel et al., 2017), 95 

scarcefew. In this study, we evaluate representations of vegetation distribution, translated to PFT profiles, obtained 96 

by the three different methods (DGVM, RS, DM) and . We use an independently collected field-based dataset of 97 

vegetation distribution, (AR; , (the Norwegian National map series for Area Resources) for the evaluation. 98 

Furthermore, we explore if environmental correlates of vegetation-type distributions identified by DM can be used 99 

to improve DGVMs by adjusting parameter settings for high-latitude PFTs.  100 

To approach these aims, we constructed a conversion scheme to harmonize the classification schemes of RS, DM 101 

and AR into the PFTs used by the DGVM. We represent the present-day vegetation coverage by using plant 102 

functional type profiles (PFT profiles), vectors of relative abundances of PFTs within an area, e.g. a given study 103 

plot, summing to 1one. We then compare the PFT profiles obtained by DGVM, RS and DM with the AR reference 104 

on 20 selected study plots across the Norwegian mainland. Finally, we conduct a series of sensitivity experiments 105 

(ref. chapter 4) which builds upon the results from of the analyseis performed ofin this study to explore if the 106 

DGVM performance can be improved by adjusting DGVM parameters for selected environmental drivers 107 

sourcedidentified by  from DM. 108 

2 Methods 109 

2.1 Study area – Norway 110 

The study area covers mainland Norway, spanning latitudes from 57°57’N to 71°11’N and longitudes from 4°29’E 111 

to 31°10’E. Norway is characterized by a gradient from a rugged terrain with deep valleys and fjords in the western, 112 

oceanic parts to gently undulating hills and shallow valleys in the central and eastern, more continental parts. 113 

Temperature and precipitation show considerable variation with latitude, distance from the coast and altitude 114 

(Førland, 1979). While the mean annual precipitation ranges from 278 mm in the central inland of S Norway to 115 

more than 5000 mm in mid-fjord regions along the western coast, the yearly mean temperature ranges from 7°C 116 

in the southwestern lowlands to –4°C in the high mountains (Hanssen-Bauer et al., 2017). 117 

The vegetation of Norway is structured along two main bioclimatic gradients (Fig. 1); one related to 118 

temperature/growing-season length and one to humidity/oceanity (Bakkestuen et al., 2008). Broadleaf deciduous 119 

forests, regularly found in the southern and southwestern parts (the boreonemoral bioclimatic zone), are further 120 

west and north (in the southern boreal zone) restricted to locally warm sites (Moen, 1999). With declining 121 

temperatures northwards and towards higher altitudes, i.e. in the southern and middle boreal zones, evergreen 122 

https://en.wikipedia.org/wiki/5th_meridian_east
https://en.wikipedia.org/wiki/31st_meridian_east


5 

 

coniferous boreal forests dominate in the southern and middle boreal zones,. In the northern boreal zone the 123 

coniferous boreal forests they pass gradually into subalpine birch forests, which form the tree line in Norway. A 124 

total of about 38% of mainland Norway is covered by forests, and about 37% of the land is situated above the 125 

forest line (of which two thirds is covered by alpine mountain heaths). Wetlands cover approximately 9% and 126 

broadleaf deciduous forests about 0.4% of the land area (Bryn et al., 2018).  127 

2.2 The AR reference dataset  128 

Data obtained by in-situ field mapping, which is considered among the most reliable sources of land-cover 129 

information (Alexander and Millington, 2000), is practically and economically impossible to obtain in a wall-to-130 

wall format for large land areas such as countries (Ullerud et al., 2020). As an alternative, Aarea-frame surveys 131 

based upon stratified statistical sampling may, however, provide accurate, area-representative, homogeneous and 132 

unbiased land-cover and land-use data for large areas. To evaluate the three methods for representing vegetation 133 

addressed in this study, we used the ‘Norwegian land cover and land resource survey of the outfields’ 134 

(Arealregnskap for utmark) dataset (Strand, 2013), a Norwegian implementation of the mapping program LUCAS 135 

(Eurostat, 2003). Data were collected in the period between 2004–2014 in a systematic regular grid covering the 136 

whole land area of Norway on which the plots (in total 1081 plots, each 0.6×1.5 km, i.e. 0.9 km2) were placed 137 

every 18 km (in latitude) by 18 km (in longitude)18×18 km grid of 1081 rectangular plots (each 0.6×1.5 km, i.e. 138 

0.9 km2) (Bryn et al., 2018; Strand, 2013). In each plot, expert field surveyors performed land-cover mapping by 139 

use of a system with 57 land-cover and vegetation-type classes (Bryn et al., 2018), mapped at a scale of 1:25 000. 140 

The data were provided in vector format with vegetation-type attributes assigned to each mapped polygon.  141 

2.3 Study plots 142 

Twenty out of the 1081 rectangular AR plots were selected to make up our reference dataset, AR (Fig. 1; center 143 

coordinates in Table S1). The AR plots spanned elevations from 88 to 1670 m a.s.l., with mean annual temperatures 144 

between –-4.0°C and 7.1°C and mean annual precipitation between 466 and 2661 mm (Table S1). A test showed 145 

that the selectionwere acceptable representative for bioclimatic variation in Norway (see Fig. S3 and Fig. S4). The 146 

gradients of precipitation and temperature are known to be among the most influential for vegetation distribution 147 

(e.g., Ahti et al. 1968; Bakkestuen et al. 2008). TheA series of Kolmogorov-Smirnov tests for (comparison of 148 

sample mean and variance for these two variables, using gridded temperature and precipitation data from seNorge2 149 

(Lussana et al., 2018a; Lussana et al., 2018b)for these two variables were obtained to investigate whether if the 150 

selection of 20 selected plots does capture the variation across in the whole range of temperature and precipitation 151 

in Norway (Fig. S2), acceptable well  compared to the full set of 1081 AR plots, interpolated for each plot by 152 

kriging in accordance with Horvath et al. (2019). Additionally, we have tested the representativeness across the 153 

range of variation for a third variable (precipitation seasonality) which was later selected for sensitivity 154 

experiments (see further section 4). While low values of temperature and precipitation are slightly 155 

underrepresented in the 20 plots, the total range of vlues isariation was well covered. AllNone of the the tests for 156 

temperature, precipitation and for the additional variable of (precipitation seasonality) do not indicate that 157 

significant difference of the sample of the 20 plots deviate from the full set of 1081 plots. The representativeness 158 

of the 20 plots was also tested against the full dataset of 1081 AR plots with regard to PFT coverage (Supplement 159 
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S3, Table S3), using , where a a Chi-square test. This test showed that the two datasets are not more dissimilar 160 

much more similar than expected by chance.  161 

 162 

Figure 1 - Locations of the 20 plots across the two main bioclimatic gradients in the study area: temperature (left) and 163 
precipitation (right). The plots are numbered by longitude from west to east. Exact values of temperature, precipitation 164 
and altitude for each plot are given in Table S1.  165 

2.4 Methods for representing vegetation 166 

In this study, we use 'plot' as a collective term for two partly overlapping spatial units: (i) the 0.9-km2 rectangles 167 

of the AR of the reference dataset; and (ii) the 1-km2 quadrats with the same centerpoint as, and edges parallel to 168 

those of, the AR rectangles. The latter were used for the three methods of DGVM, RS and DM (Fig. S2). 169 

Representations of the present-day vegetation of for each of these 20 plots were obtained by three different 170 

methods: (i) as the result of single-cell DGVM simulations for each plot; (ii) inferred from an RS vegetation map 171 

of the study area; and (iii) from vegetation-type DM models (Table 1). In order to make the three methods 172 

comparable, vegetation was represented by plant functional type profiles (PFT profiles), obtained by a conversion 173 

scheme (Table S52 and Sect. 2.5). We define a PFT profile as a thematic representation of the land surface in a 174 

given plot or a group of plots, described as a vector of relative PFT abundances, i.e. values that sum up to 1.  175 

Table 1 – Details of each of the presented methods for representing vegetation. DGVM – dynamic global vegetation 176 
model, RS – remote sensing, DM – distribution model. PFT – plant functional type, VT – vegetation type. 177 

 DGVM  RS  DM 

Model type Process-based mechanistic 

model 

Supervised and 

unsupervised classification 

Statistical model 

Software / model name and 

version 

Community Land Model 4.5 

– CLM4.5-BGCDV 

ENVI (image analysis) and 

ArcGIS (classification) 

R version 3.6.2,  

generalized linear model 

Reference Oleson et al., 2013 Johansen, 2009 Horvath et al., 2019 

Thematic resolution 14 PFTs 25 VTs  31 VTs 

Spatial resolution (grid cell) 1 km 30 m 100 m 

  178 
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2.4.1 The DGVM method 179 

The DGVM employed in this study was the CLM4.5BGCDV (further hereafter referred to as DGVM), embedded 180 

an option provided in NCAR’s Community Land Model version 4.5 (CLM4.5) with vegetation dynamics, plant-181 

soil carbon/nitrogen cycle, and multi-layer vertical soil enabled (Oleson et al., 2013). In DGVM, plant 182 

photosynthesis, stomatal conductance, carbon/nitrogen allocation, plant phenology and multi-layer soil 183 

biogeochemistry are described in accordance with default CLM4.5, while vegetation dynamics (establishment, 184 

survival, mortality and light competition) are handled separately based upon relatively simple assumptions of 185 

environmental thresholds for establishment, survival and mortality of each PFT (see supplement S6) (Oleson et 186 

al., 2013). We used DGVM in the form of single-cell simulations for the 20 plots with grid-cell size set to 1×1 km 187 

(Table 1) to simulate the fractional cover of each PFT. All models were run with default CLM4.5 values for surface 188 

parameters (e.g. soil texture and depth), with prescribed atmospheric forcing derived from the 3-hourly hindcast 189 

of the regional model (SMHI-RCA4) driven by ERA-interim reanalysis for the European Domain of the 190 

Coordinated Downscaling Experiment – CORDEX for 1980–2010 (Dyrrdal et al., 2018). The CORDEX model 191 

simulation was used because it has a higher spatial resolution than the default atmospheric forcing used in CLM4.5 192 

(0.11°×0.11° and 0.5°×0.5°, respectively). An inspection of the choice of atmospheric forcing, by which the 193 

CORDEX data were compared with the SeNorge data used for DM, showed minimal differences (Fig. S5). Only 194 

results obtained using CORDEX data are therefore shown in this paper. The 30-year CORDEX data was cycled 195 

during the spin-up. A 30-year period is consistent with WMO climatological normal based on the rationale that a 196 

30 year-period is short enough to avoid large long-term trends while long enough to include the range of variability. 197 

Thus, the data isare not de-trended or averaged.  198 

The model was run with default PFT parameters (Table S6S7). All the selected sites are mostly undisturbed. In 199 

our experiments, soil C and N were firstly initialized using a restart file from an existing global present-day spin-200 

up simulation with prescribed vegetation. Each model simulation was spun-up for 400 years to establish a 201 

vegetation in equilibrium with the current climate after initialization from bare ground. In three plots where the 202 

equilibrium of vegetation was questionable (plot 6, 12 and 17), we extended the spin-up by 400, 200 and 200 years 203 

respectively to check if any effect on PFT profile could be seen. No significant changes in the PFT profile was 204 

noted in these three instances (Fig. S11.1 and Fig. S11.2) and therefore we behold the initial 400 year spin up for 205 

all the sites. A 20-year average at the end of the spin-up was used as input for calculation of PFT profiles 206 

(representing years 1990–2010), which corresponds with the data-collection timeframe of DM, RS and AR. 207 

Among the 15 PFTs used in CLM4.5 to represent vegetated surfaces globally(Lawrence and Chase, 2007), only 208 

six (plus bare ground) were relevant for our study area (Table S52). Bare ground was predicted to occur where 209 

plant productivity was below a threshold value (Dallmeyer et al., 2019). The DGVM simulates the vegetated land 210 

unit only (non-grey boxes in Fig. S78), while other land units within the 20 plots, including glaciers, wetlands, 211 

lakes, cultivated land and urban areas, make up the “EXCL” PFT category (Table S52). The percentage cover 212 

fraction of each PFT is equal to the average individual’s fraction projective cover (FPCind) multiplied by the 213 

number of individuals (Nind) and average individual’s crown area (CROWNind). FPCind is a function of the 214 

maximum leaf carbon achieved in one year, while CROWNind is related to dead stem carbon simulated by the 215 

model. Nind is mainly determined by establishment and survival rate controlled by establishment and survival 216 

threshold conditions (Levis et al., 2004) . We obtained PFT profiles for each plot by excluding the EXCL category 217 

and recalculating recalculated fractions of the vegetated land unit covered by each PFT to sum up to one. Each 218 
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model simulation was spun-up for 400 years to establish a vegetation in equilibrium with the current climate after 219 

initialization from bare ground. A 20-year average at the end of the spin-up was used as input for calculation of 220 

PFT profiles. 221 

2.4.2 The RS method 222 

As RS product we used SatVeg (Johansen, 2009), a vegetation map for Norway with 25 land-cover classes and a 223 

spatial resolution (pixel grid cell size) of 30 m (Table 1). SatVeg is obtained by a combination of unsupervised 224 

and supervised classification methods, applied to Landsat 5/TM and Landsat 7/ETM+ images within the near-225 

infrared and mid-infrared spectrum covering the period of 1999–-2006. While with the supervised classification, 226 

training data is based on well-labelled data from the study area, during the unsupervised classification the algorithm 227 

is only supplied with the number of output classes without further interference of the user. Only pixelgrid cells 228 

that were within each 1-km2 plot with a majority of their area were taken into consideration for further calculations.  229 

2.4.3 The DM method 230 

The distribution models (DMs) for 31 vegetation types (VT) obtained by Horvath et al. (2019) using generalized 231 

linear models (GLMs, with logit link and binomial errors, i.e. logistic regression), were used for this study. The 232 

VT data were collected during years 2004–-2014. The DMs were obtained by using wall-to-wall data for 116 233 

environmental variablespredictors from six groups (topographic, geological, proximity, climatic, snow and land 234 

cover), gridded to a spatial resolution of 100×100 m (Table 1) as predictors. Important predictors were selected by 235 

an automated stepwise forward-selection procedure for each of the 31 VTs individually, thus each final model is 236 

built upon only a narrow selection of important predictors (Horvath et al., 2019 supplement S7). All DMs were 237 

evaluated using an independent evaluation data set and by calculating the area under the receiver operator curve 238 

(AUC), a threshold‐independent measure of model performance commonly used in DM. by use of an 239 

independently collected data set (see Horvath et al., 2019 for details).  AUC can be interpreted as the probability 240 

that the model predicts a higher suitability value for a random presence grid cell than for a random absence grid 241 

cell (Fielding and Bell, 1997). A seamless vegetation map (i.e. with one predicted VT for each pixel grid cell with 242 

no overlap and no gaps) was obtained from the stack of 31 probability surfaces by assigning to each grid cell the 243 

VT with the highest predicted probability of occurrence within that cell (Ferrier et al., 2002). Pixels Grid cells with 244 

the majority of their area that were within eacha 1-km2 plot with majority of their area were used for further 245 

calculations (Fig. S2S6). 246 

2.5 Conversion to PFT profiles 247 

Harmonisation of the various vegetation classification systems was accomplished by a conversion scheme that 248 

represented each grid cell (RS and DM) or polygon (AR) in each of the 20 plots with one out of the six PFTs 249 

recognised by DGVM (Table S52 and Fig. S2S6). The scheme was obtained by expert judgements and solicited 250 

by a consensus process which involved ecologists participating in the AR18x18 survey as well as scientists 251 

working with RS and DGVMs.  252 

We used the conversion scheme of Table S52 to generate wall-to-wall PFT maps from the original RS, DM and 253 

AR datasets (Table 1) by assigning one PFT to each 30×30 m grid cell, 100×100 m grid cell or VT polygon, 254 

respectively. PFT profiles for each plot, at the same thematic resolution as for DGVM, were obtained as the vector 255 
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with fractions of grid cells or polygons assigned to each of the six PFTs. ‘EXCL’ classes not represented in DGVM 256 

(cf. Table S52) were left out in order to minimise the effects of land use, which could otherwise have brought 257 

about differences in PFT profiles among the compared methods. PFT profiles were obtained for each combination 258 

of method and plot. To test for deviations in PFT coverage between the methods across the whole study area, 259 

aAggregated PFT profiles were obtained by averaging the 20 PFT profiles obtained for each method.  260 

 261 

Table 2– Conversion scheme for harmonizing vegetation and land cover types across methods (RS, DM and AR) 262 

into plant functional types (PFTs). DGVM – dynamic global vegetation model, RS – remote sensing, DM – 263 

distribution model. PFT – plant functional type, VT – vegetation type. 264 

DGVM RS DM AR 

PFT code 
plant functional 

type 

vegetation / land cover 

type – remote sensing 

vegetation type – 

distribution model 

vegetation type – area 

frame survey 

BG Bare ground  

Exposed alpine ridges, 

scree and rock complex Frozen ground, leeward Frozen ground, leeward 

  Frozen ground, ridge Frozen ground, ridge 

  Boulder field 

Sand dunes and gravel 

beaches 

  Exposed bedrock 

Pioneer alluvial 

vegetation 

  
 

Barren land 

  
 

Boulder field 

    Exposed bedrock 

Boreal 

NET  

Boreal 

needleleaf 

evergreen tree  

Coniferous forest – dense 

canopy layer 

Lichen and heather pine 

forest 

Lichen and heather pine 

forest 

Coniferous forest and 

mixed forest - open 

canopy Bilberry pine forest Bilberry pine forest 

Lichen rich pine forest 

Lichen & heather spruce 

forest Meadow pine forest 

  Bilberry spruce forest Pine forest on lime soils 

  Meadow spruce forest 

Lichen & heather spruce 

forest 

  Damp forest Bilberry spruce forest 

  Bog forest Meadow spruce forest 

  
 

Damp forest 

    Bog forest 

Temperat

e BDT  

Temperate 

broadleaf 

deciduous tree  

Low herb forest and 

broadleaved deciduous 

forest 

Poor / Rich broadleaf 

deciduous forest 

Poor broadleaf deciduous 

forest 

    

Rich broadleaf deciduous 

forest 

Boreal 

BDT  

Tall herb - tall fern 

deciduous forest 

Lichen and heather birch 

forest 

Lichen and heather birch 

forest 
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Boreal 

broadleaf 

deciduous tree  

Bilberry- low fern birch 

forest Bilberry birch forest Bilberry birch forest 

Crowberry birch forest Meadow birch forest Meadow birch forest 

Lichen-rich birch forest Alder forest Birch forest on lime soils 

  Pasture land forest Alder forest 

  Poor / rich swamp forest Pasture land forest 

  
 

Poor swamp forest 

    Rich swamp forest 

Boreal 

BDS  

Boreal 

broadleaf 

deciduous shrub  

Heather-rich alpine ridge 

vegetation Lichen heath Lichen heath 

Lichen-rich heathland Mountain avens heath Mountain avens heath 

Heather- and grass-rich 

early snow patch 

communities 

Dwarf shrub / Alpine 

calluna heath Dwarf shrub heath 

Fresh heather and dwarf-

shrub communities (u/l) Alpine damp heath Alpine calluna heath 

  

Coastal heath / Coastal 

calluna heath Alpine damp heath 

  Damp heath Flood-plain shrubs 

  
 

Coastal heath 

  
 

Coastal calluna heath 

  
 

Damp heath 

    Crags and thicket 

C3 C3 grass 

Graminoid alpine ridge 

vegetation 

Moss snowbed / Sedge 

and grass snowbed Moss snowbed 

Herb-rich meadows (up-

/lowland) Dry grass heath Sedge and grass snowbed 

Grass and dwarf willow 

snow-patch vegetation Low herb / forb meadow Dry grass heath 

  
 

Low herb meadow 

  
 

Low forb meadow 

    Moist and shore meadows 

EXCL Excluded 

Ombrotrophic bog and 

low-grown swamp 

vegetation 

Bog / Mud-bottom fen 

and bog Bog 

Tall-grown swamp 

vegetation Deer-grass fen / fen Deer-grass fen 

Wet mires, sedge swamps 

and reed beds Sedge marsh Fen 

Glacier, snow and wet 

snow-patch vegetation Pastures Mud-bottom fen and bog 

Water 
 

Sedge marsh 
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Agricultural areas 
 

Cultivated land 

Cities and built-up areas 
 

Pastures 

Unclassified and shadow 

affected areas,  
 

Built-up areas 

  
 

Scattered housing 

  
 

Artificial impediment 

  
 

Glaciers and perpetual 

snow 

  
 

Sea and ocean 

    Water bodies (fresh) 

 265 

2.6 Comparison of PFT profiles 266 

To examine the overall pattern across the study area and to assess the models’ ability to produce overall predictions 267 

of PFTs that accord with the PFTs’ overall frequency (as given by the reference) Aaggregated PFT profiles 268 

obtained by each of the DGVM, RS and DM methods were compared with the aggregated PFT profile of the AR 269 

reference dataset by a chi-square test (Zuur et al., 2007). .  270 

 To identify strongly deviating modelling results at a plot scale, For each plot, the dissimilarity between PFTs 271 

profiles obtained by each of the DGVM, RS and DM methods and the PFT profile of the AR dataset for each plot 272 

was calculated by using proportional dissimilarity (Czekanowski, 1909):  273 

dhj=∑|yhji−y0ji|/∑(yhji+y0ji)=1−2∑min(yhji,y0ji)/∑(yhji+y0ji) 274 

where yhji refers to the specific element in a PFT profile vector (the fraction occupied by the PFT in question) given 275 

by method h (DGVM, RS or DM; h = 1, ..., 3; the value h = 0 refers to the AR reference dataset), j refers to 276 

sampling unit (j = 1, ..., 20) and i refers to PFT (i = 1, ..., 6). Proportional dissimilarity is the Manhattan measure 277 

standardized by division by the sum of the pairwise sums of variable values (here PFTs). Since the values of each 278 

PFT profile sums to one, the index reduces to 279 

dhj=1−∑min(yhji,y0ji) 280 

The proportional dissimilarity index is appropriate for incidence data like PFT abundances, i.e. variables that take 281 

zero or positive values. The index reaches a maximum value of 1 when two objects have no common presences 282 

(here, PFTs present in both compared objects) and ignore joint absences (zeros). To assess the degree to which the 283 

models produce pairwise similar differences, Wwe compared the pairwise differences between the proportional 284 

dissimilarity values among methods, using a Wilcoxon-Mann-Whitney paired samples test.  285 

All raster and vector operations related to DM, RS and AR were carried out in R (version 3.4.3) (R Core Team, 286 

2019) using packages “rgdal” (Rowlingson, 2019), “raster” (Hijmans, 2019) and “sp” (Pebesma and Bivand, 287 

2005), while graphics are produced using the “ggplot2” package (Wickham, 2016). Statistical analyses were 288 

carried out in R (version 3.4.3), using the “vegan” package (Oksanen et al., 2019). All maps were produced in 289 

QGIS (QGIS Development Team, 2019).  290 
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3 Results 291 

The aggregated PFT profiles for the RS and DM datasets did not differ significantly from those of the reference 292 

AR dataset according to the chi-square test, while a significant difference was found for the DGVM profiles (Table 293 

2). While the proportion of pixels grid cells attributed to the PFT ‘boreal NET’ by the RS and DM methods 294 

underestimated AR values by 3.0 and 2.8 percentage points, respectively, DGVM overestimated the proportion of 295 

boreal NET by 20.4 percentage points compared to the AR reference. Also, unproductive areas (BG) were 296 

overestimatedrepresented by DGVM (by 16.6 percentage points), less so by RS (4.0 percentage points), while this 297 

PFT was slightly underrepresented by DM (by 5.0 percentage points). Discrepancies were also observed for the 298 

cover of the C3 PFT, which was overestimated by RS and DM (by 7.2 and 2.9 percentage points, respectively) 299 

and underestimated by DGVM (by 3.0 percentage points) by DGVM. Furthermore, DGVM overestimated BG and 300 

temperate BDT cover on the expense of boreal BDT and boreal BDS.  301 

Table 2 - PFT profiles (columns) aggregated across all 20 plots for the three methods compared in this study and the 302 
AR reference dataset. Results of comparisons of aggregated PFT profiles for each of the three methods with the 303 
reference are also given. DGVM – dynamic global vegetation model, RS – remote sensing, DM – distribution model, AR 304 
– reference dataset. BG – bare ground, boreal NET – boreal needleleaf evergreen trees, temperate BDT – temperate 305 
broadleaf deciduous trees, boreal BDT – boreal broadleaf deciduous trees; boreal BDS - boreal broadleaf deciduous 306 
shrubs, C3 – C3 grasses.  307 

PFT Compared methods Reference 

DGVM (%) RS (%) DM (%) AR (%) 

BG 29.5 17.0 7.9 12.9 

Boreal NET 57.2 34.0 33.8 36.8 

Temperate BDT  5.6 2.0 0.2 0.5 

Boreal BDT 3.1 12.5 17.2 15.5 

Boreal BDS  4.1 23.8 34.5 30.8 

C3 0.5 10.7 6.4 3.5 

Chi-square test χ2= 45.98, df = 5, 

p < 0.05 

χ2= 6.36, df = 5,  

p = 0.27 

χ2= 2.61, df = 5, 

 p = 0.75 
 

 308 

In accordance with results from comparisons between aggregated PFT profiles obtained by the three methods and 309 

those obtained for the reference dataset, DGVM profiles for individual plots were significantly more dissimilar to 310 

the AR reference than were RS and DM profiles (Fig. 2). While RS had the lowest median proportional 311 

dissimilarity with the AR reference (0.19, compared to 0.26 for DM and 0.41 for DGVM), DM had the lowest 312 

spread of dissimilarity values, measured as interquartile difference (0.12, compared to 0.19 for RS and 0.72 for 313 

DGVM), among the three methods (Fig. 23). While no dissimilarity value for RS was above 0.50, two sampling 314 

unitplots (4, 19) acted as strong outliers in the distribution of DM values (cf. Fig. 2 and Fig. 3). Additionally, Aa 315 

comparison of proportional dissimilarity between pairs of methods revealed significant differences between 316 

DGVM profiles and those obtained by RS and DM (Wilcoxon rank-sum tests: W = 111, p = 0.0167; and W = 88, 317 

p = 0.0026, respectively), while RS and DM profiles were not significantly different from each other (Wilcoxon 318 

rank-sum test: W = 161, p = 0.3013). 319 
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 320 

Figure 2 - Proportional dissimilarity values between PFT profiles for each combination of 20 plots and one each of the 321 
three methods compared evaluated in this study, and the corresponding plot in the AR reference dataset. The thick 322 
horizontal line, the box and the whiskers represent the median, the interquartile difference and the range of values for 323 
each method. 324 

Visual inspection of spatial patterns of PFT profile characteristics across the 20 plots suggests that the best 325 

agreement among the methods was obtained for the south-eastern part of the study area, dominated by the boreal 326 

NET (Fig. 3 and Table S10). Compared to the AR reference dataset, PFT profiles obtained by DGVM were 327 

strongly biased: in the north (plots 17 and 18) towards boreal NET on the cost of boreal BDT, near the west coast 328 

(plots 1, 2, 5 and 15) towards boreal NET on the cost of boreal BDS, and in southern coastal areas (plots 3, 6 and 329 

12) towards temperate BDT instead of boreal NET. In sampling unitplots 13 and 16 DGVM failed to establish 330 

vegetation (predicting bare ground) where AR reported boreal BDS. RS represented the PFT profiles of the AR 331 

reference well in most cases, but tended to overestimate the frequency of dominance by C3 grasses at several 332 

locations (plots 3, 16 and 20). While DM showed no general spatial pattern of PFT profile deviations from the 333 

reference dataset, PFT profiles of plots 4 and 19 obtained by DM had almost no similarity to the corresponding 334 

profiles of the AR reference dataset: C3 grasses and boreal BDT were predicted instead of bare ground and boreal 335 

NET, respectively. 336 
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 337 

Figure 3 – PFT profiles for each of the 20 plots for the three methods compared in this study and the AR reference 338 
dataset. The columns in each cluster of four bar-charts represent, from left to right, the methods dynamic global 339 
vegetation model (DGVM), remote sensing (RS) and distribution model (DM), with the AR reference dataset to the 340 
right. 341 

4 Sensitivity experiments and model improvement 342 

4.1 Methods  343 

We used the results of PFT profile comparisons between DGVM and the AR reference (Fig. 3) and the results 344 

obtained for the DM dataset as a starting point for the exploring possible relationshipscauses of between the poor 345 

performance of DGVM and DGVM parameter settings. We first identified the three most abundant PFTs (i.e. 346 

boreal NET, boreal BDT and boreal BDS) in our set of plots (Table S4S3). Thereafter, we identified the major 347 

VTs predicted by DM in those plots that were translated into these PFTs using the conversion scheme (Table S5) 348 

(to be pine forest, birch forest and dwarf shrub heath, respectively (Table 3). Based on the results from Horvath et 349 

al. (2019), the corresponding final models for these three VTs were examined to identify important environmental 350 
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variables that were driving the distribution of the VTs but not represented in DGVM. We selected recognized the 351 

three of the most important environmental predictors that are critical for for the distribution of each of these VTs, 352 

and exhibit  witha clear threshold signature in the frequency-of-presence plots (i.e. graphs showing variation in 353 

the abundance of the VT as a function of an environmental predictors, also see Fig. S12): as identified by DMs 354 

(see Horvath et al. 2019)    for further sensitivity experiments of DGVM parameter settings (Table 3): snow water 355 

equivalent in October (swe_10), minimum temperature in May (tmin_5) and precipitation seasonality 356 

(bioclim_15).  Precipitation seasonality is defined as the ratio of the standard deviation of the monthly total 357 

precipitation to the mean monthly total precipitation (i.e. the coefficient of variation), expressed as percentage 358 

(O’Donnell and Ignizio, 2012). We usedBased on visual inspection of the frequency-of-presence plots, (i.e. graphs 359 

showing variation in the abundance of the VT as a function of an environmental variable) to we identified y specific 360 

threshold values for presence each of the three VTs (see Fig. S12 for details) and implemented these threshold 361 

values into DGVM as new limits for establishment of the three PFTs as shown in Table 3 (also see Fig S11). (Ffor 362 

example, in line with Fig. S12, VT 2ef and its respective PFT - boreal BDS  - can only is not establishpresent along 363 

the when variable swe_10 is less than  above the value of 380mm. – thusthe threshold was decided appropriately; 364 

Fig S12).  365 

We explored the extent to which these additional thresholds revised parameter settings improved the performance 366 

of DGVM on the subset of six plots (i.e. numbers plot 1, 2, 5, 15, 17 and 18) in which the PFT profiles are most 367 

biased boreal NEB was most strongly overrepresented compared to the AR reference dataset due to the 368 

overrepresentation of the boreal NEB. In total, three sSensitivity experiments were carried out by a stepwise 369 

process, in each step adding onea new threshold was added comparedcumulatively to the previous experiments 370 

(Table 3).specific for each of the three PFTs (see Table S13 for details on the stepwise process of DGVM parameter 371 

adjustments), specific for the three PFTs at the same time. Parameters were cumulatively added in the following 372 

order:  Namely, in the first sensitivity experiment (i), we added swe_10 as the swe_10 threshold. In the second 373 

experiment (ii), we added both swe_10 and, tmin_5 and bioclim_15 as the threshold. In the last experiments (iii), 374 

we added all the three novel thresholds.(the last only relevant for the boreal NET) Only the results of the third  375 

sensitivity experimentDGVMs run (iii) with all the three thresholds added parameters changed are reported here. 376 

Re(results of the other two experiments are summarised in Table S132). For example, in the three sensitivity model 377 

runs (i–iii), (i) the requirement for establishment of boreal NET was set to swe_10 > 150 mm; in (ii) and (iii) the 378 

additional demands tmin_5 > –5 °C and bioclim_15 < 50, respectively, were enforced.  379 

 380 

Table 3 – New parameter thresholds for establishment of the three PFTs explored in DGVM sensitivity experiments. 381 
Variables for which parameter settingsThe variables were explored were: swe_10 – snow water equivalent in October 382 
given in mm; tmin_5 – minimum temperature in May (°C); bioclim_15 – precipitation seasonality (unitless index 383 
representing annual trends in precipitation). 384 

  Sensitivity model run 

  (i) (ii) (iii) 

VT PFT SWEswe

_10 (mm) 

tTmin_5 

(°C) 

Bbioclim

_15 

2ef – Dwarf shrub heath / Alpine calluna heath Boreal broadleaf deciduous shrub <> 380 > -10 – 

4a – Lichen and heather birch forest Boreal broadleaf deciduous tree <> 180 > -7.5 – 

6a – Lichen and heather pine forest Boreal needleleaf evergreen tree <> 150 > -5 < 50 

 385 
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4.2 Results  386 

The results show that wWhile the added thresholds for swe_10 and tmin_5 had little impact on the results (Table 387 

S13), the addition of the threshold for bioclim_15 (i.e., the third sensitivity experiment) largely the improved the 388 

performance of the DGVM on the experimental plots explored (Fig. 4). After the third run (iii) ofby which Aadding 389 

a new parameter thresholds was added in accordance with Table 3, made PFT profiles  simulatedidentified by 390 

DGVMthis experiment were more similar to those of the AR reference dataset for four out of the six plots in the 391 

experimental subset (plot 1, 2, 5 and 15): in plots 1 and 15, Boreal NET was correctly replaced by boreal BDS; in 392 

plots 2 and 5 boreal NET was replaced by boreal BDT, BDS and temperate BDT. Addition of new parameter 393 

threshold (bioclim_15)s also reduced the modelled abundance of boreal NET in plots 17 and 18, but DGVM still 394 

failed to populate these plots with another PFT (Fig. 4). The improved performance of DGVM on the experimental 395 

sampling units was mainly due to the implementation of the threshold for bioclim_15, while the changes made for 396 

swe_10 and tmin_5 had little impact on the results (Table S12).  397 

 398 
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Figure 4 – PFT profiles for the subset of six plots subjected to sensitivity experiments with new DGVM establishment 399 
thresholds. The columns in each cluster of three bar-charts represent, from left to right, dynamic global vegetation 400 
model (DGVM) with original (default) parameter settings, DGVM with revised parameter settings, and the AR 401 
reference dataset. For further details, see Table S132. 402 

5 Discussion  403 

5.1 Comparison of PFT profiles  404 

The maps of PFT distributions generated by DM and RS are generally similar (Fig. S8S9) across most of our study 405 

area. This indicates that output from DM, which is rarely used for evaluating PFT distributions from DGVMs, can 406 

be used for this purpose in addition to the commonly used RS-based datasets. There are, however, some differences 407 

between results obtained by the two methods near the northern Norwegian coast and in the mountain areas of 408 

western Norway, which will be discussed below in more details.  409 

We recognise six possible explanations for the differences in PFT profiles obtained by DGVM, RS and DM for 410 

the 20 plots (see Table 5), related to the following issues: (i) the conversion scheme (ref. Table S52); (ii) what is 411 

actually modelled by DGVM, RS and DM, e.g. in terms of potential vs actual vegetation; (iii) the performance of 412 

individual DM models; (iv) transforming predictions from single DMs into a seamless vegetation map, i.e. that 413 

assigns one VT to each pixelgrid cell; (v) DGVM performance; and (vi) missing PFTs in DGVM. 414 

5.1.1 The conversion scheme 415 

The conversion schemes used to reclassify vegetation and land cover classes into PFTs have been reported as a 416 

possible attributor to erroneous PFT distributions (Hartley et al., 2017). While we use a simple conversion scheme 417 

which that assigns each land cover type/vegetation type to one and only one PFT (Dallmeyer et al., 2019), more 418 

complex conversion schemes exist, by which each land cover class is translated into a multi-PFT composition that 419 

co-occur within a grid cell (Bonan et al., 2002; Li et al., 2016; Poulter et al., 2011; Poulter et al., 2015). Our 420 

approach may be advantageous when the classes to be converted are homogeneous, in the sense that one PFT is 421 

clearly dominating in the type, and in the sense that the range of variation within the class in PFTs is negligible, 422 

such as is the case for 90% of the DM- and RS-classes in our study. Our simple scheme may, on the other hand, 423 

be a source of bias uncertainty when quantitatively important VTs are ambiguous in one way or the other, or, more 424 

commonly, in both ways at the same time. The set of VTs used in our study includes several relevant examples: 425 

VTs that may include a wide spectrume of tree-dominant types; the VT ‘1a/1b - Moss snowbed / Sedge and grass 426 

snowbed’, which covers a range of variation in the relative abundance of graminoids and, hence, shows affinity to 427 

C3 as well as to BG; and the VT ‘8a - Damp forest’, which is usually dominated by the evergreen Scots pine and 428 

converted into boreal NET, but that in some instances (e.g. after clear-cutting) is dominated by deciduous trees 429 

like Betula spp. and should then be converted into boreal BDT (Bryn et al., 2018). However, a close inspection of 430 

DM shows that our method reproduceds similar PFT profiles as the reference dataset for all plots, except two out 431 

of 20 plots (the two outliers on Fig. 2, represented by plots 4 and 19 in Fig. 3). 432 

In our case, a more complicated conversion scheme is likely to be compensated for by the sub-grid complexity 433 

introduced in the process by which PFT profiles are obtained. Rather than estimating a PFT profile for the 1-km2 434 

plot directly, i.e. in one operation as in DGVM, the RS-based classes and VTs are first converted into PFTs in their 435 

original resolution, and then subsequently subjected to aggregation to obtain the PFT profiles. This results in a 436 

sub-grid PFT heterogeneity that could otherwise be implemented by using a more complex conversion scheme. 437 
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5.1.2 What is modelled by DGVM, RS and DM 438 

The methods used in this study produce different representations of the vegetated land surface in terms of actual 439 

or potential natural vegetation (Table 4). In order to model future vegetation changes and feedbacks, functional 440 

type-based models like DGVM implicitly address the processes that control the distribution of vegetation (Bonan 441 

et al., 2003; Song et al., 2013). Simulating natural vegetation processes under a given climatic equilibrium scenario 442 

(at any given time), DGVM produces a model of potential natural vegetation (ex. Bohn et al., 2000, Hengl et al. 443 

2018). RS-based classifications, on the other hand, describe the land surface at a specific time-point or changes 444 

through time (e.g. Arctic greening and browning) (Myers-Smith et al., 2020) and, accordingly, portrays actual 445 

vegetation as influenced by previous and ongoing land use (Bryn et al., 2013). Depending on the modelling setup, 446 

DM may pragmatically describe the current ecological envelope of a target or aim at revealing the proximate 447 

causes for its distribution (Ferrier and Guisan, 2006), thus modelling either actual or potential natural vegetation, 448 

depending on the input data used for modelling (Hemsing and Bryn, 2012; Hengl et al., 2018). 449 

In this study, we carefully restricted our attention to PFTs that represent natural vegetation, excluding VTs with 450 

strong anthropogenic influences. This was done for all methods and the AR reference. Nevertheless, differences 451 

with respect to what is actually modelled by the different methods, potential vegetation by DGVM and actual 452 

vegetation by RS and DM, may have contributed to the observed among-model differences in PFT profiles.  453 

5.1.3 DM performance  454 

While the performance of the DM method is overall good, distribution models of individual VTs vary in 455 

performance (with AUC values ranging from 0.671 to 0.989) according to the study by Horvath et al. (2019). 456 

Several reasons for the low predictive performance of some DM are identified, of which the most important is 457 

considered to be important predictors missing in the training data. This might seem counter-intuitive, given the 458 

large number of predictor variables used in the study (n=116) . However, the authors conclude that several 459 

important factors for the distribution of vegetation are not at all represented in the data set (e.g. NDVI, LiDAR 460 

etc.), amoung others because they are almost impossible to obtain data for with required spatial resolution (e.g. 461 

soil nutrients). The DM method requires estimates for the probabilities of occurrence for (almost) all individual 462 

vegetation types to create a seamless vegetation map, which in turn is required for making estimates for the PFT 463 

profiles as robust as possible. Thus, in this context, ‘poor’ models are better than no model.  464 

Individual models’ performance might be the reason for the two plots stand out by whose PFT profiles that deviate 465 

strongly from the AR reference (Fig. 2 and Fig. 3). For plot 4, the discrepancy is due to VT “1a/1b - Moss snowbed 466 

/ Sedge and grass snowbed”, which is represented by one of the best performing among the 31 DMs. For this VT, 467 

conversion scheme bias is a more likely reason for the deviant PFT profile. For plot 19, boreal BDT is modelled 468 

because the VT predicted by DM is “4a – Lichen and heather birch forest”. The fact that the DM for this VT is 469 

among the inferior DMs (see the ranking of individual models presented in Horvath et al. (2019)) makes this 470 

explanation more likely in this case.  471 

5.1.4 Transformation of single-DM predictions into a vegetation map 472 

The performance of DM on the particular plots may also be influenced by the method chosen for transforming 473 

predictions from one DM for each VT into a seamless vegetation map. Assigning to each grid cell the VT with the 474 

highest predicted probability of presence in that cell, which is a commonly used method for this purpose (Ferrier 475 



19 

 

and Guisan, 2006), favours VTs represented by good DMs. This is brought about by good DMs having a 476 

distribution of predictions that is more spread out (with larger predictions for the pixels grid cells identified as the 477 

most favourable cells) than poor DMs (Halvorsen, 2012). However, since the probability of presence for each VT 478 

was predicted separately for each grid-cell, the probability values for every VT vary independently of the 479 

probabilities for the other VTs, throughout the study area. Thus, we regard the chance that one VT consistently 480 

outperforms another VT over all the grid cells to be negligible. Alternative methods for this purpose should be 481 

tested in the context of DGVM evaluationng.  482 

To avoid uncertainties associated with conversion between type systems and perhaps even further improve the 483 

performance of DM, we recommend exploring the option of using PFTs directly as targets in DM. Direct modelling 484 

of PFTs rather than taking the detour via VT models may reduce the number of environment predictors required 485 

(116 layers used in Horvath et al. (2019)) in addition to circumventing the complicated process of modelling 486 

thematically narrow vegetation types (VTs). Another potential advantage of modelling PFT targets directly is that 487 

the model parameters will then be PFT specific, and not in need of being converted (from VT into PFT).  488 

To further reduce the biases and uncertainties of DM-based PFT profiles, we recommend exploring the use of 489 

variables derived from RS directly as predictors in DM. Previous studies have shown that RS -based predictors 490 

may enhance DM performance on different scales: on vegetation-type level (Álvarez‐Martínez et al., 2018); on 491 

the habitat-type level (Mücher et al., 2009); and on the PFT level (Assal et al., 2015). Further suggestions for 492 

improvement of the methods used in this study are found in Table 4. 493 

 494 

Table 4 – A summary of the key properties of the three methods compared in this study. DGVM – dynamic global 495 
vegetation model, RS – remote sensing and, DM – distribution model, AR – reference dataset. 496 

Key property Method 

DGVM RS DM 

Modelled 

property 

Process-based vegetation model 

– using on a priori 

parameterizations 

Classification based on satellite 

imagery (spectral reflectance) 

Statistically based model of a 

target (response) and the 

environment (predictors) 

Main purpose Feeding vegetation changes into 

ESM for further quantification 

of feedbacks between land 

surface and the atmosphere 

Mapping of land cover or land 

use for descriptive purposes, 

management or monitoring  

Predicting the spatial 

distribution of a target and/or to 

summarise its relationship with 

the environment 

Material Climate forcing, PFT 

parameters, host model  

Satellite imagery in different 

bands 

Presence-absence training data, 

environmental predictors  

Spatial extent Global to regional  

(Single-cell tests) 

Global to local Regional to local 

Modelling 

outcome 

Potential vegetation Actual vegetation Potential or actual vegetation, 

depending on the training data 

Advantages – Addresses the processes 

– Feedback loops with other 

Earth system components can be 

included 

– Continuous temporal scale of 

prediction into the future 

– Observation-based 

– High spatial resolution  

– Good temporal coverage 

– Opens for use of proxies for 

important predictors  

– May provide insight into 

drivers of distributions 

Disadvantages – Low performance (e.g. 

compared with RS and DM) as 

long as the underlying processes 

are not fully understood and 

properly parameterised 

– Parameter intensive 

– Resource demanding 

 

– Data are sensitive to cloud 

cover and shaded areas 

– Atmospheric correction 

needed 

– Provides limited insight to the 

processes that regulate the 

distributions of land cover types 

– No feedback included 

– Provides limited insight to the 

processes that regulate the 

distributions of targets 

– Temporally static (one time-

point addressed by each model) 

- No feedback included 

 

Possible 

interactions with 

– May improve DM by pointing 

at relevant predictor variables 

– May improve DGVM by 

improved parameterization 

(based on RS indices) 

– May improve parameterization 

and envelope discrimination of 

DGVM  
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the other 

methods  

– May improve RS by 

identifying threshold values 

– May improve DM by 

providing predictor variables, 

directly or as indices (NDVI, 

PAR etc) 

– May improve RS by targeting 

specific PFTs that have similar 

reflectance, but different 

ecology 

 497 

5.1.5 DGVM performance 498 

Our results show that, for many plots, the PFT profiles simulated by DGVM differs from those of the AR reference 499 

dataset. According to our results, DGVM overestimatespredicts the coverage of bare ground and boreal NET and 500 

underpredicts the cover of C3 grasses, boreal BDT and boreal BDS. While the AR reference dataset shows that 501 

the northern plots (specifically plots 17 and 18) are covered by mountain birch forest and shrubs (boreal BDT and 502 

boreal BDS), DGVM predicts dominance of boreal NET in these plots. Overestimation of boreal NET has also 503 

been reported by Hickler et al. (2012) for large parts of Scandinavia, who attributed this to the lacking 504 

representation of shade tolerance classes in DGVM models. A similar pattern is seen in our results: the PFT profiles 505 

obtained by DGVM during the 400-year spin-up (Fig. S110) show no sign of boreal BDT in the early phases of 506 

model prediction, as would be expected of an early successional forest in Norway.  507 

The western parts of Scandinavia are dominated by shade intolerant birch forests (Bryn et al., 2018) which 508 

gradually give way to coniferous forests along the oceanity-continentality gradient towards east (Wielgolaski, 509 

2005). The overprediction of DGVM in the west indicates that the DGVM does not only lack shade-intolerant 510 

PFTs, but also that improved representation of winter-time respiration loss and soil frost-induced drought stress of 511 

boreal NET in spring in regions with higher temperature fluctuations around 0C during winter time compared to 512 

the more continental regions (see e.g. Oksanen, 1995; Sevanto et al., 2006) are needed. 513 

Our results further suggest that the DGVM underrepresents grasses and shrubs compared to the reference dataset. 514 

This may be explained by the built-in constraints in the light competition scheme of DGVM. For example Oleson 515 

et al. mention that The model assumes that rregardless of grass and shrub productivity, trees will cover up to 95% 516 

of the land unit when their productivity permits (Oleson et al., 2013). The priority given to a PFT in DGVM 517 

decreases with the stature of the organisms in question because of the increasing probability that a lower layer is 518 

covered by another layer. The degree of underrepresentation is therefore expected to increase from shrubs to 519 

grasses. Accordingly, DGVM predicts dominance by trees in the most productive regions, by grasses in less 520 

productive regions, and by shrubs in the least productive non-desert regions (Zeng et al., 2008). The 521 

underrepresentation of C3 grasses by DGVM across the 20 study plots in our study accords with the results of Zhu 522 

et al. (2018), who found that C3 grasses are underpredicted on a global level in an earlier version of DGVM.  523 

Inappropriate parameterisation of shrubs may be a reason why the DGVM underestimates boreal BDS in many of 524 

the coastal plots (1, 2, 5, 15) (Table S6). The implementation of shrubs as a new PFT in an earlier version of 525 

DGVM (CLM3-DGVM) by Zeng et al. (2008), which is parameterised for representation of taller shrubs with 526 

heights between 0.1 and 0.5 m, may not suit the majority of dwarf shrubs (of genera Calluna, Betula, Empetrum) 527 

that abundantly occurs in Norwegian ecosystems. To this, Castillo et al. (2012) add that the sparse shrub and grass 528 

vegetation cover simulated by DGVM in the tundra regions may be caused by the soil moisture bias inherited from 529 

the host land model CLM4 (Lawrence et al., 2011). Another reason for DGVM’s underestimation of boreal BDS 530 

in coastal areas could be the 4000-yr tradition of coastal heath management in Norway (Bryn et al., 2010) which 531 

causes a large discrepancy between the actual vegetation modelled by RS, DM and AR and the potential natural 532 

vegetation simulated by DGVM under present-day climatic conditions (e.g. Bohn et al., 2000, Hengl et al. 2018). 533 
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We therefore argue that more sensitivity studies of PFT-specific parameters for height, survival, establishment 534 

etc., across all PFTs, are needed.  535 

Some discrepancies in the DGVM output might be caused by the climate forcing used in the simulations, looped 536 

for the period 1980–-2010. Long-term historical climate effects on vegetation distribution were not included in 537 

our model simulation. However, we noticed that vegetation distribution was insensitive to interannual variation or 538 

decadal variation of the climate forcing when it reached equilibrium state in most of our study sites. Even though 539 

long-term historical climate effects (such as cooler temperature in the early 20th century) may favour boreal BDS 540 

rather than boreal NET, we consider such historical effects to have only minor impact on the already large biases 541 

observed in DGVM (e.g., too much boreal NET and too few BDS). We also note that DGVM used a spatially 542 

coarser CORDEX reanalysis (11x11 km) to supply high temporal resolution (6-hourly) atmospheric forcing data, 543 

while the climate predictors used in DM was derived from observation-based SeNorge v2 dataset with 1x1 km 544 

spatial resolution and daily temporal resolution. The larger biases in CORDEX reanalysis data may also contribute 545 

to the large mismatch between DGVM and the reference dataset. We have compared the average annual 546 

temperature and annual precipitation of the two input datasets used in DGVM and DM to look for differences (see 547 

Fig. S4). It appears that precipitation estimates by CORDEX for the 20 plots were slightly higher than SeNorge 548 

estimates, the converse (but less strongly) was true for temperature. The consequences of these differences in the 549 

input data might be investigated in follow-up studies. 550 

Despite the shortcomings discussed above, DGVM performs reasonably well for some PFTs. One example is the 551 

temperate BDT, which is correctly predicted by the model to be restricted to the southern coastal plots (Bohn et 552 

al., 2000; Moen, 1999). This finding suggests that some climatically driven PFTs (i.e. temperate BDT) are well 553 

implemented by the existing parameters in the current DGVM used in this study.  554 

5.1.6 Missing PFTs 555 

DGVM coerces the World’s immense variation in plant species composition (vegetation) into a very limited 556 

number of predefined PFTs, compared to classification schemes used by the other methods in this study (RS, DM 557 

and AR; see Table S52) and by other approaches to systematisation of ecodiversity (e.g. (Dinerstein et al., 2017; 558 

Keith et al., 2020)). In particular, the number of high-latitude specific PFTs is insufficient to realistically represent 559 

the biodiversity of these ecoregions, as pointed out by Bjordal (2018) and Vowles & Björk (2017). Comparisons 560 

between PFT profiles obtained by DGVM and profiles obtained by DM  may suggest specific vegetation types 561 

that need to be better represented in DGVMs, either by improving an existing PFT or by adding a new PFT (e.g. 562 

dwarf shrubs vs. tall shrubs; moss dominated snow-beds, wetlands, lichens). In our study, the PFT profile of 563 

DGVM is represented by the six boreal PFTs, whereas the original data for RS, DM and AR include an average 564 

of 17% (ref. Table S4S3) of the total area which cannot bethat are not represented by these six PFTs (classes for 565 

“Excluded” PFT category ref. Table S52). This reminds points to us of the missing PFTs in the classification 566 

scheme of the DGVM, but it also points to the problem challenge that certain ecosystems in our study area do not 567 

have a real representation in the PFT schemes of DGVM. This is exemplified by wetlands; important ecosystems 568 

that are still not represented in many of the current DGVMs. This is not only problematic from the perspective of 569 

land surface energy balance (Wullschleger et al., 2014), but has also brings issues implications for modelling of 570 

carbon storage and cycling, and other interactions between the land surface and the atmosphere (Bjordal, 2018). 571 
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Some recent examples with improvements to the thematic resolution of PFTs in DGVMs are available in the 572 

literature (Druel et al., 2019; Coppell et al., 2019; Chadburn et al., 2015; Porada et al., 2016; Druel et al., 2017), 573 

and further examples of DGVMs with a larger number of high-latitude PFTs also exist (Euskirchen et al., 2009). 574 

In line with these studies, Oour results demonstrate a great potential for increasing the thematic resolution of 575 

DGVMs in general and not limited to the DGVM tested here in terms of developing and parameterizing new 576 

specific PFTs to be representative of the high-latitude and high-altitude habitats, as exemplified by Druel et al. 577 

(2017) and also deriving parameters from observations, DMs or RS products (Bjordal, 2018; Wullschleger et al., 578 

2014), specific for the high latitudes (Druel et al., 2017).  579 

5.2 Sensitivity testsexperiments 580 

Adjusting DGVM parameters so that they correspond better with environmental drivers known to be functional in 581 

the high-latitude PFTs has been suggested as a measure to improve the performance of DGVM in these parts of 582 

the World (Wullschleger et al., 2014). Our simple sensitivity experiments demonstrate that DM results can inform 583 

parameterisation, in DGVM of new parameterisations, based upon of the suitability ranges of the environmental 584 

predictors recognized by DM in determining the distribution of a PFT.  where a PFT occurs along variables 585 

predictors used in DM where a PFT occurs. Most notably, we recognized that the implementation of three 586 

important environmental drivers precipitation seasonality (bioclim_15 < 50) as a threshold for the establishment 587 

of NET, which has not yet been used in the DGVM ,for  improvesd the distribution of high-latitude PFTs simulated 588 

by the DGVM  not yet represented well in DGVM. This adds to the environmental thresholds for establishment , 589 

survival or mortality of a PFT previously used in DGVMs to restrict the predicted distribution of PFTs to realistic 590 

geographic regions (Miller and Smith, 2012). Even though our sensitivity experiments focus on a limited number 591 

of additional thresholds across three PFTs, this approach shows promising results and is worth should be tested 592 

exploringed more extensively in the future studies. 593 

Adjustment of the climatic thresholds for the establishment of the high-latitude PFTs (i.e. boreal NET, BDT, BDS) 594 

seemingly bring the PFT profiles of DGVM closer to those of the reference data (Fig. 4). In particular, the 595 

sensitivity experiments with DGVM highlight Tthe importance of precipitation seasonality (i.e. bioclim_15) as a 596 

critical limiting factor for the establishment of boreal NET indicates, and show that the increased seasonality 597 

impedes growth of boreal NET. While some studies have emphasized the importance of seasonal distribution of 598 

rainfall on vegetation in the semi-arid areas (Zhang et al., 2018), the importance of this factor for high-altitude 599 

areas is less well studied (Oksanen, 1995; Sevanto et al., 2006). Better representation of the processes related to 600 

the response of boreal NET to water availability, especially spring-drought in DGVM, also warrants further 601 

investigation. From our results for Siteplots 17 and 18, we notice that adjusting the climatic thresholds for the 602 

establishmentgrowth of boreal NET does not automatically makenecessarily lead to other PFTs grow. Boreal BDT 603 

and BDS can establish at both sitesplots, but their growth rates are too slow to make them occupy a large area at 604 

these sitesplots. This prevents development of similarity with the PFT profiles of AR reference dataset (Fig. 4) 605 

and implies that other environmental conditions, e.g., nitrogen availability, might play a more important role in 606 

limiting the growth of BDT and BDS in the tested DGVM (CLM4.5BGCDV). The biases of the DGVMs in 607 

simulating boreal broadleaf deciduous treeBDT and shrubBDS has been widely noticed in previousother studies 608 

(Castillo et al., 2012), and  remains a challenge requiring more should be investigation in the futureed further. 609 
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While going into further details of which additional PFTs should be included in DGVMs and how these and other 610 

PFTs should be parameterised is beyond the scope of the present paper, we emphasize the potential of using DM 611 

for improving the parameters of DGVMs. More specifically, we propose more intensive exploration of DM as a 612 

tool for identification of potential environmental drivers for the high-latitude PFTs, which may enhance the 613 

performance of DGVMs in high-latitude ecoregions. The specific focus of our study is the boreal regions, both 614 

because of the importance of these ecosystems in the climate system and because of the data availability of 615 

vegetation-type DM and the field-based reference dataset (AR). However, we believe that the improved DGVM 616 

parameters resulting from our sensitivity experiments may be applicable to other DGVMs such as TEM and LPJ-617 

GUESS (Euskirchen et al., 2009; Miller and Smith, 2012). Also, the results from this study are likely to be 618 

transferable to other high-latitude areas in the circumboreal region.  619 

6 Conclusions 620 

This study emphasizes demonstrates the potential of using distribution models (DM) for representing present-day 621 

vegetation in evaluations of plant functional type (PFT) distributions simulated by dynamic global vegetation 622 

models (DGVMs) and for improvement of specific PFT parameters within DGVMs. By identification of the main 623 

differences among PFT profiles obtained by three methods (DGVM, RS and DM) in selected high-latitude plots 624 

distributed across climatic gradients in Norway, we show that PFT profiles derived from DM and RS are in the 625 

same range of reliability, judged by resemblance to a reference dataset (AR). Hence, we suggest that DM results 626 

can be used as a complementary evaluation dataset to benchmark the present-day DGVMs. This approach is 627 

recommended when high-quality RS products are not available in desired thematic resolution or when they are not 628 

. able to supply proxies of other properties (such as deriving parameter improvements or PFT-specific traits). 629 

Comparing the twenty PFT profiles obtained by DGVM with those obtained by AR shows a large overestimation 630 

by DGVM of boreal needleleaf evergreen trees (boreal NET) and bare ground at the expense of boreal broadleaf 631 

deciduous trees and shrubs. This is attributed to missing processes and PFT parameterizations of high-latitude 632 

PFTs in DGVM. We use DM results to identify three a new PFT-specific environmental parameter – precipitation 633 

seasonality – -swhich, in a series of sensitivity experiments, improves the distribution of boreal NET predicted by 634 

DGVM. Thise new PFT-specific thresholds for establishment decreases the bias of boreal NET in DGVM across 635 

four out of six plots and as a result, the distribution of other high-latitude PFTs is also better represented. We argue 636 

that thisese new thresholds should be transferable to other DGVMs simulating high-latitude PFTs, and that our 637 

DM-based approach can be well appliedtransferre to other ecosystems. 638 

Further development of DGVM, such as refining parameters for existing boreal PFTs and increasing the thematic 639 

resolution of PFTs for boreal areas, should be strongly encouraged to achieve a more realistic simulation of the 640 

distribution of actual vegetation by DGVM, to increase the reliability of future predictions, and the reliability of 641 

predicted vegetation feedbacks in the climate system.  642 
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Supplementary information to the paper: 1 

Horvath et al. Improving the representation of high-latitude vegetation distribution in Dynamic Global Vegetation 2 

Models 3 

Supplement S1 – Locations of 20 study plots 4 

Table S1 – Centre coordinates (latitude and longitude) and climatic data for the 20 plots used in this study. Estimates 5 
of mean annual precipitation and mean annual temperature are obtained from two sources; data from SeNorge (C. 6 
Lussana et al., 2018; Lussana, Tveito, & Uboldi, 2018) interpolated to each centrepoint and from CORDEX (the forcing 7 
climate dataset in DGVM).  8 

     SeNorge v2 data 

(used in DM) 

CORDEX climate data  

(used in DGVM) 

ID Plot # from 

(AR18x18) 

LAT LONG Elevation 

(m a.s.l) 

 at centre 

Mean Annual 

Precipitation 

(mm) 

Mean Annual 

Temperature 

(°C) 

Mean Annual 

Precipitation 

(mm) 

Mean Annual 

Temperature 

(°C) 

3 405 6.061 58.635 200 2662 6.3 2916 4.7 

2 513 6.035 59.934 710 2628 1.0 3530 2.9 

1 622 5.956 61.392 596 2520 2.0 2606 2.0 

6 801 7.429 58.074 184 1542 6.7 2055 5.9 

4 922 6.957 61.456 1437 1799 -3.6 2958 -2.9 

5 1131 7.264 62.935 454 1976 4.0 1716 4.8 

8 1304 8.862 58.638 88 1395 7.1 1640 4.9 

7 1322 8.298 61.529 1670 827 -3.1 2418 -6.1 

9 1623 9.278 61.735 852 555 -0.1 808 -3.9 

10 2015 10.812 60.496 606 804 1.9 1517 0.5 

12 2108 11.268 59.377 130 1072 5.5 1223 4.4 

11 2238 11.000 64.223 222 1349 4.3 1542 2.1 

13 2332 11.492 63.266 721 1029 0.3 2001 -0.2 

14 2425 11.968 62.145 744 715 -1.2 1013 -2.0 

16 2948 13.508 65.886 529 1513 1.1 1819 -0.3 

15 2962 13.363 68.146 393 1339 5.8 1075 4.4 

17 4268 19.167 69.072 354 715 0.7 1122 -1.8 

18 5369 24.147 69.040 395 466 -4.0 695 -3.1 

19 6473 29.382 69.334 69 503 -1.1 640 -2.5 

20 6380 29.703 70.465 387 552 0.2 1132 -2.5 

 9 
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Supplement S2 – Sampling design – RS, DM and AR 11 

 12 
Figure S2 – Sampling design used by the remote sensing (RS) and distribution modelling (DM) methods and to obtain 13 
the AR reference dataset. Like DGVM plots (see Fig. S7), the RS and DM plots are 1×1 km, while the AR plots are 14 
1.5×0.6 km. Plots 7 and plot 14 (AR18x18 plot #1322 and plot #2425) are used as examples. 15 

  16 
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Supplement S3Supplement S2 – Assessment of climatic representativeness of selected plots 17 

We assessed the representativeness of the 20 plots, selected from the original AR18×18 dataset which consists of 18 

1081 plots, by comparing frequency distributions with respect to the two main bioclimatic gradients in Norway, 19 

expressed as annual mean temperature and annual precipitation. We also included a comparison of precipitation 20 

seasonality, as the only one of the three tested new parameters that improved the DGVM in the sensitivity tests. 21 

For each of temperature, and precipitation and precipitation seasonality, we obtained interpolated values for the 22 

centrepoint of each AR18×18 plot (cf. Fig. S1) and compared the frequency distributions of the selected plots with 23 

those of all plots (Fig. S3). A series of Kolmogorov-Smirnov tests for these three variables (comparison of sample 24 

mean and variance) indicate that the subsample does not deviate from the full dataset substantially. The 20 selected 25 

plots span elevations from 88 to 1670 m a.s.l., covers an annual temperature range from -4°C to 7.1°C, and an 26 

annual precipitation range from 466 to 2661 mm (Fig. S1), which accords well with the variation in the AR18×18 27 

dataset (Fig. S3S2). 28 

  29 

 30 

Figure S3S2– Frequency distributions of plots in the original AR18×18 dataset (n=1081; in red) and in the set of 20 plots 31 
selected for this study (in blue), with respect to annual mean temperature (top left), and annual precipitation (top right) 32 
and precipitation seasonality (bottom left). Dashed lines indicate means for the respective datasets. 33 

  34 
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Supplement S4Supplement S3 – Assessment of the representativeness of PFT profiles 35 

We also assessed the representativeness of the 20 study plots, selected from the original AR18×18 dataset which 36 

consists of 1081 plots, by comparing the aggregated PFT profiles for the two datasets given in Table S4.  PFT 37 

profiles were first obtained for each plot by the conversion scheme in Table 2, thereafter aggregated to dataset 38 

level by calculation of mean frequencies for each of the six PFTs (and ‘EXCL’; land not assigned to any PFT 39 

type).  40 

The comparison between the aggregated PFT profiles in Table S4 by use of the chi-square test (see section 2.6 for 41 

method) shows that the two datasets are much more similar than expected by chance (χ2=1.991, df = 6, p = 0.079). 42 

Despite slight overrepresentation of the boreal NET PFT and underrepresentation of boreal BDT and C3 grasses, 43 

we conclude that the selected plots are sufficiently representative for the conclusions drawn from the sample of 20 44 

plots to be acceptably representative for Norway. Note that percentage for EXCL category has been proportionally 45 

re-distributed through relevant PFTs in the study as shown on the Table 3 (so that the six PFTs cover 100%). 46 

 47 

Table S4 S3 – PFT profiles of the full AR18x18 dataset (n = 1081) and the 20 plots selected for this study. 48 

PFT code PFT name Fraction of PFT in 

1081 plots (%) 

Fraction of PFT in 20 

plots (%) 

BG Bare Ground 10.37 10.95 

Boreal NET needleleaf evergreen tree - boreal 21.50 31.18 

Temp BDT  broadleaf deciduous tree - temperate 0.46 0.40 

Boreal BDT broadleaf deciduous tree - boreal 16.02 12.55 

Boreal BDS broadleaf deciduous shrub - boreal 25.11 24.35 

C3 C3 grass 7.27 3.00 

EXCL excluded 19.27 17.57 

  49 
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Supplement S5Supplement S4 – Assessment of the representativeness of climate forcing data 50 

The comparison of SeNorge and CORDEX estimates of temperature and precipitation in Fig. S5.1 shows that 51 

precipitation estimates by CORDEX for the 20 plots were generally higher than SeNorge estimates while the 52 

converse (but less strongly) was true for temperature.  53 

 54 

 55 

Figure S5 S4 – Scatterplots showing the relationship between temperature and precipitation estimates obtained by the 56 
two data sources used in this study; SeNorge for DM (see Sect. 2.4.3) on the horizontal axes and CORDEX for climate 57 
forcing data used in DGVM (see Sect. 2.4.1) on the vertical axis. The dashed black line represents the 1:1 relationship, 58 
while the dotted red line represents a linear model of y~x.   59 
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Supplement S5 – PFT Conversion scheme 60 

Table S5– Conversion scheme for harmonizing vegetation and land cover types across methods (RS, DM and AR) into 61 
plant functional types (PFTs). DGVM – dynamic global vegetation model, RS – remote sensing, DM – distribution 62 
model, AR – reference dataset. PFT – plant functional type and VT – vegetation type. 63 

DGVM RS DM AR 

PFT  
plant functional 

type 

vegetation / land cover type 

– remote sensing 

vegetation type – distribution 

model 

vegetation type – area frame 

survey 

BG Bare ground  

Exposed alpine ridges, scree 

and rock complex Frozen ground, leeward Frozen ground, leeward 

  Frozen ground, ridge Frozen ground, ridge 

  Boulder field Sand dunes and gravel beaches 

  Exposed bedrock Pioneer alluvial vegetation 

   Barren land 

   Boulder field 

    Exposed bedrock 

Boreal 

NET  

Boreal 

needleleaf 

evergreen tree  

Coniferous forest – dense 

canopy layer 

Lichen and heather pine 

forest Lichen and heather pine forest 

Coniferous forest and mixed 

forest - open canopy Bilberry pine forest Bilberry pine forest 

Lichen rich pine forest 

Lichen & heather spruce 

forest Meadow pine forest 

  Bilberry spruce forest Pine forest on lime soils 

  Meadow spruce forest Lichen & heather spruce forest 

  Damp forest Bilberry spruce forest 

  Bog forest Meadow spruce forest 

   Damp forest 

    Bog forest 

Temperate 

BDT  

Temperate 

broadleaf 

deciduous tree  

Low herb forest and 

broadleaved deciduous 

forest 

Poor / Rich broadleaf 

deciduous forest 

Poor broadleaf deciduous 

forest 

    

Rich broadleaf deciduous 

forest 

Boreal 

BDT  

Boreal 

broadleaf 

deciduous tree  

Tall herb - tall fern 

deciduous forest 

Lichen and heather birch 

forest Lichen and heather birch forest 

Bilberry- low fern birch 

forest Bilberry birch forest Bilberry birch forest 

Crowberry birch forest Meadow birch forest Meadow birch forest 

Lichen-rich birch forest Alder forest Birch forest on lime soils 

  Pasture land forest Alder forest 

  Poor / rich swamp forest Pasture land forest 

   Poor swamp forest 

    Rich swamp forest 

Boreal 

BDS  

Boreal 

broadleaf 

deciduous shrub  

Heather-rich alpine ridge 

vegetation Lichen heath Lichen heath 

Lichen-rich heathland Mountain avens heath Mountain avens heath 

Heather- and grass-rich early 

snow patch communities 

Dwarf shrub / Alpine calluna 

heath Dwarf shrub heath 

Fresh heather and dwarf-

shrub communities (u/l) Alpine damp heath Alpine calluna heath 

  

Coastal heath / Coastal 

calluna heath Alpine damp heath 

  Damp heath Flood-plain shrubs 

   Coastal heath 

   Coastal calluna heath 

   Damp heath 

    Crags and thicket 

C3 C3 grass 

Graminoid alpine ridge 

vegetation 

Moss snowbed / Sedge and 

grass snowbed Moss snowbed 

Herb-rich meadows (up-

/lowland) Dry grass heath Sedge and grass snowbed 

Grass and dwarf willow 

snow-patch vegetation Low herb / forb meadow Dry grass heath 

   Low herb meadow 
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   Low forb meadow 

    Moist and shore meadows 

EXCL Excluded 

Ombrotrophic bog and low-

grown swamp vegetation 

Bog / Mud-bottom fen and 

bog Bog 

Tall-grown swamp 

vegetation Deer-grass fen / fen Deer-grass fen 

Wet mires, sedge swamps 

and reed beds Sedge marsh Fen 

Glacier, snow and wet snow-

patch vegetation Pastures Mud-bottom fen and bog 

Water  Sedge marsh 

Agricultural areas  Cultivated land 

Cities and built-up areas  Pastures 

Unclassified and shadow 

affected areas,   Built-up areas 

   Scattered housing 

   Artificial impediment 

   Glaciers and perpetual snow 

   Sea and ocean 

    Water bodies (fresh) 

 64 

  65 
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Supplement S6 – Sampling design – RS, DM and AR 66 

 67 
Figure S6 – Sampling design used by the remote sensing (RS) and distribution modelling (DM) methods and to obtain 68 
the AR reference dataset. Like DGVM plots (see Fig. S7), the RS and DM plots are 1×1 km, while the AR plots are 69 
1.5×0.6 km. Plots 7 and plot 14 (AR18x18 plot #1322 and plot #2425) are used as examples. 70 

  71 
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Supplement S6Supplement S7 – DGVM parameters for PFTs (CLM4.5-BGCDV) 72 

Table S6 S7 – Some important PFT parameter settings for DGVM (CLM4.5-DV). PFTs relevant for the study area (Norway) are shaded greyin bold font. Prescribed heights for the 73 
canopy are indicated by the upper and lower limits in columns “ztop” and “zbot” respectively. Limiting temperatures for survival and establishment are mentioned in columns “Tc,min” 74 
and “Tc,max” respectively. Minimum growing degree days for establishment are contained for relevant PFTs in column “GDDmin”. The last three columns contain the adjusted 75 
parameters thresholds used in the sensitivity experiment. Bioclim_15 – Precipitation Seasonality (Coefficient of Variation); SWEswe_10 – Ssnow water equivalent in October (mm); 76 
TMINtmin_5 – Mminimum Ttemperature in May (°C) bioclim_15 – precipitation seasonality (coefficient of variation); 77 

  
Prescribed heights Survival Establishment Sensitivity tests  

Plant functional type (PFT) Acronym ztop (m)  zbot (m) Tc,min 

(°C)  

Tc,max 

(°C)  

GDDmin sweSWE_10 

(mm) 

TMINtmin_5 

(°C) 

bioclim_15  

Needleleaf evergreen tree – temperate  Temp NET  17 8.5 –2 22 900    

Needleleaf evergreen tree – boreal  Boreal NET  17 8.5 –32.5 –2 600 150 –5 50 

Needleleaf deciduous tree – boreal  Boreal NDT  14 7 
   

   

Broadleaf evergreen tree – tropical  Trop BET  35 1 15.5 No limit  0    

Broadleaf evergreen tree – temperate  Temp BET  35 1 3 18.8 1200    

Broadleaf deciduous tree – tropical  Trop BDT  18 10 15.5 No limit  0    

Broadleaf deciduous tree – temperate  Temp BDT  20 11.5 –17 15.5 1200    

Broadleaf deciduous tree – boreal  Boreal BDT  20 11.5 No limit  –2 350 180 –7.5  

Broadleaf evergreen shrub – temperate  Temp BES  0.5 0.1 
   

   

Broadleaf deciduous shrub – temperate  Temp BDS  0.5 0.1 –17 No limit  1200    

Broadleaf deciduous shrub – boreal  Boreal BDS  0.5 0.1 No limit  –2 350 380 –10  

C3 arctic grass  C3 A 0.5 0.01 No limit  –17 0    

C3 grass  C3 0.5 0.01 –17 15.5 0    

C4 grass  C4 0.5 0.01 15.5 No limit  0    

Non vegetated/bare ground BG         

 78 

 79 
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Supplement S7Supplement S8 – Representation of grid-cells in the CLM 4.5 model 80 

 81 

Figure S7 S8 – Representation of a grid-cell in the DGVM model (obtained by CLM4.5-BGCDV method); figure 82 
adapted from Oleson et al. (2013). Land units in grey (lake, urban, glacier and crop) were excluded from this study.  83 

  84 
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Supplement S8Supplement S9 – DM- and RS-units reclassified to PFT units 85 

 86 

Figure S8S9– The distribution in Norway of vegetation types (used in distribution modelling – DM) and units obtained 87 
by remote sensing (RS), after reclassification to PFT units (see Table 2 for conversion scheme and explanation of PFT 88 
codes). The dominating PFT in each grid cell (of 100×100 m for DM and 30×30 m for RS) is shown. 89 

The distributions in Norway of PFTs obtained by conversion of DM- and RS-units using the conversion scheme 90 

in Table 2 exhibit considerable similarities (Fig. S8). Both methods show dominance of boreal needleleaf 91 

evergreen forest (boreal NET) in southeastern Norway, while most of the western and northern Norway is covered 92 

by boreal broadleaf deciduous shrub (boreal BDS) and boreal broadleaf deciduous forest (boreal BDT). Slight 93 

differences between the two methods can be seen in the western mountainous part of Norway, where DM predicts 94 

dominance by C3 grasses where RS suggests bare ground, and in North Norway where DM predicts boreal BDS 95 

where RS predicts bare ground. Accordingly, the fractional area classified to PFTs that are converted to bare 96 

ground is three times higher with RS than with DM (Table S8). Full resolution raster images are available at the 97 

Dryad repository (https://doi.org/10.5061/dryad.dfn2z34xn). 98 

Table S8 S9 – Area statistics for Norway for vegetation types (used in distribution modelling – DM) and units obtained 99 
by remote sensing (RS), after reclassification to PFT units (see Table 2 for conversion scheme and explanation of PFT 100 
codes). 101 

 RS (%) DM (%) 

BG 17.1 5.6 

Boreal NET 25.3 31.4 

Temperate BDT  5.2 0.1 

Boreal BDT 16.9 15.0 

Boreal BDS  27.9 39.0 

C3 7.5 8.9 

 102 
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Supplement S9Supplement S10 – PFT profiles for each of the 20 plots 103 

Table S109– PFT profiles (percentage of vegetated land assigned to each of six PFTs) for each of the 20 plots in this study, obtained by remote sensing (RS) and distribution modelling 104 
(DM) methods and for the AR reference dataset. Original units (vegetation types, etc.) are converted to PFTs by use of the scheme in Table 2. 105 

Method PFT_shortcut plot 3 plot 2 plot 1 plot 6 plot 4 plot 5 plot 8 plot 7 plot 9 plot 10 plot 12 plot 11 plot 13 plot 14 plot 16 plot 15 plot 17 plot 18 plot 19 plot 20 

DGVM BG 5 6 5 0 100 6 5 100 5 5 0 5 100 5 100 5 28 5 100 5 

DGVM boreal NET 29 58 95 39 0 52 95 0 95 95 41 95 0 95 0 92 72 95 0 95 

DGVM temp. BDT 35 2 0 34 0 4 0 0 0 0 38 0 0 0 0 0 0 0 0 0 

DGVM boreal BDT 18 2 0 22 0 4 0 0 0 0 16 0 0 0 0 0 0 0 0 0 

DGVM boreal BDS 13 32 0 0 0 35 0 0 0 0 0 0 0 0 0 3 0 0 0 0 

DGVM C3 0 0 0 5 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 

RS BG 9 7 4 0 92 8 0 78 0 0 0 0 7 3 24 52 0 1 54 1 

RS boreal NET 30 2 0 75 0 0 68 0 93 75 69 91 0 86 0 0 20 0 0 70 

RS temp. BDT 6 0 0 6 0 0 15 0 0 2 7 1 0 0 0 0 0 0 0 1 

RS boreal BDT 2 1 1 19 0 0 17 0 7 22 20 8 0 8 0 0 48 68 0 28 

RS boreal BDS 18 68 80 0 1 85 0 0 0 1 3 0 78 3 35 37 28 30 9 1 

RS C3 35 23 14 0 7 7 0 22 0 0 1 0 16 0 41 11 3 0 37 0 

DM BG 0 8 0 0 2 0 0 70 0 0 0 0 0 0 0 33 0 0 46 0 

DM boreal NET 60 1 0 100 0 0 96 0 47 100 100 100 0 72 0 0 0 0 0 0 

DM temp. BDT 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 

DM boreal BDT 0 0 0 0 0 0 0 0 53 0 0 0 0 23 0 0 77 91 0 100 

DM boreal BDS 40 91 100 0 0 100 0 3 0 0 0 0 100 4 100 63 23 9 54 0 

DM C3 0 0 0 0 98 0 0 26 0 0 0 0 0 0 0 4 0 0 0 0 

AR BG 0 4 0 0 87 0 0 66 0 0 0 0 0 0 11 13 0 0 78 0 

AR boreal NET 63 0 0 79 0 0 79 0 82 84 83 86 0 82 1 0 0 0 0 97 

AR temp. BDT 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 

AR boreal BDT 9 12 35 21 0 0 11 0 18 16 17 14 5 9 3 0 66 70 0 3 

AR boreal BDS 28 75 63 0 0 99 0 10 0 0 0 0 87 9 79 83 34 30 18 0 

AR C3 0 9 1 0 13 1 0 25 0 0 0 0 8 0 6 5 0 0 3 0 
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Supplement S10Supplement S11 – DGVM spin-up and simulation of PFT profiles for each plot 107 

DGVM spin-up for 400 years and 20 years of simulation of PFT profiles for each of the 20 plots used in this study. 108 

For plots #801, #2108 and #4268, the spin-up was extended by additional 400, 200 and 200 years respectively.  109 

 110 

111 

112 

113 
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  122 

Figure S10 S11.1 – DGVM spin-up for 400 years and simulation of PFT profiles for each of the 20 plots used in this 123 
study. FPCGRID – estimated percentage per PFT per grid cell. Reference number of plots accords with the AR18x18 124 
dataset, and plot numbers can be found in Table S1. 125 

 126 

127 

 128 

Figure S11.2 – Three plots (number 6, 12, 17) where DGVM spin-up was prolonged beyond 400 years and simulation 129 
of PFTs was extended by 400, 200 and 200 years respectively in order to check for equilibrium. FPCGRID – estimated 130 
percentage per PFT per grid cell. Reference number of plots accords with the AR18x18 dataset, and plot numbers can 131 
be found in Table S1 132 

 133 
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Supplement S11Supplement S12 – Sensitivity experiments: frequency-of-presence (FoP) plots 135 

Frequency-of-presence (FOP) plots based upon output from distribution models (DM) for the nine combinations 136 

of three environmental variables and three vegetation types modelled, used to indicate threshold values that were 137 

explored in the sensitivity experiments, are shown in Fig. S11. Thresholds for new variables in DGVM models 138 

were chosen based upon visual inspection of the FoP plots. For example, while boreal BDS are abundant below 139 

swe_10 value of 380mm, boreal BDT and boreal NET are abundant at values of swe_10 below 180mm and 150mm 140 

respectively. Also, while we identified no clear threshold of variable bioclim_15 for boreal BDS and BDT 141 

(frequency of presence is never zero along the variable x-axis - lower left and middle panel of Fig S12), threshold 142 

for boreal NET was set to 50 (a value above which no presences occur - lower right panel of Fig S12). 143 

 144 

Figure S11 S12 – Frequency-of-presence plots from the distribution modelling (DM) study by Horvath et al. (2019) for 145 
the combinations of environmental predictors and vegetation types (VTs) used in the sensitivity experiments with 146 
DGVM. FOP is the frequency of 100×100 m pixels in the AR18×18 dataset in which the VT in question is present, 147 
expressed as a fraction of all pixels in that interval along the environmental variable. All environmental variables were 148 
a priori divided into 100 intervals with the same number of pixels. The environmental gradients were: swe_10 – snow 149 
water equivalent in October (mm); tmin_5 –- minimum temperature in May (°C); bioclim_15 – precipitation seasonality 150 
(unitless index). Boreal BDS – boreal broadleaf deciduous shrubs, Boreal BDT - boreal broadleaf deciduous trees, 151 
Boreal NET - boreal needleleaf evergreen shrubs.  152 
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Supplement S12Supplement S13 – Sensitivity experiments: results 

Table S12 S13 – PFT profiles for the six out of the 20 plots (plot numbers 1, 2, 5, 15, 17, 18) which were included in the sensitivity experiments, for four ‘generations’ of DGVM parameter settings 

and the AR reference dataset. From left to right the column represent: DGVM before adjustment of parameters thresholds; DGVM_adj1 after adjustment first adding parameter threshold of 155 
swe_10; DGVM_adj2 after adjustment also adding parameter threshold of tmin_5; DGVM_adj3 after finally adding parameter threshold adjustment of bioclim_15; and the PFT profile of the 

reference dataset AR. All parameter thresholds were added cumulatively. Full names for the PFTs are given in Table S6 S7 and names of parameters and their values in Table 3. 
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plot 1 plot 2 plot 5 plot 15 plot 17 plot 18 

BG 5 5 5 9 0 6 5 5 5 4 6 6 6 7 0 5 5 5 3 13 28 10

0 

10

0 

10

0 

0 5 10

0 

10

0 

10

0 

0 

boreal 

NET 

95 95 95 0 0 58 58 58 0 0 52 52 52 0 0 92 92 92 0 0 72 0 0 0 0 95 0 0 0 0 

temp. 

BDT 

0 0 0 0 0 2 2 2 33 0 4 4 4 13 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

boreal 

BDT 

0 0 0 0 35 2 2 2 31 12 4 4 4 13 0 0 0 0 2 0 0 0 0 0 66 0 0 0 0 70 

boreal 

BDS 

0 0 0 91 63 32 32 32 31 75 35 35 35 67 99 3 3 3 89 83 0 0 0 0 34 0 0 0 0 30 

C3 0 0 0 0 1 0 0 0 0 9 0 0 0 0 1 0 0 0 6 5 0 0 0 0 0 0 0 0 0 0 
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