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Abstract. Vegetation is an important component in global ecosystems, affecting the physical, hydrological and 19 

biogeochemical properties of the land surface. Accordingly, the way vegetation is parameterised strongly 20 

influences predictions of future climate by Earth system models. To capture future spatial and temporal changes 21 

in vegetation cover and its feedbacks to the climate system, dynamic global vegetation models (DGVM) are 22 

included as important components of land surface models. Variation in the predicted vegetation cover from 23 

DGVMs therefore has large impacts on modelled radiative and non-radiative properties, especially over high-24 

latitude regions. DGVMs are mostly evaluated by remotely sensed products, less often by other vegetation 25 

products or by in-situ field observations. In this study, we evaluate the performance of three methods for spatial 26 

representation of present-day vegetation cover with respect to prediction of plant functional type (PFT) profiles – 27 

one based upon distribution models (DM), one that uses a remote sensing (RS) dataset and a DGVM 28 

(CLM4.5BGCDV). While DGVMs predicts PFT profiles based on physiological and ecological processes, DM 29 

relies on statistical correlations between a set of predictors and the modelled target, and the RS dataset is based on 30 

classification of spectral reflectance patterns of satellite images. PFT profiles obtained from an independently 31 

collected field-based vegetation dataset from Norway were used for the evaluation. We found that RS-based PFT 32 

profiles matched the reference dataset best, closely followed by DM, whereas predictions from DGVM often 33 

deviated strongly from the reference. DGVM predictions overestimated the area covered by boreal needleleaf 34 

evergreen trees and bare ground at the expense of boreal broadleaf deciduous trees and shrubs. Based on 35 

environmental predictors identified by DM as important, three new environmental variables (e.g. minimum 36 

temperature in May, snow water equivalent in October and precipitation seasonality) were selected as the threshold 37 

for the establishment of these high-latitude PFTs. We performed a series of sensitivity experiments to investigate 38 

if these thresholds improve the performance of the DGVM. Based on our results, we suggest implementation of 39 

one of these novel PFT-specific thresholds (i.e., precipitation seasonality) in the DGVM. The results highlight the 40 

potential of using PFT-specific thresholds obtained by DM in development of DGVMs in broader regions. Also, 41 

we emphasize the potential of establishing DM as a reliable method for providing PFT distributions for evaluation 42 

of DGVMs alongside RS.  43 
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1 Introduction 44 

Vegetation plays an important role in the climate system, as changes in the vegetation cover alter the 45 

biogeophysical and biogeochemical properties of the land surface (Davin and de Noblet-Ducoudré, 2010; 46 

Duveiller et al., 2018). Therefore accurate descriptions of the vegetation distribution hold a key role in Earth 47 

system models (ESM) (Bonan, 2016; Poulter et al., 2015). Historical and present vegetation distributions can be 48 

prescribed in ESMs by means of datasets prepared from observations (Lawrence and Chase, 2007; Li et al., 2018; 49 

Lawrence et al., 2011). However, in order to predict the future temporal and spatial changes in natural vegetation 50 

cover and subsequently the processes, dynamics and feedbacks to the climate system, dynamic global vegetation 51 

models (DGVMs) are needed.  52 

DGVMs have been implemented as components of ESMs (Bonan et al., 2003) to represent long-term vegetation 53 

changes by a set of parameterizations describing general physiological principles, including ecological 54 

disturbances, successions (Seo and Kim, 2019) and species interactions (Scheiter et al., 2013). DGVMs represent 55 

the heterogeneity of land surface processes and interactions with other components of the Earth system by 56 

characterising land areas by their composition of type units defined by plant functional types (PFTs) (Bonan et al., 57 

2003; Oleson et al., 2013). PFTs are groupings of plant species with similar eco-physiological properties – which 58 

express differences in growth form (woody vs herbaceous), leaf longevity (deciduous vs evergreen) and 59 

photosynthetic pathway (C3 and C4) (Wullschleger et al., 2014). Even though DGVMs are being constantly 60 

developed and improved to incorporate more complex plant processes (Fisher et al., 2010), and more PFTs 61 

(Chadburn et al., 2015; Porada et al., 2016; Druel et al., 2017), there are still fundamental challenges for DGVMs 62 

to correctly simulate the extents of PFTs that characterise boreal and Arctic ecoregions (Gotangco Castillo et al., 63 

2012). For instance, the thematic resolution (i.e. the number of classes or PFTs in a model) of high-latitude PFTs 64 

is still limited (Wullschleger et al., 2014), important interactions between vegetation and fire at high latitudes are 65 

still missing (Seo and Kim, 2019) which in turn has implications on forest carbon storage in high latitudes still 66 

being underestimated by most DGVMs (Song et al., 2013). The large uncertainties in simulating high-latitude PFT 67 

distributions may also lead to discrepancies between modelled and observed energy fluxes and hydrology (Hartley 68 

et al., 2017), carbon cycles (Sitch et al., 2008) or surface albedo (Shi et al., 2018). Accordingly, systematic 69 

evaluation of PFT distributions modelled by DGVMs is required to improve the DGVMs and, subsequently, to 70 

reduce uncertainties in estimates of climate sensitivity and in predictions by ESMs.  71 

Remote sensing (RS) is often used for evaluation, benchmarking and improvement of parameters of DGVMs (Zhu 72 

et al., 2018). RS products are commonly used to describe vegetation cover using vegetation classes derived from 73 

multispectral images based on vegetation indices, such as the normalized difference vegetation index (NDVI) (Xie 74 

et al., 2008; Franklin and Wulder, 2002). For evaluation, RS products are translated into distributions of the PFT 75 

classes used in the DGVMs (Lawrence and Chase, 2007; Poulter et al., 2011). However, inconsistencies between 76 

various available RS-based land cover or vegetation products (Majasalmi et al., 2018) as well as mismatch between 77 

the spatial resolution in RS observations and the spatial heterogeneity of vegetation patches (Myers-Smith et al., 78 

2011; Lantz et al., 2010) have been reported. The fact that benchmarking DGVMs only to these RS-based products 79 

may lead to different conclusions in ESMs (Poulter et al., 2015), motivates for exploring other vegetation products 80 

as a supplement to RS.  81 

Among the less explored methods to generate wall-to-wall vegetation cover predictions is distribution modelling. 82 

Distribution models (DMs) are most often used to predict the distribution of a target, by establishment of statistical 83 
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relationship between the target (response) and the environment (predictors) (e.g. Halvorsen, 2012). The most 84 

common use of DM in ecology is for prediction of species distributions (Henderson et al., 2014), but DM methods 85 

have proved valuable also for prediction of targets at higher levels of bio-, geo- or eco-diversity (i.e. vegetation 86 

types and land-cover types) (Ullerud et al., 2016; Horvath et al., 2019; Simensen et al., 2020). DM methods are 87 

inherently static, in contrast to the dynamic DGVMs (Snell et al., 2014). Nevertheless, they may be a useful 88 

corrective to DGVMs by providing insights into important environmental factors driving the distribution of 89 

individual targets, which may, in turn, improve PFT parameterization in DGVMs.  90 

Comparative studies that evaluate the present-day PFT distributions of DGVMs in a systematic manner, with 91 

reference to a field-based evaluation dataset are, with some exceptions (Druel et al., 2017), few. In this study, we 92 

evaluate vegetation distribution, translated to PFT profiles, obtained by three different methods (DGVM, RS, DM) 93 

and use an independently collected field-based dataset of vegetation distribution, AR (the Norwegian National 94 

map series for Area Resources), for the evaluation. Furthermore, we explore if environmental correlates of 95 

vegetation-type distributions identified by DM can be used to improve DGVMs by adjusting parameter settings 96 

for high-latitude PFTs.  97 

To approach these aims, we constructed a conversion scheme to harmonize the classification schemes of RS, DM 98 

and AR into the PFTs used by the DGVM. We represent the present-day vegetation coverage by using plant 99 

functional type profiles (PFT profiles), vectors of relative abundances of PFTs within an area, e.g. a given study 100 

plot, summing to one. We then compare the PFT profiles obtained by DGVM, RS and DM with the AR reference 101 

on 20 selected study plots across the Norwegian mainland. Finally, we conduct a series of sensitivity experiments 102 

(ref. chapter 4) which build upon the results of the analyses performed in this study to explore if the DGVM 103 

performance can be improved by adjusting DGVM parameters for selected environmental drivers identified by 104 

DM. 105 

2 Methods 106 

2.1 Study area – Norway 107 

The study area covers mainland Norway, spanning latitudes from 57°57’N to 71°11’N and longitudes from 4°29’E 108 

to 31°10’E. Norway is characterized by a gradient from a rugged terrain with deep valleys and fjords in the western, 109 

oceanic parts to gently undulating hills and shallow valleys in the central and eastern, more continental parts. 110 

Temperature and precipitation show considerable variation with latitude, distance from the coast and altitude 111 

(Førland, 1979). While the mean annual precipitation ranges from 278 mm in the central inland of S Norway to 112 

more than 5000 mm in mid-fjord regions along the western coast, the yearly mean temperature ranges from 7°C 113 

in the southwestern lowlands to –4°C in the high mountains (Hanssen-Bauer et al., 2017). 114 

The vegetation of Norway is structured along two main bioclimatic gradients (Fig. 1); one related to 115 

temperature/growing-season length and one to humidity/oceanity (Bakkestuen et al., 2008). Broadleaf deciduous 116 

forests, regularly found in the southern and southwestern parts (the boreonemoral bioclimatic zone), are further 117 

west and north (in the southern boreal zone) restricted to locally warm sites (Moen, 1999). With declining 118 

temperatures northwards and towards higher altitudes, evergreen coniferous boreal forests dominate in the 119 

southern and middle boreal zones. In the northern boreal zone, the coniferous boreal forests pass gradually into 120 

subalpine birch forests, which form the tree line in Norway. A total of about 38% of mainland Norway is covered 121 

https://en.wikipedia.org/wiki/5th_meridian_east
https://en.wikipedia.org/wiki/31st_meridian_east
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by forests, and about 37% of the land is situated above the forest line (of which two thirds is covered by alpine 122 

mountain heaths). Wetlands cover approximately 9% and broadleaf deciduous forests about 0.4% of the land area 123 

(Bryn et al., 2018).  124 

2.2 The AR reference dataset  125 

Data obtained by in-situ field mapping, which is considered among the most reliable sources of land-cover 126 

information (Alexander and Millington, 2000), is practically and economically impossible to obtain in a wall-to-127 

wall format for large land areas such as countries (Ullerud et al., 2020). As an alternative, area-frame surveys 128 

based upon stratified statistical sampling may provide accurate, area-representative, homogeneous and unbiased 129 

land-cover and land-use data for large areas. To evaluate the three methods for representing vegetation addressed 130 

in this study, we used the ‘Norwegian land cover and land resource survey of the outfields’ (Arealregnskap for 131 

utmark) dataset (Strand, 2013), a Norwegian implementation of the mapping program LUCAS (Eurostat, 2003). 132 

Data were collected in the period between 2004–2014 in a systematic regular grid covering the whole land area of 133 

Norway on which the plots (in total 1081 plots, each 0.6×1.5 km, i.e. 0.9 km2) were placed every 18 km (in latitude) 134 

by 18 km (in longitude) (Bryn et al., 2018; Strand, 2013). In each plot, expert field surveyors performed land-135 

cover mapping by use of a system with 57 land-cover and vegetation-type classes (Bryn et al., 2018), mapped at a 136 

scale of 1:25 000. The data were provided in vector format with vegetation-type attributes assigned to each mapped 137 

polygon.  138 

2.3 Study plots 139 

Twenty out of the 1081 rectangular AR plots were selected to make up our reference dataset, AR (Fig. 1; center 140 

coordinates in Table S1). The AR plots spanned elevations from 88 to 1670 m a.s.l., with mean annual temperatures 141 

between –4.0°C and 7.1°C and mean annual precipitation between 466 and 2661 mm (Table S1). The gradients of 142 

precipitation and temperature are known to be among the most influential for vegetation distribution (e.g., Ahti et 143 

al. 1968; Bakkestuen et al. 2008). A series of Kolmogorov-Smirnov tests for comparison of sample mean and 144 

variance for these two variables using data from seNorge2 (Lussana et al., 2018a; Lussana et al., 2018b) were 145 

obtained to investigate if the 20 selected plots capture the variation across temperature and precipitation in Norway 146 

acceptably well compared to the full set of 1081 AR plots (Fig. S2). Additionally, we tested the representativeness 147 

across the range of variation for a third variable (precipitation seasonality) which was later selected for sensitivity 148 

experiments (see further section 4). While low values of temperature and precipitation are slightly 149 

underrepresented in the 20 plots, the total range of variation was well covered. None of the tests for temperature, 150 

precipitation and the additional variable (precipitation seasonality) indicate that the sample of the 20 plots deviates 151 

from the full set of 1081 plots. The representativeness of the 20 plots was also tested against the full dataset of 152 

1081 AR plots with regard to PFT coverage (Supplement S3, Table S3), using a Chi-square test. This test showed 153 

that the two datasets are not more dissimilar than expected by chance.  154 
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 155 

Figure 1 - Locations of the 20 plots across the two main bioclimatic gradients in the study area: temperature (left) and 156 
precipitation (right). The plots are numbered by longitude from west to east. Exact values of temperature, precipitation 157 
and altitude for each plot are given in Table S1.  158 

2.4 Methods for representing vegetation 159 

In this study, we use 'plot' as a collective term for two partly overlapping spatial units: (i) the 0.9-km2 rectangles 160 

of the AR reference dataset; and (ii) the 1-km2 quadrats with the same centerpoint as, and edges parallel to those 161 

of, the AR rectangles. The latter were used for the three methods of DGVM, RS and DM (Fig. S2). 162 

Representations of the present-day vegetation for each of these 20 plots were obtained by three different methods: 163 

(i) as the result of single-cell DGVM simulations for each plot; (ii) inferred from an RS vegetation map of the 164 

study area; and (iii) from vegetation-type DM models (Table 1). In order to make the three methods comparable, 165 

vegetation was represented by plant functional type profiles (PFT profiles), obtained by a conversion scheme 166 

(Table S5 and Sect. 2.5). We define a PFT profile as a thematic representation of the land surface in a given plot 167 

or a group of plots, described as a vector of relative PFT abundances, i.e. values that sum up to 1.  168 

Table 1 – Details of each of the methods for representing vegetation. DGVM – dynamic global vegetation model, RS – 169 
remote sensing, DM – distribution model. PFT – plant functional type, VT – vegetation type. 170 

 DGVM  RS  DM 

Model type Process-based mechanistic 

model 

Supervised and 

unsupervised classification 

Statistical model 

Software / model name and 

version 

Community Land Model 4.5 

– CLM4.5-BGCDV 

ENVI (image analysis) and 

ArcGIS (classification) 

R version 3.6.2,  

generalized linear model 

Reference Oleson et al., 2013 Johansen, 2009 Horvath et al., 2019 

Thematic resolution 14 PFTs 25 VTs  31 VTs 

Spatial resolution (grid cell) 1 km 30 m 100 m 

  171 
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2.4.1 The DGVM method 172 

The DGVM employed in this study was the CLM4.5BGCDV (hereafter referred to as DGVM), an option provided 173 

in NCAR’s Community Land Model version 4.5 (CLM4.5) with vegetation dynamics, plant-soil carbon/nitrogen 174 

cycle, and multi-layer vertical soil enabled (Oleson et al., 2013). In DGVM, plant photosynthesis, stomatal 175 

conductance, carbon/nitrogen allocation, plant phenology and multi-layer soil biogeochemistry are described in 176 

accordance with default CLM4.5, while vegetation dynamics (establishment, survival, mortality and light 177 

competition) are handled separately based upon simple assumptions of environmental thresholds for establishment, 178 

survival and mortality of each PFT (see supplement S6) (Oleson et al., 2013). We used DGVM in the form of 179 

single-cell simulations for the 20 plots with grid-cell size set to 1×1 km (Table 1) to simulate the fractional cover 180 

of each PFT. All models were run with default CLM4.5 values for surface parameters (e.g. soil texture and depth), 181 

with prescribed atmospheric forcing derived from the 3-hourly hindcast of the regional model (SMHI-RCA4) 182 

driven by ERA-interim reanalysis for the European Domain of the Coordinated Downscaling Experiment – 183 

CORDEX for 1980–2010 (Dyrrdal et al., 2018). The CORDEX model simulation was used because it has a higher 184 

spatial resolution than the default atmospheric forcing used in CLM4.5 (0.11°×0.11° and 0.5°×0.5°, respectively). 185 

An inspection of the choice of atmospheric forcing, by which the CORDEX data were compared with the SeNorge 186 

data used for DM, showed minimal differences (Fig. S5). Only results obtained using CORDEX data are therefore 187 

shown in this paper. The 30-year CORDEX data was cycled during the spin-up. A 30-year period is consistent 188 

with WMO climatological normal based on the rationale that a 30 year-period is short enough to avoid large long-189 

term trends while long enough to include the range of variability. Thus, the data are not de-trended or averaged.  190 

The model was run with default PFT parameters (Table S7). All the selected sites are mostly undisturbed. In our 191 

experiments, soil C and N were firstly initialized using a restart file from an existing global present-day spin-up 192 

simulation with prescribed vegetation. Each model simulation was spun-up for 400 years to establish a vegetation 193 

in equilibrium with the current climate after initialization from bare ground. In three plots where the equilibrium 194 

of vegetation was questionable (plot 6, 12 and 17), we extended the spin-up by 400, 200 and 200 years respectively 195 

to check if any effect on PFT profile could be seen. No significant changes in the PFT profile was noted in these 196 

three instances (Fig. S11.1 and Fig. S11.2) and therefore we kept the initial 400 year spin up for all the sites. A 197 

20-year average at the end of the spin-up was used as input for calculation of PFT profiles (representing years 198 

1990–2010), which corresponds with the data-collection timeframe of DM, RS and AR. 199 

Among the 15 PFTs used in CLM4.5 to represent vegetated surfaces globally (Lawrence and Chase, 2007), only 200 

six (plus bare ground) were relevant for our study area (Table S5). Bare ground was predicted to occur where plant 201 

productivity was below a threshold value (Dallmeyer et al., 2019). The DGVM simulates the vegetated land unit 202 

only (non-grey boxes in Fig. S8), while other land units within the 20 plots, including glaciers, wetlands, lakes, 203 

cultivated land and urban areas, make up the “EXCL” PFT category (Table S5). The percentage cover fraction of 204 

each PFT is equal to the average individual’s fraction projective cover (FPCind) multiplied by the number of 205 

individuals (Nind) and average individual’s crown area (CROWNind). FPCind is a function of the maximum leaf 206 

carbon achieved in one year, while CROWNind is related to dead stem carbon simulated by the model. Nind is 207 

mainly determined by establishment and survival rate controlled by establishment and survival threshold 208 

conditions (Levis et al., 2004). We obtained PFT profiles for each plot by excluding the EXCL category and 209 

recalculated fractions of the vegetated land unit covered by each PFT to sum up to one.  210 



8 

 

2.4.2 The RS method 211 

As RS product we used SatVeg (Johansen, 2009), a vegetation map for Norway with 25 land-cover classes and a 212 

spatial resolution (grid cell size) of 30 m (Table 1). SatVeg is obtained by a combination of unsupervised and 213 

supervised classification methods, applied to Landsat 5/TM and Landsat 7/ETM+ images within the near-infrared 214 

and mid-infrared spectrum covering the period 1999–2006. While with the supervised classification, training data 215 

is based on well-labelled data from the study area, during the unsupervised classification the algorithm is only 216 

supplied with the number of output classes without further interference of the user. Only grid cells that were within 217 

each 1-km2 plot with a majority of their area were taken into consideration for further calculations.  218 

2.4.3 The DM method 219 

The distribution models (DMs) for 31 vegetation types (VT) obtained by Horvath et al. (2019) using generalized 220 

linear models (GLMs, with logit link and binomial errors, i.e. logistic regression), were used for this study. The 221 

VT data were collected during years 2004–2014. The DMs were obtained by using wall-to-wall data for 116 222 

environmental predictors from six groups (topographic, geological, proximity, climatic, snow and land cover), 223 

gridded to a spatial resolution of 100×100 m (Table 1) as predictors. Important predictors were selected by an 224 

automated stepwise forward-selection procedure for each of the 31 VTs individually, thus each final model is built 225 

upon only a narrow selection of important predictors (Horvath et al., 2019 supplement S7). All DMs were 226 

evaluated using an independent evaluation dataset and by calculating the area under the receiver operator curve 227 

(AUC), a threshold‐independent measure of model performance commonly used in DM. (see Horvath et al., 2019 228 

for details).  AUC can be interpreted as the probability that the model predicts a higher suitability value for a 229 

random presence grid cell than for a random absence grid cell (Fielding and Bell, 1997). A seamless vegetation 230 

map (i.e. with one predicted VT for each grid cell with no overlap and no gaps) was obtained from the stack of 31 231 

probability surfaces by assigning to each grid cell the VT with the highest predicted probability of occurrence 232 

within that cell (Ferrier et al., 2002). Grid cells with the majority of their area within a 1-km2 plot were used for 233 

further calculations (Fig. S6). 234 

2.5 Conversion to PFT profiles 235 

Harmonisation of the various vegetation classification systems was accomplished by a conversion scheme that 236 

represented each grid cell (RS and DM) or polygon (AR) in each of the 20 plots with one out of the six PFTs 237 

recognised by DGVM (Table S5 and Fig. S6). The scheme was obtained by expert judgements and solicited by a 238 

consensus process which involved ecologists participating in the AR18x18 survey as well as scientists working 239 

with RS and DGVMs.  240 

We used the conversion scheme of Table S5 to generate wall-to-wall PFT maps from the original RS, DM and AR 241 

datasets (Table 1) by assigning one PFT to each 30×30 m grid cell, 100×100 m grid cell or VT polygon, 242 

respectively. PFT profiles for each plot, at the same thematic resolution as for DGVM, were obtained as the vector 243 

with fractions of grid cells or polygons assigned to each of the six PFTs. ‘EXCL’ classes not represented in DGVM 244 

(cf. Table S5) were left out to minimise the effect of land use, which could otherwise have brought about 245 

differences in PFT profiles among the compared methods. PFT profiles were obtained for each combination of 246 

method and plot. To test for deviations in PFT coverage between the methods across the whole study area, 247 

aggregated PFT profiles were obtained by averaging the 20 PFT profiles obtained for each method.  248 
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2.6 Comparison of PFT profiles 249 

To examine the overall pattern across the study area and to assess the models’ ability to produce overall predictions 250 

of PFTs that accord with the PFTs’ overall frequency (as given by the reference) aggregated PFT profiles obtained 251 

by each of the DGVM, RS and DM methods were compared with the aggregated PFT profile of the AR reference 252 

dataset by a chi-square test (Zuur et al., 2007). To identify strongly deviating modelling results at a plot scale, the 253 

dissimilarity between PFTs profiles obtained by each of the DGVM, RS and DM methods and the PFT profile of 254 

the AR dataset for each plot was calculated by using proportional dissimilarity (Czekanowski, 1909):  255 

dhj=∑|yhji−y0ji|/∑(yhji+y0ji)=1−2∑min(yhji,y0ji)/∑(yhji+y0ji) 256 

where yhji refers to the specific element in a PFT profile vector (the fraction occupied by the PFT in question) given 257 

by method h (DGVM, RS or DM; h = 1, ..., 3; the value h = 0 refers to the AR reference dataset), j refers to 258 

sampling unit (j = 1, ..., 20) and i refers to PFT (i = 1, ..., 6). Proportional dissimilarity is the Manhattan measure 259 

standardized by division by the sum of the pairwise sums of variable values (here PFTs). Since the values of each 260 

PFT profile sums to one, the index reduces to 261 

dhj=1−∑min(yhji,y0ji) 262 

The proportional dissimilarity index is appropriate for incidence data like PFT abundances, i.e. variables that take 263 

zero or positive values. The index reaches a maximum value of 1 when two objects have no common presences 264 

(here, PFTs present in both compared objects) and ignore joint absences (zeros). To assess the degree to which the 265 

models produce pairwise similar differences, we compared the pairwise differences between the proportional 266 

dissimilarity values among methods, using a Wilcoxon-Mann-Whitney paired samples test.  267 

All raster and vector operations related to DM, RS and AR were carried out in R (version 3.4.3) (R Core Team, 268 

2019) using packages “rgdal” (Rowlingson, 2019), “raster” (Hijmans, 2019) and “sp” (Pebesma and Bivand, 269 

2005), while graphics are produced using the “ggplot2” package (Wickham, 2016). Statistical analyses were 270 

carried out in R (version 3.4.3), using the “vegan” package (Oksanen et al., 2019). All maps were produced in 271 

QGIS (QGIS Development Team, 2019).  272 

3 Results 273 

The aggregated PFT profiles for the RS and DM datasets did not differ significantly from those of the reference 274 

AR dataset according to the chi-square test, while a significant difference was found for the DGVM profiles (Table 275 

2). While the proportion of grid cells attributed to the PFT boreal NET by the RS and DM methods underestimated 276 

AR values by 3.0 and 2.8 percentage points, respectively, DGVM overestimated the proportion of boreal NET by 277 

20.4 percentage points compared to the AR reference. Also, unproductive areas (BG) were overestimated by 278 

DGVM (by 16.6 percentage points), less so by RS (4.0 percentage points), while this PFT was slightly 279 

underrepresented by DM (by 5.0 percentage points). Discrepancies were also observed for the cover of the C3 280 

PFT, which was overestimated by RS and DM (by 7.2 and 2.9 percentage points, respectively) and underestimated 281 

by DGVM (by 3.0 percentage points). Furthermore, DGVM overestimated BG and temperate BDT cover on the 282 

expense of boreal BDT and boreal BDS.  283 

Table 2 - PFT profiles (columns) aggregated across all 20 plots for the three methods compared in this study and the 284 
AR reference dataset. Results of comparisons of aggregated PFT profiles for each of the three methods with the 285 



10 

 

reference are also given. DGVM – dynamic global vegetation model, RS – remote sensing, DM – distribution model, AR 286 
– reference dataset. BG – bare ground, boreal NET – boreal needleleaf evergreen trees, temperate BDT – temperate 287 
broadleaf deciduous trees, boreal BDT – boreal broadleaf deciduous trees; boreal BDS - boreal broadleaf deciduous 288 
shrubs, C3 – C3 grasses.  289 

PFT Compared methods Reference 

DGVM (%) RS (%) DM (%) AR (%) 

BG 29.5 17.0 7.9 12.9 

Boreal NET 57.2 34.0 33.8 36.8 

Temperate BDT  5.6 2.0 0.2 0.5 

Boreal BDT 3.1 12.5 17.2 15.5 

Boreal BDS  4.1 23.8 34.5 30.8 

C3 0.5 10.7 6.4 3.5 

Chi-square test χ2= 45.98, df = 5, 

p < 0.05 

χ2= 6.36, df = 5,  

p = 0.27 

χ2= 2.61, df = 5, 

 p = 0.75 
 

 290 

In accordance with results from comparisons between aggregated PFT profiles obtained by the three methods and 291 

those obtained for the reference dataset, DGVM profiles for individual plots were significantly more dissimilar to 292 

the AR reference than RS and DM profiles (Fig. 2). While RS had the lowest median proportional dissimilarity 293 

with the AR reference (0.19, compared to 0.26 for DM and 0.41 for DGVM), DM had the lowest spread of 294 

dissimilarity values, measured as interquartile difference (0.12, compared to 0.19 for RS and 0.72 for DGVM), 295 

among the three methods (Fig. 2). While no dissimilarity value for RS was above 0.50, two plots (4, 19) acted as 296 

strong outliers in the distribution of DM values (cf. Fig. 2). Additionally, a comparison of proportional dissimilarity 297 

between pairs of methods revealed significant differences between DGVM profiles and those obtained by RS and 298 

DM (Wilcoxon rank-sum tests: W = 111, p = 0.0167; and W = 88, p = 0.0026, respectively), while RS and DM 299 

profiles were not significantly different from each other (Wilcoxon rank-sum test: W = 161, p = 0.3013). 300 

 301 

Figure 2 - Proportional dissimilarity values between PFT profiles for each combination of 20 plots and each of the three 302 
methods compared in this study, and the corresponding plot in the AR reference dataset. The thick horizontal line, the 303 
box and the whiskers represent the median, the interquartile difference and the range of values for each method. 304 
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Visual inspection of spatial patterns of PFT profile characteristics across the 20 plots suggests that the best 305 

agreement among the methods was obtained for the south-eastern part of the study area, dominated by the boreal 306 

NET (Fig. 3 and Table S10). Compared to the AR reference dataset, PFT profiles obtained by DGVM were 307 

strongly biased: in the north (plots 17 and 18) towards boreal NET on the cost of boreal BDT, near the west coast 308 

(plots 1, 2, 5 and 15) towards boreal NET on the cost of boreal BDS, and in southern coastal areas (plots 3, 6 and 309 

12) towards temperate BDT instead of boreal NET. In plots 13 and 16 DGVM failed to establish vegetation 310 

(predicting bare ground) where AR reported boreal BDS. RS represented the PFT profiles of the AR reference 311 

well in most cases, but tended to overestimate the frequency of dominance by C3 grasses at several locations (plots 312 

3, 16 and 20). While DM showed no general spatial pattern of PFT profile deviations from the reference dataset, 313 

PFT profiles of plots 4 and 19 obtained by DM had almost no similarity to the corresponding profiles of the AR 314 

reference dataset: C3 grasses and boreal BDT were predicted instead of bare ground and boreal NET, respectively. 315 

 316 

Figure 3 – PFT profiles for each of the 20 plots for the three methods compared in this study and the AR reference 317 
dataset. The columns in each cluster of four bar-charts represent, from left to right, the methods dynamic global 318 
vegetation model (DGVM), remote sensing (RS) and distribution model (DM), with the AR reference dataset to the 319 
right. 320 
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4 Sensitivity experiments and model improvement 321 

We used the results of PFT profile comparisons between DGVM and the AR reference (Fig. 3) and the results 322 

obtained for the DM dataset as a starting point for exploring the possible causes of the poor performance of DGVM. 323 

We first identified the three most abundant PFTs (i.e. boreal NET, boreal BDT and boreal BDS) in our set of plots 324 

(Table S3). Thereafter, we identified the major VTs predicted by DM in those plots that were translated into these 325 

PFTs using the conversion scheme (Table S5) (pine forest, birch forest and dwarf shrub heath, respectively; Table 326 

3). Based on the results from Horvath et al. (2019), the corresponding final models for these three VTs were 327 

examined to identify important environmental variables that were driving the distribution of the VTs but not 328 

represented in DGVM. We recognized three environmental predictors that are critical for the distribution of each 329 

of these VTs and exhibit a clear threshold signature in the frequency-of-presence plots (i.e. graphs showing 330 

variation in the abundance of the VT as a function of an environmental predictors, also see Fig. S12):  snow water 331 

equivalent in October (swe_10), minimum temperature in May (tmin_5) and precipitation seasonality 332 

(bioclim_15). Precipitation seasonality is defined as the ratio of the standard deviation of the monthly total 333 

precipitation to the mean monthly total precipitation (i.e. the coefficient of variation), expressed as percentage 334 

(O’Donnell and Ignizio, 2012). Based on visual inspection of the frequency-of-presence plots, we identified 335 

specific threshold values for each of the three VTs (see Fig. S12 for details) and implemented these threshold 336 

values into DGVM as new limits for establishment of the three PFTs as shown in Table 3. For example, in line 337 

with Fig. S12, VT 2ef and its respective PFT - boreal BDS can only establish when variable swe_10 is less than 338 

380mm. 339 

We explored the extent to which these additional thresholds improved the performance of DGVM on the subset 340 

of six plots (i.e. 1, 2, 5, 15, 17 and 18) in which the PFT profiles are most biased compared to the AR reference 341 

dataset due to the overrepresentation of the boreal NEB. In total, three sensitivity experiments were carried out by 342 

a stepwise process, in each step a new threshold was added cumulatively to the previous experiment (Table 3). 343 

Namely, in the first sensitivity experiment (i), we added the swe_10 threshold. In the second experiment (ii), we 344 

added both swe_10 and tmin_5 as the threshold. In the last experiment (iii), we added all the three novel thresholds. 345 

Only the results of the third sensitivity experiment with all the three thresholds added are reported here. Results of 346 

the other two experiments are summarised in Table S13. 347 

Table 3 – New thresholds for establishment of the three PFTs explored in DGVM sensitivity experiments. The variables 348 
explored were: swe_10 – snow water equivalent in October given in mm; tmin_5 – minimum temperature in May (°C); 349 
bioclim_15 – precipitation seasonality (unitless index representing annual trends in precipitation). 350 

  Sensitivity model run 

  (i) (ii) (iii) 

VT PFT swe_10 

(mm) 

tmin_5 

(°C) 

bioclim_

15 

2ef – Dwarf shrub heath / Alpine calluna heath Boreal broadleaf deciduous shrub < 380 > -10 – 

4a – Lichen and heather birch forest Boreal broadleaf deciduous tree < 180 > -7.5 – 

6a – Lichen and heather pine forest Boreal needleleaf evergreen tree < 150 > -5 < 50 

 351 

The results show that while the added thresholds for swe_10 and tmin_5 had little impact on the results (Table 352 

S13), the addition of the threshold for bioclim_15 (i.e., the third sensitivity experiment) largely improved the 353 

performance of the DGVM on the experimental plots explored (Fig. 4). PFT profiles simulated by this experiment 354 

were more similar to those of the AR reference dataset for four out of the six plots in the experimental subset (plot 355 

1, 2, 5 and 15): in plots 1 and 15, Boreal NET was correctly replaced by boreal BDS; in plots 2 and 5 boreal NET 356 
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was replaced by boreal BDT, BDS and temperate BDT. Addition of new threshold (bioclim_15) also reduced the 357 

modelled abundance of boreal NET in plots 17 and 18, but DGVM still failed to populate these plots with another 358 

PFT (Fig. 4).  359 

 360 

Figure 4 – PFT profiles for the subset of six plots subjected to sensitivity experiments with new DGVM establishment 361 
thresholds. The columns in each cluster of three bar-charts represent, from left to right, dynamic global vegetation 362 
model (DGVM) with original (default) parameter settings, DGVM with revised parameter settings, and the AR 363 
reference dataset. For further details, see Table S13. 364 

5 Discussion  365 

5.1 Comparison of PFT profiles  366 

The maps of PFT distributions generated by DM and RS are generally similar (Fig. S9) across most of our study 367 

area. This indicates that output from DM, which is rarely used for evaluating PFT distributions from DGVMs, can 368 

be used for this purpose in addition to the commonly used RS-based datasets. There are, however, some differences 369 
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between results obtained by the two methods near the northern Norwegian coast and in the mountain areas of 370 

western Norway, which will be discussed below in more details.  371 

We recognise six possible explanations for the differences in PFT profiles obtained by DGVM, RS and DM for 372 

the 20 plots (see Table 5), related to the following issues: (i) the conversion scheme (ref. Table S5); (ii) what is 373 

actually modelled by DGVM, RS and DM, e.g. in terms of potential vs actual vegetation; (iii) the performance of 374 

individual DM models; (iv) transforming predictions from single DMs into a seamless vegetation map, i.e. that 375 

assigns one VT to each grid cell; (v) DGVM performance; and (vi) missing PFTs in DGVM. 376 

5.1.1 The conversion scheme 377 

The conversion schemes used to reclassify vegetation and land cover classes into PFTs have been reported as a 378 

possible attributor to erroneous PFT distributions (Hartley et al., 2017). While we use a simple conversion scheme 379 

that assigns each land cover type/vegetation type to one and only one PFT (Dallmeyer et al., 2019), more complex 380 

conversion schemes exist, by which each land cover class is translated into a multi-PFT composition that co-occur 381 

within a grid cell (Bonan et al., 2002; Li et al., 2016; Poulter et al., 2011; Poulter et al., 2015). Our approach may 382 

be advantageous when the classes to be converted are homogeneous, in the sense that one PFT is clearly 383 

dominating in the type, and in the sense that the range of variation within the class in PFTs is negligible, such as 384 

is the case for 90% of the DM- and RS-classes in our study. Our simple scheme may, on the other hand, be a source 385 

of uncertainty when quantitatively important VTs are ambiguous in one way or the other, or, more commonly, in 386 

both ways at the same time. The set of VTs used in our study includes several relevant examples: VTs that may 387 

include a wide spectrum of tree-dominant types; the VT ‘1a/1b - Moss snowbed / Sedge and grass snowbed’, 388 

which covers a range of variation in the relative abundance of graminoids and, hence, shows affinity to C3 as well 389 

as to BG; and the VT ‘8a - Damp forest’, which is usually dominated by the evergreen Scots pine and converted 390 

into boreal NET, but that in some instances (e.g. after clear-cutting) is dominated by deciduous trees like Betula 391 

spp. and should then be converted into boreal BDT (Bryn et al., 2018). However, a close inspection of DM shows 392 

that our method reproduced similar PFT profiles as the reference dataset for all plots, except two out of 20 plots 393 

(the two outliers on Fig. 2, plots 4 and 19 in Fig. 3). 394 

In our case, a more complicated conversion scheme is likely to be compensated for by the sub-grid complexity 395 

introduced in the process by which PFT profiles are obtained. Rather than estimating a PFT profile for the 1-km2 396 

plot directly, i.e. in one operation as in DGVM, the RS-based classes and VTs are first converted into PFTs in their 397 

original resolution, and then subsequently subjected to aggregation to obtain the PFT profiles. This results in a 398 

sub-grid PFT heterogeneity that could otherwise be implemented by using a more complex conversion scheme. 399 

5.1.2 What is modelled by DGVM, RS and DM 400 

The methods used in this study produce different representations of the vegetated land surface in terms of actual 401 

or potential natural vegetation (Table 4). In order to model future vegetation changes and feedbacks, functional 402 

type-based models like DGVM implicitly address the processes that control the distribution of vegetation (Bonan 403 

et al., 2003; Song et al., 2013). Simulating natural vegetation processes under a given climatic equilibrium scenario 404 

(at any given time), DGVM produces a model of potential natural vegetation (ex. Bohn et al., 2000, Hengl et al. 405 

2018). RS-based classifications, on the other hand, describe the land surface at a specific time-point or changes 406 

through time (e.g. Arctic greening and browning) (Myers-Smith et al., 2020) and, accordingly, portrays actual 407 
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vegetation as influenced by previous and ongoing land use (Bryn et al., 2013). Depending on the modelling setup, 408 

DM may pragmatically describe the current ecological envelope of a target or aim at revealing the proximate 409 

causes for its distribution (Ferrier and Guisan, 2006), thus modelling either actual or potential natural vegetation, 410 

depending on the input data used for modelling (Hemsing and Bryn, 2012; Hengl et al., 2018). 411 

In this study, we carefully restricted our attention to PFTs that represent natural vegetation, excluding VTs with 412 

strong anthropogenic influences. This was done for all methods and the AR reference. Nevertheless, differences 413 

with respect to what is actually modelled by the different methods, potential vegetation by DGVM and actual 414 

vegetation by RS and DM, may have contributed to the observed among-model differences in PFT profiles.  415 

5.1.3 DM performance  416 

While the performance of the DM method is overall good, distribution models of individual VTs vary in 417 

performance (with AUC values ranging from 0.671 to 0.989) according to the study by Horvath et al. (2019). 418 

Several reasons for the low predictive performance of some DM are identified, of which the most important is 419 

considered to be important predictors missing in the training data. This might seem counter-intuitive, given the 420 

large number of predictor variables used in the study (n=116). However, the authors conclude that several 421 

important factors for the distribution of vegetation are not at all represented in the dataset (e.g. NDVI, LiDAR 422 

etc.), among others because they are almost impossible to obtain data for with required spatial resolution (e.g. soil 423 

nutrients). The DM method requires estimates for the probabilities of occurrence for (almost) all individual 424 

vegetation types to create a seamless vegetation map, which in turn is required for making estimates for the PFT 425 

profiles as robust as possible. Thus, in this context, ‘poor’ models are better than no model.  426 

Individual models’ performance might be the reason for the two plots whose PFT profiles deviate strongly from 427 

the AR reference (Fig. 2 and Fig. 3). For plot 4, the discrepancy is due to VT “1a/1b - Moss snowbed / Sedge and 428 

grass snowbed”, which is represented by one of the best performing among the 31 DMs. For this VT, conversion 429 

scheme bias is a more likely reason for the deviant PFT profile. For plot 19, boreal BDT is modelled because the 430 

VT predicted by DM is “4a – Lichen and heather birch forest”. The fact that the DM for this VT is among the 431 

inferior DMs (see the ranking of individual models presented in Horvath et al. (2019)) makes this explanation 432 

more likely in this case. 433 

5.1.4 Transformation of single-DM predictions into a vegetation map 434 

The performance of DM on the particular plots may also be influenced by the method chosen for transforming 435 

predictions from one DM for each VT into a seamless vegetation map. Assigning to each grid cell the VT with the 436 

highest predicted probability of presence in that cell, which is a commonly used method for this purpose (Ferrier 437 

and Guisan, 2006), favours VTs represented by good DMs. This is brought about by good DMs having a 438 

distribution of predictions that is more spread out (with larger predictions for the grid cells identified as the most 439 

favourable cells) than poor DMs (Halvorsen, 2012). However, since the probability of presence for each VT was 440 

predicted separately for each grid cell, the probability values for every VT vary independently of the probabilities 441 

for the other VTs, throughout the study area. Thus, we regard the chance that one VT consistently outperforms 442 

another VT over all the grid cells to be negligible. Alternative methods for this purpose should be tested in the 443 

context of DGVM evaluation. To avoid uncertainties associated with conversion between type systems and 444 

perhaps even further improve the performance of DM, we recommend exploring the option of using PFTs directly 445 
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as targets in DM. Direct modelling of PFTs rather than taking the detour via VT models may reduce the number 446 

of environment predictors required (116 layers used in Horvath et al. (2019)) in addition to circumventing the 447 

complicated process of modelling thematically narrow vegetation types (VTs). Another potential advantage of 448 

modelling PFT targets directly is that the model parameters will then be PFT specific, and not in need of being 449 

converted (from VT into PFT).  450 

To further reduce the biases and uncertainties of DM-based PFT profiles, we recommend exploring the use of 451 

variables derived from RS directly as predictors in DM. Previous studies have shown that RS -based predictors 452 

may enhance DM performance on different scales: on vegetation-type level (Álvarez‐Martínez et al., 2018); on 453 

the habitat-type level (Mücher et al., 2009); and on the PFT level (Assal et al., 2015). Further suggestions for 454 

improvement of the methods used in this study are found in Table 4. 455 

Table 4 – A summary of the key properties of the three methods compared in this study. DGVM – dynamic global 456 
vegetation model, RS – remote sensing and DM – distribution model. 457 

Key property Method 

DGVM RS DM 

Modelled 

property 

Process-based vegetation model 

– using a priori 

parameterizations 

Classification based on satellite 

imagery (spectral reflectance) 

Statistically based model of a 

target (response) and the 

environment (predictors) 

Main purpose Feeding vegetation changes into 

ESM for further quantification 

of feedbacks between land 

surface and the atmosphere 

Mapping of land cover or land 

use for descriptive purposes, 

management or monitoring  

Predicting the spatial 

distribution of a target and/or to 

summarise its relationship with 

the environment 

Material Climate forcing, PFT 

parameters, host model  

Satellite imagery in different 

bands 

Presence-absence training data, 

environmental predictors  

Spatial extent Global to regional  

(Single-cell tests) 

Global to local Regional to local 

Modelling 

outcome 

Potential vegetation Actual vegetation Potential or actual vegetation, 

depending on the training data 

Advantages – Addresses the processes 

– Feedback loops with other 

Earth system components can be 

included 

– Continuous temporal scale of 

prediction into the future 

– Observation-based 

– High spatial resolution  

– Good temporal coverage 

– Opens for use of proxies for 

important predictors  

– May provide insight into 

drivers of distributions 

Disadvantages – Low performance (e.g. 

compared with RS and DM) as 

long as the underlying processes 

are not fully understood and 

properly parameterised 

– Parameter intensive 

– Resource demanding 

 

– Data are sensitive to cloud 

cover and shaded areas 

– Atmospheric correction 

needed 

– Provides limited insight to the 

processes that regulate the 

distributions of land cover types 

– No feedback included 

– Provides limited insight to the 

processes that regulate the 

distributions of targets 

– Temporally static (one time-

point addressed by each model) 

- No feedback included 

 

Possible 

interactions with 

the other 

methods  

– May improve DM by pointing 

at relevant predictor variables 

– May improve RS by 

identifying threshold values 

– May improve DGVM by 

improved parameterization 

(based on RS indices) 

– May improve DM by 

providing predictor variables, 

directly or as indices (NDVI, 

etc) 

– May improve parameterization 

and envelope discrimination of 

DGVM  

– May improve RS by targeting 

specific PFTs that have similar 

reflectance, but different 

ecology 

 458 

5.1.5 DGVM performance 459 

Our results show that, for many plots, the PFT profiles simulated by DGVM differ from those of the AR reference 460 

dataset. According to our results, DGVM overestimates the coverage of bare ground and boreal NET and 461 

underpredicts the cover of C3 grasses, boreal BDT and boreal BDS. While the AR reference dataset shows that 462 

the northern plots (specifically plots 17 and 18) are covered by mountain birch forest and shrubs (boreal BDT and 463 
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boreal BDS), DGVM predicts dominance of boreal NET in these plots. Overestimation of boreal NET has also 464 

been reported by Hickler et al. (2012) for large parts of Scandinavia, who attributed this to the lacking 465 

representation of shade tolerance classes in DGVM models. A similar pattern is seen in our results: the PFT profiles 466 

obtained by DGVM during the 400-year spin-up (Fig. S11) show no sign of boreal BDT in the early phases of 467 

model prediction, as would be expected of an early successional forest in Norway.  468 

Our results further suggest that the DGVM underrepresents grasses and shrubs compared to the reference dataset. 469 

This may be explained by the built-in constraints in the light competition scheme of DGVM. The model assumes 470 

that regardless of grass and shrub productivity, trees will cover up to 95% of the land unit when their productivity 471 

permits (Oleson et al., 2013). The priority given to a PFT in DGVM decreases with the stature of the organisms in 472 

question because of the increasing probability that a lower layer is covered by another layer. The degree of 473 

underrepresentation is therefore expected to increase from shrubs to grasses. Accordingly, DGVM predicts 474 

dominance by trees in the most productive regions, by grasses in less productive regions, and by shrubs in the least 475 

productive non-desert regions (Zeng et al., 2008). The underrepresentation of C3 grasses by DGVM across the 20 476 

plots accords with the results of Zhu et al. (2018), who found that C3 grasses are underpredicted on a global level 477 

in an earlier version of DGVM.  478 

Inappropriate parameterisation of shrubs may be a reason why the DGVM underestimates boreal BDS in many of 479 

the coastal plots (1, 2, 5, 15) (Table S6). The implementation of shrubs as a new PFT in an earlier version of 480 

DGVM (CLM3-DGVM) by Zeng et al. (2008), parameterised for representation of taller shrubs with heights 481 

between 0.1 and 0.5 m, may not suit the majority of dwarf shrubs (of genera Calluna, Betula, Empetrum) that 482 

abundantly occurs in Norwegian ecosystems. To this, Castillo et al. (2012) add that the sparse shrub and grass 483 

vegetation cover simulated by DGVM in the tundra regions may be caused by the soil moisture bias inherited from 484 

the host land model CLM4 (Lawrence et al., 2011). Another reason for DGVM’s underestimation of boreal BDS 485 

in coastal areas could be the 4000-yr tradition of coastal heath management in Norway (Bryn et al., 2010) which 486 

causes a large discrepancy between the actual vegetation modelled by RS, DM and AR and the potential natural 487 

vegetation simulated by DGVM under present-day climatic conditions (e.g.   Bohn et al., 2000, Hengl et al. 2018). 488 

We therefore argue that more sensitivity studies of PFT-specific parameters for height, survival, establishment 489 

etc., across all PFTs, are needed.  490 

Some discrepancies in the DGVM output might be caused by the climate forcing used in the simulations, looped 491 

for the period 1980–2010. Long-term historical climate effects on vegetation distribution were not included in our 492 

model simulation. However, we noticed that vegetation distribution was insensitive to interannual variation or 493 

decadal variation of the climate forcing when it reached equilibrium state in most of our study sites. Even though 494 

long-term historical climate effects (such as cooler temperature in the early 20th century) may favour boreal BDS 495 

rather than boreal NET, we consider such historical effects to have only minor impact on the already large biases 496 

observed in DGVM (e.g., too much boreal NET and too few BDS). We also note that DGVM used a spatially 497 

coarser CORDEX reanalysis (11x11 km) to supply high temporal resolution (6-hourly) atmospheric forcing data, 498 

while the climate predictors used in DM was derived from observation-based SeNorge2 dataset with 1x1 km spatial 499 

resolution and daily temporal resolution. The larger biases in CORDEX reanalysis data may also contribute to the 500 

large mismatch between DGVM and the reference dataset. We have compared the average annual temperature and 501 

annual precipitation of the two input datasets used in DGVM and DM to look for differences (see Fig. S4). It 502 

appears that precipitation estimates by CORDEX for the 20 plots were slightly higher than SeNorge estimates, the 503 
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converse (but less strongly) was true for temperature. The consequences of these differences in the input data 504 

might be investigated in follow-up studies. 505 

Despite the shortcomings discussed above, DGVM performs reasonably well for some PFTs. One example is the 506 

temperate BDT, which is correctly predicted by the model to be restricted to the southern coastal plots (Bohn et 507 

al., 2000; Moen, 1999). This finding suggests that some climatically driven PFTs (i.e. temperate BDT) are well 508 

implemented by the existing parameters in the DGVM used in this study.  509 

5.1.6 Missing PFTs 510 

DGVM coerces the World’s immense variation in plant species composition (vegetation) into a very limited 511 

number of predefined PFTs, compared to classification schemes used by the other methods in this study (RS, DM 512 

and AR; see Table S5) and by other approaches to systematisation of ecodiversity (e.g. Dinerstein et al., 2017; 513 

Keith et al., 2020). In particular, the number of high-latitude specific PFTs is insufficient to realistically represent 514 

the biodiversity of these ecoregions, as pointed out by Bjordal (2018) and Vowles & Björk (2017). Comparisons 515 

between PFT profiles obtained by DGVM and profiles obtained by DM suggest specific vegetation types that need 516 

to be better represented in DGVMs, either by improving an existing PFT or by adding a new PFT (e.g. dwarf 517 

shrubs vs. tall shrubs; moss dominated snow-beds, wetlands, lichens). In our study, the PFT profile of DGVM is 518 

represented by the six boreal PFTs, whereas the original data for RS, DM and AR include an average of 17% (ref. 519 

Table S3) of the total area that are not represented by these six PFTs (classes for “Excluded” PFT category ref. 520 

Table S5). This points to the missing PFTs in the classification scheme of the DGVM, but also to the challenge 521 

that certain ecosystems in our study area do not have a representation in the PFT schemes of DGVM. This is 522 

exemplified by wetlands; important ecosystems that are still not represented in many of the current DGVMs. This 523 

is not only problematic from the perspective of land surface energy balance (Wullschleger et al., 2014), but has 524 

also implications for modelling of carbon storage and cycling, and other interactions between the land surface and 525 

the atmosphere (Bjordal, 2018). 526 

Some recent examples with improvements to the thematic resolution of PFTs in DGVMs are available in the 527 

literature (Druel et al., 2019; Coppell et al., 2019; Chadburn et al., 2015; Porada et al., 2016; Druel et al., 2017), 528 

and further examples of DGVMs with a larger number of high-latitude PFTs also exist (Euskirchen et al., 2009). 529 

In line with these studies, our results demonstrate a great potential for increasing the thematic resolution of 530 

DGVMs in general and not limited to the DGVM tested here in terms of developing and parameterizing new 531 

specific PFTs to be representative of the high-latitude and high-altitude habitats, Druel et al. (2017)Druel et al. 532 

(2017)Druel et al. (2017)Druel et al. (2017)Druel et al. (2017)Druel et al. (2017)Druel et al. (2017)Druel et al. 533 

(2017)Druel et al. (2017)and also deriving parameters from observations, DMs or RS products (Bjordal, 2018; 534 

Wullschleger et al., 2014), specific for the high latitudes (Druel et al., 2017). 535 

5.2 Sensitivity experiments 536 

Adjusting DGVM parameters so that they correspond better with environmental drivers known to be functional in 537 

the high-latitude PFTs has been suggested as a measure to improve the performance of DGVM (Wullschleger et 538 

al., 2014). Our sensitivity experiments demonstrate that DM results can inform DGVM parameterisation based 539 

upon suitability ranges of the environmental predictors recognized by DM in determining the distribution of a 540 

PFT. Most notably, we recognize that the implementation of precipitation seasonality (bioclim_15 < 50) as a 541 
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threshold for the establishment of NET, which has not yet been used in the DGVM, improves the distribution of 542 

high-latitude PFTs simulated by the DGVM. This adds to the environmental thresholds for establishment of a PFT 543 

previously used in DGVMs to restrict the predicted distribution of PFTs to realistic geographic regions (Miller and 544 

Smith, 2012). Even though our sensitivity experiments focus on a limited number of additional thresholds across 545 

three PFTs, this approach shows promising results and is worth exploring more extensively in future studies. 546 

The importance of precipitation seasonality (i.e. bioclim_15) as a critical limiting factor for the establishment of 547 

boreal NET indicates that the increased seasonality impedes growth of boreal NET. While some studies have 548 

emphasized the importance of seasonal distribution of rainfall on vegetation in the semi-arid areas (Zhang et al., 549 

2018), the importance of this factor for high-altitude areas is less well studied (Oksanen, 1995; Sevanto et al., 550 

2006). Better representation of the processes related to the response of boreal NET to water availability, especially 551 

spring-drought in DGVM, also warrants further investigation. From our results for plots 17 and 18, we notice that 552 

adjusting the climatic thresholds for the establishment of boreal NET does not necessarily lead to other PFTs grow. 553 

Boreal BDT and BDS can establish at both plots, but their growth rates are too slow to make them occupy a large 554 

area at these plots. This implies that other environmental conditions, e.g., nitrogen availability, might play a more 555 

important role in limiting the growth of BDT and BDS in the tested DGVM. The biases of the DGVM in simulating 556 

BDT and BDS has been widely noticed in previous studies (Castillo et al., 2012), and remains a challenge requiring 557 

more investigation in the future. 558 

While going into further details of which additional PFTs should be included in DGVMs and how these and other 559 

PFTs should be parameterised is beyond the scope of the present paper, we emphasize the potential of using DM 560 

for improving the parameters of DGVMs. More specifically, we propose more intensive exploration of DM as a 561 

tool for identification of potential environmental drivers for the high-latitude PFTs, which may enhance the 562 

performance of DGVMs in high-latitude ecoregions. The specific focus of our study is the boreal region, both 563 

because of the importance of these ecosystems in the climate system and because of the data availability of 564 

vegetation-type DM and the field-based reference dataset (AR). However, we believe that the improved DGVM 565 

parameters resulting from our sensitivity experiments may be applicable to other DGVMs such as TEM and LPJ-566 

GUESS (Euskirchen et al., 2009; Miller and Smith, 2012). Also, the results from this study are likely to be 567 

transferable to other high-latitude areas in the circumboreal region.  568 

6 Conclusions 569 

This study demonstrates the potential of using distribution models (DM) for representing present-day vegetation 570 

in evaluations of plant functional type (PFT) distributions simulated by dynamic global vegetation models 571 

(DGVMs) and for improvement of specific PFT parameters within DGVMs. By identification of the main 572 

differences among PFT profiles obtained by three methods (DGVM, RS and DM) in selected high-latitude plots 573 

distributed across climatic gradients in Norway, we show that PFT profiles derived from DM and RS are in the 574 

same range of reliability, judged by resemblance to a reference dataset (AR). Hence, we suggest that DM results 575 

can be used as a complementary evaluation dataset to benchmark the present-day DGVMs. This approach is 576 

recommended when high-quality RS products are not available in desired thematic resolution or when they are not 577 

able to supply proxies of other properties (such as deriving parameter improvements or PFT-specific traits). 578 

Comparing the twenty PFT profiles obtained by DGVM with those obtained by AR shows a large overestimation 579 

by DGVM of boreal needleleaf evergreen trees (boreal NET) and bare ground at the expense of boreal broadleaf 580 
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deciduous trees and shrubs. This is attributed to missing processes and PFT parameterizations of high-latitude 581 

PFTs in DGVM. We use DM results to identify a new PFT-specific environmental parameter – precipitation 582 

seasonality – which, in a series of sensitivity experiments, improves the distribution of boreal NET predicted by 583 

DGVM. This new PFT-specific threshold for establishment decreases the bias of boreal NET in DGVM across 584 

four out of six plots and as a result, the distribution of other high-latitude PFTs is also better represented. We argue 585 

that this new threshold should be transferable to other DGVMs simulating high-latitude PFTs, and that our DM-586 

based approach can be well applied to other ecosystems. 587 

Further development of DGVM, such as refining parameters for existing boreal PFTs and increasing the thematic 588 

resolution of PFTs for boreal areas, should be strongly encouraged to achieve a more realistic simulation of the 589 

distribution of vegetation by DGVM, to increase the reliability of future predictions, and the reliability of predicted 590 

vegetation feedbacks in the climate system.  591 
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