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Abstract. Vegetation is an important component in global ecosystems, affecting the physical, hydrological and 19 

biogeochemical properties of the land surface. Accordingly, the way vegetation is parameterised strongly 20 

influences predictions of future climate by Earth system models. To capture future spatial and temporal changes 21 

in vegetation cover and its feedbacks to the climate system, dynamic global vegetation models (DGVM) are 22 

included as important components of land surface models. Variation in the predicted vegetation cover from 23 

DGVMs therefore has large impacts on modelled radiative and non-radiative properties, especially over high-24 

latitude regions. DGVMs are mostly evaluated by remotely sensed products, but rarely by other vegetation 25 

products or by in-situ field observations. In this study, we evaluate the performance of three methods for spatial 26 

representation of vegetation cover with respect to prediction of plant functional type (PFT) profiles – one based 27 

upon distribution models (DM), one that uses a remote sensing (RS) dataset and a DGVM (CLM4.5BGCDV). 28 

PFT profiles obtained from an independently collected vegetation data set from Norway were used for the 29 

evaluation. We found that RS-based PFT profiles matched the reference dataset best, closely followed by DM, 30 

whereas predictions from DGVM often deviated strongly from the reference. DGVM predictions overestimated 31 

the area covered by boreal needleleaf evergreen trees and bare ground at the expense of boreal broadleaf deciduous 32 

trees and shrubs. Based on environmental predictors identified by DM as important, we suggest implementation 33 

of three novel PFT-specific thresholds for establishment in the DGVM. We performed a series of sensitivity 34 

experiments to demonstrate that these thresholds improve the performance of the DGVM. The results highlight 35 

the potential of using PFT-specific thresholds obtained by DM in development and benchmarking of DGVMs for 36 

broader regions. Also, we emphasize the potential of establishing DM as a reliable method for providing PFT 37 

distributions for evaluation of DGVMs alongside RS.  38 
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1 Introduction 39 

Vegetation plays an important role in the climate system, as changes in the vegetation cover alter the 40 

biogeophysical and biogeochemical properties of the land surface (Davin and de Noblet-Ducoudré, 2010; 41 

Duveiller et al., 2018). Therefore an accurate descriptions of the vegetation distribution hold a key role in Earth 42 

system models (ESM) (Bonan, 2016; Poulter et al., 2015). Historical and present vegetation distributions are 43 

implemented in ESMs by means of datasets prepared from satellite observations (Lawrence and Chase, 2007; Li 44 

et al., 2018; Lawrence et al., 2011). However, in order to predict the future temporal and spatial changes in natural 45 

vegetation cover and subsequently the processes, dynamics and feedbacks to the climate system, dynamic global 46 

vegetation models (DGVMs) are needed.  47 

DGVMs have been implemented as components of ESMs (Bonan et al., 2003) to represent long-term vegetation 48 

changes by a set of parameterizations describing general physiological principles, including ecological 49 

disturbances, successions (Seo and Kim, 2019) and species interactions (Scheiter et al., 2013). DGVMs represent 50 

the heterogeneity of land surface processes and interactions with other components of the Earth system by 51 

characterising land areas by their composition of type units defined by plant functional types (PFTs) (Bonan et al., 52 

2003; Oleson et al., 2013). PFTs are groupings of plant species with similar eco-physiological properties – which 53 

express differences in growth form (woody vs herbaceous), leaf longevity (deciduous vs evergreen) and 54 

photosynthetic pathway (C3 and C4) (Wullschleger et al., 2014). Even though the DGVMs are being constantly 55 

developed and improved to incorporate more complex plant processes (Fisher et al., 2010), there are still 56 

fundamental challenges for DGVMs to correctly simulate the extents of the PFTs that characterise boreal and 57 

Arctic ecoregions (Gotangco Castillo et al., 2012). For instance, the thematic resolution of high-latitude PFTs is 58 

still limited (Wullschleger et al., 2014), important interactions between vegetation and fire in high latitudes are 59 

still missing (Seo and Kim, 2019), and forest carbon storage in the high latitude is still underestimated by most 60 

DGVMs (Song et al., 2013). The large uncertainties in simulating high-latitude PFT distributions may also lead to 61 

discrepancies between modelled and observed energy fluxes and hydrology (Hartley et al., 2017) or carbon cycles 62 

(Sitch et al., 2008). Accordingly, systematic evaluation of PFT distributions modelled by DGVMs is required to 63 

improve the DGVMs and, subsequently, to reduce uncertainties in estimates of climate sensitivity and in 64 

predictions by ESMs.  65 

Remote sensing (RS) is often used for evaluation, benchmarking and improvement of parameters in of DGVMs 66 

(Zhu et al., 2018). RS products are commonly used to describe vegetation cover using vegetation classes derived 67 

from multispectral images based on vegetation indices such as the normalized difference vegetation index (NDVI) 68 

(Xie et al., 2008; Franklin and Wulder, 2002). For evaluation, RS products are translated into distributions of the 69 

PFT classes used in the DGVMs (Lawrence and Chase, 2007; Poulter et al., 2011). However, inconsistencies 70 

between various available RS-based land cover or vegetation products have been reported (Myers-Smith et al., 71 

2011) and benchmarking DGVMs only to these RS-based products may therefore lead to different conclusions in 72 

ESMs (Poulter et al., 2015).  73 

Among the less explored methods to generate wall-to-wall vegetation cover predictions is distribution modelling. 74 

Distribution models (DMs) are most often used to predict the distribution of a target, by establishment of statistical 75 

relationship between the target (response) and the environment (predictors) (e.g. Halvorsen, 2012). The most 76 

common use of DM in ecology is for prediction of species distributions (Henderson et al., 2014), but DM methods 77 

have proved valuable also for prediction of targets at higher levels of bio-, geo- or eco-diversity (i.e. vegetation 78 
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types and land-cover types) (Ullerud et al., 2016; Horvath et al., 2019; Simensen et al., accepted). DM methods 79 

are inherently static, in contrast to the dynamic DGVMs (Snell et al., 2014). Nevertheless, they may be a useful 80 

corrective to DGVMs by providing insights into important environmental factors driving the distribution of 81 

individual targets, which may, in turn, improve PFT parameter settings in DGVMs.  82 

Comparative studies that evaluate the present-day PFT distributions of DGVMs in a systematic manner, with 83 

reference to a field-based evaluation dataset, are so far lacking. In this study, we evaluate representations of 84 

vegetation, translated to PFT profiles, obtained by the three different methods (DGVM, RS, DM). We use an 85 

independently collected field-based dataset (AR; the Norwegian National map series for Area Resources) for the 86 

evaluation. Furthermore, we explore if environmental correlates of vegetation-type distributions identified by DM 87 

can be used to improve DGVMs by adjusting parameter settings for high-latitude PFTs.  88 

To approach these aims, we constructed a conversion scheme to harmonize the classification schemes of RS, DM 89 

and AR into the PFTs used by the DGVM. We represent the vegetation coverage by using plant functional type 90 

profiles (PFT profiles), vectors of relative abundances of PFTs within an area, e.g. given study plot, summing to 91 

1. We then compare the PFT profiles obtained by DGVM, RS and DM with the AR reference on 20 selected study 92 

plots across the Norwegian mainland. Finally, we conduct a series of sensitivity experiments to explore if DGVM 93 

performance can be improved by adjusting DGVM parameters for selected environmental drivers. 94 

2 Methods 95 

2.1 Study area – Norway 96 

The study area covers mainland Norway, spanning latitudes from 57°57’N to 71°11’N and longitudes from 4°29’E 97 

to 31°10’E. Norway is characterized by a gradient from a rugged terrain with deep valleys and fjords in the western, 98 

oceanic parts to gently undulating hills and shallow valleys in the central and eastern, more continental parts. 99 

Temperature and precipitation show considerable variation with latitude, distance from the coast and altitude 100 

(Førland, 1979). While the mean annual precipitation ranges from 278 mm in the central inland of S Norway to 101 

more than 5000 mm in mid-fjord regions along the western coast, the yearly mean temperature ranges from 7°C 102 

in the southwestern lowlands to –4°C in the high mountains (Hanssen-Bauer et al., 2017). 103 

The vegetation of Norway is structured along two main climatic gradients; related to temperature/growing-season 104 

length and humidity/oceanity (Bakkestuen et al., 2008). Broadleaf deciduous forests, regularly found in the 105 

southern and southwestern parts (the boreonemoral bioclimatic zone), are further west and north (in the southern 106 

boreal zone) restricted to locally warm sites (Moen, 1999). With declining temperatures northwards and towards 107 

higher altitudes, i.e. in the southern and middle boreal zones, evergreen coniferous boreal forests dominate. In the 108 

northern boreal zone they pass gradually into subalpine birch forests which form the tree line in Norway. A total 109 

of about 38% of mainland Norway is covered by forests, and about 37% of the land is situated above the forest 110 

line (of which two thirds is covered by alpine mountain heaths). Wetlands cover approximately 9% and broadleaf 111 

deciduous forests about 0.4% of the land area (Bryn et al., 2018).  112 

2.2 The AR reference dataset  113 

Data obtained by in-situ field mapping, which is considered among the most reliable sources of land-cover 114 

information (Alexander and Millington, 2000), is practically and economically impossible to obtain for large land 115 
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areas such as countries (Ullerud et al., 2020). Area-frame surveys based upon stratified statistical sampling may, 116 

however, provide accurate, area-representative, homogeneous and unbiased land-cover and land-use data for large 117 

areas. To evaluate the three methods for representing vegetation addressed in this study, we used the ‘Norwegian 118 

land cover and land resource survey of the outfields’ (Arealregnskap for utmark) dataset (Strand, 2013), a 119 

Norwegian implementation of the mapping program LUCAS (Eurostat, 2003). Data were collected in the period 120 

between 2004–2014 in a systematic 18×18 km grid of 1081 rectangular plots (each 0.6×1.5 km, i.e. 0.9 km2) (Bryn 121 

et al., 2018; Strand, 2013). In each plot, expert field surveyors performed land-cover mapping by use of a system 122 

with 57 land-cover and vegetation-type classes (Bryn et al., 2018), mapped at a scale of 1:25 000. The data were 123 

provided in vector format with vegetation-type attributes assigned to each mapped polygon.  124 

2.3 Study plots 125 

Twenty out of the 1081 rectangular AR plots were selected to make up our reference dataset, AR (Fig. 1; center 126 

coordinates in Table S1). The AR plots spanned elevations from 88 to 1670 m a.s.l., with mean annual temperatures 127 

between -4.0°C and 7.1°C and mean annual precipitation between 466 and 2661 mm (Table S1). A test showed 128 

that the selection of plots were acceptable representative for bioclimatic variation in Norway (see Fig. S3 and Fig. 129 

S4). The test was performed using gridded temperature and precipitation data from seNorge2 (Lussana et al., 130 

2018a; Lussana et al., 2018b), interpolated for each plot by kriging in accordance with Horvath et al. (2019). 131 

 132 

Figure 1 - Locations of the 20 plots across the two main bioclimatic gradients in the study area: temperature (left) and 133 
precipitation (right). The plots are numbered by longitude from west to east. Exact values of temperature, precipitation 134 
and altitude for each plot are given in Table S1.  135 
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2.4 Methods for representing vegetation 136 

In this study, we use 'plot' as a collective term for two partly overlapping spatial units: (i) the 0.9-km2 rectangles 137 

of the AR of the reference dataset; and (ii) the 1-km2 quadrats with the same centerpoint as, and edges parallel to 138 

those of, the AR rectangles. The latter were used for the three methods of DGVM, RS and DM (Fig. S2). 139 

Representations of the vegetation of each of these 20 plots were obtained by three different methods: (i) as the 140 

result of single-cell DGVM simulations for each plot; (ii) inferred from an RS vegetation map of the study area; 141 

and (iii) from vegetation-type DM models (Table 1). In order to make the three methods comparable, vegetation 142 

was represented by plant functional type profiles (PFT profiles), obtained by a conversion scheme (Table 2 and 143 

Sect. 2.5). We define a PFT profile as a thematic representation of the land surface in a given plot or a group of 144 

plots, described as a vector of relative PFT abundances, i.e. values that sum up to 1.  145 

Table 1 – Details of each of the presented methods for representing vegetation. DGVM – dynamic global vegetation 146 
model, RS – remote sensing, DM – distribution model. PFT – plant functional type, VT – vegetation type. 147 

 DGVM  RS  DM 

Model type Process-based mechanistic 

model 

Supervised and 

unsupervised classification 

Statistical model 

Software / model name and 

version 

Community Land Model 4.5 

– CLM4.5-BGCDV 

ENVI (image analysis) and 

ArcGIS (classification) 

R version 3.6.2,  

generalized linear model 

Reference Oleson et al., 2013 Johansen, 2009 Horvath et al., 2019 

Thematic resolution 14 PFTs 25 VTs  31 VTs 

Spatial resolution (grid cell) 1 km 30 m 100 m 

  148 

2.4.1 The DGVM method 149 

The DGVM employed in this study was the CLM4.5BGCDV (further referred to as DGVM) embedded in NCAR’s 150 

Community Land Model version 4.5 (CLM4.5) (Oleson et al., 2013). In DGVM, plant photosynthesis, stomatal 151 

conductance, carbon/nitrogen allocation, plant phenology and multi-layer soil biogeochemistry are described in 152 

accordance with default CLM4.5, while vegetation dynamics (establishment, survival, mortality and light 153 

competition) are handled separately based upon relatively simple assumptions (Oleson et al., 2013). We used 154 

DGVM in the form of single-cell simulations for the 20 plots with grid-cell size set to 1×1 km (Table 1) to simulate 155 

the fractional cover of each PFT. All models were run with default CLM4.5 values for surface parameters (e.g. 156 

soil texture and depth), with prescribed atmospheric forcing derived from the 3-hourly hindcast of the regional 157 

model (SMHI-RCA4) for the European Domain of the Coordinated Downscaling Experiment – CORDEX for 158 

1980–2010 (Dyrrdal et al., 2018). The CORDEX model simulation was used because it has a higher spatial 159 

resolution than the default atmospheric forcing used in CLM4.5 (0.11°×0.11° and 0.5°×0.5°, respectively). An 160 

inspection of the choice of atmospheric forcing, by which the CORDEX data were compared with the SeNorge 161 

data used for DM, showed minimal differences (Fig. S5). Only results obtained using CORDEX data are therefore 162 

shown in this paper.  163 

The model was run with default PFT parameters (Table S6). Among the 15 PFTs used in CLM4.5 to represent 164 

vegetated surfaces globally(Lawrence and Chase, 2007), only six (plus bare ground) were relevant for our study 165 

area (Table 2). Bare ground was predicted to occur where plant productivity was below a threshold value 166 

(Dallmeyer et al., 2019). The DGVM simulates the vegetated landunit only (non-grey boxes in Fig. S7) while other 167 

landunits within the 20 plots, including glaciers, wetlands, lakes, cultivated land and urban areas, make up the 168 

“EXCL” PFT category (Table 2). We obtained PFT profiles for each plot by excluding the EXCL category and 169 

recalculating fractions of the vegetated land unit covered by each PFT. Each model simulation was spun-up for 170 
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400 years to establish a vegetation in equilibrium with the current climate after initialization from bare ground. A 171 

20-year average at the end of the spin-up was used as input for calculation of PFT profiles. 172 

2.4.2 The RS method 173 

As RS product we used SatVeg (Johansen, 2009), a vegetation map for Norway with 25 land-cover classes and a 174 

spatial resolution (pixel size) of 30 m (Table 1). SatVeg is obtained by a combination of unsupervised and 175 

supervised classification methods, applied to Landsat 5/TM and Landsat 7/ETM+ images within the near-infrared 176 

and mid-infrared spectrum. Only pixels that were within each 1-km2 plot with majority of their area were taken 177 

into consideration for further calculations.  178 

2.4.3 The DM method 179 

The distribution models (DMs) for 31 vegetation types (VT) obtained by Horvath et al. (2019) using generalized 180 

linear models (GLMs, with logit link and binomial errors, i.e. logistic regression), were used for this study. The 181 

DMs were obtained by using wall-to-wall data for 116 environmental variables, gridded to a spatial resolution of 182 

100×100 m (Table 1) as predictors. All DMs were evaluated by use of an independently collected data set (see 183 

Horvath et al., 2019 for details). A seamless vegetation map (i.e. with one predicted VT for each pixel with no 184 

overlap and no gaps) was obtained from the stack of 31 probability surfaces by assigning to each grid cell the VT 185 

with the highest predicted probability of occurrence within that cell (Ferrier et al., 2002). Pixels that were within 186 

each 1-km2 plot with majority of their area were used for further calculations (Fig. S2). 187 

2.5 Conversion to PFT profiles 188 

Harmonisation of the various vegetation classification systems was accomplished by a conversion scheme that 189 

represented each grid cell (RS and DM) or polygon (AR) in each of the 20 plots with one out of the six PFTs 190 

recognised by DGVM (Table 2 and Fig. S2). The scheme was obtained by expert judgements and solicited by a 191 

consensus process which involved ecologists participating in the AR18x18 survey as well as scientists working 192 

with RS and DGVMs.  193 

We used the conversion scheme of Table 2 to generate wall-to-wall PFT maps from the original RS, DM and AR 194 

datasets (Table 1) by assigning one PFT to each 30×30 m grid cell, 100×100 m grid cell or VT polygon, 195 

respectively. PFT profiles for each plot at the same thematic resolution as for DGVM were obtained as the vector 196 

with fractions of grid cells or polygons assigned to each of the six PFTs. ‘EXCL’ classes not represented in DGVM 197 

(cf. Table 2) were left out in order to minimise effects of land use, which could otherwise have brought about 198 

differences in PFT profiles among the compared methods. PFT profiles were obtained for each combination of 199 

method and plot. Aggregated PFT profiles were obtained by averaging the 20 PFT profiles obtained for each 200 

method.  201 

 202 

Table 2– Conversion scheme for harmonizing vegetation and land cover types across methods (RS, DM and AR) into 203 
plant functional types (PFTs). DGVM – dynamic global vegetation model, RS – remote sensing, DM – distribution 204 
model. PFT – plant functional type, VT – vegetation type. 205 

DGVM RS DM AR 

PFT code 
plant functional 

type 

vegetation / land cover type 

– remote sensing 

vegetation type – distribution 

model 

vegetation type – area frame 

survey 
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BG Bare ground  

Exposed alpine ridges, scree 

and rock complex Frozen ground, leeward Frozen ground, leeward 

  Frozen ground, ridge Frozen ground, ridge 

  Boulder field 

Sand dunes and gravel 

beaches 

  Exposed bedrock Pioneer alluvial vegetation 

   Barren land 

   Boulder field 

    Exposed bedrock 

Boreal 

NET  

Boreal needleleaf 

evergreen tree  

Coniferous forest – dense 

canopy layer 

Lichen and heather pine 

forest 

Lichen and heather pine 

forest 

Coniferous forest and mixed 

forest - open canopy Bilberry pine forest Bilberry pine forest 

Lichen rich pine forest 

Lichen & heather spruce 

forest Meadow pine forest 

  Bilberry spruce forest Pine forest on lime soils 

  Meadow spruce forest 

Lichen & heather spruce 

forest 

  Damp forest Bilberry spruce forest 

  Bog forest Meadow spruce forest 

   Damp forest 

    Bog forest 

Temperate 

BDT  

Temperate 

broadleaf 

deciduous tree  

Low herb forest and 

broadleaved deciduous 

forest 

Poor / Rich broadleaf 

deciduous forest 

Poor broadleaf deciduous 

forest 

    

Rich broadleaf deciduous 

forest 

Boreal 

BDT  

Boreal broadleaf 

deciduous tree  

Tall herb - tall fern 

deciduous forest 

Lichen and heather birch 

forest 

Lichen and heather birch 

forest 

Bilberry- low fern birch 

forest Bilberry birch forest Bilberry birch forest 

Crowberry birch forest Meadow birch forest Meadow birch forest 

Lichen-rich birch forest Alder forest Birch forest on lime soils 

  Pasture land forest Alder forest 

  Poor / rich swamp forest Pasture land forest 

   Poor swamp forest 

    Rich swamp forest 

Boreal 

BDS  

Boreal broadleaf 

deciduous shrub  

Heather-rich alpine ridge 

vegetation Lichen heath Lichen heath 

Lichen-rich heathland Mountain avens heath Mountain avens heath 

Heather- and grass-rich early 

snow patch communities 

Dwarf shrub / Alpine calluna 

heath Dwarf shrub heath 

Fresh heather and dwarf-

shrub communities (u/l) Alpine damp heath Alpine calluna heath 

  

Coastal heath / Coastal 

calluna heath Alpine damp heath 

  Damp heath Flood-plain shrubs 

   Coastal heath 

   Coastal calluna heath 

   Damp heath 

    Crags and thicket 

C3 C3 grass 

Graminoid alpine ridge 

vegetation 

Moss snowbed / Sedge and 

grass snowbed Moss snowbed 

Herb-rich meadows (up-

/lowland) Dry grass heath Sedge and grass snowbed 

Grass and dwarf willow 

snow-patch vegetation Low herb / forb meadow Dry grass heath 

   Low herb meadow 

   Low forb meadow 

    Moist and shore meadows 

EXCL Excluded 

Ombrotrophic bog and low-

grown swamp vegetation 

Bog / Mud-bottom fen and 

bog Bog 

Tall-grown swamp 

vegetation Deer-grass fen / fen Deer-grass fen 
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Wet mires, sedge swamps 

and reed beds Sedge marsh Fen 

Glacier, snow and wet snow-

patch vegetation Pastures Mud-bottom fen and bog 

Water  Sedge marsh 

Agricultural areas  Cultivated land 

Cities and built-up areas  Pastures 

Unclassified and shadow 

affected areas,   Built-up areas 

   Scattered housing 

   Artificial impediment 

   Glaciers and perpetual snow 

   Sea and ocean 

    Water bodies (fresh) 

 206 

2.6 Comparison of PFT profiles 207 

Aggregated PFT profiles obtained by each of the DGVM, RS and DM methods were compared with the aggregated 208 

PFT profile of the AR reference dataset by a chi-square test (Zuur et al., 2007).  209 

For each plot, the dissimilarity between PFTs profiles obtained by each of the DGVM, RS and DM methods and 210 

the PFT profile of the AR dataset was calculated by using proportional dissimilarity (Czekanowski, 1909):  211 

dhj=∑|yhji−y0ji|/∑(yhji+y0ji)=1−2∑min(yhji,y0ji)/∑(yhji+y0ji) 212 

where yhji refers to the specific element in a PFT profile vector (the fraction occupied by the PFT in question) given 213 

by method h (DGVM, RS or DM; h = 1, ..., 3; the value h = 0 refers to the AR reference dataset), j refers to 214 

sampling unit (j = 1, ..., 20) and i refers to PFT (i = 1, ..., 6). Proportional dissimilarity is the Manhattan measure 215 

standardized by division by the sum of the pairwise sums of variable values (here PFTs). Since the values of each 216 

PFT profile sums to one, the index reduces to 217 

dhj=1−∑min(yhji,y0ji) 218 

The proportional dissimilarity index is appropriate for incidence data like PFT abundances, i.e. variables that take 219 

zero or positive values. The index reaches a maximum value of 1 when two objects have no common presences 220 

(here, PFTs present in both compared objects) and ignore joint absences (zeros). We compared pairwise 221 

differences between the proportional dissimilarity values among methods, using a Wilcoxon-Mann-Whitney 222 

paired samples test.  223 

All raster and vector operations related to DM, RS and AR were carried out in R (version 3.4.3) (R Core Team, 224 

2019) using packages “rgdal” (Rowlingson, 2019), “raster” (Hijmans, 2019) and “sp” (Pebesma and Bivand, 225 

2005), while graphics are produced using the “ggplot2” package (Wickham, 2016). Statistical analyses were 226 

carried out in R (version 3.4.3), using the “vegan” package (Oksanen et al., 2019). All maps were produced in 227 

QGIS (QGIS Development Team, 2019).  228 

3 Results 229 

The aggregated PFT profiles for the RS and DM datasets did not differ significantly from those of the reference 230 

AR dataset according to the chi-square test, while a significant difference was found for the DGVM profiles (Table 231 

3). While the proportion of pixels attributed to the PFT ‘boreal NET’ by the RS and DM methods underestimated 232 

AR values by 3.0 and 2.8 percentage points, respectively, DGVM overestimated the proportion of boreal NET by 233 
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20.4 percentage points compared to the AR reference. Also, unproductive areas (BG) were overrepresented by 234 

DGVM (by 16.6 percentage points), less so by RS (4.0 percentage points), while this PFT was slightly 235 

underrepresented by DM (by 5.0 percentage points). Discrepancies were also observed for the cover of the C3 236 

PFT, which was overestimated by RS and DM (by 7.2 and 2.9 percentage points, respectively) and underestimated 237 

by 3.0 percentage points by DGVM. Furthermore, DGVM overestimated BG and temperate BDT cover on the 238 

expense of boreal BDT and boreal BDS.  239 

Table 3 - PFT profiles (columns) aggregated across all 20 plots for the three methods compared in this study and the 240 
AR reference dataset. Results of comparisons of aggregated PFT profiles for each of the three methods with the 241 
reference are also given. DGVM – dynamic global vegetation model, RS – remote sensing, DM – distribution model, AR 242 
– reference dataset. BG – bare ground, boreal NET – boreal needleleaf evergreen trees, temperate BDT – temperate 243 
broadleaf deciduous trees, boreal BDT – boreal broadleaf deciduous trees; boreal BDS - boreal broadleaf deciduous 244 
shrub, C3 – C3 grasses.  245 

PFT Compared methods Reference 

DGVM (%) RS (%) DM (%) AR (%) 

BG 29.5 17.0 7.9 12.9 

Boreal NET 57.2 34.0 33.8 36.8 

Temperate BDT  5.6 2.0 0.2 0.5 

Boreal BDT 3.1 12.5 17.2 15.5 

Boreal BDS  4.1 23.8 34.5 30.8 

C3 0.5 10.7 6.4 3.5 

Chi-square test χ2= 45.98, df = 5, 

p < 0.05 

χ2= 6.36, df = 5,  

p = 0.27 

χ2= 2.61, df = 5, 

 p = 0.75 
 

 246 

In accordance with results from comparisons between aggregated PFT profiles obtained by the three methods and 247 

those obtained for the reference dataset, DGVM profiles for individual plots were significantly more dissimilar to 248 

the AR reference than were RS and DM profiles (Fig. 2). While RS had the lowest median proportional 249 

dissimilarity with the AR reference (0.19, compared to 0.26 for DM and 0.41 for DGVM), DM had the lowest 250 

spread of dissimilarity values, measured as interquartile difference (0.12, compared to 0.19 for RS and 0.72 for 251 

DGVM), among the three methods (Fig. 3). While no dissimilarity value for RS was above 0.50, two sampling 252 

units (4, 19) acted as strong outliers in the distribution of DM values (cf. Fig. 2 and Fig. 3). A comparison of 253 

proportional dissimilarity between pairs of methods revealed significant differences between DGVM profiles and 254 

those obtained by RS and DM (Wilcoxon rank-sum tests: W = 111, p = 0.0167; and W = 88, p = 0.0026, 255 

respectively), while RS and DM profiles were not significantly different from each other (Wilcoxon rank-sum test: 256 

W = 161, p = 0.3013). 257 
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 258 

Figure 2 - Proportional dissimilarity values between PFT profiles for each combination of 20 plots and one of the three 259 
methods compared in this study, and the corresponding plot in the AR reference dataset. The thick horizontal line, the 260 
box and the whiskers represent the median, the interquartile difference and the range of values for each method. 261 

Visual inspection of spatial patterns of PFT profile characteristics across the 20 plots suggests that the best 262 

agreement among the methods was obtained for the southeastern part of the study area, dominated by the boreal 263 

NET (Fig. 3). Compared to the AR reference dataset, PFT profiles obtained by DGVM were strongly biased: in 264 

the north (plots 17 and 18) towards boreal NET on the cost of boreal BDT, near the west coast (1, 2, 5 and 15) 265 

towards boreal NET on the cost of boreal BDS, and in southern coastal areas (3, 6 and 12) towards temperate BDT 266 

instead of boreal NET. In sampling units 13 and 16 DGVM failed to establish vegetation (predicting bare ground) 267 

where AR reported boreal BDS. RS represented the PFT profiles of the AR reference well in most cases but tended 268 

to overestimate the frequency of dominance by C3 grasses at several locations (plots 3, 16 and 20). While DM 269 

showed no general spatial pattern of PFT profile deviations from the reference dataset, PFT profiles of plots 4 and 270 

19 obtained by DM had almost no similarity to the corresponding profiles of the AR reference dataset: C3 grasses 271 

and boreal BDT were predicted instead of bare ground and boreal NET, respectively. 272 
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 273 

Figure 3 – PFT profiles for each of the 20 plots for the three methods compared in this study and the AR reference 274 
dataset. The columns in each cluster of four bar-charts represent, from left to right, the methods dynamic global 275 
vegetation model (DGVM), remote sensing (RS) and distribution model (DM), with the AR reference dataset to the 276 
right. 277 

4 Sensitivity experiments and model improvement 278 

4.1 Methods  279 

We used the results of PFT profile comparisons between DGVM and the AR reference and the results obtained 280 

for the DM dataset as a starting point for exploring possible relationships between the poor performance of DGVM 281 

and DGVM parameter settings. We first identified the three most abundant PFTs (i.e. boreal NET, boreal BDT 282 

and boreal BDS) in our set of plots (Table S4). Thereafter, we identified the major VTs that were translated into 283 

these PFTs to be pine forest, birch forest and dwarf shrub heath, respectively (Table 4). We selected three of the 284 

most important environmental predictors for the distribution of each of these VTs, as identified by DMs (see 285 

Horvath et al. 2019)  for sensitivity experiments of DGVM parameter settings (Table 4): snow water equivalent in 286 
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October (swe_10), minimum temperature in May (tmin_5) and precipitation seasonality (bioclim_15). We used 287 

frequency-of-presence plots (i.e. graphs showing variation in the abundance of the VT as a function of an 288 

environmental variable) to identify threshold values for presence of the three VTs and implemented these threshold 289 

values into DGVM as new limits for establishment of the three PFTs as shown in Table 4 (also see Fig S11).  290 

We explored the extent to which revised parameter settings improved the performance of DGVM on the subset of 291 

six plots (i.e. numbers 1, 2, 5, 15, 17 and 18) in which the boreal NEB was most strongly overrepresented compared 292 

to the AR reference dataset. Sensitivity experiments were carried out by a stepwise process, in each step adding 293 

one new threshold, specific for the three PFTs at the same time. Parameters were added in the following order: 294 

swe_10, tmin_5 and bioclim_15 (only relevant for the boreal NET). Only the results of DGVMs with all three 295 

parameters changed are reported here (results of the other two experiments are summarised in Table S12). For 296 

example, in the three sensitivity model runs (i–iii), (i) the requirement for establishment of boreal NET was set to 297 

swe_10 > 150 mm; in (ii) and (iii) the additional demands tmin_5 > –5 °C and bioclim_15 < 50, respectively, were 298 

enforced.  299 

Table 4 – New parameter thresholds for establishment of the three PFTs explored in DGVM sensitivity experiments. 300 
Variables for which parameter settings were explored were: swe_10 – snow water equivalent in October given in mm; 301 
tmin_5 – minimum temperature in May (°C); bioclim_15 – precipitation seasonality (unitless index representing annual 302 
trends in precipitation). 303 

VT PFT SWE_1

0 (mm) 

Tmin_5 

(°C) 

Bioclim

_15 

2ef – Dwarf shrub heath / Alpine calluna heath Boreal broadleaf deciduous shrub > 380 > -10 – 

4a – Lichen and heather birch forest Boreal broadleaf deciduous tree > 180 > -7.5 – 

6a – Lichen and heather pine forest Boreal needleleaf evergreen tree > 150 > -5 < 50 

 304 

4.2 Results  305 

Adding new parameter thresholds in accordance with Table 4 made PFT profiles identified by DGVM more similar 306 

to those of the AR reference dataset for four out of the six plots in the experimental subset (1, 2, 5 and 15): in plots 307 

1 and 15, Boreal NET was correctly replaced by boreal BDS; in plots 2 and 5 boreal NET was replaced by boreal 308 

BDT, BDS and temperate BDT. Addition of new parameter thresholds also reduced the modelled abundance of 309 

boreal NET in plots 17 and 18, but DGVM failed to populate these plots with another PFT (Fig. 4). The improved 310 

performance of DGVM on the experimental sampling units was mainly due to the implementation of the threshold 311 

for bioclim_15, while the changes made for swe_10 and tmin_5 had little impact on the results (Table S12).  312 
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 313 

Figure 4 – PFT profiles for the subset of six plots subjected to sensitivity experiments with new DGVM establishment 314 
thresholds. The columns in each cluster of three bar-charts represent, from left to right, dynamic global vegetation 315 
model (DGVM) with original (default) parameter settings, DGVM with revised parameter settings, and the AR 316 
reference dataset. For further details, see Table S12. 317 

5 Discussion  318 

5.1 Comparison of PFT profiles  319 

The maps of PFT distributions generated by DM and RS are generally similar (Fig. S8) across most of our study 320 

area. This indicates that output from DM, which is rarely used for evaluating PFT distributions from DGVMs, can 321 

be used for this purpose in addition to the commonly used RS-based datasets. There are, however, some differences 322 

between results obtained by the two methods near the northern Norwegian coast and in the mountain areas of 323 

western Norway which will be discussed below.  324 

We recognise six possible explanations for the differences in PFT profiles obtained by DGVM, RS and DM for 325 

the 20 plots (see Table 5), related to the following issues: (i) the conversion scheme (ref. Table 2); (ii) what is 326 
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actually modelled by DGVM, RS and DM, e.g. in terms of potential vs actual vegetation; (iii) the performance of 327 

individual DM models; (iv) transforming predictions from single DMs into a seamless vegetation map, i.e. that 328 

assigns one VT to each pixel; (v) DGVM performance; and (vi) missing PFTs in DGVM. 329 

5.1.1 The conversion scheme 330 

The conversion schemes used to reclassify vegetation and land cover classes into PFTs have been reported as a 331 

possible attributor to erroneous PFT distributions (Hartley et al., 2017). While we use a simple conversion scheme 332 

which assigns each land cover type/vegetation type to one and only one PFT (Dallmeyer et al., 2019), more 333 

complex conversion schemes exist, by which each land cover class is translated into a multi-PFT composition that 334 

co-occur within a grid cell (Bonan et al., 2002; Li et al., 2016; Poulter et al., 2011; Poulter et al., 2015). Our 335 

approach may be advantageous when the classes to be converted are homogeneous, in the sense that one PFT is 336 

clearly dominating in the type, and in the sense that the range of variation within the class in PFTs is negligible, 337 

such as is the case for 90% of the DM- and RS-classes in our study. Our simple scheme may, on the other hand, 338 

be a source of bias when quantitatively important VTs are ambiguous in one way or the other, or, more commonly, 339 

in both ways at the same time. The set of VTs used in our study includes several relevant examples: VTs that may 340 

include a wide spectre of tree-dominant types; the VT ‘1a/1b - Moss snowbed / Sedge and grass snowbed’ which 341 

covers a range of variation in the relative abundance of graminoids and, hence, shows affinity to C3 as well as to 342 

BG; and the VT ‘8a - Damp forest’, which is usually dominated by the evergreen Scots pine and converted into 343 

boreal NET, but that in some instances (e.g. after clear-cutting) is dominated by deciduous trees like Betula spp. 344 

and should then be converted into boreal BDT (Bryn et al., 2018). However, a close inspection of DM shows that 345 

our method reproduces similar PFT profiles as the reference dataset for all plots except two out of 20 plots (the 346 

two outliers on Fig. 2, represented by plots 4 and 19 in Fig. 3). 347 

In our case, a more complicated conversion scheme is likely to be compensated for by the sub-grid complexity 348 

introduced in the process by which PFT profiles are obtained. Rather than estimating a PFT profile for the 1-km2 349 

plot directly, i.e. in one operation as in DGVM, the RS-based classes and VTs are first converted into PFTs in their 350 

original resolution, and then subsequently subjected to aggregation to obtain the PFT profiles. This results in a 351 

sub-grid PFT heterogeneity that could otherwise be implemented by using a more complex conversion scheme. 352 

5.1.2 What is modelled by DGVM, RS and DM 353 

The methods used in this study produce different representations of the vegetated land surface in terms of actual 354 

or potential natural vegetation (Table 5). In order to model future vegetation changes and feedbacks, functional 355 

type-based models like DGVM implicitly address the processes that control the distribution of vegetation (Bonan 356 

et al., 2003; Song et al., 2013). Simulating natural vegetation processes under a given climatic equilibrium scenario 357 

(at any given time), DGVM produces a model of potential natural vegetation (ex. Bohn et al., 2000, Hengl et al. 358 

2018). RS-based classifications, on the other hand, describe the land surface at a specific time-point or changes 359 

through time (e.g. Arctic greening and browning) (Myers-Smith et al., 2020) and, accordingly, portrays actual 360 

vegetation as influenced by previous and ongoing land use (Bryn et al., 2013). Depending on the modelling setup, 361 

DM may pragmatically describe the current ecological envelope of a target or aim at revealing the proximate 362 

causes for its distribution (Ferrier and Guisan, 2006), thus modelling either actual or potential natural vegetation, 363 

depending on the input data used for modelling (Hemsing and Bryn, 2012; Hengl et al., 2018). 364 
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In this study, we carefully restricted our attention to PFTs that represent natural vegetation, excluding VTs with 365 

strong anthropogenic influences. This was done for all methods and the AR reference. Nevertheless, differences 366 

with respect to what is actually modelled by the different methods, potential vegetation by DGVM and actual 367 

vegetation by RS and DM, may have contributed to the observed among-model differences in PFT profiles.  368 

5.1.3 DM performance  369 

While the performance of the DM method is overall good, two plots stand out by PFT profiles that deviate strongly 370 

from the AR reference (Fig. 2). For plot 4, the discrepancy is due to VT “1a/1b - Moss snowbed / Sedge and grass 371 

snowbed”, which is represented by one of the best performing among the 31 DMs. For this VT, conversion scheme 372 

bias is a more likely reason for the deviant PFT profile. For plot 19, boreal BDT is modelled because the VT 373 

predicted by DM is “4a – Lichen and heather birch forest”. The fact that the DM for this VT is among the inferior 374 

DMs (see the ranking of individual models presented in Horvath et al. (2019)) makes this explanation more likely 375 

in this case. 376 

5.1.4 Transformation of single-DM predictions into a vegetation map 377 

The performance of DM on the particular plots may also be influenced by the method chosen for transforming 378 

predictions from one DM for each VT into a seamless vegetation map. Assigning to each grid cell the VT with the 379 

highest predicted probability of presence in that cell, which is a commonly used method for this purpose (Ferrier 380 

and Guisan, 2006), favours VTs represented by good DMs. This is brought about by good DMs having a 381 

distribution of predictions that is more spread out (with larger predictions for the pixels identified as the most 382 

favourable cells) than poor DMs (Halvorsen, 2012). Alternative methods for this purpose should be tested in the 383 

context of DGVM evaluating. 384 

To avoid uncertainties associated with conversion between type systems and perhaps even further improve the 385 

performance of DM, we recommend exploring the option of using PFTs directly as targets in DM. Direct modelling 386 

of PFTs rather than taking the detour via VT models may reduce the number of environment predictors required 387 

(116 layers used in Horvath et al. (2019)) in addition to circumventing the complicated process of modelling 388 

thematically narrow vegetation types (VTs). Another potential advantage of modelling PFT targets directly is that 389 

the model parameters will then be PFT specific, and not in need of being converted (from VT into PFT).  390 

To further reduce the biases and uncertainties of DM-based PFT profiles, we recommend exploring the use of 391 

variables derived from RS directly as predictors in DM. Previous studies have shown that RS -based predictors 392 

may enhance DM performance on different scales: on vegetation-type level (Álvarez‐Martínez et al., 2018); on 393 

the habitat-type level (Mücher et al., 2009); and on the PFT level (Assal et al., 2015). Further suggestions for 394 

improvement of the methods used in this study are found in Table 5. 395 

  396 
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Table 5 – A summary of the key properties of the three methods compared in this study. DGVM – dynamic global 397 
vegetation model, RS – remote sensing, DM – distribution model, AR – reference dataset. 398 

Key property Method 

DGVM RS DM 

Modelled 

property 

Process-based vegetation model 

– using on a priori 

parameterizations 

Classification based on satellite 

imagery (spectral reflectance) 

Statistically based model of a 

target (response) and the 

environment (predictors) 

Main purpose Feeding vegetation changes into 

ESM for further quantification 

of feedbacks between land 

surface and the atmosphere 

Mapping of land cover or land 

use for descriptive purposes, 

management or monitoring  

Predicting the spatial 

distribution of a target and/or to 

summarise its relationship with 

the environment 

Material Climate forcing, PFT 

parameters, host model  

Satellite imagery in different 

bands 

Presence-absence training data, 

environmental predictors  

Spatial extent Global to regional  

(Single-cell tests) 

Global to local Regional to local 

Modelling 

outcome 

Potential vegetation Actual vegetation Potential or actual vegetation, 

depending on the training data 

Advantages – Addresses the processes 

– Feedback loops with other 

Earth system components can be 

included 

– Continuous temporal scale of 

prediction into the future 

– Observation-based 

– High spatial resolution  

– Good temporal coverage 

– Opens for use of proxies for 

important predictors  

– May provide insight into 

drivers of distributions 

Disadvantages – Low performance (e.g. 

compared with RS and DM) as 

long as the underlying processes 

are not fully understood and 

properly parameterised 

– Parameter intensive 

 

– Data are sensitive to cloud 

cover and shaded areas 

– Atmospheric correction 

needed 

– Provides limited insight to the 

processes that regulate the 

distributions of land cover types 

– No feedback included 

– Provides limited insight to the 

processes that regulate the 

distributions of targets 

– Temporally static (one time-

point addressed by each model) 

- No feedback included 

 

Possible 

interactions with 

the other 

methods  

– May improve DM by pointing 

at relevant predictor variables 

– May improve RS by 

identifying threshold values 

– May improve DGVM by 

improved parameterization 

(based on RS indices) 

– May improve DM by 

providing predictor variables, 

directly or as indices (NDVI, 

PAR etc) 

– May improve parameterization 

and envelope discrimination of 

DGVM  

– May improve RS by targeting 

specific PFTs that have similar 

reflectance, but different 

ecology 

 399 

5.1.5 DGVM performance 400 

Our results show that, for many plots, the PFT profiles simulated by DGVM differs from those of the reference 401 

dataset. According to our results, DGVM overpredicts the coverage of bare ground and boreal NET and 402 

underpredicts the cover of C3 grasses, boreal BDT and boreal BDS. While the AR reference dataset shows that 403 

the northern plots (specifically plots 17 and 18) are covered by mountain birch forest and shrubs (boreal BDT and 404 

boreal BDS), DGVM predicts dominance of boreal NET in these plots. Overestimation of boreal NET has also 405 

been reported by Hickler et al. (2012) for large parts of Scandinavia, who attributed this to the lacking 406 

representation of shade tolerance classes in DGVM models. A similar pattern is seen in our results: the PFT profiles 407 

obtained by DGVM during the 400-year spin-up (Fig. S10) show no sign of boreal BDT in the early phases of 408 

model prediction, as expected of an early successional forest in Norway.  409 

The western parts of Scandinavia are dominated by shade intolerant birch forests (Bryn et al., 2018) which 410 

gradually give way to coniferous forests along the oceanity-continentality gradient towards east (Wielgolaski, 411 

2005). The overprediction of DGVM in the west indicates that the DGVM does not only lack shade-intolerant 412 

PFTs, but also that improved representation of winter-time respiration loss and soil frost-induced drought stress of 413 
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boreal NET in spring in regions with higher temperature fluctuations around 0C during winter time compared to 414 

the more continental regions (see e.g. Oksanen, 1995; Sevanto et al., 2006) are needed. 415 

Our results further suggest that the DGVM underrepresents grasses and shrubs compared to the reference dataset. 416 

This may be explained by the built-in constraints in the light competition scheme of DGVM. For example Oleson 417 

et al. (2013) mention that regardless of grass and shrub productivity, trees will cover up to 95% of the land unit 418 

when their productivity permits. The priority given to a PFT in DGVM decreases with the stature of the organisms 419 

in question because of the increasing probability that a lower layer is covered by another layer. The degree of 420 

underrepresentation is therefore expected to increase from shrubs to grasses. Accordingly, DGVM predict 421 

dominance by trees in the most productive regions, by grasses in less productive regions, and by shrubs in the least 422 

productive non-desert regions (Zeng et al., 2008). The underrepresentation of C3 grasses by DGVM across the 20 423 

study plots in our study accords with the results of Zhu et al. (2018), who found that C3 grasses are underpredicted 424 

on a global level in an earlier version of DGVM.  425 

Inappropriate parameterisation of shrubs may be a reason why the DGVM underestimates boreal BDS in many of 426 

the coastal plots (1, 2, 5, 15) (Table S6). The implementation of shrubs as a new PFT in an earlier version of 427 

DGVM (CLM3-DGVM) by Zeng et al. (2008), which is parameterised for representation of taller shrubs with 428 

heights between 0.1 and 0.5 m, may not suit the majority of dwarf shrubs (of genera Calluna, Betula, Empetrum) 429 

that abundantly occurs in Norwegian ecosystems. To this, Castillo et al. (2012) add that the sparse shrub and grass 430 

vegetation cover simulated by DGVM in the tundra regions may be caused by the soil moisture bias inherited from 431 

the host land model CLM4 (Lawrence et al., 2011). Another reason for DGVM’s underestimation of boreal BDS 432 

in coastal areas could be the 4000-yr tradition of coastal heath management in Norway (Bryn et al., 2010) which 433 

causes a large discrepancy between the actual vegetation modelled by RS, DM and AR and the potential natural 434 

vegetation simulated by DGVM under present-day climatic conditions (e.g.  Bohn et al., 2000, Hengl et al. 2018). 435 

We therefore argue that more sensitivity studies of PFT-specific parameters for height, survival, establishment 436 

etc., across all PFTs, are needed. 437 

Despite the shortcomings discussed above, DGVM performs reasonably well for some PFTs. One example is the 438 

temperate BDT, which is correctly predicted by the model to be restricted to the southern coastal plots (Bohn et 439 

al., 2000; Moen, 1999). This finding suggests that some climatically driven PFTs (i.e. temperate BDT) are well 440 

implemented by the existing parameters in the current DGVM.  441 

5.1.6 Missing PFTs 442 

DGVM coerces the World’s immense variation in plant species composition (vegetation) into a very limited 443 

number of predefined PFTs, compared to classification schemes used by the other methods in this study (RS, DM 444 

and AR; see Table 2) and by other approaches to systematisation of ecodiversity (e.g. Dinerstein et al., 2017; Keith 445 

et al., 2020). In particular, the number of high-latitude specific PFTs is insufficient to realistically represent the 446 

biodiversity of these ecoregions, as pointed out by Bjordal (2018) and Vowles & Björk (2017). Comparisons 447 

between PFT profiles obtained by DGVM and profiles obtained by DM may suggest specific vegetation types that 448 

need to be better represented in DGVMs, either by improving an existing PFT or by adding a new PFT (e.g. dwarf 449 

shrub vs. tall shrub; moss dominated snow-beds, wetlands, lichens). In our study, the PFT profile of DGVM is 450 

represented by the six boreal PFTs, whereas the original data for RS, DM and AR include an average of 17% (ref. 451 

Table S4) of the total area which cannot be represented by these six PFTs (classes for “Excluded” PFT category 452 
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ref. Table 2). This reminds us of the missing PFTs in the classification scheme of the DGVM, but it also points to 453 

the problem that certain ecosystems in our study area do not have a real representation in the PFT schemes of 454 

DGVM. This is exemplified by wetlands; important ecosystems that are still not represented in many of the current 455 

DGVMs. This is not only problematic from the perspective of land surface energy balance (Wullschleger et al., 456 

2014), but also brings issues of carbon storage and cycling, and other interactions between the land surface and 457 

the atmosphere (Bjordal, 2018). 458 

Our results demonstrate a great potential for increasing the thematic resolution of DGVMs in terms of developing 459 

and parameterizing new specific PFTs to be representative of the high-latitude and high-altitude habitats, as 460 

exemplified by Druel et al. (2017) and also deriving parameters from observations, DMs or RS products (Bjordal, 461 

2018; Wullschleger et al., 2014), specific for the high latitudes (Druel et al., 2017). 462 

5.2 Sensitivity tests 463 

Adjusting DGVM parameters so that they correspond better with environmental drivers known to be functional in 464 

the high-latitude PFTs has been suggested as a measure to improve the performance of DGVM in these parts of 465 

the World (Wullschleger et al., 2014). Our simple sensitivity experiments demonstrate that DM results can inform 466 

parameterisation, in DGVM, of the range along variables used in DM where a PFT occurs. Most notably, we 467 

recognized three important environmental drivers for the distribution of high-latitude PFTs not yet represented 468 

well in DGVM. This adds to environmental thresholds for establishment, survival or mortality of a PFT previously 469 

used in DGVMs to restrict the predicted distribution of PFTs to realistic geographic regions (Miller and Smith, 470 

2012). 471 

Adjustment of the climatic thresholds for the establishment of the high-latitude PFTs (i.e. boreal NET, BDT, BDS) 472 

seemingly bring the PFT profiles of DGVM closer to those of the reference data (Fig. 4). In particular, the 473 

sensitivity experiments with DGVM highlight the importance of precipitation seasonality (i.e. bioclim_15) as a 474 

critical limiting factor for the establishment of boreal NET. While some studies have emphasized the importance 475 

of seasonal distribution of rainfall on vegetation in the semi-arid areas (Zhang et al., 2018), the importance of this 476 

factor for high-altitude areas is less well studied (Oksanen, 1995; Sevanto et al., 2006). Better representation of 477 

the processes related to the response of boreal NET to water availability, especially spring-drought in DGVM, also 478 

warrants further investigation. From our results for Sites 17 and 18, we notice that adjusting the climatic thresholds 479 

for growth of boreal NET does not automatically make other PFTs grow. Boreal BDT and BDS can establish at 480 

both sites, but their growth rates are too slow to make them occupy a large area at these sites. This prevents 481 

development of similarity with the PFT profiles of AR reference dataset (Fig. 4) and implies that other 482 

environmental conditions, e.g., nitrogen availability, might play a more important role in limiting the growth of 483 

BDT and BDS in CLM4.5BGCDV. The biases of DGVMs in simulating boreal broadleaf deciduous tree and shrub 484 

has been widely noticed in other studies (Castillo et al., 2012), and should be investigated further. 485 

While going into further details of which additional PFTs should be included in DGVMs and how these and other 486 

PFTs should be parameterised is beyond the scope of the present paper, we emphasize the potential of using DM 487 

for improving the parameters of DGVMs. More specifically, we propose more intensive exploration of DM as a 488 

tool for identification of potential environmental drivers for the high-latitude PFTs, which may enhance the 489 

performance of DGVMs in high-latitude ecoregions. 490 
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6 Conclusions 491 

This study emphasizes the potential of using distribution models (DM) for representing present-day vegetation in 492 

evaluations of plant functional type (PFT) distributions simulated by dynamic global vegetation models (DGVMs) 493 

and for improvement of specific PFT parameters within DGVMs. By identification of the main differences among 494 

PFT profiles obtained by three methods (DGVM, RS and DM) in selected high-latitude plots distributed across 495 

climatic gradients in Norway, we show that PFT profiles derived from DM and RS are in the same range of 496 

reliability, judged by resemblance to a reference dataset (AR). Hence, we suggest that DM results can be used as 497 

a complementary evaluation dataset to benchmark the present-day DGVMs. This approach is recommended when 498 

high-quality RS products are not available.  499 

Comparing the twenty PFT profiles obtained by DGVM with those obtained by AR shows a large overestimation 500 

by DGVM of boreal needleleaf evergreen trees (boreal NET) and bare ground at the expense of boreal broadleaf 501 

deciduous trees and shrubs. This is attributed to missing processes and PFT parameterizations of high-latitude 502 

PFTs in DGVM. We use DM results to identify three new PFT-specific environmental parameters which, in a 503 

series of sensitivity experiments, improve the distribution of boreal NET predicted by DGVM. The new PFT-504 

specific thresholds for establishment decrease the bias of boreal NET in DGVM across four out of six plots. We 505 

argue that these new thresholds should be transferable to other DGVMs simulating high-latitude PFTs, and that 506 

our DM-based approach can be transferred to other ecosystems. 507 

Further development of DGVM, such as refining parameters for existing boreal PFTs and increasing the thematic 508 

resolution of PFTs for boreal areas, should be strongly encouraged to achieve a more realistic simulation of the 509 

distribution of actual vegetation by DGVM, to increase the reliability of future predictions, and the reliability of 510 

predicted vegetation feedbacks in the climate system.  511 

7 Acknowledgements 512 

NIBIO is acknowledged for providing access to the area-frame survey AR18X18 dataset. UNINET Sigma2 is 513 

acknowledged for providing computing facilities. Geir-Harald Strand is acknowledged for providing scientific 514 

assistance and Michal Torma for providing technical assistance.  515 

8 Data availability.  516 

The scripts used in this study are available in the GitHub repository https://github.com/geco-517 

nhm/DGVM_RS_DM_Norway. High-resolution DM-based and RS-based PFT maps are available from the 518 

authors on request (Fig. S8). DGVM outputs are provided in the Table S9, Table S12 and Fig. S10.  519 

9 Author contributions.  520 

All authors have contributed to conceptualizing the research idea. PH curated the data and was responsible for the 521 

distribution modelling and for compiling and analysing the data from all methods. HT carried out the modelling 522 

and sensitivity tests using the DGVM (CLM4.5-BGCDV). PH together with AB and RH were responsible for 523 

writing, with all authors contributing to reviewing and editing the paper. FS, AB, TKB and LMT acquired funding 524 

for this research. 525 

https://doi.org/10.5194/bg-2020-149
Preprint. Discussion started: 12 June 2020
c© Author(s) 2020. CC BY 4.0 License.



21 

 

10 Competing interests.  526 

The authors declare that they have no conflict of interest. 527 

11 Financial support.  528 

This work forms a contribution to LATICE (https://www.mn.uio.no/latice), which is a Strategic Research Initiative 529 

funded by the Faculty of Mathematics and Natural Sciences at the University of Oslo (UiO/GEO103920). It is also 530 

part of the EMERALD project (294948) funded by the Research Council of Norway.  531 

12 References: 532 

Alexander, R., and Millington, A. C.: Vegetation mapping: From Patch to Planet, Vegetation Mapping, John Wiley 533 

& Sons, LTD, Chichester, England, 321-331 pp., 2000. 534 

Álvarez‐Martínez, J. M., Jiménez‐Alfaro, B., Barquín, J., Ondiviela, B., Recio, M., Silió‐Calzada, A., and Juanes, 535 

J. A.: Modelling the area of occupancy of habitat types with remote sensing, Methods in Ecology and Evolution, 536 

9, 580-593, https://doi.org/10.1111/2041-210X.12925, 2018. 537 

Assal, T. J., Anderson, P. J., and Sibold, J.: Mapping forest functional type in a forest-shrubland ecotone using 538 

SPOT imagery and predictive habitat distribution modelling, Remote Sensing Letters, 6, 755-764, 539 

https://doi.org/10.1080/2150704x.2015.1072289, 2015. 540 

Bakkestuen, V., Erikstad, L., and Halvorsen, R.: Step-less models for regional environmental variation in Norway, 541 

J. Biogeogr., 35, 1906-1922, https://doi.org/10.1111/j.1365-2699.2008.01941.x, 2008. 542 

Bjordal, J.: Potential Implications of Lichen Cover for the Surface Energy Balance: Implementing Lichen as a new 543 

Plant Functional Type in the Community Land Model (CLM4.5), Master Thesis, Department of Geosciences, 544 

University of Oslo, Oslo, 99 pp., 2018. 545 

Bohn, U., Gollub, G., Hettwer, C., Neuhäuslova, Z., Raus, T., Schlüter, H., and Weber, H.: Map of the Natural 546 

Vegetation of Europe. Scale 1 : 2 500 000., Federal Agency for Nature Conservation, Münster, 2000. 547 

Bonan, G. B., Levis, S., Kergoat, L., and Oleson, K. W.: Landscapes as patches of plant functional types: An 548 

integrating concept for climate and ecosystem models, Global Biogeochemical Cycles, 16, 5-1-5-23, 549 

https://doi.org/10.1029/2000gb001360, 2002. 550 

Bonan, G. B., Levis, S., Sitch, S., Vertenstein, M., and Oleson, K. W.: A dynamic global vegetation model for use 551 

with climate models: concepts and description of simulated vegetation dynamics, Global Change Biol., 9, 1543-552 

1566, https://doi.org/10.1046/j.1365-2486.2003.00681.x, 2003. 553 

Bonan, G. B.: Forests, Climate, and Public Policy: A 500-Year Interdisciplinary Odyssey, Annual Review of 554 

Ecology, Evolution, and Systematics, 47, 97-121, https://doi.org/10.1146/annurev-ecolsys-121415-032359, 2016. 555 

Bryn, A., Dramstad, W., Fjellstad, W., and Hofmeister, F.: Rule-based GIS-modelling for management purposes: 556 

A case study from the islands of Froan, Sør-Trøndelag, mid-western Norway, Norsk Geografisk Tidsskrift, 64, 557 

175-184, https://doi.org/10.1080/00291951.2010.528224, 2010. 558 

Bryn, A., Dourojeanni, P., Hemsing, L. Ø., and O'Donnell, S.: A high-resolution GIS null model of potential forest 559 

expansion following land use changes in Norway, Scand. J. For. Res., 28, 81-98, 560 

https://doi.org/10.1080/02827581.2012.689005, 2013. 561 

Bryn, A., Strand, G.-H., Angeloff, M., and Rekdal, Y.: Land cover in Norway based on an area frame survey of 562 

vegetation types, Norsk Geografisk Tidsskrift, 72, 1-15, https://doi.org/10.1080/00291951.2018.1468356, 2018. 563 

Czekanowski, J.: Zur differentialdiagnose der Neandertalgruppe, Friedr. Vieweg & Sohn, 1909. 564 

https://doi.org/10.5194/bg-2020-149
Preprint. Discussion started: 12 June 2020
c© Author(s) 2020. CC BY 4.0 License.



22 

 

Dallmeyer, A., Claussen, M., and Brovkin, V.: Harmonising plant funtional type distributions for evaluating Earth 565 

System Models, Climate of the Past, 15, 335-366, https://doi.org/10.5194/cp-15-335-2019, 2019. 566 

Davin, E. L., and de Noblet-Ducoudré, N.: Climatic Impact of Global-Scale Deforestation: Radiative versus 567 

Nonradiative Processes, J. Clim., 23, 97-112, https://doi.org/10.1175/2009jcli3102.1, 2010. 568 

Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., Hahn, N., Palminteri, S., 569 

Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E. C., Jones, B., Barber, C. V., Hayes, R., Kormos, C., Martin, 570 

V., Crist, E., Sechrest, W., Price, L., Baillie, J. E. M., Weeden, D., Suckling, K., Davis, C., Sizer, N., Moore, R., 571 

Thau, D., Birch, T., Potapov, P., Turubanova, S., Tyukavina, A., de Souza, N., Pintea, L., Brito, J. C., Llewellyn, 572 

O. A., Miller, A. G., Patzelt, A., Ghazanfar, S. A., Timberlake, J., Kloser, H., Shennan-Farpon, Y., Kindt, R., 573 

Lilleso, J. B., van Breugel, P., Graudal, L., Voge, M., Al-Shammari, K. F., and Saleem, M.: An Ecoregion-Based 574 

Approach to Protecting Half the Terrestrial Realm, Bioscience, 67, 534-545, https://doi.org/10.1093/biosci/bix014, 575 

2017. 576 

Druel, A., Peylin, P., Krinner, G., Ciais, P., Viovy, N., Peregon, A., Bastrikov, V., Kosykh, N., and Mironycheva-577 

Tokareva, N.: Towards a more detailed representation of high-latitude vegetation in the global land surface model 578 

ORCHIDEE (ORC-HL-VEGv1.0), Geoscientific Model Development, 10, 4693-4722, 579 

https://doi.org/10.5194/gmd-10-4693-2017, 2017. 580 

Duveiller, G., Hooker, J., and Cescatti, A.: The mark of vegetation change on Earth’s surface energy balance, 581 

Nature Communications, 9, 679, https://doi.org/10.1038/s41467-017-02810-8, 2018. 582 

Dyrrdal, A. V., Stordal, F., and Lussana, C.: Evaluation of summer precipitation from EURO-CORDEX fine-scale 583 

RCM simulations over Norway, International Journal of Climatology, 38, 1661-1677, 584 

https://doi.org/10.1002/joc.5287, 2018. 585 

Eurostat: The Lucas Survey: European Statisticians Monitor Territory, Office for Official Publications of the 586 

European Communities, Luxembourg, 2003. 587 

Ferrier, S., Watson, G., Pearce, J., and Drielsma, M.: Extended statistical approaches to modelling spatial pattern 588 

in biodiversity in northeast New South Wales. I. Species-level modelling, Conserv. Biol., 11, 2275-2307, 589 

https://doi.org/10.1023/a:1021302930424, 2002. 590 

Ferrier, S., and Guisan, A.: Spatial modelling of biodiversity at the community level, J. Appl. Ecol., 43, 393-404, 591 

https://doi.org/10.1111/j.1365-2664.2006.01149.x, 2006. 592 

Fisher, R., McDowell, N., Purves, D., Moorcroft, P., Sitch, S., Cox, P., Huntingford, C., Meir, P., and Ian 593 

Woodward, F.: Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological 594 

scale limitations, New Phytol., 187, 666-681, https://doi.org/10.1111/j.1469-8137.2010.03340.x, 2010. 595 

Franklin, S. E., and Wulder, M. A.: Remote sensing methods in medium spatial resolution satellite data land cover 596 

classification of large areas, Progress in Physical Geography, 26, 173-205, 597 

https://doi.org/10.1191/0309133302pp332ra, 2002. 598 

Førland, E.: Precipitation and topography [in Norwegian with English summary], Klima, 79, 23–24, 1979. 599 

Gotangco Castillo, C. K., Levis, S., and Thornton, P.: Evaluation of the New CNDV Option of the Community 600 

Land Model: Effects of Dynamic Vegetation and Interactive Nitrogen on CLM4 Means and Variability, J. Clim., 601 

25, 3702-3714, https://doi.org/10.1175/jcli-d-11-00372.1, 2012. 602 

Halvorsen, R.: A gradient analytic perspective on distribution modelling, Sommerfeltia, 35, 1-165, 603 

https://doi.org/10.2478/v10208-011-0015-3, 2012. 604 

Hanssen-Bauer, I., Førland, E., Haddeland, I., Hisdal, H., Lawrence, D., Mayer, S., Nesje, A., Nilsen, J., Sandven, 605 

S., and Sandø, A.: Climate in Norway 2100–A knowledge base for climate adaptation, The Norwegian Centre for 606 

Climate Services, The Norwegian Centre for Climate Services, 2017. 607 

https://doi.org/10.5194/bg-2020-149
Preprint. Discussion started: 12 June 2020
c© Author(s) 2020. CC BY 4.0 License.



23 

 

Hartley, A. J., MacBean, N., Georgievski, G., and Bontemps, S.: Uncertainty in plant functional type distributions 608 

and its impact on land surface models, Remote Sens. Environ., 203, 71-89, 609 

https://doi.org/10.1016/j.rse.2017.07.037, 2017. 610 

Hemsing, L. Ø., and Bryn, A.: Three methods for modelling potential natural vegetation (PNV) compared: A 611 

methodological case study from south-central Norway, Norsk Geografisk Tidsskrift - Norwegian Journal of 612 

Geography, 66, 11-29, https://doi.org/10.1080/00291951.2011.644321, 2012. 613 

Henderson, E. B., Ohmann, J. L., Gregory, M. J., Roberts, H. M., and Zald, H.: Species distribution modelling for 614 

plant communities: stacked single species or multivariate modelling approaches?, Applied Vegetation Science, 17, 615 

516-527, https://doi.org/10.1111/avsc.12085 2014. 616 

Hengl, T., Walsh, M. G., Sanderman, J., Wheeler, I., Harrison, S. P., and Prentice, I. C.: Global mapping of 617 

potential natural vegetation: an assessment of machine learning algorithms for estimating land potential, PeerJ, 6, 618 

e5457, https://doi.org/10.7717/peerj.5457, 2018. 619 

Hickler, T., Vohland, K., Feehan, J., Miller, P. A., Smith, B., Costa, L., Giesecke, T., Fronzek, S., Carter, T. R., 620 

Cramer, W., Kuhn, I., and Sykes, M. T.: Projecting the future distribution of European potential natural vegetation 621 

zones with a generalized, tree species-based dynamic vegetation model, Global Ecol. Biogeogr., 21, 50-63, 622 

https://doi.org/10.1111/j.1466-8238.2010.00613.x, 2012. 623 

Horvath, P., Halvorsen, R., Stordal, F., Tallaksen, L. M., Tang, H., and Bryn, A.: Distribution modelling of 624 

vegetation types based on area frame survey data, Applied Vegetation Science, 22, 547-560, 625 

https://doi.org/10.1111/avsc.12451, 2019. 626 

Johansen, B. E.: Satellittbasert vegetasjonskartlegging for Norge, Direktoratet for Naturforvaltning, Norsk 627 

Romsenter, 2009. 628 

Keith, D. A., Ferrer, J. R., Nicholson, E., Bishop, M. J., Polidoro, B. A., RamirezLlodra, E., Tozer, M. G., Nel, J. 629 

L., Nally, R. M., Gregr, E. J., Watermeyer, K. E., Essl, F., Faber-Langendoen, D., Franklin, J., Lehmann, C. E. R., 630 

Etter, A., Roux, D. J., Stark, J. S., Rowland, J. A., Brummitt, N. A., Fernandez-Arcaya, U. C., Suthers, I. M., 631 

Wiser, S. K., Donohue, I., Jackson, L. J., Pennington, R. T., Pettorelli, N., Andrade, A., Kontula, T., Lindgaard, 632 

A., Tahvanainan, T., Terauds, A., Venter, O., Watson, J. E. M., Chadwick, M. A., Murray, N. J., Moat, J., Pliscoff, 633 

P., Zager, I., and Kingsford, R. T.: The IUCN Global Ecosystem Typology v1.01: Descriptive profiles for Biomes 634 

and Ecosystem Functional Groups, IUCN, CEM, New York, 172, 2020. 635 

Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C., Lawrence, P. J., Zeng, X., 636 

Yang, Z. L., Levis, S., and Sakaguchi, K.: Parameterization improvements and functional and structural advances 637 

in version 4 of the Community Land Model, Journal of Advances in Modeling Earth Systems, 3, 638 

https://doi.org/10.1029/2011MS00045, 2011. 639 

Lawrence, P. J., and Chase, T. N.: Representing a new MODIS consistent land surface in the Community Land 640 

Model (CLM 3.0), Journal of Geophysical Research, 112, n/a-n/a, https://doi.org/10.1029/2006jg000168, 2007. 641 

Li, W., Ciais, P., MacBean, N., Peng, S., Defourny, P., and Bontemps, S.: Major forest changes and land cover 642 

transitions based on plant functional types derived from the ESA CCI Land Cover product, International Journal 643 

of Applied Earth Observation and Geoinformation, 47, 30-39, https://doi.org/10.1016/j.jag.2015.12.006, 2016. 644 

Li, W., MacBean, N., Ciais, P., Defourny, P., Lamarche, C., Bontemps, S., Houghton, R. A., and Peng, S.: Gross 645 

and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps 646 

(1992–2015), Earth Syst. Sci. Data, 10, 219-234, https://doi.org/10.5194/essd-10-219-2018, 2018. 647 

Lussana, C., Saloranta, T., Skaugen, T., Magnusson, J., Tveito, O. E., and Andersen, J.: seNorge2 daily 648 

precipitation, an observational gridded dataset over Norway from 1957 to the present day, Earth System Science 649 

Data, 10, 235-249, https://doi.org/10.5194/essd-10-235-2018, 2018a. 650 

Lussana, C., Tveito, O., and Uboldi, F.: Three‐dimensional spatial interpolation of 2 m temperature over Norway, 651 

Quarterly Journal of the Royal Meteorological Society, 144, 344-364, https://doi.org/10.1002/qj.3208, 2018b. 652 

https://doi.org/10.5194/bg-2020-149
Preprint. Discussion started: 12 June 2020
c© Author(s) 2020. CC BY 4.0 License.



24 

 

Miller, P. A., and Smith, B.: Modelling Tundra Vegetation Response to Recent Arctic Warming, Ambio, 41, 281-653 

291, https://doi.org/10.1007/s13280-012-0306-1, 2012. 654 

Moen, A.: Vegetation, Norwegian Mapping Authority, Hønefoss, 200 s. ill. 234 cm pp., 1999. 655 

Mücher, C. A., Hennekens, S. M., Bunce, R. G. H., Schaminée, J. H. J., and Schaepman, M. E.: Modelling the 656 

spatial distribution of Natura 2000 habitats across Europe, Landscape Urban Plann., 92, 148-159, 657 

https://doi.org/10.1016/j.landurbplan.2009.04.003, 2009. 658 

Myers-Smith, I. H., Forbes, B. C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape, K. D., Macias-Fauria, 659 

M., Sass-Klaassen, U., Lévesque, E., Boudreau, S., Ropars, P., Hermanutz, L., Trant, A., Collier, L. S., Weijers, 660 

S., Rozema, J., Rayback, S. A., Schmidt, N. M., Schaepman-Strub, G., Wipf, S., Rixen, C., Ménard, C. B., Venn, 661 

S., Goetz, S., Andreu-Hayles, L., Elmendorf, S., Ravolainen, V., Welker, J., Grogan, P., Epstein, H. E., and Hik, 662 

D. S.: Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities, Environmental Research 663 

Letters, 6, 045509, https://doi.org/10.1088/1748-9326/6/4/045509, 2011. 664 

Myers-Smith, I. H., Kerby, J. T., Phoenix, G. K., Bjerke, J. W., Epstein, H. E., Assmann, J. J., John, C., Andreu-665 

Hayles, L., Angers-Blondin, S., Beck, P. S. A., Berner, L. T., Bhatt, U. S., Bjorkman, A. D., Blok, D., Bryn, A., 666 

Christiansen, C. T., Cornelissen, J. H. C., Cunliffe, A. M., Elmendorf, S. C., Forbes, B. C., Goetz, S. J., Hollister, 667 

R. D., de Jong, R., Loranty, M. M., Macias-Fauria, M., Maseyk, K., Normand, S., Olofsson, J., Parker, T. C., 668 

Parmentier, F.-J. W., Post, E., Schaepman-Strub, G., Stordal, F., Sullivan, P. F., Thomas, H. J. D., Tømmervik, 669 

H., Treharne, R., Tweedie, C. E., Walker, D. A., Wilmking, M., and Wipf, S.: Complexity revealed in the greening 670 

of the Arctic, Nature Climate Change, 10, 106-117, https://doi.org/10.1038/s41558-019-0688-1, 2020. 671 

Oksanen, L.: Isolated occurrences of spruce, Picea abies, in northernmost Fennoscandia in relation to the enigma 672 

of continental mountain birch forests, Acta Bot. Fenn., 81-92, 1995. 673 

Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven, C. D., Levis, S., Li, F., Riley, 674 

W. J., Subin, Z. M., Swenson, S. C., and Thornton, P. E.: Technical Description of version 4.5 of the Community 675 

Land Model (CLM), NCAR Earth System Laboratory Climate and Global Dynamics Division, BOULDER, 676 

COLORADO, USA, 2013. 677 

Pebesma, E. J., and Bivand, R. S.: Classes and methods for spatial data in {R}, R News, 5, 9-13, 2005. 678 

Poulter, B., Ciais, P., Hodson, E., Lischke, H., Maignan, F., Plummer, S., and Zimmermann, N. E.: Plant functional 679 

type mapping for earth system models, Geoscientific Model Development, 4, 993-1010, 680 

https://doi.org/10.5194/gmd-4-993-2011, 2011. 681 

Poulter, B., MacBean, N., Hartley, A., Khlystova, I., Arino, O., Betts, R., Bontemps, S., Boettcher, M., 682 

Brockmann, C., Defourny, P., Hagemann, S., Herold, M., Kirches, G., Lamarche, C., Lederer, D., Ottlé, C., Peters, 683 

M., and Peylin, P.: Plant functional type classification for earth system models: results from the European Space 684 

Agency's Land Cover Climate Change Initiative, Geosci. Model Dev., 8, 2315-2328, https://doi.org/10.5194/gmd-685 

8-2315-2015, 2015. 686 

Scheiter, S., Langan, L., and Higgins, S. I.: Next-generation dynamic global vegetation models: learning from 687 

community ecology, New Phytol., 198, 957-969, https://doi.org/10.1111/nph.12210, 2013. 688 

Seo, H., and Kim, Y.: Interactive impacts of fire and vegetation dynamics on global carbon and water budget using 689 

Community Land Model version 4.5, Geoscientific Model Development, 12, 457-472, 690 

https://doi.org/10.5194/gmd-12-457-2019, 2019. 691 

Sevanto, S., Suni, T., Pumpanen, J., Grönholm, T., Kolari, P., Nikinmaa, E., Hari, P., and Vesala, T.: Wintertime 692 

photosynthesis and water uptake in a boreal forest, Tree Physiology, 26, 749-757, 693 

https://doi.org/10.1093/treephys/26.6.749, 2006. 694 

Simensen, T., Horvath, P., Erikstad, L., Bryn, A., Vollering, J., and Halvorsen, R.: Composite landscape predictors 695 

improve distribution models of ecosystem types, Divers. Distrib., https://doi.org/10.1111/ddi.13060 accepted. 696 

Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S. L., Betts, R., Ciais, P., Cox, P., 697 

Friedlingstein, P., Jones, C. D., Prentice, I. C., and Woodward, F. I.: Evaluation of the terrestrial carbon cycle, 698 

https://doi.org/10.5194/bg-2020-149
Preprint. Discussion started: 12 June 2020
c© Author(s) 2020. CC BY 4.0 License.



25 

 

future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models 699 

(DGVMs), Global Change Biol., 14, 2015-2039, https://doi.org/10.1111/j.1365-2486.2008.01626.x, 2008. 700 

Snell, R. S., Huth, A., Nabel, J. E. M. S., Bocedi, G., Travis, J. M. J., Gravel, D., Bugmann, H., Gutiérrez, A. G., 701 

Hickler, T., Higgins, S. I., Reineking, B., Scherstjanoi, M., Zurbriggen, N., and Lischke, H.: Using dynamic 702 

vegetation models to simulate plant range shifts, Ecography, 37, 1184-1197, https://doi.org/10.1111/ecog.00580, 703 

2014. 704 

Song, X., Zeng, X., and Zhu, J.: Evaluating the tree population density and its impacts in CLM-DGVM, Advances 705 

in Atmospheric Sciences, 30, 116-124, https://doi.org/10.1007/s00376-012-1271-0, 2013. 706 

Strand, G.-H.: The Norwegian area frame survey of land cover and outfield land resources, Norsk Geografisk 707 

Tidsskrift, 67, 24-35, https://doi.org/10.1080/00291951.2012.760001, 2013. 708 

Ullerud, H. A., Bryn, A., and Klanderud, K.: Distribution modelling of vegetation types in the boreal–alpine 709 

ecotone, Applied Vegetation Science, 19, 528-540, https://doi.org/10.1111/avsc.12236, 2016. 710 

Ullerud, H. A., Bryn, A., and Skånes, H.: Bridging theory and implementation – Testing an abstract classification 711 

system for practical mapping by field survey and 3D aerial photographic interpretation, Norsk Geografisk 712 

Tidsskrift, 73, 301-317, https://doi.org/10.1080/00291951.2020.1717595, 2020. 713 

Vowles, T., Gunnarsson, B., Molau, U., Hickler, T., Klemedtsson, L., and Björk, R. G.: Expansion of deciduous 714 

tall shrubs but not evergreen dwarf shrubs inhibited by reindeer in Scandes mountain range, J. Ecol., 105, 1547-715 

1561, https://doi.org/10.1111/1365-2745.12753, 2017. 716 

Wielgolaski, F. E.: History and Environment of the Nordic Mountain Birch, in: Plant Ecology, Herbivory, and 717 

Human Impact in Nordic Mountain Birch Forests, edited by: Caldwell, M. M., Heldmaier, G., Jackson, R. B., 718 

Lange, O. L., Mooney, H. A., Schulze, E. D., Sommer, U., Wielgolaski, F. E., Karlsson, P. S., Neuvonen, S., and 719 

Thannheiser, D., Ecological Studies, Springer Berlin Heidelberg, Berlin, Heidelberg, 3-18, 2005. 720 

Wullschleger, S. D., Epstein, H. E., Box, E. O., Euskirchen, E. S., Goswami, S., Iversen, C. M., Kattge, J., Norby, 721 

R. J., van Bodegom, P. M., and Xu, X.: Plant functional types in Earth system models: past experiences and future 722 

directions for application of dynamic vegetation models in high-latitude ecosystems, Ann. Bot., 114, 1-16, 723 

https://doi.org/10.1093/aob/mcu077, 2014. 724 

Xie, Y., Sha, Z., and Yu, M.: Remote sensing imagery in vegetation mapping: a review, Journal of Plant Ecology, 725 

1, 9-23, https://doi.org/10.1093/jpe/rtm005, 2008. 726 

Zeng, X., Zeng, X., and Barlage, M.: Growing temperate shrubs over arid and semiarid regions in the Community 727 

Land Model–Dynamic Global Vegetation Model, Global Biogeochemical Cycles, 22, n/a-n/a, 728 

https://doi.org/10.1029/2007gb003014, 2008. 729 

Zhang, W., Brandt, M., Tong, X., Tian, Q., and Fensholt, R.: Impacts of the seasonal distribution of rainfall on 730 

vegetation productivity across the Sahel, Biogeosciences, 15, 319-330, https://doi.org/10.5194/bg-15-319-2018, 731 

2018. 732 

Zhu, J., Zeng, X., Zhang, M., Dai, Y., Ji, D., Li, F., Zhang, Q., Zhang, H., and Song, X.: Evaluation of the New 733 

Dynamic Global Vegetation Model in CAS-ESM, Advances in Atmospheric Sciences, 35, 659-670, 734 

https://doi.org/10.1007/s00376-017-7154-7, 2018. 735 

Zuur, A. F., Ieno, E. N., and Smith, G. M.: Analysing ecological data, in, Springer, New York, 163-178, 2007. 736 
 737 

https://doi.org/10.5194/bg-2020-149
Preprint. Discussion started: 12 June 2020
c© Author(s) 2020. CC BY 4.0 License.


