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Abstract. We simulated soil organic carbon (C) dynamics across Australia with the Rothamsted carbon model (ROTH C) by

connecting new spatially-explicit soil measurements and data with the model. This helped us to bridge the disconnection that

exists between datasets used to inform the model and the processes that it depicts. Under this framework, we compiled publicly

available continental-scale datasets and pre-processed, standardised and configured them to the required spatial and temporal

resolutions. We then calibrated ROTH C and run simulations to estimate the baseline soil organic C stocks and composition in5

the 0–0.3 m layer at 4,043 sites in cropping, modified grazing, native grazing, and natural environments across Australia. We

used data on the C fractions, the particulate, humus, and resistant organic C (POC, HOC and ROC, respectively) to represent

the three main C pools in the ROTH C model’s structure. The model explained 97–98% of the variation in measured total

organic C in soils under cropping and grazing, and 65% in soils under natural environments. We optimised the model at each

site and experimented with different amounts of C inputs to simulate the potential for C accumulation under constant climate in10

a 100-year simulation. With an annual increase of 1 Mg C ha−1 in C inputs, the model simulated a potential soil C increase of

13.58 (interquartile range 12.19–15.80), 14.21 (12.38–16.03), and 15.57 (12.07–17.82) Mg C ha−1 under cropping, modified

grazing and native grazing, and 3.52 (3.15–4.09) Mg C ha−1 under natural environments. Soils under native grazing were the

most potentially vulnerable to C decomposition and loss, while soils under natural environments were the least vulnerable.

An empirical assessment of the controls on the C change showed that climate, pH, total N, the C:N ratio, and cropping were15

the most important controls on POC change. Clay content and climate were dominant controls on HOC change. Consistent

and explicit soil organic C simulations improve confidence in the model’s estimations, contributing to the development of

sustainable soil management under global change.

1 Introduction

Soil carbon (C) represents the most abundant terrestrial C pool (Batjes, 1996). It can be a significant source or sink of at-20

mospheric CO2 (Scharlemann et al., 2014). Sequestration of soil organic C, via the adoption of improved land management

strategies, offers opportunities for improving soil and ecosystem health, sustainable food production and climate change mit-

igation (Lal, 2016; Paustian et al., 2019; Smith et al., 2020). However, a better understanding of soil organic C dynamics is

needed to determine the size of the soil C pool accurately and to assess the potential for those opportunities.
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Biogeochemical models represent our mechanistic understanding of processes such as organic C cycling in soil and can25

serve different purposes. They can be used to simulate soil C cycling under various combinations of soil, climate, land use

and management (Conant et al., 2011), to evaluate the potential for C sequestration or loss, and to assess the impacts of

environmental and human-induced change on the C cycle. In conjunction with long-term measurements, models can estimate

the effects of management practices and climate change on soil C, as well as subsequent feedbacks. Therefore, the simulation

of soil organic C with biogeochemical models has received much attention in the literature (Campbell and Paustian, 2015;30

Falloon and Smith, 2000).

The Rothamsted carbon model (ROTH C) (Jenkinson, 1990; Coleman and Jenkinson, 1996) and the CENTURY model

(Parton et al., 1987) are most commonly used to simulate soil organic C dynamics in cropping, grassland and forest systems.

Although developed under northern hemisphere conditions, since their inception in the 1980s, these models have been used for

many different applications worldwide (Campbell and Paustian, 2015; Wang et al., 2016). They are the soil biogeochemical35

component in Earth systems models (Todd-Brown et al., 2013). They do not explicitly represent current theories around the

mechanisms of microbial decomposition and physicochemical protection (Lehmann and Kleber, 2015), but they are still being

used because they capture the general principle of soil organic C dynamics. In essence, the flow of C in the models occur

through a cascading of C via several conceptual pools turning over at different rates, according to first-order kinetics and

modified by climate and soil texture. Other reasons for their continued popularity might be that there is ample documentation40

on them; they are relatively simple and general and are therefore also well understood.

The ROTH C model has been adjusted and tested for use under Australian conditions (Janik et al., 2002; Skjemstad et al.,

2004). Skjemstad et al. (2004) showed that the size of the main conceptual C pools in ROTH C, the resistant plant material,

humic and inert organic matter pools, can be initialised with measurements of the particulate, humus and resistant organic

C (POC, HOC and ROC, respectively) fractions. ROTH C is one of a few models that can be initialised with measured C45

fractions. Skjemstad et al. (2004) calibrated the decomposition rate constants under Australian conditions, and Janik et al.

(2002) assessed a sensitivity of the C pools to model parameters to highlight the potential complexity in the implementation of

ROTH C. Since then, researchers in Australia have used ROTH C in different research (Paul and Polglase, 2004; Hoyle et al.,

2013; Lee and Viscarra Rossel, 2020). ROTH C is a sub-model of the Fully Integrated Carbon Accounting Model (FullCAM)

(Richards and Evans, 2004), used in Australia’s National Greenhouse Gas Inventory System. Together, they are the core of50

the Australian model-based Emission Reduction Fund (ERF) methodology, which allows farmers and landholders to generate

extra income by storing C in their soils and thereby reducing emissions (England and Viscarra Rossel, 2018; Paustian et al.,

2019). However, the soil and environmental conditions required to maintain current soil organic C stocks and composition are

poorly understood. This hampers the reliable estimation of C stock and sequestration potentials at a large scale.

Simulation of soil C dynamics with biogeochemical models can be challenging. Despite the development of new models55

with updated representations of current understanding (Abramoff et al., 2018; Robertson et al., 2019; Wieder et al., 2014), there

remains a disconnection between measurements and datasets used to inform the model and the theories represented in them

(Blankinship et al., 2018; Harden et al., 2018). In practice, a lack of data restricts model parameterisation and optimisation and

missing temporal datasets limit our ability to simulate and verify long-term changes in soil C stocks and composition (Smith
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et al., 1997). Hence, there is also little agreement on how input datasets should be synthesised, processed and used (Manzoni60

and Porporato, 2009), leading to inconsistent model calibrations (Conant et al., 2011; Seidel et al., 2018) and inaccurate model

estimations (Shi et al., 2018). In this context, the development of frameworks for soil organic C modelling and simulation, to

synthesise and integrate measurements and datasets with models are critical (Harden et al., 2018; Ogle et al., 2010; Paustian

et al., 1997; Smith et al., 2020). The frameworks should allow for their efficient updating, with new measurements, data and

models, as they become available (England and Viscarra Rossel, 2018; Smith et al., 2020). They should also enable a more65

systematic approach for calibration and validation, making simulations more reliable and reproducible.

Here, we report on simulations of the organic C stocks in Australian soils with ROTH C using a standardised approach

that synthesises and processes measurements and data for prediction at a correct scale. Our motivation for developing this

research is to help answer questions around soil C that are pertinent to Australian soils and ecosystems under different different

land uses and management. Our aims are to: (i) derive baseline estimates of soil organic C stock and composition by site-70

specifically initialising the model with measurements of POC, HOC and ROC and an optimised ratio of decomposable plant

material (DPM) to resistant plant material (RPM), which represents the decomposability of incoming biomass, (ii) simulate

over a 100-year period, with constant climate and a plausible range of C inputs, the potential to increase organic C stocks as

well as the potential vulnerability to C loss across Australia, and (iii) to identify the soil and environmental controls of the

change in soil C stocks.75

2 Materials and methods

2.1 The Rothamsted carbon model (ROTH C)

ROTH C is a soil process model for the turnover of organic C in non-flooded soils (Jenkinson, 1990; Coleman and Jenkinson,

1996). The model partitions total organic C (TOC) into pools that represent decomposable plant material (DPM), resistant

plant material (RPM), microbial biomass (BIO), humified organic matter (HUM), and inert organic matter (IOM) (Coleman80

and Jenkinson, 1996). The model simulates on a monthly time step changes in its active pools, in response to climate, soil type,

land use and management. Annual C inputs from crops and manure represent different land use and management regimes. We

used the ROTH C model version 26.3, which is the version that was re-calibrated for a range of Australian soils (Skjemstad

et al., 2004). The decomposition rate constants for the DPM, RPM, BIO, and HUM pools are 10, 0.3, 0.15, and 0.02 year−1,

respectively (Skjemstad et al., 2004). Its reference state for the decomposition rate constants was reported by Jenkinson and85

Rayner (1977). The decomposition of each active pool is assumed to increase, following first-order kinetics, with air temper-

ature, but reduced by soil water deficits and the presence of vegetated soil cover. Temperature effects on soil organic matter

decomposition increase following a sigmoid function, while the topsoil moisture deficit reduces it by a factor of 0.2 to 1 (no

moisture stress). The soil cover factor is 1.0 for bare soil and 0.6 when soil is vegetated, to slow organic matter decomposition.

The main conceptual pools RPM, HUM and IOM are replaced with the measured particulate, humus and resistant organic C90

fractions (POC, HOC and ROC, respectively) (Skjemstad et al., 2004). The POC fraction includes any DPM available in the

soil at the time of measurement. The BIO pool was initially set to zero (Sparling, 1992).
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2.2 Standardised soil C simulations

We simulated C dynamics across Australia (Figure 1), using a framework that enabled us to efficiently standardise and then

integrate measurements and publicly available data on soil properties and environmental controls with the ROTH C model95

for simulation at the appropriate scale. The approach encompasses five stages as follows (Figure 1): 1) data compilation and

synthesis, 2) data pre-processing and standardisation, 3) configuration of data on management regimes, and 4) model simulation

supported by consistent initialisation and verification and 5) prediction.

Datasets Pre-processing Configuration Simulation

Large-scale
Public data
Remote sensing
Spectroscopy
Digital soil maps

Climate
Temperature,
precipitation, 
evapotranspiration

Land use

Management

Soil properties
C fractions, clay, 
bulk density, 
water content …

Reclassification

Spatial
aggregation/
disaggregation

Temporal 
aggregation/
disaggregation

Weather data
at required
resolution

Soil data at
required 
resolution

Land use and
management 
regime Model

Initialization/
parameter
estimation

Verification

Baseline 
soil organic C
stocks and 
composition

Change in 
soil organic C
stocks and 
composition 
by scenario

Local-scale
Farmer/manager
Proximal sensing
Spectroscopy
Field-scale 
digital soil maps

Figure 1. Soil carbon (C) simulation under a framework enables explicit standardisation and better connection between datasets and a soil

process model at the appropriate scale.

2.3 Soil C simulations

2.3.1 Data compilation and synthesis100

ROTH C requires site coordinates, POC, HOC, ROC, clay content, and sampling depth (in our case 0–0.3 m). The available wa-

ter capacity (AWC) of the soil to a soil depth of 1 m is needed to modify evapotranspiration from pan evaporation when a plant

is present and to run a crop model (see below). We selected a total of 4,431 out of 5,721 sites across Australia (Viscarra Rossel
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et al., 2019) (Figure 2). The selected sites were under the dominant land use, namely cropping, grazing of modified pastures and

native vegetation, and natural conservation and protected areas. Native forests and production forestry were excluded because105

of a lack of simulation capacity. The C fractions, clay content, and AWC were estimated with visible–near infrared spectra

(Viscarra Rossel and Webster, 2012; Viscarra Rossel et al., 2015). Maximum air temperature, minimum air temperature, pre-

cipitation and pan evaporation are also required to run the model. We obtained gridded daily climate data (approximately 5-km

resolution) from the SILO database of Australian climate data (SILO, 2020). We used the Australian Bureau of Agricultural

and Resource Economics and Sciences land use map (ABARES, 2016) to determine detailed land cover across Australia. Agri-110

cultural activity data from Unkovich et al. (2017) provided data for croplands and modified pastures at Statistical Area Level

2 (SA2) (ABS, 2016), which are functional areas that represent socially and economically coherent communities. Current and

historical events and agricultural practices, such as crop type and harvest, can be specified from 1970 to 2014. The other data

required to run the model include an estimate of the decomposability of incoming biomass, soil cover, and monthly inputs of

plant C and farmyard manure. These C input variables, if not measured, must be estimated at each site (see below).115
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Figure 2. Location of 4,431 sites across Australia selected for this study. 1,261 sites were under cropping, 2,269 sites under grazing modified

pastures, 807 sites under grazing of native vegetation, and 94 sites in natural environments, mostly under minimal use or managed resource

protection in arid climates.

2.3.2 Data pre-processing and standardisation

The datasets were pre-processed and configured to provide standard and consistent values and units of measurement. Daily

weather was extracted at each of the 4,431 sites for the 20 years from 1991 to 2010. The mean of the minimum and maximum

5
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daily temperatures derived the average daily temperatures. Aggregation of the daily weather data produced monthly average

temperature, precipitation, and pan evaporation.120

We used the Australian land use map (ABARES, 2016) to re-classify each site into the following broad land uses: cropping,

modified grazing, native (unmodified) grazing, and natural environments. We defined cropping as land under broadacre crops.

Modified grazing was defined as land used for livestock grazing on improved pastures with exotic vegetation cover. Native

grazing was defined as land used for grazing on native pastures. Natural environments include the areas for nature conservation,

indigenous uses, and other minimal uses. We used the gridded Köppen climate classification from the Bureau of Meteorology125

(BOM, 2016) to identify sites under natural environments in arid climates. The area of cropping, modified grazing, native

grazing, and arid natural environments occupy 292,104 km2 (or 3.8%), 706,099 km2 (9.2%), 3,439,468 km2 (44.8%), and

1,507,616 km2 (19.6%) of Australia, respectively. Data on agricultural practices at the SA2 level obtained from Unkovich et al.

(2017) were used to select a crop or grass to represent typical management regimes in the sites under cropping and modified

grazing.130

2.3.3 Configuration of land management regimes and initial estimation of C inputs to soil

ROTH C does not calculate plant growth or the quantity of soil C inputs. Therefore, we estimated monthly plant C returns and

farmyard manure added to the soil (e.g. managed or deposited by animals grazing on pasture) using the following approach.

The initial estimate was made to set the starting values of the C inputs and to match the timing of C inputs to the crop or grass

grown.135

We assumed that crops were grown in rotations, but at sites under modified pastures, only a single grass species was consid-

ered. We used the activity data from Unkovich et al. (2017) to determine crop rotations and a representative grass species for

each site during the baseline period between 1991 through 2010. For each of the periods 1990–1994, 1995–1999, 2000–2004,

2005–2009, 2010–2014, we calculated the cumulative frequency by regime. We used it to randomly select the crop or grass

species (both annual and perennial) through time with a probability approach. The probability to have a certain crop was de-140

pendent on the cumulative frequency assigned to each crop type and regime. The crops grown in all years were selected and

then used to determine the most dominant crop species. For the sites under native grazing, we considered a native perennial

grass only.

For annual plant species, we used a crop model (Unkovich et al., 2018) that uses the amount of water available to the plant

(derived from the measured AWC) to calculate a potential dry matter increment that is water-limited (WLDM) in kg ha−1:145

WLDM= ((ET ×Ts)+ (DD×Td))×TE

where ET is the evapotranspiration (mm) from pan evaporation, DD is any deep water drainage (mm) that occurs during the

fallow season, Ts is a fraction of ET that goes through the transpiration, Td is a fraction of deep water drainage that goes

through the transpiration, and TE is the transpiration efficiency that is the amount of biomass produced per unit of water

transpired (kg mm−1) of a cropping or grazing system. Daily evapotranspiration was estimated by multiplying pan evaporation150

with a ratio of soil water content over plant AWC and the maximum evapotranspiration by crop or grass. The maximum dry
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matter production (DMmax) is the sum of dry matter increments over the growing season. This model then back calculates dry

matter accumulation (kg ha−1) over the season (DMacc):

DMacc =
DMmax

(1+ e−
Day−a×Daysmax

b×Daysow×Daysmax )

where Day is the current day as the season progresses, Daysmax is the number of total growing days, Daysow is the day of155

planting, and a and b are growth coefficients specific for the plant. For a perennial system, daily growth (G) in kg ha−1 is

calculated as:

G=WLT ×TI ×TE

where WLT is the amount of water-limited transpiration (mm) that is evapotranspiration multiplied by vegetation cover, TI

is the temperature index function (Nix, 1981), and TE is the transpiration efficiency of a perennial system (kg mm−1). The160

perennial plant growth is used to calculate dry matter accumulation over the season. The model estimates root biomass using a

fixed root-to-shoot ratio of 0.3 (Bol).

For both modified and native pastures, we assumed grazing to occur if the grass accumulated 1.2 Mg ha−1 of shoot dry-

matter, with no grazing effect on its growth (DPIRD, 2020). The effects of grazing on grass production and animal returns

were represented in a pasture growth model developed and integrated in the APSIM model (Johnson et al., 2008). Specifically,165

grazing animals consumed 50% of daily shoot growth, returned 50% of the consumption to the soil as dung, and shed 50% of

daily root growth. When the available soil water fell to < 15% of water holding capacity, 1% and 0.5% of the shoot dry matter

and the root dry matter were assumed to die daily. We assumed the C content of above-ground and below-ground residues to

be 42% by mass, which is the value used in the FullCAM (Richards and Evans, 2004).

For the sites under natural environments, however, we did not use the plant model because we had no data on plants in this170

region. Instead, we assumed small but consistent C inputs from plant residues only (Wang and Barrett, 2003), which was set to

be 0.049 Mg ha−1/month. We assumed no soil cover because in these regions, vegetation cover is typically sparse.

2.3.4 Simulation: optimisation of C inputs to the baseline soil organic C

We initialised the stocks of POC, HOC and ROC pools using the C fractions measured at 4,431 sites. We assumed that the

initial soil organic C stocks were at equilibrium, and ran the model to reproduce their equilibrium condition. We based our175

assumption on data from the National Carbon Accounting System (NCAS) that include temporal soil organic C changes at

73 sites in Australia, recorded from 1911 to 2000 (Skjemstad and Spouncer, 2003). The DPM/RPM ratio determines the

decomposability of incoming biomass. By default, the recommended DPM/RPM ratio is 1.44 for most crops and improved

pastures and 0.67 for unimproved grasslands (Coleman and Jenkinson, 1996). The DPM/RPM ratio depends on the quality of

C in plant residues and manure. It is site-specific, differs with land-use (Post and Kwon, 2000), and is unknown for Australian180

native grazing or natural environments. We tested six different DPM/RPM ratios (0.67, 0.96, 1.17, 1.44, 1.78 and 2.23) to

estimate baseline C inputs and to assess the sensitivity of the simulated TOC, POC and HOC to this parameter. These chosen

ratios correspond to allocations of incoming plant material to DPM in the range 40–69%, and proportionally, to RPM in the
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range 60–31%. For each DPM/RPM ratio, we run the simulations at each of the 4,431 sites for 100 years. Specifically, for each

ratio at each location, we performed the simulations iteratively by re-initialising the POC and HOC pools with the measured185

C fractions and with a change in monthly input of plant residues and farmyard manure equivalent to 1/100 of their initial

values. This was repeated 1000 times or until the model achieved equilibrium. We considered only monthly C inouts in the

simulations. The weather data used in the simulations represents the conditions of the baseline period between 1991–2010,

which were repeated over the 100-year period.

Equilibrium condition occurred when 1) both POC and HOC did not significantly change over time (P > 0.05), or 2) we190

observed an absolute change of < 0.0025 Mg C ha−1 in both POC and HOC. We used a time series linear model with a trend

and seasonality to fit the change in POC and HOC over time. An equilibrium condition was also assumed if the direction of

the trend (positive or negative) in either pool changed. This condition prevented unrealistic simulations because both POC and

HOC showed the same trend in response to C inputs. Depending on the DPM/RPM, at 12 to 14 out of the 4,431 sites, the model

was not able to simulate the equilibrium condition. We note that, for the sites that failed, changing C inputs only is insufficient195

for making both the POC and HOC pools reach equilibrium simultaneously.

We report the stocks of TOC, POC and HOC at the end of the 100-year simulation. We selected 100 years because it is the

permanence period for soil C sequestration of the Australian ERF. The difference between the measured and the simulated

TOC stock provided an estimate of the model deviation. We also calculated the range of monthly variation in simulated TOC

stocks. For each site, we selected the DPM/RPM ratio based on the minimum deviation of TOC. Three hundred and eighty-200

eight sites had a model deviation and range of monthly change in TOC stock ≥ 10 Mg C ha−1, so we excluded them. We

based the 10 Mg C ha−1 threshold on the range of measured annual changes in TOC. The median TOC stock at these sites

was 75.04 Mg C ha−1 (range 52.58–111.44 Mg C ha−1), and mostly, they occurred under modified grazing (data not shown).

Finally, we optimised the amount of monthly C input and the DPM/RPM ratio at 4,043 sites and used them as the baseline. We

determined the dominant values of the DPM/RPM ratio for each land-use across Australia, based on their relative frequency.205

2.3.5 Simulation: potential for C sequestration under changing C inputs

Using the calibrated model, we simulated potential changes in soil organic C over 100 years, in response to changes in C inputs.

We selected different rates of C input to the soil by multiplying the optimised baseline with the factors 0 (no input), 0.25, 0.5,

0.75, 1.25, 1.5, 2, 4 and 6. These rates were selected to represent a wide range of C input levels that would be either physically

achievable or manageable (e.g. manure addition) (Maillard and Angers, 2014). Because we already calculated the timing of C210

inputs and the sensitivity to the DPM/RPM ratio, we did not consider scenarios that varied the timing or quality of C inputs.

We chose 100 years in order to simulate the long-term response of TOC, POC and HOC.

We calculated 11-year moving averages of the stocks of TOC, POC and HOC and the potential vulnerability of soil C to

decomposition over the 100-years. The vulnerability of soil C was derived using POC/(HOC + ROC) (Viscarra Rossel et al.,

2019). We calculated changes in soil organic C by changing C inputs. We reported the median stocks for the last 11 years of215

the simulation when it reached a new equilibrium. We also approximated the lower and upper 95% confidence intervals for the

median to quantify the variation of their responses to different C inputs (Conover, 1998).
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2.3.6 Empirical assessment of controls on the simulated C change

There are soil and environmental controls on organic C that are not accounted for by ROTH C. To gain a better understanding

of the controls on the change in soil organic C under changing C inputs, we modelled the change in TOC, POC and HOC220

as a function of the four land-use classes and a set of environmental variables. The environmental variables included i) soil

properties, such as total nitrogen (N), total phosphorous (P), and C:N (Viscarra Rossel et al., 2015), ii) climate, iii) clay

minerals (illite, kaolinite, and smectite) (Viscarra Rossel, 2011) and iv) potassium (K), thorium (Th) and uranium (U) from

gamma radiometrics, which represent mineralogy and parent material (Minty et al., 2009). For the modelling, we used the

machine learning method CUBIST (Quinlan, 1992). Briefly, CUBIST uses a recursive partitioning of the predictor variable225

space and divide the data into subsets that are more similar with respect to the predictors in the data (Quinlan, 1992). A series

of rules derived from if-then conditions define the partitions, and each condition is based on a threshold for one or more of

the predictors. When the conditions in each rule are satisfied, piecewise linear least squares regressions are used to model the

response within each partition. To build precise and stable models, we tested combinations of committees (1, 2, 5, 10, and 20)

and the number of neighbours (0, 2, 5, and 9) using 10-repeated cross-validation (Hastie et al., 2009). We used the minimum230

root mean squared error (RMSE) to select the best model. We then assessed the relative importance of each variable based on

the usage of each variable in the conditions and the models.

3 Results

3.1 Effect of different quality of C inputs on soil organic C

The median stocks of TOC, POC and HOC in the 0–0.3 m soil layer, calculated across Australia are 26.01, 3.43 and 16.10 Mg C ha−1,235

respectively (Figure 3). The measured TOC stocks under natural environments, native grazing, modified grazing and cropping

are 15.45 Mg C ha−1 (interquartile range 11.89–18.11 Mg C ha−1), 24.61 Mg C ha−1 (18.96–34.17), 51.48 Mg C ha−1

(39.01–74.60) and 35.38 Mg C ha−1 (25.39–43.55), respectively. The POC and HOC fractions consist of 11% and 68% of the

measured TOC stocks under natural environments, 11% and 67% under native grazing, 18% and 52% under modified grazing,

and 16% and 53% under cropping.240

With each of the DPM/RPM ratios tested, the model simulated the measured TOC, POC and HOC stocks at equilibrium

(Supplement Table S1), but the amount of annual C input needed to maintain the soil organic C stocks was sensitive to the

varying quality of incoming plant material. The C inputs increased from 1.47 to 1.83 Mg C ha−1 when the DPM/RPM ratio

increased from 0.67 (low decomposability) to 2.23 (high decomposability). With those changes, the rate of C inputs into DPM

rose from 0.59 to 1.26 Mg C ha−1 yr−1, while the rate into RPM decreased from 0.88 to 0.57 Mg C ha−1 yr−1. The addition245

of biomass C with different qualities affected the levels of POC and HOC at equilibrium (Supplement Table S1).

With an optimised DPM/RPM ratio at each location, the model was able to explain 97–98% of the measured variation in

TOC at sites under native grazing, modified grazing and cropping. RMSE values ranged from 2.45 to 3.55 Mg C ha−1 (Figure

3). At locations under natural environments, the model explained only 65% of the variation in TOC, but with a similar RMSE
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of 3.22 Mg C ha−1. The model could explain less of the variation in POC (55–89%) compared to TOC and HOC. Also, the250

model did not perform as well for POC in the soils under cropping. Across Australia, the most frequent DPM/RPM ratio was

2.23 (1,773 sites), followed by the value 0.67 (for 829 sites) and 0.96 (415 sites) (Figure 3). The simulated median and total

TOC, POC and HOC stocks for each land-use class and overall were similar to the measured data (Table 1). This gave us

confidence in the performance of the model in Australia.

Table 1. The simulated stocks of total, particulate and humus organic C (TOC, POC and HOC) under different land uses and in Australia. The

total stocks of soil organic C were calculated from the median with the uncertainties expressed as an approximate 95% confidence interval

(CI).

Land use Median 1st quantile 3rd quantile Total Lower 95% CI Upper 95% CI

(Mg/ha) (Mg/ha) (Mg/ha) (Gt) (Gt) (Gt)

Cropping TOC 40.25 30.87 47.74 1.18 1.16 1.20

(n = 1182) POC 7.76 5.63 10.22 0.23 0.22 0.23

HOC 21.03 15.17 25.13 0.61 0.60 0.63

Modified grazing TOC 53.65 42.24 74.37 3.79 3.72 3.86

(n = 2008) POC 10.66 7.70 15.13 0.75 0.73 0.77

HOC 27.87 21.74 35.91 1.97 1.92 2.01

Native grazing TOC 23.85 17.98 33.60 8.20 7.90 8.54

(n = 777) POC 3.86 2.77 5.73 1.33 1.27 1.40

HOC 14.08 10.65 19.05 4.84 4.64 4.99

Natural environment TOC 13.00 9.61 17.05 1.96 1.65 2.30

(n = 76) POC 2.29 1.72 3.28 0.35 0.29 0.42

HOC 6.84 4.98 10.18 1.03 0.88 1.30

Australia* TOC 25.45 19.37 34.94 19.52 18.63 20.52

POC 4.46 3.23 6.44 3.43 3.24 3.64

HOC 14.22 10.75 19.10 10.91 10.37 11.52

* The Australian-wide estimates were the area weighted averages of the medians for the four land-use classes. The area

of cropping, modified grazing, native grazing, and arid natural environments occupy 3.8%, 9.2%, 44.8%, and 19.6% of

Australia (total area 7673138 km2), respectively.

3.2 Effect of changing C inputs on soil organic C255

The TOC, POC and HOC stocks at equilibrium were positively related to the level of C inputs (Figure 4). Annual C inputs to

the soil under natural environments, native grazing, modified grazing and cropping were 2.38, 0.77, 1.86 and 1.60 Mg C ha−1,
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Figure 3. Simulation of equilibrium soil organic C levels after optimisation, based on its sensitivity to the changes in the allocation of

incoming plant and manure C into the decomposable plant material (DPM) and resistant plant material (RPM) components (n = 4,043). The

map shows the geographic distribution of DPM/RPM values, where high values correspond to faster decomposition.
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respectively. Therefore, the model estimated the largest amount of C inputs required to maintain soil organic C under natural

environments compared to the other land uses. The corresponding interquartile range was 1.11–3.57 Mg C ha−1 for natural

environments. In comparison, there was a wider range of C inputs for native grazing (0.57–1.13 Mg C ha−1), modified grazing260

(1.37–3.01 Mg C ha−1), and cropping (1.20–2.18 Mg C ha−1) (Figure 4). For the agricultural soils, clay affected the relation-

ship between soil organic C stocks and C inputs as soil with more clay (predominantly in eastern Australia) could hold more

organic C (Figure 4). Under grazing and cropping land uses, the response of HOC and TOC to increasing C inputs appears to

depend on clay content. This pattern was not evident for POC as this pool is not directly associated with clay in the model.

The model explained 78, 80, and 50% of the variation in TOC, HOC, and POC by increasing C input under cropping (Figure265

4). The relationship was poorer under native and modified grazing (r2 = 0.54–0.69) (Figure 4). There was a relatively weak

and divergent relationship between soil organic C stocks and C inputs to the soil under natural environments (r2 = 0.35–0.40),

mostly due to differences in precipitation. We found that soil organic C was more responsive to C inputs at the sites with less

annual precipitation (approximately 170 mm).

The TOC, POC and HOC stocks at a new equilibrium responded linearly to changing soil C inputs from the baseline (Figure270

5). With an annual increase of 1 Mg C ha−1 in C inputs and under current climatic conditions, soils under natural environments

can potentially increase TOC stocks by 3.52 Mg C ha−1 (interquartile range (IQR) = 3.15–4.09 Mg C ha−1). In this case,

the stocks of POC and HOC increased by 0.92 Mg C ha−1 (IQR = 0.73–1.35) and 2.48 Mg C ha−1 (IQR = 2.23–2.99),

respectively. Soils under the other land use were more sensitive to changing C inputs. Under native grazing, TOC, POC and

HOC stocks changed by 15.57 Mg C ha−1 (IQR = 12.07–17.82), 5.49 Mg C ha−1 (IQR = 3.93–6.97) and 9.18 Mg C ha−1275

(IQR = 7.46–9.96), respectively, and at the same rate as the C inputs in the simulation. Under modified grazing, TOC stocks

changed by 14.21 Mg C ha−1 (IQR = 12.38–16.03) and POC and HOC accounted for 5.34 Mg C ha−1 (IQR = 4.46–6.86)

and 8.12 Mg C ha−1 (IQR = 7.23–8.93) of the change, respectively (Figure 5). Changes in TOC, POC and HOC stocks under

cropping were 13.58 Mg C ha−1 (IQR = 12.19–15.80), 4.69 Mg C ha−1 (IQR = 3.76–6.48) and 8.35 Mg C ha−1 (IQR =

7.49–8.96), respectively.280

With increasing C inputs, the potential vulnerability of soil organic C to loss increased under all four land uses (Figure 5).

The soil under native grazing was the most vulnerable with the increase in POC (35%) and HOC (59%), showing that the labile

POC increased more proportionally than that of the other land uses. Soil under natural environments was the least vulnerable

to change because of the smaller increase in POC (26%) relative to HOC (70%).

3.3 The controls on the simulated soil organic C change285

Climatic variables, particularly temperature and potential evaporation, controlled the changes in TOC, POC and HOC (Fig-

ure 6). Clay content had a dominant effect on the changes in HOC because in ROTH C, clay determines the ratio of CO2

released to HOC formed, during decomposition. Total N, the C:N ratio and pH were important controls for the changes in POC

(Figure 6), and might be related to a capacity of the soil to form POC. Cropping affected the changes in POC, possibly because

of the crop-specific distribution of C inputs. The controls on POC were similar to those on TOC because their changes were290
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Figure 4. Changes in total, particulate and humus organic C (TOC, POC and HOC) with C inputs by land use (n = 4,043).
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proportional. The land use in natural environments affected the changes in HOC (Figure 6), suggesting that we need a greater

understanding of the potential for C sequestration in low clay content soils in arid climates.

Figure 6. Importance of the environmental variables that contribute to potential changes in total, particulate and humus C organic C (TOC,

POC and HOC) by changing C inputs. Climatic variables, i.e. mean annual temperature (MAT), mean annual total precipitation (MAP) and

potential evapotranspiration (PET), are averaged over a period of 1991–2010. CEC is the cation exchange capacity of a soil.

4 Discussion

4.1 Current status and potential change in organic C of Australian soils

We used ROTH C because it requires few parameters, it initialises its main pools with measured C fractions, and it was295

adjusted to suit Australian conditions (Janik et al., 2002; Skjemstad et al., 2004). Further, the model is in Australia’s National

Greenhouse Gas Inventory System and the ERF, and so we thought it useful to comply. The climatic and soil property inputs

needed to run ROTH C are readily available from publicly available datasets (see Methods) or are relatively easily measured,

for instance, with proximal sensors (England and Viscarra Rossel, 2018).
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The main soil C pools of ROTH C can be initialised with measured C fractions (POC, HOC, ROC), there is no need for300

spin-up simulations (i.e. simulations until the model reaches equilibrium), making it possible to run the model site-specifically

at any location in Australia, without additional effort. Further, using measured C fractions in the model allows for correct

assignment of the primary pool structure and the measurements serve as internal verification of the model. In our case, we

could empirically assess how well the baseline simulations matched the model’s corresponding dynamic pools, which gave us

additional confidence that the model was performing well and could well represent Australian soils. Such data-driven model305

initialisation helps with the selection and site-specific estimation of other ‘unknown’ model parameters, such as the amount

and quality of C inputs, which is important for a more consistent calibration of the model (Aber, 1997; Seidel et al., 2018). Our

simulations successfully optimised both the amount and the quality of C inputs to maintain the current baseline soil organic C

stocks.

The model performed well in soils that are under agriculture (both cropping and grazing), but the simulation under natural310

environments in semi-arid and arid climates need improving. Together with the relatively large C inputs, required to maintain

baseline TOC (9.61 to 17.05 Mg C ha−1), this poor performance suggests that the model did not represent well the complex

decomposition processes described by the (hot and dry) climate and soil under natural environments. We hope to address this

in subsequent research because soil C in semi-arid and arid climates might represent a crucial C sink in Australia and other

similar regions of the world (Farina et al., 2013).315

The simulated baseline estimate of the total TOC stock in Australia is 19.52 Gt, which is less than the 24.97 Gt estimate of

Viscarra Rossel et al. (2014), as soils under land uses that contain more carbon, e.g. forests were not included in this study. Our

estimates for soil under natural environments and native grazing are 1.96 Gt (with 95% confidence intervals of 1.65–2.30 Gt)

and 8.02 Gt TOC (7.90–8.54 Gt), respectively. The soil under native grazing has the largest organic C stocks compared to

the other land uses. The contribution of native grazing to the national soil organic C budget is considerable due to the large320

extent of land that it covers. This estimate was well within the confidence intervals derived by Viscarra Rossel et al. (2014),

although slightly larger. Estimates of the total TOC stocks for soils under modified grazing and cropping are 3.79 Gt (with 95%

confidence intervals 3.72–3.86 Gt) and 1.18 Gt (1.16–1.20 Gt), respectively. These estimates were also somewhat larger than

those of Viscarra Rossel et al. (2014). Our estimates of the total POC and HOC stocks across all four land uses are 3.43 and

10.91 Gt, which are smaller than the 7.8 and 27.3 Gt, respectively, estimated derived by Viscarra Rossel et al. (2019). However,325

our estimates are within the range of their confidence intervals. A reason for the differences between our estimates and those

of Viscarra Rossel et al. (2014, 2019) might be that our estimates from the simulations are based on a relatively sparse sample

(Figure 1), while theirs are from a complete enumeration of Australia with spatial machine learning models. Nevertheless, the

results from our simulations suggest that the ROTH C model can explain the soil processes under different land uses that are

important for estimating the baseline total stocks of soil organic C and its composition.330

There are few quantitative assessments of soil C dynamics in Australia. Primarily they are for cropping regions (Luo et al.,

2014; Lam et al., 2013; Wang et al., 2016), some present local case studies with few data (Hoyle et al., 2013), and some

report estimates that are uncertain because of the lack of comprehensive surveys and scarcity in data (Gifford, 2010). Here, we

simulated soil organic C at 4,043 sites across Australia to estimate changes in C stocks from a range of plausible changes in C
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inputs to the soil. With an annual increase of 1 Mg C ha−1 in C inputs, the model estimated the largest potential soil C increase335

in soil under native grazing (12.07–17.82 Mg C ha−1) and modified grazing (12.38–16.03 Mg C ha−1). The potential increase

in soils under cropping was smaller (12.19–15.80 Mg C ha−1), possibly due to the effect of soil disturbances and cultivation

on decomposition. However, the difference between grazing and cropping is small as the effects of climate and soil texture on

organic matter and its decomposition are likely to be similar over the large areas that these land uses occupy. Soils in natural

environments had the smallest potential to accumulate C (3.15–4.09 Mg C ha−1), because they occur over large areas with340

semi-arid to arid climates characterised by low precipitation, generally below 500 mm yr−1 and high temperatures up to 50◦

(ABS, 2016).

We also simulated the potential vulnerability of soil organic C to loss. Results suggest that with increases in organic C,

Australian soils would potentially become more vulnerable to losses. This is because of the preferential accumulation of C in

the more labile POC pool, which is more sensitive to decomposition with increasing temperatures. We need to better understand345

mechanisms of C stabilisation and management to capture the proportion of new C sequestered in the soil in the more stable

pools.

We did not use net primary productivity (NPP) as a proxy for C inputs to the soil. Although large-scale estimates of NPP

might be a good proxy for the C inputs in natural environments, they would be inadequate for managed systems (Haverd et al.,

2013). To derive estimates of NPP for managed land uses, such as croplands, one needs fine spatial resolution land cover data350

with crop-specific information (Li et al., 2014; Turner et al., 2006). These are not readily available continentally. Large-scale

(global, continental or regional) estimates of NPP, such as those available from coarser resolution remote sensing, would not

be suitable for agricultural environments, also because depending on the method used to derive NPP, the estimates would be

largely uncertain (Roxburgh et al., 2005; Ciais et al., 2010). Therefore, using NPP as an estimate of C inputs for all four land

uses would have made our simulations more uncertain. We thought it important to maintain a consistent approach for deriving355

the C inputs, so we used a wide but plausible range of values to represent the C inputs across the whole of Australia. The range

of C inputs that we used are representative of values that might be expected from management practices that enhance rates of

primary production and C input to the soil, including manure addition (Lal, 2016; Paustian et al., 2019). Our results suggest

that the baseline rate of C inputs into the active POC and HOC pools is site-specific, and managing its rate locally is needed to

avoid soil C loss from land-use change. Importantly, these estimates of C inputs are useful to locate soils where C capture is360

possible under limited availability of water resources and nutrients (Baldock et al., 2012).

The long-term changes in organic C are primarily determined by the C inputs into the soil, and the sensitivity of the change

can be affected by local conditions. The results from the empirical modelling suggest that simulations might improve if we

can modify the environmental effects on decomposition, separately for each of the pools. For example, clay content did not

importantly affect the changes in POC, but it did affect the changes in HOC. In contrast, other studies have shown that clay has365

a direct effect on both C inputs and the C pools in Australian soils (Krull et al., 2003; Luo et al., 2017). Of course, this might be

due to the inability of the model to simulate textural controls on POC. Total N and the C:N ratio contribute more to the changes

in POC than in HOC. POC appears to be also affected by pH and more under cropping. These results demonstrate the difficulty
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that ROTH C has in simulating the more labile POC dynamics and the need to represent such additional environmental factors

to better explain TOC change.370

4.2 Simulating soil C dynamics using a standardise approach

There is a functional disconnection between measurements, data and biogeochemical models (Blankinship et al., 2018), but

by simulating under a framework, like we did here, we can bridge that disconnect. A framework provides a standardised and

consistent approach for organising and processing input datasets from different sources, to facilitate calibration, verification,

estimation and prediction at an appropriate scale and resolution, depending on the study. The input data may originate from375

field or laboratory measurements, remote sensing, digital soil maps or other data from various sources. Using a standardised

approach, soil C simulations can be more versatile. They can be performed on points, areas or pixels, even when few, or no

site-specific data are available. In the latter case, by using fine spatial resolution information (Viscarra Rossel et al., 2014,

2015, 2019), or like we have shown here, one can use measurements together with publicly available continental-scale datasets

and processes them consistently for the simulations. When site-specific data are available, then under the framework, they are380

processed appropriately for the local simulations, as we have shown in Lee and Viscarra Rossel (2020).

Simulating soil organic C in a standardised manner also facilitates consistent pre-processing, quality checks and explicit

definition of the simulation unit. This is important because often, datasets have a different formats and resolutions, which must

be standardised and harmonised before running the simulation (Batjes et al., 2020). Datasets may need to be aggregated or

disaggregated over space and time, depending on the data and the need. For example, if the need is to run the simulations385

over a large-scale and over grids, finer resolution data e.g. soil property data, will require aggregation to match the coarser

resolution of the simulation unit. Similarly, re-classification of categorical data, e.g. land-use data, may be performed, like we

have done here, to set the spatial extent of the simulations. We used the model ROTH C, however, by using our approach,

one could accommodate other soil C models, with only small changes to the workflow (Figure 1). This versatility is essential

for extending our theoretical understanding of C cycling and its response to human-induced and environmental change at390

appropriate scales (Grunwald et al., 2011; Metting et al., 2001). Of course, with other multi-pool C models, it will be important

to explore further the initialisation requirements and the baseline state for the simulations. The reason is that each soil C pool

could be at a different state. Other models may also drive decomposition based on different assumptions, e.g. soil enzyme

kinetics or microbial growth (Smith et al., 2020).

4.3 Future needs395

Plant biomass production and subsequent C inputs to the soil are critical determinants of the quantity of organic matter in soil

C models. The simulations that we presented estimated the potential of soil C sequestration in response to changing C inputs

under the main land uses in Australia. However, we will need data on plant growth properties, seasonal biomass data, and

residue and grazing management, to better represent management practices under these land uses. Without such datasets, it is

difficult to verify the balance between C inputs and the stocks and composition of soil organic C under different land-use and400

management combinations, except for a few cropping systems (Wang et al., 2016). For the soils under native grazing, we need
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new research on the specific growing conditions of plants (e.g. nutrient availability) and how they affect the amount and timing

of C inputs.

The machine learning could identify some other factors that contribute to the changes in soil organic C and determine their

relative importance. Although there is no direct mechanistic understanding gained from those analyses, some of those variables405

are important predictors of soil C change, and they might need accounting in future model development. In practice, statistical

modelling can be incorporated in the simulations to help identify the balance of C flows between the soil, plant, and atmosphere

at the scale of interest. However, research to combine mechanistic and statistical modelling is still at an early stage, and more

research is needed to connect data with models (O’Rourke et al., 2015; Vereecken et al., 2016), in a consistent manner and

across scales, for example, Viscarra Rossel et al. (2019). With new measurements and subsequently growing datasets, we expect410

to identify new processes and controls from statistical modelling and to further account for these in a standardised modelling

approach.

5 Conclusion

The simulations of soil organic C across Australia with ROTH C were performed using a standardised approach that establishes

a much-needed connection between measurements, datasets and models. It enabled consistent processing of measurements and415

datasets from different sources, and standardisation and configuration of the model for calibration, verification, estimation and

prediction. Our results show that the site-specific initialisation of the C pools with measurements of the C fractions (POC, HOC,

ROC) are essential for accurately representing baseline soil organic C stocks and composition. With a site-specific optimisation

of the DPM/RPM ratio, the model could explain 97–98% of the variation in TOC under native grazing, modified grazing and

cropping, respectively, and 65% under natural environments. Site-specific initialisation is also essential for estimating changes420

in C stocks and the potential of soils for C capture and storage. Our 100-year simulations showed that, with an annual increase

of 1 Mg C ha−1, and under constant climate, the potential for C sequestration, as well as the potential vulnerability to C loss,

in Australian soils is smallest in soils under natural environments, it is greater under cropping and modified grazing, and is

greatest in the soils under native grazing.

Code availability. Scripts used for data processing are available from the corresponding author on reasonable request.425

Data availability. The spatial datasets on climate, soil and land use are publicly available from repositories cited in section 2.3.1. Other

datasets are available from the corresponding author on reasonable request.

Author contributions. RVR formulated the research and with JL designed the simulations. JL performed the simulation and with RVR the

data analysis. RVR and JL wrote the manuscript with input from YW and ZL.
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Abstract. We simulated soil organic carbon (C) dynamics across Australia with the Rothamsted carbon model (ROTH C) under


a framework that connects new spatially-explicit soil measurements and data with the model. Doing so helped to bridge the


disconnection that exists between datasets used to inform the model and the processes that it depicts. Under this framework, we


compiled continental-scale datasets and pre-processed, standardised and configured them to the required spatial and temporal


resolutions. We then calibrated ROTH C and run simulations to predict the baseline soil organic C stocks and composition in5


the 0–0.3 m layer at 4,043 sites in cropping, modified grazing, native grazing, and natural environments across Australia. The


ROTH C model uses measured C fractions, the particulate, humus, and resistant organic C (POC, HOC and ROC, respectively)


to represent the three main C pools in its structure. The model explained 97–98% of the variation in measured total organic


C in soils under cropping and grazing, and 65% in soils under natural environments. We optimised the model at each site and


experimented with different amounts of C inputs to predict the potential for C accumulation in a 100-year simulation. With10


an annual increase of 1 Mg C ha−1 in C inputs, the model predicted a potential soil C increase of 13.58 (interquartile range


12.19–15.80), 14.21 (12.38–16.03), and 15.57 (12.07–17.82) Mg C ha−1 under cropping, modified grazing and native grazing,


and 3.52 (3.15–4.09) Mg C ha−1 under natural environments. Soils under native grazing were the most potentially vulnerable


to C decomposition and loss, while soils under natural environments were the least vulnerable. An empirical assessment of


the controls on the C change showed that climate, pH, total N, the C:N ratio, and cropping were the most important controls15


on POC change. Clay content and climate were dominant controls on HOC change. Consistent and explicit soil organic C


simulations improve confidence in the model’s predictions, contributing to the development of sustainable soil management


under global change.


1 Introduction


Soil carbon (C) represents the most abundant terrestrial C pool (Batjes, 1996). It can be a significant source or sink of at-20


mospheric CO2 (Scharlemann et al., 2014). Sequestration of soil organic C, via the adoption of improved land management


strategies, offers opportunities for improving soil and ecosystem health, sustainable food production and climate change mit-


igation (Lal, 2016; Paustian et al., 2019; Smith et al., 2020). However, a better understanding of soil organic C dynamics is


needed to predict the size of the soil C pool accurately and to assess the potential for those opportunities.
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Biogeochemical models represent our mechanistic understanding of processes such as organic C cycling in soil and can25


serve different purposes. They can be used to simulate soil C cycling under various combinations of soil, climate, land use


and management (Conant et al., 2011), to evaluate the potential for C sequestration or loss, and to assess the impacts of


environmental and human-induced change on the C cycle. In conjunction with long-term measurements, models can estimate


the effects of management practices and climate change on soil C, as well as subsequent feedbacks. Therefore, the simulation


of soil organic C with biogeochemical models has received much attention in the literature (Campbell and Paustian, 2015;30


Falloon and Smith, 2000).


The Rothamsted carbon model (ROTH C) (Jenkinson, 1990; Coleman and Jenkinson, 1996) and the CENTURY model


(Parton et al., 1987) are most commonly used to simulate soil organic C dynamics in cropping, grassland and forest systems.


Although developed under northern hemisphere conditions, since their inception in the 1980s, these models have been used for


many different applications worldwide (Campbell and Paustian, 2015; Wang et al., 2016). They are the soil biogeochemical35


component in Earth systems models (Todd-Brown et al., 2013). They do not explicitly represent current theories around the


mechanisms of microbial decomposition and physicochemical protection (Lehmann and Kleber, 2015), but they are still being


used because they capture the general principle of soil organic C dynamics. In essence, the flow of C in the models occur


through a cascading of C via several conceptual pools turning over at different rates, according to first-order kinetics and


modified by climate and soil texture. Other reasons for their continued popularity might be that there is ample documentation40


on them; they are relatively simple and general and are therefore also well understood.


The ROTH C model has been adjusted and tested for use under Australian conditions (Janik et al., 2002; Skjemstad et al.,


2004). Skjemstad et al. (2004) showed that the size of the main conceptual C pools in ROTH C, the resistant plant material,


humic and inert organic matter pools, can be initialised with measurements of the particulate, humus and resistant organic


C (POC, HOC and ROC, respectively) fractions. ROTH C is one of a few models that can be initialised with measured C45


fractions. Skjemstad et al. (2004) calibrated the decomposition rate constants under Australian conditions, and Janik et al.


(2002) assessed a sensitivity of the C pools to model parameters to highlight the potential complexity in the implementation of


ROTH C. Since then, researchers in Australia have used ROTH C in different research (Paul and Polglase, 2004; Hoyle et al.,


2013; Lee and Viscarra Rossel, 2020). ROTH C is a sub-model of the Fully Integrated Carbon Accounting Model (FullCAM)


(Richards and Evans, 2004), used in Australia’s National Greenhouse Gas Inventory System. Together, they are the core of50


the Australian model-based Emission Reduction Fund (ERF) methodology, which allows farmers and landholders to generate


extra income by storing C in their soils and thereby reducing emissions (England and Viscarra Rossel, 2018; Paustian et al.,


2019).


Simulation of soil C dynamics with biogeochemical models can be challenging. Despite the development of new models


with updated representations of current understanding (Abramoff et al., 2018; Robertson et al., 2019; Wieder et al., 2014), there55


remains a disconnection between measurements and datasets used to inform the model and the theories represented in them


(Blankinship et al., 2018; Harden et al., 2018). In practice, a lack of data restricts model parameterisation and optimisation and


missing temporal datasets limit our ability to simulate and verify long-term changes in soil C stocks and composition (Smith


et al., 1997). Hence, there is also little agreement on how input datasets should be synthesised, processed and used (Manzoni
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and Porporato, 2009), leading to inconsistent model calibrations (Conant et al., 2011; Seidel et al., 2018) and inaccurate model60


predictions (Shi et al., 2018). In this context, the development of frameworks for soil organic C modelling and simulation, to


synthesise and integrate measurements and datasets with models are critical (Harden et al., 2018; Ogle et al., 2010; Paustian


et al., 1997; Smith et al., 2020). The frameworks should allow for their efficient updating, with new measurements, data and


models, as they become available (England and Viscarra Rossel, 2018; Smith et al., 2020). They should also enable a more


systematic approach for calibration and validation, making simulations more reliable and reproducible.65


Our aims here were to: (i) simulate soil organic C across Australia with the ROTH C under a framework that enables the


synthesis, processing and standardisation of measurements and data, and predictions at a correct scale, and (ii) to predict the


changes in C stocks and composition under cropping, modified grazing, native grazing, and natural environments, in a 100-year


simulation. We describe the optimisation of the simulations to derive baseline estimates of the total organic C stock and that


of its pools and use a plausible range of C inputs to make the predictions. Finally, we identified the soil and environmental70


controls on the predicted changes.


2 Materials and methods


2.1 The Rothamsted carbon model (ROTH C)


ROTH C is a soil process model for the turnover of organic C in non-flooded soils (Jenkinson, 1990; Coleman and Jenkinson,


1996). The model partitions total organic C (TOC) into pools that represent decomposable plant material (DPM), resistant75


plant material (RPM), microbial biomass (BIO), humified organic matter (HUM), and inert organic matter (IOM) (Coleman


and Jenkinson, 1996). The model simulates on a monthly time step changes in its active pools, in response to climate, soil type,


land use and management. Annual C inputs from crops and manure represent different land use and management regimes. We


used the ROTH C model version 26.3, which is the version that was re-calibrated for a range of Australian soils (Skjemstad


et al., 2004). The decomposition rate constants for the DPM, RPM, BIO, and HUM pools are 10, 0.3, 0.15, and 0.02 year−1,80


respectively (Skjemstad et al., 2004). The decomposition of each active pool is assumed to increase, following first-order


kinetics, with air temperature, but reduced by soil water deficits and the presence of vegetated soil cover. Temperature effects


on soil organic matter decomposition increase following a sigmoid function, while the topsoil moisture deficit reduces it by a


factor of 0.2 to 1 (no moisture stress). The soil cover factor is 1.0 for bare soil and 0.6 when soil is vegetated, to slow organic


matter decomposition. The main conceptual pools RPM, HUM and IOM are replaced with the measured particulate, humus85


and resistant organic C fractions (POC, HOC and ROC, respectively) (Skjemstad et al., 2004). The POC fraction includes any


DPM available in the soil at the time of measurement.


2.2 Soil C simulations under a framework


The framework that we used to simulate C dynamics across Australia (Figure 1), enabled us to efficiently standardise and


then integrate measurements and data on soil properties and environmental controls with the ROTH C model for simulation90
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and prediction at the appropriate scale. It encompasses five stages as follows (Figure 1): 1) data compilation and synthesis, 2)


data pre-processing and standardisation, 3) configuration of data on management regimes, 4) model simulation supported by


consistent initialisation and verification and 5) prediction.


Datasets Pre-processing Configuration Simulation


Large-scale
Public data
Remote sensing
Spectroscopy
Digital soil maps


Climate
Temperature,
precipitation, 
evapotranspiration


Land use


Management


Soil properties
C fractions, clay, 
bulk density, 
water content …


Reclassification


Spatial
aggregation/
disaggregation


Temporal 
aggregation/
disaggregation


Weather data
at required
resolution


Soil data at
required 
resolution


Land use and
management 
regime Model


Initialization/
parameter
estimation


Verification


Baseline 
soil organic C
stocks and 
composition


Change in 
soil organic C
stocks and 
composition 
by scenario


Local-scale
Farmer/manager
Proximal sensing
Spectroscopy
Field-scale 
digital soil maps


Figure 1. Soil carbon (C) simulation and prediction under a framework enables explicit standardisation and better connection between


datasets and a soil process model at the appropriate scale.


2.3 Implementation of the framework for soil C simulations


2.3.1 Data compilation and synthesis95


ROTH C requires site coordinates, POC, HOC, ROC, clay content, and sampling depth (in our case 0–0.3 m). The available


water capacity (AWC) of the soil to a depth of 1 m is needed to estimate the soil water balance in a rooting depth. We used a total


of 4,431 sites across Australia (Figure 2). The soil properties were estimated with visible–near infrared spectra (Viscarra Rossel


and Webster, 2012; Viscarra Rossel et al., 2015). Maximum air temperature, minimum air temperature, precipitation and pan


evaporation are also required to run the model. We obtained gridded daily climate data (approximately 5-km resolution) from100


the SILO database of Australian climate data (SILO, 2020). We used the Australian Bureau of Agricultural and Resource


Economics and Sciences land use map (ABARES, 2016) to determine detailed land cover across Australia. Agricultural activity
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data from Unkovich et al. (2017) provided data for croplands and modified pastures at Statistical Area Level 2 (SA2) (ABS,


2016), which are functional areas that represent socially and economically coherent communities. Current and historical events


and agricultural practices, such as crop type and harvest, can be specified from 1970 to 2014. The other data required to run the105


model include an estimate of the decomposability of incoming biomass, soil cover, and monthly inputs of plant C and farmyard


manure. These C input variables, if not measured, must be estimated at each site (see below).
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Grazing modified
Grazing native
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Figure 2. Location of 4,431 sites across Australia selected for this study. 1,261 sites were under cropping, 2,269 sites under grazing modified


pastures, 807 sites under grazing of native vegetation, and 94 sites in natural environments, mostly under minimal use or managed resource


protection in arid climates.


2.3.2 Data pre-processing and standardisation


The datasets were pre-processed and configured to provide standard and consistent values and units of measurement. Daily


weather was extracted at each of the 4,431 sites for the 20 years from 1991 to 2010. The mean of the minimum and maximum110


daily temperatures derived the average daily temperatures. Aggregation of the daily weather data produced monthly average


temperature, precipitation, and pan evaporation.


We used the Australian land use map to re-classify each site into the following broad land uses: cropping, modified grazing,


native (unmodified) grazing, and natural environments (areas for nature conservation, indigenous uses, other minimal uses). We


used the gridded Köppen climate classification from the Bureau of Meteorology (BOM, 2016) to identify sites under natural115


environments in arid climates. The area of cropping, modified grazing, native grazing, and arid natural environments occupy


292,104 km2 (or 3.8%), 706,099 km2 (9.2%), 3,439,468 km2 (44.8%), and 1,507,616 km2 (19.6%) of Australia, respectively.
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Data on agricultural practices at the SA2 level obtained from Unkovich et al. (2017) were used to select a crop or grass to


represent typical management regimes in the sites under cropping and modified grazing.


2.3.3 Configuration of land management regimes and initial estimation of C inputs to soil120


ROTH C does not calculate plant growth or the quantity of soil C inputs. Therefore, we estimated monthly plant C returns and


farmyard manure added to the soil (e.g. managed or deposited by animals grazing on pasture) using the following approach.


The initial estimate was made to set the starting values of the C inputs and to match the timing of C inputs to the crop or grass


grown.


We assumed that crops grow in rotations, but at sites under modified pastures, only a single grass species was considered. We125


used the activity data from Unkovich et al. (2017) to determine crop rotations and a representative grass species for each site


during the baseline period between 1991 through 2010. We based the selection on the probabilities of change in a regime. The


data suggest that these probabilities were different for different periods (particularly for 1990–1994, 1995–1999, 2000–2004,


2005–2009, 2010–2014). For each period, we calculated the cumulative frequency by regime. We used it to randomly select


the crop or grass species (both annual and perennial) planted each year in the particular period. The crops grown in all years130


were selected and then used to determine the most dominant crop species. For the sites under native grazing, we considered a


native perennial grass only.


For annual plant species, we used a crop model (Unkovich et al., 2018) that uses the amount of water available to the plant


(derived from the precipitation data) to calculate a potential dry matter increment that is water-limited (WLDM) in kg ha−1:


WLDM= ((ET ×Ts)+ (DD×Td))×TE135


where ET is the evapotranspiration (mm) from pan evaporation, DD is any deep water drainage (mm) that occurs during


the fallow season, Ts is a fraction of ET that goes through the transpiration, Td is a fraction of deep water drainage that


goes through the transpiration, and TE is the transpiration efficiency that is the amount of biomass produced per unit of


water transpired (kg mm−1) of a cropping or grazing system. The maximum dry matter production (DMmax) is the sum of


dry matter increments over the growing season. This model then back calculates dry matter accumulation (kg ha−1) over the140


season (DMacc):


DMacc =
DMmax


(1+ e−
Day−a×Daysmax


b×Daysow×Daysmax )


where Day is the current day as the season progresses, Daysmax is the number of total growing days, Daysow is the day of


planting, and a and b are growth coefficients specific for the plant. For a perennial system, daily growth (G) in kg ha−1 is


calculated as:145


G=WLT ×TI ×TE


where WLT is the amount of water-limited transpiration (mm) that is evapotranspiration multiplied by vegetation cover, TI


is the temperature index function (Nix, 1981), and TE is the transpiration efficiency of a perennial system (kg mm−1). The
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perennial plant growth is used to calculate dry matter accumulation over the season. The model estimates root biomass using a


plant-specific shoot-to-root ratio.150


For both modified and native pastures, we assumed grazing to occur if the grass accumulated 1.2 Mg ha−1 of shoot dry-


matter, with no grazing effect on plant growth. Specifically, grazing animals consumed 50% of daily shoot growth, returned


50% of the consumption to the soil as dung, and shed 50% of daily root growth. When the available soil water fell to < 15% of


water holding capacity, 1% and 0.5% of the shoot dry matter and the root dry matter were assumed to die daily. We assumed


the C content of above-ground and below-ground residues to be 42% by mass.155


For the sites under natural environments, however, we did not use the plant model because we had no data on plants in this


region. Instead, we assumed small but consistent C inputs from plant residues only, which was set to be 0.049 Mg ha−1/month.


We assumed no soil cover because in these regions, vegetation cover is typically sparse.


2.3.4 Simulation: optimisation of C inputs to the baseline soil organic C


We assumed an equilibrium condition for the simulation of the baseline soil organic C stocks. Our assumption is based on160


temporal soil organic C changes from 73 sites across Australian agricultural regions, recorded from 1911 to 2000 (Skjemstad


and Spouncer, 2003). The DPM/RPM ratio determines the decomposability of incoming biomass. By default, the recommended


DPM/RPM ratio is 1.44 for most crops and improved pastures and 0.67 for unimproved grasslands (Coleman and Jenkinson,


1996). The DPM/RPM ratio depends on the quality of C in plant residues and manure. It is site-specific, differs by land-


use (Post and Kwon, 2000), and is unknown for Australian native grazing or natural environments. We tested six different165


DPM/RPM ratios (0.67, 0.96, 1.17, 1.44, 1.78 and 2.23) to assess the sensitivity of the simulated TOC, POC and HOC to this


parameter. These ratios correspond to allocations of incoming plant material to DPM in the range 40–69%, and proportionally,


to RPM in the range 60–31%. We then performed the simulation iteratively (up to 1000 times) at each site until the POC and


HOC pools matched the estimates of the measured C fractions. We ran the model for 100 years using weather data, repeated


from a baseline period between 1991–2010, until equilibrium conditions occurred, with no temporal change in both POC and170


HOC. At each iteration of the simulations, the monthly input of plant residues and farmyard manure changed from their initial


values by a fraction of 1/100. We considered only monthly C inputs in the simulations. Equilibrium condition occurred when


1) both POC and HOC did not significantly change over time (P > 0.05), or 2) we observed an absolute change of < 0.0025


Mg C ha−1 in both POC and HOC. We used a time series linear model with a trend and seasonality to fit the change in POC


and HOC over time. An equilibrium condition was also assumed if the direction of a trend (positive or negative) in any pool175


shifted. This condition prevented unrealistic simulations because both POC and HOC showed the same trend in response to C


inputs. Depending on the DPM/RPM, at 12 to 14 out of the 4,431 sites, the model was not able to simulate the equilibrium


condition. We note that, for the sites that failed, changing C inputs only is insufficient for making both the POC and HOC pools


reach equilibrium simultaneously.


We report the stocks of TOC, POC and HOC at the end of the 100-year simulation. We selected 100 years because it is the180


permanence period for soil C sequestration of the Australian ERF. The difference between the measured and the simulated TOC


stock provided an estimate of the model deviation. We also calculated the range of monthly variation in simulated TOC stocks.
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For each site, we selected the DPM/RPM ratio based on the minimum deviation of TOC. We excluded 388 sites with the model


deviation and range of monthly change in TOC stock ≥ 10 Mg C ha−1. Large TOC stocks characterised the sites, median


75.04 Mg C ha−1 (range 52.58–111.44 Mg C ha−1) and fell mostly under a modified grazing (data not shown). Finally, we185


optimised the amount of monthly C input and the DPM/RPM ratio at 4,043 sites and used them as the baseline. We determined


the dominant values of the DPM/RPM ratio for each land-use across Australia, based on their relative frequency.


2.3.5 Prediction: potential for C sequestration under changing C inputs


Using the calibrated model, we predicted potential changes in soil organic C over 100 years, in response to changes in C inputs.


We selected different rates of C input to the soil by multiplying the optimised baseline with the factors 0, 0.25, 0.5, 0.75, 1.25,190


1.5, 2, 4 and 6. These rates were selected to represent a wide range of C inputs that would be either physically achievable


or manageable. Because we already calculated the timing of C inputs and the sensitivity to the DPM/RPM ratio, we did not


consider scenarios that varied the timing or quality of C inputs. We chose 100 years so that we could detect changes in TOC,


POC and HOC and predict their long-term response.


We calculated 11-year moving averages of the stocks of TOC, POC and HOC and the potential vulnerability of soil C to195


decomposition over the 100-years. The vulnerability of soil C was derived using POC/(HOC + ROC) (Viscarra Rossel et al.,


2019). We calculated changes in soil organic C by changing C inputs. We reported the median stocks for the last 11 years of


the simulation when it reached a new equilibrium. We also approximated the lower and upper 95% confidence intervals for the


median to quantify the variation of their responses to different C inputs (Conover, 1998).


2.3.6 Empirical assessment of controls on the simulated C change200


There are soil and environmental controls on organic C that are not accounted for by ROTH C. To gain a better understanding


of the controls on the predicted change in soil organic C under changing C inputs, we modelled the change in TOC, POC and


HOC as a function of the four land-use classes and a set of environmental variables. The environmental variables included


i) soil properties, such as total nitrogen (N), total phosphorous (P), and C:N (Viscarra Rossel et al., 2015), ii) clay minerals


(illite, kaolinite, and smectite) (Viscarra Rossel, 2011) and iii) potassium (K), thorium (Th) and uranium (U) from gamma205


radiometrics, which also represent mineralogy and parent material (Minty et al., 2009). For the modelling, we used the machine


learning algorithm CUBIST (Quinlan, 1992). To build precise and stable models, we tested combinations of committees (1, 2, 5,


10, and 20) and the number of neighbours (0, 2, 5, and 9) using 10-repeated cross-validation (Hastie et al., 2009). We used the


minimum root mean squared error (RMSE) to select the best model. We then assessed the relative importance of each variable


based on the usage of each variable in the conditions and the linear models.210
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3 Results


3.1 Effect of different quality of C inputs on soil organic C


The median stocks of TOC, POC and HOC calculated across Australia were 26.01, 3.43 and 16.10 Mg C ha−1 in the 0–


0.3 m soil layer, respectively (Figure 3). The measured TOC stocks under natural environments, native grazing, modified


grazing and cropping were 15.45 Mg C ha−1 (interquartile range 11.89–18.11 Mg C ha−1), 24.61 Mg C ha−1 (18.96–34.17),215


51.48 Mg C ha−1 (39.01–74.60) and 35.38 Mg C ha−1 (25.39–43.55), respectively. The POC and HOC fractions consisted of


11% and 68% of of the measured TOC stocks under natural environments, 11% and 67% under native grazing, 18% and 52%


under modified grazing, and 16% and 53% under cropping.


The model simulated the measured TOC, POC and HOC stocks at equilibrium with each change in the DPM/RPM ratio


(Supplement Table S1). However, the amount of annual C input necessary to maintain soil organic C stocks was sensitive to220


the varying quality of incoming plant material. The C inputs increased from 1.47 to 1.83 Mg C ha−1 when the DPM/RPM ratio


increased from 0.67 (low decomposability) to 2.23 (high decomposability). With those changes, the rate of C inputs into DPM


rose from 0.59 to 1.26 Mg C ha−1 yr−1, while the rate into RPM decreased from 0.88 to 0.57 Mg C ha−1 yr−1. The addition


of biomass C with different qualities affected the levels of POC and HOC at equilibrium (Supplement Table S1).


With an optimised DPM/RPM ratio at each site, the model was able to explain 97–98% of the measured variation in TOC225


at sites under native grazing, modified grazing and cropping, with the RMSE values of 2.45–3.55 Mg C ha−1 (Figure 3). At


the sites under natural environments, the model explained only 65% of the variation in TOC, but with a similar RMSE of


3.22 Mg C ha−1. The model could explain less of the variation in POC (55–89%) compared to TOC and HOC. There was also


reduced model performance for POC in the soils under cropping. Across the sites, the most frequent DPM/RPM ratio was 2.23


(for 1773 sites), followed by the value 0.67 (for 829 sites) and 0.96 (415 sites) (Figure 3). The simulated median and total TOC,230


POC and HOC stocks for each land-use class and overall (Table 1) were similar to the measured data. This gave us confidence


in the performance of the model under Australian conditions.
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Figure 3. Simulation of equilibrium soil organic C levels after optimisation, based on its sensitivity to the changes in the allocation of


incoming plant and manure C into the decomposable plant material (DPM) and resistant plant material (RPM) components (n = 4,043). The


map shows the geographic distribution of DPM/RPM values, where high values correspond to faster decomposition.


10



Yes�

paragraph

"−40"



Text Deleted�

Text

"Figure 3. Simulation of equilibrium soil organic C levels after optimisation, based on its sensitivity to the changes in the allocation of incoming plant and manure C into the decomposable plant material (DPM) and resistant plant material (RPM) components (n = 4,043). The map shows the geographic distribution of DPM/RPM values, where high values correspond to faster decomposition."



Text Deleted�

Text

"10"







Table 1. The simulated stocks of total, particulate and humus organic C (TOC, POC and HOC) under different land uses and in Australia. The


total stocks of soil organic C were calculated from the median with the uncertainties expressed as an approximate 95% confidence interval


(CI).


Land use Median 1st quantile 3rd quantile Total Lower 95% CI Upper 95% CI


(Mg/ha) (Mg/ha) (Mg/ha) (Gt) (Gt) (Gt)


Cropping TOC 40.25 30.87 47.74 1.18 1.16 1.20


(n = 1182) POC 7.76 5.63 10.22 0.23 0.22 0.23


HOC 21.03 15.17 25.13 0.61 0.60 0.63


Modified grazing TOC 53.65 42.24 74.37 3.79 3.72 3.86


(n = 2008) POC 10.66 7.70 15.13 0.75 0.73 0.77


HOC 27.87 21.74 35.91 1.97 1.92 2.01


Native grazing TOC 23.85 17.98 33.60 8.20 7.90 8.54


(n = 777) POC 3.86 2.77 5.73 1.33 1.27 1.40


HOC 14.08 10.65 19.05 4.84 4.64 4.99


Natural environment TOC 13.00 9.61 17.05 1.96 1.65 2.30


(n = 76) POC 2.29 1.72 3.28 0.35 0.29 0.42


HOC 6.84 4.98 10.18 1.03 0.88 1.30


Australia* TOC 25.45 19.37 34.94 19.52 18.63 20.52


POC 4.46 3.23 6.44 3.43 3.24 3.64


HOC 14.22 10.75 19.10 10.91 10.37 11.52


* The Australian-wide estimates were the area weighted averages of the medians for the four land-use classes. The area


of cropping, modified grazing, native grazing, and arid natural environments occupy 3.8%, 9.2%, 44.8%, and 19.6% of


Australia (total area 7673138 km2), respectively.


3.2 Effect of changing C inputs on soil organic C


The TOC, POC and HOC stocks at equilibrium were positively related to the level of C inputs (Figure 4). Annual C inputs to


the soil under natural environments, native grazing, modified grazing and cropping were 2.38, 0.77, 1.86 and 1.60 Mg C ha−1,235


respectively. Therefore, the model estimated the largest amount of C inputs required to maintain soil organic C under natural


environments compared to the other land uses. The corresponding interquartile range was 1.11–3.57 Mg C ha−1 for natural


environments. In comparison, there was a wider range of C inputs for native grazing (0.57–1.13 Mg C ha−1), modified grazing


(1.37–3.01 Mg C ha−1), and cropping (1.20–2.18 Mg C ha−1) (Figure 4). For the agricultural soils, clay affected the relation-


ship between soil organic C stocks and C inputs as soil with more clay (predominantly in eastern Australia) could hold more240
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organic C (Figure 4). In particular, HOC and TOC under modified grazing show distinct responses to C inputs, depending on


clay content. This pattern was not evident for POC as this pool is not directly associated with clay in the model.
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Figure 4. Relationships of total, particulate and humus organic C (TOC, POC and HOC) with C inputs by land use (n = 4,043).


The model explained 78, 80, and 50% of the variation in TOC, HOC, and POC by increasing C input under cropping (Figure


4). The relationship was poorer under native and modified grazing (r2 = 0.54–0.69) (Figure 4). There was a relatively weak
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and divergent relationship between soil organic C stocks and C inputs to the soil under natural environments (r2 = 0.35–0.40),245


mostly due to differences in precipitation. We found that soil organic C was more responsive to C inputs at the sites with little


annual precipitation (approximately 170 mm).


The TOC, POC and HOC stocks at a new equilibrium responded linearly to changing soil C inputs from the baseline (Figure


5). Our results show that with an annual increase of 1 Mg C ha−1 in C inputs and under current climatic conditions, soils under


natural environments can potentially increase TOC stocks by 3.52 Mg C ha−1 (interquartile range 3.15–4.09 Mg C ha−1). In250


this case, the stocks of POC and HOC increased by 0.92 Mg C ha−1 (0.73–1.35) and 2.48 Mg C ha−1 (2.23–2.99), respectively.


Soils under the other land use were more sensitive to changing C inputs. Under native grazing, TOC, POC and HOC stocks


changed by 15.57 Mg C ha−1 (12.07–17.82), 5.49 Mg C ha−1 (3.93–6.97) and 9.18 Mg C ha−1 (7.46–9.96), respectively,


and at the same rate as the C inputs in the simulation. Under modified grazing, TOC stocks changed by 14.21 Mg C ha−1


(12.38–16.03) and POC and HOC accounted for 5.34 Mg C ha−1 (4.46–6.86) and 8.12 Mg C ha−1 (7.23–8.93) of the255


change, respectively (Figure 5). Changes in TOC, POC and HOC stocks under cropping were 13.58 Mg C ha−1 (12.19–


15.80), 4.69 Mg C ha−1 (3.76–6.48) and 8.35 Mg C ha−1 (7.49–8.96), respectively. The change in soil C stocks under grazing


and cropping were similar, possibly because climate and soil texture have a dominant effect of on the C inputs in these areas.


In soils under natural environments, more HOC accumulated with increasing TOC. Conversely, under grazing and cropping,


with increasing TOC there was also more POC. With increasing C inputs, the potential vulnerability of soil organic C to loss260


increased under all four land uses (Figure 5). The soil under native grazing was the most vulnerable, as the increase in POC


(35%) was proportionally higher than the increase in HOC (59%). Soil under natural environments was the least vulnerable to


change because of the smaller increase in POC (26%) relative to HOC (70%).


3.3 The controls on the simulated soil organic C change


Climatic variables, particularly temperature and potential evaporation, controlled changes in TOC, POC and HOC (Figure 6).265


Clay content had a dominant effect on the changes in HOC because in ROTH C, clay determines the ratio of CO2 released to


HOC formed, during decomposition. Total N, the C:N ratio and pH were important controls for the changes in POC (Figure 6),


and might be related to a capacity of the soil to form POC. Cropping affected the changes in POC, possibly because of the crop-


specific distribution of C inputs. The controls on POC were similar to those on TOC because their changes were proportional.


The land use in natural environments affected the changes in HOC (Figure 6).270
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Figure 5. Simulated potential changes in total organic C (TOC) in the topsoil (0–0.3 m) following the changes in C input (n = 4,043),


consisting of particulate and humus organic C (POC and HOC) (left) and corresponding changes in C vulnerability (right). At each site,


baseline C input was multiplied by the factor 0, 0.25, 0.5, 0.75, 1.25, 1.5, 2, 4 and 6 to derive different C input levels. A positive change in


the C vulnerability shows increased vulnerability to decomposition, while a negative change indicates more resistance to loss. The error bar


represents the model variation within the interquartile range from the median.
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Figure 6. Importance of the environmental variables that contribute to potential changes in total, particulate and humus C organic C (TOC,


POC and HOC) by changing C inputs. Climatic variables, i.e. mean annual temperature (MAT), mean annual total precipitation (MAP) and


potential evapotranspiration (PET), are averaged over a period of 1991–2010. CEC is the cation exchange capacity of a soil.


4 Discussion


4.1 The performance of ROTH C for simulating C change in Australia


We used ROTH C because it requires few parameters, it initialises its main pools with measured C fractions, and it was


adjusted to suit Australian conditions (Janik et al., 2002; Skjemstad et al., 2004). Further, the model is in Australia’s National


Greenhouse Gas Inventory System and the ERF, and so we thought it useful to comply. The climatic and soil property inputs275


needed to run ROTH C are readily available from public datasets or are relatively easily measured, for instance, with proximal


sensors (England and Viscarra Rossel, 2018).


The main soil C pools of ROTH C can be initialised with measured C fractions, there is no need for spinup simulations (i.e.


simulations until the model reaches equilibrium), making it possible to run the model at each of the sites across Australia,


without additional effort. Further, using measured C fractions in the model allows for correct assignment of the primary pool280
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structure and the measurements serve as internal verification of the model predictions. In our case, we could empirically assess


how well the baseline simulations matched the model’s corresponding dynamic pools, which gave us additional confidence


that the performance of the was representative of the Australian soils used. Such data-driven model initialisation helps with


the selection and site-specific estimation of other ‘unknown’ model parameters, such as the amount and quality of C inputs.


Importantly, it also helps with a more consistent calibration of the model (Aber, 1997; Seidel et al., 2018). The simulations285


successfully optimised both the amount and the quality of C inputs to maintain the current baseline soil organic C stocks.


The model performed well in soils that are under agriculture (both cropping and grazing), but the simulation under natural


environments in semi-arid and arid climates need improving. Together with the relatively large C inputs, required to maintain


baseline TOC (9.61 to 17.05 Mg C ha−1), this poor performance suggests that the model did not represent well the complex


decomposition processes described by the (hot and dry) climate and soil under natural environments. We hope to address this290


in subsequent research because soil C in semi-arid and arid climates might represent a crucial C sink in Australia and other


similar regions of the world (Farina et al., 2013).


The simulated baseline estimate of the total TOC stock in Australia is 19.52 Gt, which is less than the 24.97 Gt estimate


of Viscarra Rossel et al. (2014), as soils under land uses that contain more carbon, e.g. forests were not included in this


study. Our estimates for soil under natural environments and native grazing are 1.96 Gt (with 95% confidence intervals of295


1.65–2.30 Gt) and 8.02 Gt TOC (7.90–8.54 Gt), respectively. The soil under native grazing has the largest organic C stocks


compared to the other land uses. The contribution of native grazing to the national soil organic C budget is considerable due to


the large extent of land that it covers. This estimate is within the confidence intervals derived by Viscarra Rossel et al. (2014),


although slightly larger. Estimates of the total TOC stocks in soils under modified grazing and cropping are 3.79 Gt (with 95%


confidence intervals 3.72–3.86 Gt) and 1.18 Gt (1.16–1.20 Gt), respectively. These estimates are also somewhat larger than300


those of Viscarra Rossel et al. (2014). Our estimates of the total POC and HOC stocks across all four land uses are 3.43 and


10.91 Gt, which are smaller than the 7.8 and 27.3 Gt, respectively, estimated derived by Viscarra Rossel et al. (2019). However,


our estimates are within the range of their confidence intervals. A reason for the differences between our estimates and those


of Viscarra Rossel et al. (2014, 2019) might be that our estimates from the simulations are based on a relatively sparse sample


(Figure 1), while theirs are from a complete enumeration of Australia with spatial machine learning models. Nevertheless, the305


results from our simulations suggest that the ROTH C model can explain the soil processes under different land uses that are


important for estimating the baseline total stocks of soil organic C and its composition.


There are few quantitative assessments of soil C dynamics in Australia. Primarily they are for cropping regions (Luo et al.,


2014; Lam et al., 2013; Wang et al., 2016), some present local case studies with few data (Hoyle et al., 2013), and some report


estimates that are uncertain because of sparse surveys and scarcity in data (Gifford, 2010). Here, we simulated soil organic C310


at 4,043 sites across Australia to estimate changes in C stocks and C composition from a range of plausible changes in C inputs


to the soil. With an annual increase of 1 Mg C ha−1 in C inputs and constant climate, the model predicted the largest potential


soil C increase in soil under native grazing (12.07–17.82 Mg C ha−1) and modified grazing (12.38–16.03 Mg C ha−1). The


potential increase in soils under cropping is 12.19–15.80 Mg C ha−1. Soils in natural environments have the smallest potential


to increase C (3.15–4.09 Mg C ha−1). We also predicted the potential vulnerability of soil organic C to loss. Results suggest315
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that soil organic C in Australian soils would become more vulnerable to losses with increases in soil organic C. This indicates


the need for a better understanding of C stabilisation mechanisms and management to maintain the proportion of new C


sequestered in the soil.


We did not use net primary productivity (NPP) as a proxy for C inputs to the soil. Although large-scale estimates of NPP


might be a good proxy for the C inputs in natural environments, they would be inadequate for managed land uses (Haverd et al.,320


2013). To derive estimates of NPP for managed land uses, such as croplands, one needs fine spatial resolution land cover data


with crop-specific information (Li et al., 2014; Turner et al., 2006), which are not readily available continentally. Large-scale


(global, continental or regional) estimates of NPP, such as those available from coarser resolution remote sensing, would not


be suitable for agricultural environments, also because depending on the method used to derive NPP, the estimates would be


largely uncertain (Roxburgh et al., 2005; Ciais et al., 2010). Therefore, using NPP as an estimate of C inputs for all four land325


uses would have resulted in more uncertainties in our simulation. We thought it important to maintain a consistent approach


for deriving the C inputs, so we used a plausible range of values to represent the C inputs under all four land use classes. The


range of C inputs that we used are representative of values that might be expected from management practices that enhance


rates of primary production and C input to the soil, including manure addition (Lal, 2016; Paustian et al., 2019). Our results


suggest that the baseline rate of C inputs into the active POC and HOC pools is site-specific, and managing its rate locally is330


needed to avoid soil C loss from land-use change. Importantly, these estimates of C inputs are useful to locate soils where C


capture is possible under limited availability of water resources and nutrients (Baldock et al., 2012).


The long-term changes in organic C are primarily determined by the C inputs into the soil, and the sensitivity of the change


can be affected by local conditions. The results from the empirical modelling suggest that predictions might improve if we


can modify the environmental effects on decomposition, separately for each of the pools. For example, clay content did not335


importantly affect the changes in POC, but it did affect changes in HOC. In contrast, other studies have shown that clay has a


direct effect on both C inputs and the C pools in Australian soils (Krull et al., 2003; Luo et al., 2017). Of course, this might be


due to the inability of the model to simulate textural controls on POC. Total N and the C:N ratio contribute more to the changes


in POC than in HOC and POC seems to be also affected by pH and more under cropping. These results suggest the difficulty


that ROTH C has in simulating the more labile POC dynamics and the need to represent such additional environmental factors340


to better explain the changes.


4.2 Simulating soil C dynamics under a framework


There is a functional disconnection between measurements, data and biogeochemical models (Blankinship et al., 2018), but


by simulating under a framework, like we did here, we can bridge that disconnect. A framework provides a standardised and


consistent approach for organising and processing input datasets from different sources, to facilitate calibration, verification and345


prediction at an appropriate scale and resolution, depending on the study. The input data may originate from field or laboratory


measurements, remote sensing, digital soil maps or other data from various sources. Under a framework soil C simulations can


be more versatile. They can be performed on points, areas or pixels, even when few, or no site-specific data are available. In


the latter case, by using fine spatial resolution information (Viscarra Rossel et al., 2014, 2015, 2019), or like we have shown
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here, one can use measurements together with continental-scale datasets and processes them consistently for the simulations.350


When site-specific data are available, then under the framework, they are processed appropriately for the local simulations, as


we have shown in Lee and Viscarra Rossel (2020).


Simulating soil organic C under a framework also facilitates consistent pre-processing, quality checks and explicit defini-


tion of the simulation unit. This is important because often, datasets have a different formats and resolutions, which must be


standardised and harmonised before running the simulation (Batjes et al., 2020). Datasets may need to be aggregated or dis-355


aggregated over space and time, depending on the data and the need. For example, if the need is to run the simulations over a


large-scale and over grids, finer resolution data e.g. soil property data, will require aggregation to match the coarser resolution


of the simulation unit. Similarly, re-classification of categorical data, e.g. land-use data, may be performed, like we have done


here, to set the spatial extent of the simulations. We used the model ROTH C, however, by simulating under a framework one


could accommodate other soil C models, with only small changes to the workflow (Figure 1). This versatility is essential for360


extending our theoretical understanding of C cycling and its response to human-induced and environmental change at appro-


priate scales (Grunwald et al., 2011; Metting et al., 2001). Of course, with other multi-pool C models, it will be important to


explore further the initialisation requirements and the baseline state for the simulations. The reason is that each soil C pool


could be at a different state. Other models may also drive decomposition based on different assumptions, e.g. soil enzyme


kinetics or microbial growth (Smith et al., 2020).365


4.3 Future needs


Plant biomass production and subsequent C inputs to the soil are critical determinants of the quantity of organic matter in soil


C models. The simulations that we presented predicted the potential of soil C sequestration in response to changing C inputs


under the main land uses in Australia. However, we will need data on plant growth properties, seasonal biomass data, and


residue and grazing management, to better represent management practices under these land uses. Without such datasets, it is370


difficult to verify the balance between C inputs and the stocks and composition of soil organic C under different land-use and


management combinations, except for a few cropping systems (Wang et al., 2016). For the soils under native grazing, we need


new research on the specific growing conditions of plants (e.g. nutrient availability) and how they affect the amount and timing


of C inputs.


The machine learning modelling could identify some other contributing factors for changes in soil organic C and determine375


their relative importance. Although there is no clear mechanistic understanding gained from those analyses, some of those


variables are important predictors of soil C sequestration, and they might need accounting in future model development. In


practice, statistical modelling can be included in the framework to help identify the balance of C flows between the soil,


plant, and atmosphere at the scale of interest. However, research to combine mechanistic and statistical modelling is still at


an early stage, and more research is needed to connect data with models (O’Rourke et al., 2015; Vereecken et al., 2016), in380


a consistent manner and across scales, for example, Viscarra Rossel et al. (2019). With new measurements and subsequently


growing datasets, we expect to identify new processes and controls from statistical modelling and to further account for these


in the models within the framework.
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5 Conclusion


Our results show that the site-specific initialisation of the C pools with measurements of the C fractions are essential for accu-385


rately representing baseline soil organic C stocks and composition. With a site-specific optimisation of the DPM/RPM ratio,


the model could explain 97–98% of the variation in TOC under native grazing, modified grazing and cropping, respectively,


and 65% under natural environments. Site-specific initialisation is also essential for predicting changes in C stocks and the


potential of soils for C capture and storage. Our 100-year simulations showed that, with an annual increase of 1 Mg C ha−1,


the potential for C sequestration, as well as the potential vulnerability to C loss, in Australian soils is smallest in soils under390


natural environments, larger under cropping and modified grazing, and the greatest in the soils under native grazing. Our sim-


ulations of soil organic C across Australia with ROTH C were performed under a framework that establishes a much-needed


connection between measurements, datasets and models. It enabled consistent processing of measurements and datasets from


different sources, and standardisation and configuration of the model for calibration, verification, and prediction.


Code availability. The code used for the data processing is available from the corresponding author on reasonable request.395


Data availability. The data sets are available from the corresponding author on reasonable request.
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