
Dear Prof. Yakir,

please find enclosed our revised manuscript ’Predicting evapotranspiration from
drone-based thermography – a method comparison in a tropical oil palm planta-
tion’. We thank you and the reviewers for the provided comments and sugges-
tions, which we all considered in our revised manuscript. They are addressed in
detail in the enclosed point-by-point replies. We apologize for the delays in re-
vising the manuscript, which occurred in the wake of the lead author’s doctoral
thesis submission and defense and subsequent move to a new job and univer-
sity. We included the suggestions and revised the manuscript accordingly. We
hope that the improvements are convincing to you and the reviewers so that the
manuscript can move on to publication in Biogeosciences.

Sincerely,

Florian Ellsäßer on behalf of all co-authors
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1 Response to reviewer I

Dear Reviewer,

Thank you for taking the time to revise our manuscript. We welcome your
comments and think they have helped to improve our manuscript considerably.
Please find our point-by point response (in blue color) below.

Sincerely,
Florian Ellsäßer

Peer review for the manuscript: Predicting evapotranspiration from drone-based
thermography – a method comparison in a tropical oil palm plantation by Ell-
sasser et al The manuscript under consideration reports a 9-days study of sur-
face temperature measurements over an oil palm plantation in Indonesia using
a thermal camera mounted on a drone. The authors used the temperature data
to calculate the latent heat flux using three different models, with/out radiation
inputs, and showed good agreement between one of the models and the latent
heat estimated from an eddy-covariance (EC) calculation based on an on-site
flux tower. The drone-based temperature calculation is more flexible than the
EC, also providing spatial information at high resolution. This is a very nice
paper reporting an elegant study. The text and figures are carefully prepared
and nicely presented.

I have only a few questions and suggestions:

1. Considering the rather narrow variation in air temperature over the tropical
plantation, would you think that the fact that the study was performed at this
site is a challenge? Or rather an easier case? I think that this point is touched
upon, but further discussion would be appreciated.

We agree with the reviewer that there was rather narrow variation during the
time of study (canopy air temperature ranged from 22.5 to 32.3 ◦C), as is typical
for the region. Generally, the study site was rather challenging. We added a
short section taking up these points to the discussion (L605-L611):

Generally, the equatorial study site was rather challenging due to high temper-
atures and humidity and frequent occurrence of haze, as well as for logistical
reasons. Additionally, many previous drone-based studies were conducted on
grasslands (e.g. Brenner et al. (2017, 2018)) or on low-growing crops such as
wheat fields (Hoffmann et al., 2016), but not on crops with a rather complex
canopy structure such as oil palm. On the other hand, our study site showed
large temperature differences between soil and canopy, which simplified the dis-
tinguishing of each fraction.

2. Considering the aggravating situation of deforestation in the studied region,
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and the implications on surface warming (L110-113), it would be highly inter-
esting to make a comparison study between the palm plantation and the natural
rainforest. I assume that the higher spatial heterogeneity in the latter would
offer a better test case for the spatial distribution of ET (Fig. 5). Can the
authors include such information?

We thank the reviewer for this very interesting point. Indeed the comparison of
land surface temperatures and modelled evapotranspiration of natural rainfor-
est and an oil palm plantations would provide valuable spatial insight into the
current transformation of transpiration patterns caused by local- and regional-
scale land-use changes, as e.g. described in Röll et al., 2019 and Sabajo et al.,
2017. However, the present study focuses on the comparison of different drone-
based methods as a baseline for future ecological studies, rather than applying
the methods to different land-use types. We will however follow up on this in
the future, as we also performed flight missions over flooded and non-flooded
natural forest sites and a variety of adjacent areas including mixed oil palm
stands and small holder rubber and oil palm plantations.

To clarify this point in the manuscript, we updated the introduction section
with the following sentence (L124-L125):

The present study focuses on the comparison of different drone-based methods
as a baseline for future ecological studies, rather than applying the methods to
different land-use types.

3. It would be good to include in the paper some information on the measured
air-surface temperature differences as function of time and space.

The differences of mean land surface and air temperatures were rather low dur-
ing our study period ranging from 0.005K to a single peak of 8.689K and daily
means ranged from daily means of 1.32K to 2.13K. The following figure provides
an overview of the air-surface temperature differences over the study period in
the Fig. 1 below:
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The spatial differences of air-surface temperatures (Tmin and Tmax of the sur-
face temperatures) extracted from the thermal maps are provided in the table
below, averaged for the days of the year (DOY):

DOY Dif. LSTmin and AirTemp16.3 [K] Dif. LSTmax and AirTemp16.3 [K]
217 4.16 10.39
218 3.89 8.02
219 3.95 7.88
220 4.02 6.71
221 4.26 7.34

As suggested by the reviewer, we added a sentence summarizing this informa-
tion to the Results (L418-L420):

Temperature differences between measured air temperature at 16.3m (top of
canopy) and mean land surface temperatures ranged from 0.005K to a single
peak of 8.689K for the single flights while the daily averaged differences ranged
from 1.32K to 2.13K.
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4. With 90% canopy cover, LST is mostly that of the leaf surfaces, i.e. reflecting
the process of evaporative cooling of leaves by transpiration. Can the authors
report these (evapo)transpiration values? A value is given in L360. Why are
the units mm h-1 m-2? I thought that the mm already includes the area con-
sideration (i.e., 1 mm = 1 L m-2).

We thank the reviewer for this insightful comment and agree that (evapo)transpiration
should be provided in mm h−1. We added more ET values to the respective
section (L425-L427):

At the time of the drone flights, LE from the EC method ranged between 87 and
596 W m−2 (mean: 337 W m−2) and eddy covariance-derived evapotranspira-
tion was on average, 0.43 ±0.21 mm h−1, with peak evapotranspiration of up to
0.87 mm h−1 during midday.

5. By using the EC data as absolute reference, the text seems to assume that
the EC data are independently true. However, the EC is also an estimate based
on an indirect measurement. If there are any additional measurements that
could further constrain these data, it would be very helpful. Regardless, the
text should be adjusted to reflect that two estimates are compared, rather than
an estimate to a direct measurement.

We thank the reviewer for this comment and fully agree. Since we used an
errors-in-variables model (Deming regression) in our analysis, we did account
for these measurement errors in both the x- and the y-axis (eddy covariance and
drone-based method, respectively).

To further clarify this in the manuscript, we added the following sentence to the
statistics section (L356-L359):

Both methods, the reference EC technique and the drone-based estimates, are
associated with a certain degree of uncertainty. To account for the uncertainty
in both, a model II Deming regression (Deming, 1964) was applied for the analy-
sis to consider uncertainties in both x and y variables (Cornbleet and Gochman,
1979; Glaister, 2001).

6. In case that one doesn’t have radiation measurements, would the DTD model
be the best option to make use of the thermal information? In L400 the authors
should note that such sensors must be tested independently in a separate study.

In case that no radiation measurements at all are available, the radiation budget
can potentially be modelled according to location, date and time and under the
assumption of cloud and haze free skies, which we tested in our study for all
three models. However, these assumptions were frequently not met during our
time of study, resulting in relatively poor net radiation estimates translating to
inaccurate results for the DTD, TSEB-PT and DATTUTDUT model.
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The reviewer also makes an important point regarding the testing of potential
on-board sensor schemes. We adjusted the sentence accordingly (L540-L546):

In our study, these measurements were taken with the EC equipment, but future
stand-alone drone approaches are possible by using on-board miniaturized radia-
tion sensors (Castro Aguilar et al., 2015; Suomalainen et al., 2018). However,
the accuracy of such on-board radiation sensors should first be tested against
reference methods, e.g. visually by scatter or inter-comparison plots (Castro
Aguilar et al., 2015; Suomalainen et al., 2018) or with a model II regression
procedure evaluating the interchangeability of methods and measurements (Pass-
ing and Bablok, 1983).

7. The authors discuss measurements in drier sites. It would be interesting
to compare these results with measurements of palm water-use and its effect
on temperature. Below are a few studies on date palm, evidencing the high
transpiration rates in a plantation, and the effect on temperature in an urban
context.

We thank the reviewer for this interesting suggestion. The new drone-based
method can likely help to link surface temperatures, e.g. in urban settings, and
vegetation water use; however, this falls outside of the scope of the presented
study. As mentioned before, we focus mainly on a method comparison rather
than on applied ecological questions for now.

To clarify this further, we added a sentence to the discussion (L644-L646):

Drone-based methods have a large untapped potential for ecological applications,
e.g. regarding ecohydrological optimization in land use systems and designing
the climate-smart urban landscapes of the future.

8. Finally, another potential comparison could be made with a study of tran-
spiration of forest trees estimated by spatial temperature data from a thermal
camera (see reference below).

Sperling, O., Shapira, O., Cohen, S., Tripler, E., Schwartz, A., & Lazarovitch,
N. (2012). Estimating sap flux densities in date palm trees using the heat dis-
sipation method and weighing lysimeters. Tree Physiology, 32(9), 1171-1178.

Potchter, O., Goldman, D., Kadish, D., & Iluz, D. (2008). The oasis effect in
an extremely hot and arid climate: The case of southern Israel. Journal of Arid
Environments, 72(9), 1721-1733.

Potchter, O., Goldman, D., Iluz, D., & Kadish, D. (2012). The climatic effect
of a manmade oasis during winter season in a hyper arid zone: The case of
Southern Israel. Journal of arid environments, 87, 231-242.
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Lapidot, O., Ignat, T., Rud, R., Rog, I., Alchanatis, V., & Klein, T. (2019). Use
of thermal imaging to detect evaporative cooling in coniferous and broadleaved
tree species of the Mediterranean maquis. Agricultural and forest meteorology,
271, 285-294.

We thank the reviewer for this suggestion; as mentioned previously, this manuscript
focuses on a method comparison rather than on the ecological application of the
method and a comparison to other land-use types; in the (near) future, further
work will certainly also include further land-use types including old-growth and
secondary tropical forest patches, agroforestry systems and smallholder planta-
tions in lowland Sumatra and beyond.

We took up the reference suggested by the reviewer in the introduction (L59-
L61):

Transpiration from leaf surfaces leads to evaporative cooling of the canopy; LSTs,
along with air temperature, can thus be used as a reliable indicator of plant water
use, both in monocultures and in spatially highly heterogeneous systems such as
natural forests (Lapidot et al., 2019).

References:
Brenner, C., Thiem, C.E., Wizemann, H.-D., Bernhardt, M., Schulz, K., 2017.
Estimating spatially distributed turbulent heat fluxes from high-resolution ther-
mal imagery acquired with a UAV system. Int. J. Remote Sens. 38, 3003–3026.
https://doi.org/10.1080/01431161.2017.1280202

Brenner, C., Zeeman, M., Bernhardt, M., Schulz, K., 2018. Estimation of evap-
otranspiration of temperate grassland based on high-resolution thermal and vis-
ible range imagery from unmanned aerial systems. Int. J. Remote Sens. 39,
5141–5174. https://doi.org/10.1080/01431161.2018.1471550

Castro Aguilar, J.L., Gentle, A.R., Smith, G.B., Chen, D., 2015. A method to
measure total atmospheric long-wave down-welling radiation using a low cost
infrared thermometer tilted to the vertical. Energy 81, 233–244.
https://doi.org/10.1016/j.energy.2014.12.035
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Cornbleet, P.J., Gochman, N., 1979. Incorrect Least-Squares Regression Coef-
ficients in Method- Comparison Analysis. Clin. Chem. 432–438.

Glaister, P., 2001. Least squares revisited. Math. Gaz. 85.
https://doi.org/10.2307/3620485

Hoffmann, H., Nieto, H., Jensen, R., Guzinski, R., Zarco-Tejada, P., Friborg,
T., 2016. Estimating evaporation with thermal UAV data and two-source en-
ergy balance models. Hydrol. Earth Syst. Sci. 20, 697–713.
https://doi.org/10.5194/hess-20-697-2016

Lapidot, O., Ignat, T., Rud, R., Rog, I., Alchanatis, V., Klein, T., 2019. Use
of thermal imaging to detect evaporative cooling in coniferous and broadleaved
tree species of the Mediterranean maquis. Agric. For. Meteorol. 271, 285–294.
https://doi.org/10.1016/j.agrformet.2019.02.014

Passing, H., Bablok, W., 1983. A new biometrical procedure for testing the
equality of measurements from two different analytical methods. Application of
linear regression procedures for method comparison studies in clinical chemistry,
Part I. Clin. Chem. Lab. Med. 21. https://doi.org/10.1515/cclm.1983.21.11.709

Röll, A., Niu, F., Meijide, A., Ahongshangbam, J., Ehbrecht, M., Guillaume,
T., Gunawan, D., Hardanto, A., Hendrayanto, Hertel, D., Kotowska, M.M.,
Kreft, H., Kuzyakov, Y., Leuschner, C., Nomura, M., Polle, A., Rembold, K.,
Sahner, J., Seidel, D., Zemp, D.C., Knohl, A., Hölscher, D., 2019. Transpira-
tion on the rebound in lowland Sumatra. Agric. For. Meteorol. 274, 160–171.
https://doi.org/10.1016/j.agrformet.2019.04.017

Sabajo, C.R., le Maire, G., June, T., Meijide, A., Roupsard, O., Knohl, A.,
2017. Expansion of oil palm and other cash crops causes an increase of the
land surface temperature in the Jambi province in Indonesia. Biogeosciences
14, 4619–4635. https://doi.org/10.5194/bg-14-4619-2017

Suomalainen, J., Hakala, T., Alves de Oliveira, R., Markelin, L., Viljanen, N.,
Näsi, R., Honkavaara, E., 2018. A Novel Tilt Correction Technique for Irradi-
ance Sensors and Spectrometers On-Board Unmanned Aerial Vehicles. Remote
Sens. 10, 2068. https://doi.org/10.3390/rs10122068
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2 Response to reviewer II

Dear Reviewer,

Thank you for taking the time to revise our manuscript. We welcome your
comments and believe that they helped to improve our manuscript consider-
ably. Please find our point-by point replies below.

Sincerely,
Florian Ellsäßer

General comments The manuscript by Ellsasser et al. makes an interesting
and useful contribution to the burgeoning literature on using UAVs to mea-
sure ecosystem properties and processes, in this case measurements of surface
temperature for use in models of the surface energy balance to predict spatial
variations in the latent heat flux and for comparison to eddy covariance-derived
estimates of the same.

The appendix describing the various energy balance/ET models should be bet-
ter integrated with the main body of the manuscript, and as noted below some
of the model equations need more clarification. In general, a reader should not
have to read other previous papers to understand the approaches tested here
(e.g., see my comments below regarding lines 174-175).

As suggested by the reviewer we integrated the key information from the ap-
pendix into the main body of the manuscript (L164-L308):

2.3 Energy balance models

LSTs are recorded as ’snapshots’ representing an instantaneous state of surface
temperatures. Soil-Vegetation-Atmosphere Transfer (SVAT) models use these
instantaneous observations of LST to solve the energy balance equation and es-
timate instantaneous fluxes. In our study the one-source energy balance model
DATTUTDUT (Timmermans et al., 2015) and two two-source energy balance
models, TSEB-PT (Norman et al., 1995) and DTD (Norman et al., 2000), were
applied. For the TSEB-PT and DTD model directional radiometric tempera-
tures are used and no further calculation of aerodynamic temperature by using
an excess resistance term is needed (Hoffmann et al., 2016). Using drones, the
proximity of the thermal camera to the surface is much closer compared to other
typical carriers (such as satellites or planes) and hence atmospheric effects are
supposed to have only a very minor effect. To use a uniform input for all the
applied models, we used directional radiometric temperature recordings from the
drone as input without applying further corrections. All models in this study
use instantaneous land surface temperatures (LST) to solve the energy balance
equation:
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Rn = G+H + LE (1)

Where Rn is the net radiation, G is the ground heat flux and the turbulent fluxes
H and LE represent sensible and latent heat flux, respectively. Rn is estimated by
calculating the budget of incoming (↓) and outgoing (↑) long- (l) and short-wave
(s) radiation:

Rn = R↓s+R↑s+R↑l +R↓l = (1−α)∗R↓s+εsurf ∗εatm∗σ∗T 4
air−εsurf ∗σ∗T (θ)4surf

(2)
Where the short-wave component is calculated by multiplying incoming short-
wave radiation Rs↓ [W m−2] with its absorption ratio deducted from the com-
bined soil and vegetation albedo α. The long-wave radiation budget is calculated
from surface (soil and vegetation) emissivity εsurf and atmospheric emissivity
εatm, the Stefan-Boltzmann constant σ (5.6704*10−8 W m−2*K−4), air tem-
perature Tair and radiometric land surface temperature T(θ)surf (both in K).

2.3.3 DATTUTDUT

Key input for the DATTUTDUT model is a LST map from where the hottest
and the 0.5% quantile of coldest pixels are extracted, assuming that hot pixels
are a result of very little to no evapotranspiration and cold pixels origin in a
high evapotranspiration rate (Timmermans et al., 2015). Fully modeled Rn is
calculated based on down-welling short-wave radiation estimates calculated using
sun-earth geometry to solve eq. 2. Surface albedo P0 is calculated as in Timmer-
mans et al. (2015) based on the assumption that dense vegetation appears colder
than rocks or soil in the thermal imagery (Brutsaert, 1982; Garratt, 1992):

P0 = 0.05 + ((T0 − Tmin)/(Tmax − Tmin)) ∗ 0.2 (3)

Down-welling shortwave radiation Rs ↓ is calculated from the dimensionless at-
mospheric transmissivity τ and the exo-atmospheric shortwave radiation SWexo
= 1360 W m−2 (Timmermans et al., 2015). Transmissivity τ is calculated as
described in Burridge and Gadd (1977) using the solar elevation angle α that
was determined from the geographic position of our site and the coordinated
universal time (UTC) of the measurements:

τ = 0.6 + 0.2 ∗ sin(α) (4)

Rs ↓= τ ∗ SWexo (5)

Timmermans et al. (2015) suggest using a constant value of 0.7 for τ and 0.8
atmospheric emissivity (εatm), but as our flight times range from 09:00 to 16:30
h local time we decided to include the solar elevation angle as in eq. 4. Fur-
ther, we used a constant surface emissivity (εsurf ) of 0.98 and not 1.0 as in
the original formulation of the DATTUTDUT model. Since the DATTUTDUT
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model is a one-source energy balance model we used a uniform surface emissivity
of 0.98 as recommended for vegetation dominated areas (Jones and Vaughan,
2010). Air temperature Tair was calculated as the 0.5% quantile of the coldest
pixels in the image.

As the original DATTUTDUT formulation doesn’t account for cloud cover, eq.
5 is replaced by measured short-wave irradiance as in Brenner et al. (2018) for
model runs with Rn sw. For model runs with Rn mes eq. 2 was replaced by Rn
measurements recorded at the EC-tower.

The sum of the turbulent fluxes is calculated by subtracting G from Rn. The
result is fractioned into its components H and LE, using the evaporative fraction
(EF) (Timmermans et al., 2015):

EF = LE/(LE+H) = LE/(Rn−G) = (Tmax−T (θ)surf )/(Tmax−Tmin) (6)

For our implementation of the DATTUTDUT model we used the QGIS3 plugin
QWaterModel (Ellsäßer et al., 2020) that is provided with an easy-to-use graph-
ical user interface.

TSEB-PT

TSEB-PT calculates surface-energy budgets from the recorded LSTs splitting
observations into a canopy and a soil fraction (Norman et al., 1995; Song et al.,
2016; Xia et al., 2016). The model consists of two parts: First an initialization
part where all parameters that do not depend on soil and canopy temperature
partition and knowledge of atmospheric stability are computed. Afterwards an
iterative part where the Monin-Obukhov length is stabilized and the fluxes are
finally derived. To begin this process vegetation cover fc(θ) is computed as in
Campbell and Norman, (1998):

fc(θ) = 1− exp((−0.5Ω(θ) ∗ LAI)/(cos(θ))) (7)

where LAI is leaf area index, θ is the sun zenith angle and Ω is a nadir view
clumping factor to represent the cross-row structure in which the oil palm is
planted (Kustas and Norman, 1999). Guzinski et al., (2014) suggest a maxi-
mum limit of 0.95 for fc(θ), so that a small fraction of the soil is still visible and
extreme magnitudes for soil temperature are avoided. Roughness parameters are
calculated from vegetation height. Tair was measured at the EC-tower, T(θ)surf
was recorded with the drone both similar to descriptions in Hoffmann et al.
(2016). Calculation of aerodynamic temperature by using an excess resistance
term is not needed, since TSEB-PT uses directional radiometric temperature as
input (Hoffmann et al., 2016). For the two-source energy balance models we
used a canopy emissivity of 0.98 and soil emissivity of 0.95. The emissivity
values are based on averages for the 8-14 µm taken from Jones and Vaughan,
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(2010). The TSEB-PT model requires additional in situ meteorological measure-
ments of long- and short-wave radiation, wind speed, barometric pressure and
relative humidity, which in our case were recorded at the EC tower. Further,
measured data on LAI as well as surface and canopy albedo are required. The
three resistances in the soil-canopy-atmosphere heat flux network, the aerody-
namic resistance to heat transport (RA), the resistance to heat transport from
the soil surface (RS) and the total boundary layer resistance of the leaf canopy
(RX) are calculated as in Norman et al. (2000, 1995). Net radiation and the
three resistances remain constant during the model runs. After finishing the
computation of all constant parameters, the iterative part of the model starts
assuming Monin-Obukhov length tends to infinity. In the first iteration Rn is
partitioned into a soil and canopy fraction by calculating net radiation diver-
gence ∆Rn (Hoffmann et al., 2016; Norman et al., 2000):

∆Rn = Rn ∗ (1− exp((−K ∗ LAI ∗ Ω0)/
√

((2cos(θs)))) (8)

where K is an extinction coefficient that varies according to LAI (Hoffmann
et al., 2016). We are aware of the fact, that the determination of K using
LAI is disputed as other studies found no significant correlation of K and LAI
(Zhang et al., 2014). With ∆Rn known, sensible heat flux is then estimated
using the Priestley-Taylor approximation following the approach by Hoffmann
et al., (2016):

Hc = ∆Rn ∗ (1− αPT ∗ fG ∗ (D/(D + γ)) (9)

αPT is the Priestley-Taylor coefficient and both γ the psychrometric constant
and the slope of the saturation pressure curve D were calculated as in Allen et al.
(1998). Canopy temperature TC was computed by summing up the results of the
linear approximation in equation (A7) for TC,lin and ∆TC from equation (A11)
both from Norman et al. (1995). Knowing canopy temperature TC and fraction
of view covered by vegetation fθ as in Hoffmann et al. (2016), soil temperature
TS can be calculated:

Ts = (T (θ)R4 − fθ ∗ T 4
C)/(1− fθ)(1/4) (10)

With soil and canopy temperatures and the resistances of the soil-canopy-atmosphere
heat flux network known, fluxes can be calculated with equations (9), (10), (11)
and (13) from Hoffmann et al. (2016). Total latent and sensible heat fluxes
are calculated as the sums of canopy and soil fluxes. In the following itera-
tions, a recalculation of Monin-Obukhov length takes place until a stable value
is reached and the resulting fluxes are derived. For the model runs with Rn mod
and Rn mes the model net radiation is forced accordingly.

DTD

The Dual-Temperature-Difference (DTD) model works very similar to TSEB-
PT and differs mainly in the way how sensible heat flux is calculated (Hoffmann
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et al., 2016). In the DTD model, the absolute temperatures of land surface and
air (as used in the TSEB-PT) are supplemented with a second set of early morn-
ing reference measurements of LST and air temperature, thus creating a dual-
temperature difference (Norman et al., 2000). The first observation is recorded
in the early morning hours and the second observation is recorded later on the
same day at any given time. We used two IRTs attached to the EC tower (see
EC methodology for details and Sect. 2.7 for the limitations) for the necessary
early morning reference readings of absolute temperature and used the averaged
LSTs to create a uniform map as input for the DTD model (similar as e.g. in
Hoffmann et al., 2016). This relates measurements at any time during the day to
measurements recorded in the morning, when fluxes are assumed to be minimal,
and thereby accounts for measurement biases of LST (Anderson et al., 1997;
Hoffmann et al., 2016). H flux is then calculated using the time-differential
temperature and a series resistance network as it is recommended for densely
vegetated regions to consider interaction of soil and canopy fluxes (Guzinski et
al., 2014; Li et al., 2005). A detailed description of the model can be found in
Guzinski et al. (2014) and Norman et al. (2000).

Calculation of evapotranspirated amount of water:

The actual amount of evapotranspirated water (ETw) in mm h−1 was calculated
as in Timmermans et al. (2015):

ETw = ((LE ∗ t)/1000000)/(2.501− 0.002361 ∗ (Tair − 273.15)) (11)

Where LE is the latent heat flux in W m−2, t is the respective timespan in sec-
onds and Tair is the air temperature in Kelvin.

I agree with the other reviewer that more discussion of the various uncertainties
in EC-derived ET need to be discussed. While it is the reference method here
it is also subject to many uncertainties.

As addressed in the reply to reviewer one, we added the following information
regarding uncertainties of the reference EC method:

Methods section (L347-L352):

EC data processing and quality checks were performed following the methodology
described in (Meijide et al., 2017). Following (Mauder and Foken, 2006), flux
estimates during low turbulence and thus stable atmospheric conditions were re-
moved from the analysis; however, low turbulence mainly occurred during night
hours and was not observed during the daytime drone flights. Generally, the
EC method is associated with uncertainties of 5 - 20% (Foken, 2008). Further
limitations are the high costs and quite specific requirements regarding size and
terrain of the study site.
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Statistics section (L356-L359):

Both methods, the reference EC technique and the drone-based estimates, are
associated with a certain degree of uncertainty. To account for the uncertainty
in both, a model II Deming regression (Deming, 1964) was applied for the analy-
sis to consider uncertainties in both x and y variables (Cornbleet and Gochman,
1979; Glaister, 2001).

The writing is generally fine but there are a few very awkward sentences that I
suggest re-writing (see below).

We thank the reviewer for taking the time to point out the need for rewording
these sentences. We revised them accordingly.

Specific comments

Lines 90-91: “the hottest and a group of coldest pixels in the image” – This is
not and independent clause as it is missing a verb

We adjusted the sentence accordingly (L91-L93):

In the one-source energy balance model DATTUTDUT (Deriving Atmosphere
Turbulent Transport Useful To Dummies Using Temperature) (Timmermans et
al., 2015) fluxes are estimated by relating single pixel temperatures to local tem-
perature extremes.

Lines 105-107: This sentence is confusing and needs to be re-written.

We adjusted the sentence accordingly (L109-L112):

Since full method comparisons based on model II regression require a sample
size of at least n=60 data pairs (Legendre and Legendre, 2003), many previous
studies with smaller sample sizes were constrained to using error terms and cor-
relation coefficients.

Line 110: replace “presented” with “current”

We adjusted the sentence accordingly (L114-L116):

The current study was conducted in the lowlands of Jambi province (Sumatra,
Indonesia) where over the last decades, large areas of rainforest have been con-
verted to rubber and oil palm plantations (Clough et al., 2016; Margono et al.,
2012).
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Line 147: Quote the manufacturer’s measurement uncertainty here, as you also
discuss it later when mentioning thermal cameras. The true uncertainty is surely
closer to 1-2 K for cameras like this.

As suggested by the reviewer, we added more differentiated information on rel-
ative and absolute thermal accuracy to this section (L151-L152):

The sensor covers spectral bands ranging from 7.5 to 13.5 µm with a relative
thermal accuracy of 0.04 K and an absolute thermal accuracy of ±2K (FLIR
Systems, USA).

Line 164: Provide the assumed surface emissivities used in each model and com-
ponent

As suggested, we added a sentence on assumed surface emissivities to the Meth-
ods (L216-L218):

Further, we used a constant surface emissivity (εsurf ) of 0.98 as recommended
for vegetation dominated areas (Jones and Vaughan, 2010) and not 1.0 as sim-
plified in the original formulation of the DATTUTDUT model.

and (L249-L250):

For the two-source energy balance models we used a canopy emissivity of 0.98
and soil emissivity of 0.95. The emissivity values are based on averages for the
8-14 µm taken from Jones and Vaughan, (2010).

Lines 174-175: Need to better explain this approach. P-T is usually used to
predict LH fluxes not SH fluxes.

For the application of the TSEB-PT model we follow the workflow provided in
Hoffmann et al., (2016). There, it is described in detail how the Priestley-Taylor
(PT) approximation is used to calculate the canopy sensible heat flux from net
radiation divergence estimates. This is now pointed out more clearly in the
Methods of our manuscript (L266-L267):

With ∆Rn known, sensible heat flux is then estimated using the Priestley-Taylor
approximation following the approach by Hoffmann et al., (2016).
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Lines 196-207: Do these models assume a closed energy balance? If so how does
that affect your estimates?

As mentioned in the Methods section, all models assume energy balance clo-
sure; in accordance with the reference EC method, we applied the Bowen Ratio
method for energy balance closure (L335-L346):

As the applied drone-based models all assume full energy balance closure, we
used the Bowen ratio closure method (Pan et al., 2017; Twine et al., 2000) to
compute full closure for the EC measurements. The Bowen ratio method was
found to produce the most congruent results in conjunction with drone-based la-
tent heat flux estimates (Brenner et al., 2017) and was therefore applied in this
study. The energy balance closure (EBC) of the reference EC measurements
was 0.77 (r2= 0.87), which is in line with EBC reported for other tall vegeta-
tion canopies (Stoy et al., 2013). Since the used energy balance models assume
full EBC, we applied the so-called Bowen ratio closure method to the EC data
(Pan et al., 2017). The method assumes that wind measurements miss some of
the total covariance and dispersive fluxes. Therefore, underestimations of LE
and H are carried over proportionally because of similarity among fluxes (Twine
et al., 2000). The Bowen ratio closure method proportionally assigns the under-
estimated turbulent energy to LE and H fluxes to reach full EBC.

Line 219: Was this an aspirated measurement of Tair?

We appreciate this insightful question by the reviewer. We originally used the
Tair measurements at 22m on the EC tower but, inspired by the reviewer’s
comment, have re-run all models with the temperature measurements at 16.3
m (i.e. ∼2m above the canopy). However, the absolute average temperature
difference between the two measurement heights is below 0.24 ◦C.

We have adjusted the following sentence in the methods section (L319-L321):

Air temperature and relative humidity were measured with thermohygrometers
(type 1.1025.55.000, Thies Clima, Göttingen, Germany) at 16.3 m height.

We re-ran the models with the temperature measurements at 16.3 m. We further
received an email with recommendations on how to improve the model perfor-
mance (e.g. vegetation parameters) of the two-source energy balance models
and implementd these in the models. The revised manuscript includes these
fully revised models, as shown in the key figure below:
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Line 222: These are IRTs not thermal cameras, so you do not know exactly
which canopy elements you are measuring! Were they capturing only leaves all
of the time? Also, what surface emissivity was assumed for these measurements
of surface temperature? Did you correct for the influences of reflected longwave
radiation, relative humidity, distance to object, etc? And what are measure-
ment uncertainties of the IRTs?

We thank the reviewer for this valuable comment. To avoid confusion, we now
consistently apply the term IRT throughout the manuscript. We further added
more detail on the issues raised by the reviewer to the Methods (L323-L330):

The two IRTs used in our study (IR100 Radiometer, Campbell Scientific Inc.,
Logan, USA) have a field-of-view (FOV) of 8-10◦. Considering the distance from

17



their fixed location on the tower to the average height of the oil palm canopy,
they cover a circular area of 2.2 m2, over which they average the received ther-
mal signal. The recorded canopy area comprises different functional parts of the
canopy (e.g. leaflets, petioles). On average, we assumed a surface emissivity of
0.98 for the canopy area (Jones and Vaughan, 2010). We did not correct the
values recorded with the IRTs for any other influences; the distance from the
canopy surface to the sensors was only about 10m.

Line 229: Describe the Bowen ratio closure method in more detail.

As suggested by the reviewer, we added more detail about the Bowen ratio clo-
sure method to the Methods (L338-L344):

The energy balance closure (EBC) of the reference EC measurements was 0.77
(r2 = 0.87), which is in line with EBC reported for other tall vegetation canopies
(Stoy et al., 2013). Since the used energy balance models assume full EBC, we
applied the so-called Bowen ratio closure method to the EC data (Pan et al.,
2017). The method assumes that wind measurements miss some of the total
covariance and dispersive fluxes. Therefore, underestimations of LE and H are
carried over proportionally because of similarity among fluxes (Twine et al.,
2000). The Bowen ratio closure method proportionally assigns the underesti-
mated turbulent energy to LE and H fluxes to reach full EBC.

Line 247: “systematic”

We adjusted the sentence accordingly (L367-L369):

Statistics such as r2 have their limitations in method comparison since they are
designed to indicate how well the resulting model of the regression describes the
outcome and are not necessarily a good measure for systematic bias between
methods.

Line 273: I think you mean “alive”

We adjusted the sentence accordingly (L391-L392):

The plantation is very well managed, so that all oil palm canopies are alive, no
oil palms have died and only dry leaves are removed.

Lines 278-286: As noted above these measurements were not made with thermal
camera but with IRTs. Please update.

As mentioned above we now consistently apply the term IRTs throughout the
manuscript.
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Line 280: Is the 122 number based on 2 maps/flight?

Yes. We re-worded the sentence to point this out more clearly (L398-L402):

To check whether the two IRTs measure similar temperatures compared to drone
recorded LSTs, we extracted a total of 122 ‘IRT-sized’ (i.e. ∼2.2 m2) LST foot-
prints from the drone-recorded maps. A correlation of both temperature mea-
surements revealed a small deviation of the measured temperatures resulting in
a mean absolute error (MAE) and root mean squared error (RMSE) of 1.59 and
2.15 K respectively.

Line 293-294: Is this peak SW measured during the flight or average SW?

We applied 10 min averages of all SW data that were recorded during a respec-
tive flight. We added this information to the discussion section (L550-L552):

The short-wave irradiance measurements used in this study were stored as 10
min averages that probably didn’t represent the high level of irradiance variations
in the tropical study area adequately.

Line 295: By “canopy air temperature” do you mean the Tair measured at 22m?

We thank the reviewer for this valuable question. As already mentioned in a
previous response, we originally used Tair as measured at 22m on the EC tower,
but now have re-run all models using Tair measured at 16.3m (i.e. ∼ 2m above
the canopy).

We have adjusted the following sentence in the methods section (L319-L320):

Air temperature and relative humidity were measured with thermohygrometers
(type 1.1025.55.000, Thies Clima, Göttingen, Germany) at 16.3 m height.

Line 302-303: This is an awkward sentence – rewrite.

As suggested, we re-wrote the sentence (L425-LL427):

Congruence of LE estimates with reference EC measurements differed among
the three applied models and was further affected by the configuration of the Rn
assessment (Fig. 2).

Line 303: The first time you cite Fig. A3 you need to discuss why modeled
Rnet is so poor.

As suggested by the reviewer we added a short section discussing the poor per-
formance when applying modelled Rnet (L427-L433):

19



The assumptions for Rn mod were not always met as cloud cover was present
during several flights; consequently, the corresponding net radiation estimates
were too high, leading to a substantial overestimation especially of smaller la-
tent heat fluxes. The short-wave irradiance based Rn sw configuration resulted
in Rn estimates that were by average very comparable with the measured net
radiation Rn mes but also showed a rather high variation (Fig. 2). Generally,
error metrics were reduced and agreement was increased the more measurement-
controlled the Rn determination process was.

Line 304: Replace “congruence” with “agreement” or “fidelity”

We adjusted the sentence accordingly (L431-L433):

Generally, error metrics were reduced and agreement was increased the more
measurement-controlled the Rn determination process was.

Line 307-308: Perhaps this poor agreement in morning and late afternoon is not
surprising since the dATTUDUT method is based on modeled Rnet..?

We thank the reviewer for this insightful comment. We added a section to
the manuscript that addresses both this comment and the following comment
(please refer to the following answer).

Line 308-309: It’s worth breaking out the description of the performance of
the TSEBPT estimates into a separate sentence. Are these estimates uniformly
higher than the EC estimates or only during part of the day?

We thank the reviewer for this insightful comment. We added a section to the
manuscript that addresses both this comment and the previous comment (L437-
L442):

DATTUTDUT LE estimates closely agreed with EC measurements around noon,
but were higher in the morning and afternoon hours, which is caused by overesti-
mations of Rn from the Rn mod method (Fig. 3a). LE estimates from TSEB-PT
were consistently higher than EC measurements, with particularly large diver-
gences around noon (Fig. 3a). The LE predictions from the DTD model in
Rn mod configuration were rather overestimated, especially around noon when
compared with the EC reference measurements (Fig. 3a).
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Lines 335-336: Seems like this sentence is missing a word or two.

We adjusted the sentence accordingly (L474-L477):

The TSEB-PT model in Rn mes configuration also showed no significant con-
tinuous errors but was subject to a minor proportional bias (Fig. 5c). The
TSEB-PT model overestimated LE particularly around noon, when fluxes are
very high (Fig. 3c and 4c).

Line 352: I’m unclear what you mean about the X-level for the bias in EC
reference fluxes.

The bias of two applied methods can be expressed in an X- and a Y-level, bias
on X-axis (horizontal) and bias on Y-axis (vertical) respectively. We were par-
ticularly interested in the bias of the new drone-based methods based on the
EC technique (here: X-level).

Lines 405-406: Are you referring to the slope in this sentence?

We agree with the reviewer that the wording was previously unprecise and ad-
justed the sentence accordingly (L477-L478):

The DTD model also showed no continuous bias but indicated a proportional
error in the analytical method and the Jackknife method (Fig. 5c).

Lines 455-457: Well before this discussion of errors you should define what you
mean by proportional versus continuous errors.

Following the suggestion by the reviewer, we added the following information
to the Methods section (L465-L470):

If the confidence intervals for the intercept of the Deming regression include
zero, there is no constant or continuous error between the two methods. If the
confidence intervals for the intercept do not include zero, both methods differ
by a constant amount, i.e. the new method has a continuous error compared
to the reference method. In contrast, the confidence intervals of the slope of
the Deming regression indicate whether there is a proportional error between
the methods, which increases proportionally with the magnitude of the predicted
value.

Line 500: Replace “results in” with “predict”

We changed the sentence (L507-L509):

Both distributions of the two-source energy balance models show gaps in the his-
togram, while the histogram of the DATTUTDUT model displays a more con-
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tinuous distribution (Fig. 7)

Line 503: eliminate comma after “both”

We adjusted the sentence accordingly (L634-L635):

For the DATTUTDUT model mean and median are very similar indicating close
to zero skewness.

Line 520: Which edge? Computer or edge of study area?

We adjusted the sentence for further clarification (L647-L650):

Autonomous acquisition of LSTs over EC stations and the surrounding area
scan be supplemented by on-board and ground sensors. Energy-balance models
can then potentially be calculated using edge computing schemes on-board the
drone to enable a dense temporal resolution of LST, flux and ET maps in al-
most real-time.

Line 542: Replace “cameras” with “IRTs”

As mentioned above, we will now consistently apply the term IRTs throughout
the manuscript.

Line 565: How are the surface epsilon (emissivity) terms estimated? Do they
vary spatially across the image?

We thank the reviewer for this insightful comment, and have expanded the
according method section to clarify the issues raised by the reviewer. As al-
ready mentioned above, we will add this information to the methods part of the
manuscript (L216-L218).

Further, we used a constant surface emissivity (εsurf ) of 0.98 as recommended
for vegetation dominated areas (Jones and Vaughan, 2010) and not 1.0 as sim-
plified in the original formulation of the DATTUTDUT model.

Lines 579-580: Show the equations for calculating radiometric LSTs.

Since we used a radiometric thermal camera we did not have to calculate the
radiometric LSTs from a greyscale picture (as e.g. in Cohen et al., 2005); there
thus is no equation. The energy-balance models in our study use the direc-
tional radiometric temperature that was recorded with the thermal camera on
the drone. A further substitution of temperatures or correction procedures (e.g.
excess resistance) is not necessary (Hoffmann et al., 2016). We will add a sen-
tence to the Methods to point this out more clearly:
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For the TSEB-PT and DTD model directional radiometric temperatures are
used and no calculation of aerodynamic temperature by using an excess resis-
tance term is needed (Hoffmann et al., 2016). The proximity of the thermal
camera to the surface is much closer compared to other typical carriers (such
as satellites or planes) and hence atmospheric effects are supposed to be largely
reduced. To use a uniform input for all the applied models, we used directional
radiometric temperature recordings from the drone as input without applying
further corrections.

Line 588: I assume this (Po) is a shortwave albedo?

Correct, Po is the short-wave surface albedo. It was taken from Timmermans
et al., (2015). We added a sentence to the Methods to clarify this (L199-L200):

Surface albedo P0 is calculated as in Timmermans et al. (2015) based on the
assumption that dense vegetation appears colder than rocks or soil in the thermal
imagery (Brutsaert, 1982; Garratt, 1992).

Line 600: This model assumes cloud-free conditions (with a constant transmis-
sivity)?

Yes, in its original formulation the DATTUTDUT model assumes cloud free con-
ditions (Timmermans et al., 2015). For simplicity Timmermans et al. (2015)
suggest using a constant value of 0.7 for the transmissivity or to follow a simple
parameterization scheme for instantaneous shortwave atmospheric transmissiv-
ity following the description in Burridge and Gadd, (1977). We chose the second
option and calculated short-wave transmissivity using the solar elevation angle.
We added a sentence to the Methods to point this out more clearly (L206-L208):

Transmissivity τ is calculated as described in Burridge and Gadd, (1977) using
the solar elevation angle α that was determined from the geographic position of
our site and the coordinated universal time (UTC) of the measurements.

Line 605: Is that supposed to be an epsilon symbol as in equation 2?

Yes, this is supposed to be a εatm. We have adapted the manuscript accordingly
(L214-L216):

Timmermans et al. (2015) suggest using a constant value of 0.7 for τ and 0.8
atmospheric emissivity (εatm), but as our flight times range from 09:00 to 16:30
h local time we decided to include the solar elevation angle as in eq. 5.

23



References:

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspira-
tion - Guidelines for computing crop water requirements - FAO Irrigation and
drainage paper 56. FAO, Rome.

Anderson, M.C., Norman, J.M., Diak, G.R., Kustas, W.P., Mecikalski, J.R.,
1997. A Two-Source Time-Integrated Model for Estimating Surface Fluxes Us-
ing Thermal Infrared Remote Sensing. Remote Sens. Environ. 60, 195–216.
https://doi.org/10.1016/S0034-4257(96)00215-5

Brenner, C., Thiem, C.E., Wizemann, H.-D., Bernhardt, M., Schulz, K., 2017.
Estimating spatially distributed turbulent heat fluxes from high-resolution ther-
mal imagery acquired with a UAV system. Int. J. Remote Sens. 38, 3003–3026.
https://doi.org/10.1080/01431161.2017.1280202

Brenner, C., Zeeman, M., Bernhardt, M., Schulz, K., 2018. Estimation of evap-
otranspiration of temperate grassland based on high-resolution thermal and vis-
ible range imagery from unmanned aerial systems. Int. J. Remote Sens. 39,
5141–5174. https://doi.org/10.1080/01431161.2018.1471550

Brutsaert, W., 1982. Evaporation into the Atmosphere. Theory, History, and
Applications. Reidel Publishing Co.

Burridge, D.M., Gadd, A.J., 1977. The Meteorological Office operational 10-
level numerical weather prediction model (December 1975), Scientific paper -
Meteorological Office. British Meteorological Office, Bracknell, England.

Campbell, G.S., Norman, J.M., 1998. An Introduction to Environmental Bio-
physics. Springer, New York, New York.

Clough, Y., Krishna, V.V., Corre, M.D., Darras, K., Denmead, L.H., Mei-
jide, A., Moser, S., Musshoff, O., Steinebach, S., Veldkamp, E., Allen, K.,
Barnes, A.D., Breidenbach, N., Brose, U., Buchori, D., Daniel, R., Finkeldey,
R., Harahap, I., Hertel, D., Holtkamp, A.M., Hörandl, E., Irawan, B., Jaya,
I.N.S., Jochum, M., Klarner, B., Knohl, A., Kotowska, M.M., Krashevska, V.,
Kreft, H., Kurniawan, S., Leuschner, C., Maraun, M., Melati, D.N., Opfer-
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3 List of relevant changes

(1) Inclusion of comments and suggestions of both reviewers
(2) Re-evaluation of both two-source energy balance models (using Tair at 16.3m
and different vegetation parameters )
(3) Minor adaptions in the results and discussion section due to changes because
of (2)
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2 
 

Abstract 22 

 23 

For the assessment of evapotranspiration, near-surface airborne thermography offers new opportunities 24 

for studies with high numbers of spatial replicates and in a fine spatial resolution. We tested drone-based 25 

thermography and the subsequent application of three energy balance models (DATTUTDUT, TSEB-PT, 26 

DTD) using the widely accepted eddy covariance technique as a reference method. The study site was a 27 

mature oil palm plantation in lowland Sumatra, Indonesia. For the 61 flight missions, latent heat flux 28 

estimates of the DATTUTDUT model with measured net radiation agreed well with eddy covariance 29 

measurements (r²=0.85; MAE=47; RMSE=60) across variable weather conditions and daytimes. 30 

Confidence intervals for slope and intercept of a model II Deming regression suggest no difference 31 

between drone-based and eddy covariance method, thus indicating interchangeability. TSEB-PT and 32 

DTD yielded agreeable results, but all three models are sensitive to the configuration of the net radiation 33 

assessment. Overall, we conclude that drone-based thermography with energy-balance modeling is a 34 

reliable method complementing available methods for evapotranspiration studies. It offers promising, 35 

additional opportunities for fine grain and spatially explicit studies. 36 

  37 



3 
 

1 Introduction 38 

 39 

Evapotranspiration (ET) is a central flux in the hydrological cycle on a regional and on a global scale. 40 

Terrestrial ET consumes almost two-thirds of terrestrial precipitation (Oki and Kanae, 2006). There is an 41 

interest in better understanding ET and its drivers as climate change is expected to increase atmospheric 42 

evaporative demand and droughts are predicted to become more severe and frequent in the future 43 

(Prudhomme et al., 2014). ET is also strongly affected by land-cover and land-use changes, which are 44 

currently very pronounced in tropical regions (Hansen et al., 2013). 45 

 46 

The eddy covariance technique (EC) is a widely accepted and well-established method to quantify ET at 47 

the stand scale (Baldocchi et al., 2001; Fisher et al., 2017). It results in a single latent heat flux (LE) value 48 

integrated over the footprint of the EC tower at a given time that can be converted to an ET estimate. A 49 

spatial fine grain attribution of different surface patches to this overall ET value is generally not possible. 50 

The EC method is costly and labor intensive, and therefore, a relatively low number of spatial replicates 51 

within a given region and among its different ecosystems are typically available. The EC method also has 52 

certain constrains regarding topography, atmospheric turbulence and landscape heterogeneity (Göckede 53 

et al., 2008). 54 

 55 

A complementary approach for assessing LE at larger spatial scales is the use of remotely sensed land 56 

surface temperatures (LST) as boundary conditions for energy balance modeling and subsequent 57 

conversion to ET (Brenner et al., 2017; Guzinski et al., 2014; Hoffmann et al., 2016; Ortega-Farías et al., 58 

2016; Xia et al., 2016). Transpiration from leaf surfaces leads to evaporative cooling of the canopy; LSTs, 59 

along with air temperature, can thus be used as a reliable indicator of plant water use, both in monocultures 60 

and in spatially highly heterogeneous systems such as natural forests (Lapidot et al., 2019). Compared to 61 

the EC method, this approach can potentially increase the number of spatial replicates within and among 62 

ecosystems and is also applicable in challenging terrain. Remotely sensed LSTs are regarded as good 63 

indicators for plant water use, stress and transpiration (Jones and Vaughan, 2010). One approach to obtain 64 

LST data is the use of satellite-based observations (Allen et al., 2007; Bastiaanssen et al., 1998; Ershadi 65 

et al., 2013). However, the spatial resolution of satellite data such as Landsat TM, ASTER, MODIS or 66 

AVHRR ranges from 90 m to 1 km, limiting the distinction of plant canopies and soil (Berni et al., 2009). 67 

A higher temporal resolution of satellite-based thermal infrared (TIR) observations is usually associated 68 

with a lower spatial resolution, and TIR data from satellites in both high spatial and high temporal 69 

resolution are not yet available (Brenner et al., 2017). Additionally, clouds are barriers for thermal 70 

radiation and therefore have a strong effect on the quality and availability of satellite-based TIR 71 

observations (Guzinski et al., 2013). This is of particular importance in regions with frequent cloud cover 72 

such as in tropical environments. 73 

 74 
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An alternative, recently emerging approach to measure LSTs is the use of drones. Radiometric TIR 75 

sensors for LST recording have become light-weight and affordable, and drones are now capable of 76 

carrying adequate payloads for reasonable timespans. Near-surface thermography-based studies allow 77 

temporal resolutions in flexible, e.g. hourly time steps and a spatial resolution in the decimeter scale or 78 

finer. Drone-based TIR recording and subsequent modeling of LE with energy balance models has 79 

previously shown promising results for short grass and crop vegetation in Central Europe (Brenner et al., 80 

2018; Hoffmann et al., 2016). However, remote sensing of LST from drones is challenging and involves 81 

careful planning. Recording LST close to the surface results in a high resolution but reduces the area 82 

covered in a certain time span compared to surveying from a higher altitude. Increasing flight altitude 83 

reduces spatial resolution of LST images and thus increases the averaging of surface temperatures from 84 

individual canopies, soil patches and branches from neighboring canopies into a single pixel (Still et al., 85 

2019). Further, air humidity can have a major effect on measurement accuracy as water vapor does not 86 

only attenuate the signals from the surface of interest to the sensor, but also emits its own thermal radiation 87 

(Still et al., 2019).  88 

 89 

Different energy balance models are available to compute LE from LST and subsequently calculate ET. 90 

In the one-source energy balance model DATTUTDUT (Deriving Atmosphere Turbulent Transport 91 

Useful To Dummies Using Temperature) (Timmermans et al., 2015) fluxes are estimated by relating 92 

single pixel temperatures to local temperature extremes. Two-source energy balance models such as 93 

TSEB (Two-Source Energy Balance) (Norman et al., 1995) and DTD (Dual Temperature Difference) 94 

(Norman et al., 2000) divide measured LSTs into a vegetation and a soil fraction. Several adaptions of 95 

these models were developed; the TSEB-PT model as described in Hoffmann et al. (2016), uses the 96 

Priestley-Taylor coefficient (PT) to determine canopy H flux and subsequently calculate the other 97 

fractions from the surface energy balance. TSEB-PT is based on the temperature difference between LST 98 

and air temperature (Norman et al., 1995). Expanding this concept, DTD uses a dual-temperature 99 

difference from an additional early morning set of measurements to account for biases in remotely sensed 100 

LSTs (Hoffmann et al., 2016; Norman et al., 2000). Crucial in applying such energy balance models is 101 

how the net radiation (Rn) is implemented. In the original formulation of the DATTUTDUT model Rn is 102 

fully modeled, assuming a range of prerequisites and environmental conditions (Timmermans et al., 103 

2015). TSEB-PT and DTD models use measured short and long-wave radiation to estimate Rn as a sum 104 

of in- and outgoing long- and short-wave radiation (Norman et al., 1995, 2000). Using airplanes or drones 105 

to record LSTs, the three models previously showed promising results for grass and crop surfaces in 106 

temperate and subtropical regions (Brenner et al., 2017, 2018; Hoffmann et al., 2016; Xia et al., 2016). 107 

However, to our knowledge, a comprehensive method comparison considering potential errors in both a 108 

reference method (e.g. the EC technique) and novel drone-based approaches is not yet available. Since 109 

full method comparisons based on model II regression require a sample size of at least n=60 data pairs 110 

(Legendre and Legendre, 2003), many previous studies with smaller sample sizes were constrained to 111 
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using error terms and correlation coefficients.  112 

 113 

The current study was conducted in the lowlands of Jambi province (Sumatra, Indonesia) where over the 114 

last decades, large areas of rainforest have been converted to rubber and oil palm plantations (Clough et 115 

al., 2016; Margono et al., 2012). This resulted in regional-scale changes in transpiration (Röll et al., 2019) 116 

and land surface warming (Sabajo et al., 2017). We assessed energy fluxes in a mature monoculture oil 117 

palm plantation and compared the LE estimates of drone-based methods with the established EC method 118 

as measured ground-based reference. Three energy-balance models (DATTUTDUT, TSEB-PT, DTD) 119 

were tested, each with three different configurations for the determination of Rn (fully modeling Rn, Rn 120 

estimates based on short-wave irradiance and measuring Rn). The objectives of our study were to compare 121 

LE estimates from the drone-based methods to the EC technique, with a special focus on the detection of 122 

proportional and continuous errors among the methods and an evaluation of the model’s prediction 123 

performance. The present study focuses on the comparison of different drone-based methods as a baseline 124 

for future ecological studies, rather than applying the methods to different land-use types. 125 

 126 

2 Methods 127 

 128 

2.1 Study site 129 

 130 

The study site is located in the lowlands of Jambi province (Sumatra, Indonesia) near the equator (E 131 

103.3914411, N -1.6929879, 76 m a.s.l.). Average annual air temperature in the region is 26.5°C and 132 

average annual precipitation is 2235 mm yr-1 (Drescher et al., 2016). At the time of our measurement 133 

campaign in August 2017, the studied monoculture oil palm (Elaeis guineensis) plantation was 15 years 134 

old. Palm stem density was 140 palms ha-1, with an average palm height of 14.3 m and an average canopy 135 

radius of 4.5 m. Leaf area index (LAI) was estimated at 3.64 m2 m-2 (Fan et al., 2015) and canopy cover 136 

was estimated to be 90%. Plantation management included the removal of older and non-vital leaves from 137 

the oil palms, herbicide application to remove most understory plants and fertilization (196 kg N ha-1 yr-138 
1) (Meijide et al., 2017). The average annual oil palm yield is 27.7 Mg ha−1. An EC tower (22 m height) 139 

is situated in the center of the site with a fetch of up to 500 m in each direction (Meijide et al., 2017) (Fig. 140 

1). 141 
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 142 

Figure 1: The study site in a mature commercial oil palm plantation in the lowlands of Jambi province, 143 

Sumatra, Indonesia. 144 

  145 

2.2 Drone-based image acquisition 146 

 147 

We used an octocopter drone (MK EASY Okto V3; HiSystems, Germany) equipped with a thermal and 148 

an RGB camera mounted in a stereo setup on a gimbal to ensure nadir perspective. The radiometric 149 

thermal camera was a FLIR Tau 2 640 (FLIR Systems, USA) attached to a TeAx Thermo-capture module 150 

(TeAx Technology, Germany). The sensor covers spectral bands ranging from 7.5 to 13.5 μm with a 151 

relative thermal accuracy of 0.04 K and an absolute thermal accuracy of ± 2 K (FLIRSystems, USA). The 152 

RGB camera was based on an Omnivision OV12890 CMOS-Sensor (Omnivision, USA) with a 170° FOV 153 
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fish-eye lens. Instead of the mosaicking approaches applied in most of the mentioned previous studies, 154 

we used a single image recording concept as faster image acquisition allows for a denser temporal 155 

resolution of LSTs. To capture an area of 100 m radius around the EC tower in a single shot of the thermal 156 

camera, images were taken from 260 m altitude. Image corners were removed due to vignetting effects. 157 

During a consecutive five-day flight campaign in August 2017, 61 LST data sets and matching EC 158 

measurements were recorded. Flights were conducted between 9 am and 4 pm local time, in accordance 159 

with the 30 min intervals of the EC averaging cycles, resulting in 10 to 14 flights per day. All LSTs were 160 

measured using a fixed emissivity of one as the energy balance models would introduce specific soil and 161 

vegetation emissivities in the process.  162 

 163 

2.3 Energy balance models 164 

 165 

LSTs are recorded as ’snapshots’ representing an instantaneous state of surface temperatures. Soil-166 

Vegetation-Atmosphere Transfer (SVAT) models use these instantaneous observations of LST to solve 167 

the energy balance equation and estimate instantaneous fluxes. In our study the one-source energy balance 168 

model DATTUTDUT (Timmermans et al., 2015) and two two-source energy balance models, TSEB-PT 169 

(Norman et al., 1995) and DTD (Norman et al., 2000), were applied. For the TSEB-PT and DTD model 170 

directional radiometric temperatures are used and no further calculation of aerodynamic temperature by 171 

using an excess resistance term is needed (Hoffmann et al., 2016). Using drones, the proximity of the 172 

thermal camera to the surface is much closer compared to other typical carriers (such as satellites or 173 

planes) and hence atmospheric effects are supposed to have only a very minor effect. To use a uniform 174 

input for all the applied models, we used directional radiometric temperature recordings from the drone 175 

as input without applying further corrections. All models in this study use instantaneous land surface 176 

temperatures (LST) to solve the energy balance equation:  177 

 178 

Rn = G + H + LE (eq. 1) 179 

 180 

Where Rn is the net radiation, G is the ground heat flux and the turbulent fluxes H and LE represent 181 

sensible and latent heat flux, respectively. Rn is estimated by calculating the budget of incoming (↓) and 182 

outgoing (↑) long- (l) and short-wave (s) radiation: 183 

 184 

Rn = Rs↓ + Rs↑ + Rl↓ + Rl↑ = (1- α) * Rs↓ + εsurf * εatm * σ * Tair
4 – εsurf * σ * T(θ)surf

4   (eq. 2) 185 

 186 

Where the short-wave component is calculated by multiplying incoming short-wave radiation Rs↓[W m−2] 187 

with its absorption ratio deducted from the combined soil and vegetation albedo α. The long-wave 188 

radiation budget is calculated from surface (soil and vegetation) emissivity εsurf and atmospheric 189 

emissivity εatm, the Stefan-Boltzmann constant σ (5.6704*10-8 W m-2*K-4), air temperature Tair and 190 
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radiometric land surface temperature T(θ)surf (both in K). 191 

 192 

2.3.3 DATTUTDUT 193 

 194 

Key input for the DATTUTDUT model is a LST map from where the hottest and the 0.5% quantile of 195 

coldest pixels are extracted, assuming that hot pixels are a result of very little to no evapotranspiration 196 

and cold pixels origin in a high evapotranspiration rate (Timmermans et al., 2015). Fully modeled Rn is 197 

calculated based on down-welling short-wave radiation estimates calculated using sun-earth geometry to 198 

solve eq. 2. Surface albedo P0 is calculated as in Timmermans et al. (2015) based on the assumption that 199 

dense vegetation appears colder than rocks or soil in the thermal imagery (Brutsaert, 1982; Garratt, 1992): 200 

 201 

P0 = 0.05 + ((T0 - Tmin) / (Tmax – Tmin)) * 0.2   (eq. 3) 202 

 203 

Down-welling shortwave radiation Rs↓ is calculated from the dimensionless atmospheric transmissivity 204 

τ and the exo-atmospheric shortwave radiation SWexo= 1360 W m−2 (Timmermans et al., 2015). 205 

Transmissivity τ is calculated as described in Burridge and Gadd, A.J. (1977) using the solar elevation 206 

angle α that was determined from the geographic position of our site and the coordinated universal time 207 

(UTC) of the measurements: 208 

 209 

τ = 0.6 + 0.2 * sin(α)  (eq.4) 210 

 211 

Rs↓ = τ * SWexo  (eq. 5) 212 

 213 

Timmermans et al. (2015) suggest using a constant value of 0.7 for τ and 0.8 atmospheric emissivity 214 

(εatm), but as our flight times range from 09:00 to 16:30h local time we decided to include the solar 215 

elevation angle as in eq. 4. Further, we used a constant surface emissivity (εsurf) of 0.98 as recommended 216 

for vegetation dominated areas (Jones and Vaughan, 2010) and not 1.0 as simplified in the original 217 

formulation of the DATTUTDUT model. Air temperature Tair was calculated as the 0.5% quantile of the 218 

coldest pixels in the image. 219 

 220 

As the original DATTUTDUT formulation doesn’t account for cloud cover, eq.5 is replaced by measured 221 

short-wave irradiance as in Brenner et al. (2018) for model runs with Rn_sw. For model runs with Rn_mes 222 

eq. 2 was replaced by Rn measurements recorded at the EC-tower.  223 

 224 

The sum of the turbulent fluxes is calculated by subtracting G from Rn. The result is fractioned into its 225 

components H and LE, using the evaporative fraction (EF) (Timmermans et al., 2015): 226 

 227 
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EF = LE / (LE+H) = LE / (Rn – G) = (Tmax - T(θ)surf) / (Tmax –Tmin)  (eq. 6) 228 

 229 

For our implementation of the DATTUTDUT model we used the QGIS3 plugin QWaterModel (Ellsäßer 230 

et al., 2020) that is provided with an easy-to-use graphical user interface. 231 

 232 

TSEB-PT 233 

 234 

TSEB-PT calculates surface-energy budgets from the recorded LSTs splitting observations into a canopy 235 

and a soil fraction (Norman et al., 1995; Song et al., 2016; Xia et al., 2016). The model consists of two 236 

parts: First an initialization part where all parameters that do not depend on soil and canopy temperature 237 

partition and knowledge of atmospheric stability are computed. Afterwards an iterative part where the 238 

Monin-Obukhov length is stabilized and the fluxes are finally derived. To begin this process vegetation 239 

cover fc(θ) is computed as in (Campbell and Norman, 1998): 240 

 241 

fc(θ) = 1 – exp((-0.5Ω(θ) * LAI) / (cos(θ)))   (eq. 7) 242 

 243 

where LAI is leaf area index, θ is the sun zenith angle and Ω is a nadir view clumping factor to represent 244 

the cross-row structure in which the oil palm is planted (Kustas and Norman, 1999). Guzinski et al. (2014) 245 

suggest a maximum limit of 0.95 for fc(θ), so that a small fraction of the soil is still visible and extreme 246 

magnitudes for soil temperature are avoided. Roughness parameters are calculated from vegetation height. 247 

Tair was measured at the EC-tower, T(θ)surf was recorded with the drone both similar to descriptions in 248 

(Hoffmann et al., 2016). For the two-source energy balance models we used a canopy emissivity of 0.98 249 

and soil emissivity of 0.95. The emissivity values are based on averages for the 8-14 μm spectrum taken 250 

from Jones and Vaughan, (2010). The TSEB-PT model requires additional in situ meteorological 251 

measurements of long- and short-wave radiation, wind speed, barometric pressure and relative humidity, 252 

which in our case were recorded at the EC tower. Further, measured data on LAI as well as surface and 253 

canopy albedo are required. The three resistances in the soil-canopy-atmosphere heat flux network, the 254 

aerodynamic resistance to heat transport (RA), the resistance to heat transport from the soil surface (RS) 255 

and the total boundary layer resistance of the leaf canopy (RX) are calculated as in (Norman et al., 1995, 256 

2000). Net radiation and the three resistances remain constant during the model runs. After finishing the 257 

computation of all constant parameters, the iterative part of the model starts assuming Monin-Obukhov 258 

length tends to infinity. In the first iteration Rn is partitioned into a soil and canopy fraction by calculating 259 

net radiation divergence ∆Rn (Hoffmann et al., 2016; Norman et al., 2000): 260 

 261 

ΔRn = Rn * (1-exp((-K*LAI*Ω0) / √(2cos(θs)))  (eq. 8) 262 

 263 

where K is an extinction coefficient that varies according to LAI (Hoffmann et al., 2016). We are aware 264 
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265 of the fact, that the determination of K using LAI is disputed as other studies found no significant 

266 correlation of K and LAI (Zhang et al., 2014). With ∆Rn known, sensible heat flux is then estimated using 

267  the Priestley-Taylor approximation following the approach by Hoffmann et al., (2016):

268

269 Hc = ΔRn * (1-αPT * fG * (D/(D+γ))   (eq. 9)

270

271 αPT is the Priestley-Taylor coefficient and both γ the psychrometric constant and the slope of the saturation 

272 pressure curve D were calculated as in (Allen et al., 1998). Canopy temperature TC was computed by 

273 summing up the results of the linear approximation in equation (A7) for TC,lin and ∆TC from equation 

274 (A11) both from (Norman et al., 1995). Knowing canopy temperature TC and the fraction of view covered 

275 by vegetation fθ as in (Hoffmann et al., 2016), soil temperature TS can be calculated:

276

277 Ts = (T(θ)R
4 – fθ * TC

4) / (1-fθ)
(1/4)   (eq. 10)

278

279 With soil and canopy temperatures and the resistances of the soil-canopy-atmosphere heat flux network 

280 known, fluxes can be calculated with equations (9), (10), (11) and (13) from Hoffmann et al. (2016). Total 

281 latent and sensible heat fluxes are calculated as the sums of canopy and soil fluxes. In the following 

282 iterations, a recalculation of Monin-Obukhov length takes place until a stable value is reached and the 

283 resulting fluxes are derived. For the model runs with Rn_mod and Rn_mes the model net radiation is 

284 forced accordingly.

285

286 DTD

287

288 The Dual-Temperature-Difference (DTD) model works very similar to TSEB-PT and differs mainly in 

289 the way how sensible heat flux is calculated (Hoffmann et al., 2016). In the DTD model, the absolute 

290 temperatures of land surface and air (as used in the TSEB-PT) are supplemented with a second set of 

291 early morning reference measurements of LST and air temperature, thus creating a dual-temperature 

292 difference (Norman et al., 2000). The first observation is recorded in the early morning hours and the 

293 second observation is recorded later on the same day at any given time. We used two IRTs attached to the 

294 EC tower (see EC methodology Sect. 2.4 for details and Sect. 2.7 for the limitations) for the necessary 

295 early morning reference readings of absolute temperature and used the averaged LSTs to create a uniform 

296 map as input for the DTD model (similar as e.g. in Hoffmann et al. 2016). This relates measurements at 

297 any time during the day to measurements recorded in the morning, when fluxes are assumed to be 

298 minimal, and thereby accounts for measurement biases of LST (Anderson, 1997; Hoffmann et al., 2016). 

299 H flux is then calculated using the time-differential temperature and a series resistance network as it is 

300 recommended for densely vegetated regions to consider interaction of soil and canopy fluxes (Guzinski 

301 et al., 2014; Li et al., 2005).
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The actual amount of evapotranspirated water (ETw) in mm h−1was calculated as in (Timmermans et al., 302 

2015): 303 

 304 

ETw = ((LE*t)/1000000)/(2.501-0.002361*(Tair-273.15))   (eq.11) 305 

 306 

Where LE is the latent heat flux in W m−2, t is the respective timespan in seconds and Tair is the air 307 

temperature in Kelvin. 308 

 309 

2.4 Eddy covariance measurements 310 

 311 

The micrometeorological tower is located in the center of the study site (Fig. 1). The EC technique was 312 

used to measure LE and H fluxes from high frequency (10 Hz) measurements of above-canopy water 313 

vapor concentration, sonic temperature, and 3-D wind components. The flux system consisted of a sonic 314 

anemometer (Metek uSonic-3 Scientific, Elmshorn, Germany) and a fast response open-path CO2/H2O 315 

infrared gas analyzer (Li-Cor7500A, LI-COR Inc. Lincoln, USA) installed at 22 m height. Meteorological 316 

variables were measured every 10 sec, averaged to 10 min means and stored on a DL16 Pro data logger 317 

(Thies Clima, Göttingen, Germany). Rn and its components were measured with a net radiometer (CNR4, 318 

Kipp & Zonen, Delft, The Netherlands) at 22 m height. Air temperature and relative humidity were 319 

measured with thermohygrometers (type 1.1025.55.000, Thies Clima, Göttingen, Germany) at 16.3 m 320 

height. Further, a wind direction sensor (Thies Clima, Göttingen, Germany) (22 m height) and 3-cup 321 

anemometers (Thies Clima, Göttingen, Germany) (18.5, 15.4, 13, and 2.3 m height) for wind speed 322 

measurements were installed on the tower. The two IRTs used in our study (IR100 Radiometer, Campbell 323 

Scientific Inc., Logan, USA) have a field-of-view (FOV) of 8-10°. Considering the distance from their 324 

fixed location on the tower to the average height of the oil palm canopy, they cover a circular area of 2.2 325 

m2, over which they average the received thermal signal. The recorded canopy area comprises different 326 

functional parts of the canopy (e.g. leaflets, petioles). On average, we assumed a surface emissivity of 327 

0.98 for the canopy area (Jones and Vaughan, 2010). We did not correct the values recorded with the 328 

IRTs for any other influences since the distance from the canopy surface to the sensors was only about 329 

10 m. Ground heat flux was measured using heat flux plates (HFP01, Huxeflux, Delft, The Netherlands) 330 

at 10 cm depth. Additional soil moisture and temperature measurements (Trime-Pico 32, Imko, Ettlingen, 331 

Germany) above the heat flux plate at 5 cm depth were used to calculate heat flux at the soil surface. EC 332 

data recording, filtering and processing were carried out identical to the methodology described in Meijide 333 

et al. (2017) for the same study site. As the applied drone-based models all assume full energy balance 334 

closure, we used the Bowen ratio closure method (Pan et al., 2017; Twine et al., 2000) to compute full 335 

closure for the EC measurements. The Bowen ratio method was found to produce the most congruent 336 

results in conjunction with drone-based latent heat flux estimates (Brenner et al., 2017) and was therefore 337 

applied in this study. The energy balance closure (EBC) of the reference EC measurements was 0.77 (r2= 338 
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0.87), which is in line with EBC reported for other tall vegetation canopies (Stoy et al., 2013). Since the 339 

used energy balance models assume full EBC, we applied the so-called Bowen ratio closure method to 340 

the EC data (Pan et al., 2017). The method assumes that wind measurements miss some of the total 341 

covariance and dispersive fluxes. Therefore, underestimations of LE and H are carried over proportionally 342 

because of similarity among fluxes (Twine et al., 2000). The Bowen ratio closure method proportionally 343 

assigns the underestimated turbulent energy to LE and H fluxes to reach full EBC. 344 

EC data processing and quality checks were performed following the methodology described in (Meijide 345 

et al., 2017). Following (Mauder and Foken, 2006), flux estimates during low turbulence and thus stable 346 

atmospheric conditions were removed from the analysis; however, low turbulence mainly occurred during 347 

night hours and was not observed during the daytime drone flights. Generally, the EC method is associated 348 

with uncertainties of 5 - 20% (Foken, 2008). Further limitations are the high costs and quite specific 349 

requirements regarding size and terrain of the study site. 350 

 351 

2.6 Statistical analyses 352 

 353 

Both methods, the reference EC technique and the drone-based estimates, are associated with a certain 354 

degree of uncertainty. To account for the uncertainty in both, a model II Deming regression (Deming, 355 

1964) was applied for the analysis to consider uncertainties in both x and y variables (Cornbleet and 356 

Gochman, 1979; Glaister, 2001). We assumed that the error ratio (σε²/σδ²) of the variances (σ) of errors 357 

on y (εi) and on x (δi) would not differ from 1 which is the standard procedure if both uncertainties are 358 

unknown (Legendre and Legendre, 2003). We used the interquartile range method with a factor k=1.5 to 359 

remove outliers from the regression. A Durbin-Watson test was applied to test for correlation in error 360 

terms. We checked for heteroscedasticity visually and using a White test. Normal distribution of error 361 

terms was tested visually plotting standardized residuals vs. theoretical quantities and performing a 362 

Shapiro-Wilk test. Standard errors and confidence intervals for slope and intercept of the Deming 363 

regression were calculated using analytical methods (parametric) and the jackknife method (Armitage et 364 

al., 2001; Linnet, 1993). As further supporting indicators of model performance, we calculated the 365 

coefficients of determination (r²), the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE) 366 

and slope and intercept from the Deming regression. Statistics such as r2 have their limitations in method 367 

comparison since they are designed to indicate how well the resulting model of the regression describes 368 

the outcome and are not necessarily a good measure for systematic bias between methods. However, they 369 

are used as a statistic in this study since they represent an additional indicator for interpretation. Linearity 370 

was checked visually plotting residuals vs. fitted values.  371 

All modeling procedures and parts of the statistical analyses were computed using Python version 3.7.1 372 

(Python Software Foundation), involving the libraries NumPy 1.14.2, SciPy 1.1.0, pandas 0.23.1, scikit-373 

learn 0.19.1, gdal 2.3.2, Astropy 3.2.2 and tkinter 8.6. The Deming regression was computed using the 374 

MethComp and mcr v2.2.1 package (Manuilova et al., 2014) in R version 3.6.1 (R Development Core 375 
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Team, 2019). Graphic representation was processed in Python using the Matplotlib 3.0.2 and Seaborn 376 

0.9.0 libraries.  377 

 378 

2.7 Dataset characteristics 379 

 380 

The dataset offers a comparatively high number of replicates from 61 drone recording flights and the 381 

corresponding eddy covariance measurements enabling a method comparison which requires at least n=60 382 

observations (Legendre and Legendre, 2003). The data was recorded in a 30 min frequency, to facilitate 383 

the analysis of daily courses of evapotranspiration behavior creating a trade-off situation of more flights 384 

per day with shorter flight times per flight. Because flight times were so short, only a smaller footprint 385 

with a radius of 100 m around the eddy covariance station was covered, while the footprint recorded with 386 

the eddy covariance system ranged up to a 500 m radius around the tower. Therefore, the reduced area of 387 

the drone recorded LST maps is often smaller than the extent of the eddy covariance footprint. We have 388 

several reasons to assume that this doesn’t cause major problems for the comparison though: the study 389 

area is very homogenous with an elevation difference of 5 m in the eddy covariance footprint and the 390 

biosphere is strongly dominated by only one species (oil palm). The plantation is very well managed, so 391 

that all oil palm canopies are alive, no oil palms have died and only dry leaves are removed. A further 392 

limitation of the dataset is the lack of morning or night LST measurements that could not be recorded 393 

with the drone due to security concerns and limited access to the plantation at night. This doesn’t affect 394 

the procedure of the DATTUTDUT and TSEB-PT model, but morning measurements are an important 395 

factor for the DTD model. We were able to record night and morning measurements with two stationary 396 

infrared thermometers (IRTs) that were attached to the tower. As for the DTD model, morning and later 397 

recordings should ideally be recorded with the same camera. To check whether the two IRTs measure 398 

similar temperatures compared to drone recorded LSTs, we extracted a total of 122 ‘IRT-sized’ (i.e.∼2.2 399 

m2) LST footprints from the drone-recorded maps. A correlation of both temperature measurements 400 

revealed a small deviation of the measured temperatures resulting in a mean absolute error (MAE) and 401 

root mean squared error (RMSE) of 1.59 and 2.15 K respectively. Since LST measurements are subject 402 

to a certain degree of uncertainty and thermal cameras usually have a measurement error of up to ±1°C 403 

(Aubrecht et al., 2016) we decided to use the morning measurements from the tower IRTs as input for the 404 

morning temperature reference. The implementation of the DTD model is therefore strictly experimental 405 

and has to be interpreted with the uncertainties of the morning measurements in mind.  406 

  407 
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 408 

3 Results 409 

 410 

3.1 Meteorology 411 

 412 

During our 61 flight missions, cloudiness was variable from clear sky to full cloud cover; short-wave 413 

irradiance ranged from 204 to 1110 W m-2. The prevailing wind direction was from north-east, at an 414 

average wind speed of 1.7 m s−1. Canopy air temperature ranged from 22.5 to 32.3°C and relative humidity 415 

varied between 62 and 99%. Temperature differences between measured air temperature at 16.3m (top of 416 

canopy) and mean land surface temperatures ranged from 0.005K to a single peak of 8.689K for the single 417 

flights while the daily averaged differences ranged from 1.32K to 2.13K. The energy balance closure of 418 

the reference EC measurements was 0.77 (r2 = 0.87).  419 

 420 

3.2 Drone-based modeling methods vs. eddy covariance method 421 

 422 

At the time of the drone flights, LE from the EC method ranged between 87 and 596 W m-2 (mean: 337 423 

W m-2) and eddy covariance-derived evapotranspiration was on average, 0.43 ± 0.21 mm h-1, with peak 424 

evapotranspiration of up to 0.87 mm h-1 during midday. Congruence of LE estimates with reference EC 425 

measurements differed among the three applied models and was further affected by the configuration of 426 

the Rn assessment (Fig. 2). The assumptions for Rn_mod were not always met as cloud cover was present 427 

during several flights; consequently, the corresponding net radiation estimates were too high, leading to 428 

a substantial overestimation especially of smaller latent heat fluxes. The short-wave irradiance based 429 

Rn_sw configuration resulted in Rn estimates that were by average very comparable with the measured 430 

net radiation Rn_mes but also showed a rather high variation (Fig. 2). Generally, error metrics were 431 

reduced and agreement was increased the more measurement-controlled the Rn determination process 432 

was. 433 

 434 
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Figure 2: Measured net radiation (Rn_mes) plotted against fully modeled net radiation (Rn_mod) and net 435 

radiation estimates based on short-short wave irradiance (Rn_sw). 436 

DATTUTDUT LE estimates closely agreed with EC measurements around noon, but were higher in the 437 

morning and afternoon hours, which is caused by overestimations of Rn from the Rn_mod method (Fig. 438 

3a). LE estimates from TSEB-PT were consistently higher than EC measurements, with particularly large 439 

divergences around noon (Fig. 3a). The LE predictions from the DTD model in Rn_mod configuration 440 

were rather overestimated, especially around noon when compared with the EC reference measurements 441 

(Fig. 3a). Models with Rn_sw configuration produced LE estimates that matched LE from EC more 442 

closely (Fig. 3b). DATTUTDUT computed similar or higher estimates of LE compared to the EC 443 

measurements during noon but mostly underestimated LE fluxes in the morning and afternoon, while 444 

TSEB-PT produced more congruent LE estimates for the morning and afternoon hours but also 445 

overestimated LE fluxes especially during noon (Fig. 3b). The DTD model showed a very similar pattern 446 

with overestimations of LE fluxes around noon and more accurate estimates for morning and afternoon 447 

hours (Fig. 3b). Both two-source energy balance models with Rn_sw configuration yielded comparably 448 

accurate estimates during the morning and afternoon hours. With Rn_mes configuration, DATTUTDUT 449 

computed closely matching LE estimates at all times of day across the five-day measurement period, 450 

while TSEB-PT and DTD consistently produced much higher estimates than EC around noon but 451 

otherwise calculating mostly accurate results (Fig. 3c). 452 

 453 
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 454 
Figure 3: Latent heat flux (LE) from energy balance models (DATTUTDUT, TSEB-PT, DTD) and three 455 

different configurations of net radiation (Rn) determination (Rn_mod, Rn_sw, Rn_mod) and eddy 456 

covariance measurements (EC) over five consecutive days (n = 61 flight missions). 457 

 458 
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Across all daytimes and weather conditions (n=61 flight missions), congruence among drone-based LE 459 

estimates and reference EC measurements was highest for the DATTUTDUT model with Rn_mes 460 

configuration (r²=0.85); MAE and RMSE were 47 and 60 W m-2, respectively (Fig. 4). To compare the 461 

model predictions and the eddy covariance measurements, we computed a Deming regression between 462 

both LE predictions from the models and LE estimates by the EC method. The methods are considered to 463 

be statistically interchangeable if the confidence intervals of the slope and intercept include one and zero 464 

respectively. If the confidence intervals for the intercept of the Deming regression include zero, there is 465 

no constant or continuous error between the two methods. If the confidence intervals for the intercept do 466 

not include zero, both methods differ by a constant amount, i.e. the new method has a continuous error 467 

compared to the reference method. In contrast, the confidence intervals of the slope of the Deming 468 

regression indicate whether there is a proportional error between the methods, which increases 469 

proportionally with the magnitude of the predicted value. Deming regression of the LE estimates of the 470 

DATTUTDUT model with Rn_mes configuration showed no significant proportional or constant error 471 

compared to EC measurements as the values one and zero lay within the respective 99% confidence 472 

interval ranges of slope and intercept (Fig. 5). It is thus indicated that there is no significant difference 473 

between LE estimates from DATTUTDUT with Rn_mes configuration and the EC technique. The TSEB-474 

PT model in Rn_mes configuration also showed no significant continuous errors but was subject to a 475 

minor proportional bias (Fig. 5c). The TSEB-PT model overestimated LE particularly around noon, when 476 

fluxes are very high (Fig. 3c and 4c). The DTD model also showed no continuous bias but indicated a 477 

proportional error in the analytical method and the Jackknife method (Fig. 5c). In the Rn_sw 478 

configuration, only the DATTUTDUT model showed no significant proportional and continuous error of 479 

LE estimates compared to EC measurements (Fig. 5b). TSEB-PT and DTD model estimates showed no 480 

significant constant deviation from the EC measurements but were subject to a proportional error (Fig. 481 

4b and 5b). However, all confidence intervals for models with the Rn_sw configuration were rather wide 482 

indicating a large level of uncertainty. All models in the Rn_mod configuration showed significant 483 

proportional and constant errors or large biases compared to EC measurements, as well as very large 484 

confidence intervals Fig. 4a and 5a).  485 

  486 
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 487 

 488 

Figure 4: Model II Deming regression of latent heat flux estimates from drone-based energy balance 489 

models (DATTUTDUT, TSEB-PT, DTD) and different configurations of net radiation (Rn_mod, Rn_sw, 490 

Rn_mes) with the eddy covariance method (n = 61 flight missions).  491 
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 492 
Figure 5: Confidence intervals for intercept and slope of Deming regression for the different LE 493 

estimation approaches compared with EC measurements. X-level for the bias is the mean of the 494 

established EC reference method. The intercept is displayed in W m-2. 495 

 496 

3.3 Spatial distribution of LE 497 

 498 

For 9th of August 2017, 12.30 h, the DATTUDUT in Rn_mes configuration suggested a mean of 526 W 499 

m -2 (minimum of 0 on the corrugated iron roof of the EC tower system, maximum of 637 W m -2, 500 

coefficient of variation 7.53 %, for the analyzed 18,383 pixels) (Fig. 6), which translates to a mean ET of 501 

0.778 mm m-2 h-1. Locally, i.e. in the center of oil palm crowns, high LE of > 400 W m -2 was observed, 502 

while LE from soil and ground vegetation areas between oil palm canopies was lower. The LE fluxes of 503 
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all pixels were almost normally distributed for the one-source energy balance model DATTUDUT (Fig. 504 

7), whereas the distribution of the two-source energy balance model TSEB-PT (for the same LST dataset) 505 

was more skewed, with more LE observations at the upper end of the range. The spatial LE estimates 506 

from the DTD model resulted in a similar distribution than from the TSEB-PT model (Fig. 7). Both 507 

distributions of the two-source energy balance models show gaps in the histogram, while the histogram 508 

of the DATTUTDUT model displays a more continuous distribution (Fig. 7)  509 

 510 

 511 

Figure 6: Spatial distribution of latent heat flux from drone-based thermography and subsequent energy 512 

balance modeling (DATTUTDUT with Rn_mes configuration, 9 August 2017, 12.30 h).  513 
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 514 

Figure 7: Frequency distribution of latent heat flux for the model output images from the same thermal 515 

image as shown in Fig. 5 (9 August 2017, 12.30 h). Absolute histogram bin size was set to 16 W m-2, we 516 

used 50 bins from 0 to 800 W m-2.  517 

4 Discussion 518 

 519 

Our study indicates a high agreement between latent heat fluxes assessed by drone-based thermography 520 

and the eddy covariance technique. However, the performance of the three applied energy balance models 521 

differed among each other and among different configurations of net radiation assessments in the models 522 

(Fig. 3 and 4). Model II Deming regression analyses and associated quality assessments suggest 523 

interchangeability between the DATTUTDUT model in Rn_mes configuration and the EC technique (Fig. 524 

4 and 5). Applying this configuration, a fine grain spatial analysis of latent heat fluxes suggests relatively 525 

low heterogeneity of LE in the studied tropical oil palm plantation (Fig. 6). 526 

 527 

4.1 Drone-based LE modeling vs. eddy covariance measurements 528 

 529 

The confidence intervals of slope and intercept of the Deming regression indicate that the one-source 530 

energy balance model DATTUTDUT with Rn_mes configuration is statistically interchangeable with the 531 

established EC method for estimating LE fluxes. There are advantages and limitations to both methods. 532 

For example, the DATTUTDUT model provides insights on the spatial distribution of LE fluxes within 533 

the full extent of the available LST maps, whereas the EC technique averages the LE fluxes within its 534 

footprint to a single value. On the other hand, the DATTUTDUT model is temporally limited to the 535 

availability of LST maps, whereas the EC method can measure fluxes continuously over several years 536 
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once the equipment is in place. The DATTUTDUT model with Rn_mes configuration further requires 537 

additional measurements of short- and long-wave radiation. In our study, these measurements were taken 538 

with the EC equipment, but future stand-alone drone approaches are possible by using on-board 539 

miniaturized radiation sensors (Castro Aguilar et al., 2015; Suomalainen et al., 2018). However, the 540 

accuracy of such on-board radiation sensors should first be tested against reference methods, e.g. visually 541 

by scatter or inter-comparison plots (Castro Aguilar et al., 2015; Suomalainen et al., 2018) or with a model 542 

II regression procedure evaluating the interchangeability of methods and measurements (Passing and 543 

Bablok, 1983). The two-source energy balance models TSEB-PT and DTD in the Rn_mes configuration 544 

showed a very similar behavior. Both were found to have no continuous error when compared to the 545 

reference EC method. However, a small bias towards the overestimation of relatively high fluxes around 546 

noon was observed, which might be removed by improving the balance of e.g. vegetation parameters for 547 

oil palm. 548 

All models with the Rn_sw configuration showed a significant proportional error compared to EC 549 

measurements, which was mainly rooted in the high variance of the Rn_sw configuration. The short-wave 550 

irradiance measurements used in this study were stored as 10 min averages that probably didn’t represent 551 

the high level of irradiance variations in the tropical study area adequately. Previous studies have pointed 552 

out that Rn derivation based on short-wave irradiance measurements is challenging as long-wave 553 

radiation budgets are often completely independent from their short-wave counterparts (Hoffmann et al. 554 

2016). Estimation errors in long-wave radiation budgets have e.g. been reported to be related to high 555 

relative air humidity, when some of the original model assumptions are no longer met (Hoffmann et al., 556 

2016). We observed a negative correlation (r² = 0.46) between incoming long-wave irradiance and relative 557 

humidity and assume that the high relative humidity in our tropical study area may have affected the 558 

determination of Rn when using the Rn_sw configuration through inaccuracies in estimating long-wave 559 

radiation budgets, therefore causing the observed significant continuous errors. Since we recorded the 560 

data during very different daytimes and weather situations, the short-wave irradiance based approach 561 

might not be the most adequate mean of Rn derivation. However, this approach can be very useful for 562 

measurements without the presence of clouds or high levels of relative humidity. We thus also consider 563 

the Rn_sw configuration valuable for future research, particularly because measurements of incoming 564 

short-wave radiation are much easier to implement than assessing complete short- and long-wave 565 

radiation budgets as necessary for the Rn_mes configuration. The application of the Rn_sw configuration 566 

for a one-source energy balance model such as DATTUTDUT was also tested in two previous studies, 567 

with similar results to our study, i.e. a reduction of errors compared to its original formulation with fully 568 

modeled Rn_mod (Brenner et al., 2018; Xia et al., 2016).  569 

Lastly, the model configuration Rn_mod did not produce accurate LE estimates for all three models, as 570 

many of the basic assumptions for fully modelled Rn determination are not met in tropical environments 571 

such as our equatorial study area. As such, the sky is often cloudy, while haze frequently occurs during 572 

periods without rainfall. Even if no clouds are visible, relative humidity is often high, which interferes 573 
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with the clear-sky assumptions of the Rn_mod configuration (Still et al., 2019).  574 

Among the three models applied in our study, the relatively simple DATTUTDUT model produced the 575 

most precise LE estimates compared to eddy covariance reference measurements. Similar conclusions 576 

were reached by Brenner et al. (2018), where DATTUTDUT marginally outperformed the more complex 577 

TSEB-PT model. On the other hand, contrasting observations were made by Xia et al. (2016) in vineyards 578 

with more extreme temperature divergences between soil and vegetation, where the TSEB-PT model 579 

produced more precise estimates of LE than the DATTUTDUT model. This was explained by the better 580 

physical representation of energy and radiative exchange in the TSEB-PT model. The authors further 581 

point out that Rn determination is not the only source of error in the DATTUTDUT model (Xia et al., 582 

2016). In our study, the TSEB-PT model slightly outperformed the more complex DTD model in the 583 

Rn_mes configuration regarding error terms.  584 

 585 

We used the Bowen-ratio method to close the energy balance for the reference EC measurements. As 586 

reported by Xia et al. (2016), agreement between measured EC and modeled LE estimates could 587 

potentially be increased by using the residual method from Twine et al. (2000) for energy balance closure. 588 

Further potential improvements include the aerial sampling alignment with the EC measurement logging 589 

cycles. We compared snapshot measurements of LST to 30 min averages of EC measurements for the 590 

corresponding times in an environment where key variables such as solar irradiance can change very 591 

quickly. Better matching the measurement cycle duration may further improve agreement between the 592 

methods and was already suggested in a previous study (Brenner et al., 2018). Further, in our study the 593 

aerial-derived LST images represented only the center area of the (at times quite variable and large) EC 594 

footprint. Covering the whole potential area of the footprint in all directions could also increase agreement 595 

between the measurements, but would require even higher flight altitude or longer flight times to cover 596 

the whole area; both options would reduce the number of temporal replicates and increase errors from 597 

measurements and processing, but could nonetheless be viable approaches for other research questions. 598 

 599 

Only few previous studies have demonstrated applicability and limitations of estimating LE with the three 600 

energy balance models from non-satellite data. In these studies, LSTs were e.g. recorded from drones for 601 

European grasslands and croplands (Brenner et al., 2018; Hoffmann et al., 2016) and from drones or 602 

airplanes for taller vegetation including olive orchards and vineyards (Ortega-Farías et al., 2016; Xia et 603 

al., 2016). Our study adds to this an application of these models in a tropical environment, for higher 604 

vegetation (i.e. oil palm) and across variable daytimes and weather conditions. Generally, the equatorial 605 

study site was rather challenging due to high temperatures and humidity and frequent occurrence of haze, 606 

as well as for logistical reasons. Additionally, many previous drone-based studies were conducted on 607 

grasslands (e.g. Brenner et al. 2017, 2018) or on low-growing crops such as wheat fields (Hoffmann et 608 

al., 2016), but not on crops with a rather complex canopy structure such as oil palm. On the other hand, 609 

our study site showed large temperature differences between soil and canopy, which simplified the 610 
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distinguishing of each fraction. We further analyzed for the first time whether drone-data based models 611 

and EC measurements can be used interchangeably, as our large sample size of n=61 flights allowed for 612 

a method comparison based on a model II Deming regression (Legendre and Legendre, 2003). We 613 

conclude that this is the case for some models and configurations, above all for the DATTUTDUT with 614 

Rn_mes configuration.  615 

 616 

4.2 Spatial distribution of latent heat fluxes 617 

 618 

A particular strength of drone-based thermal imagery is the high spatial resolution which allows for 619 

spatially explicit assessments of evapotranspiration, within and potentially also beyond the footprints of 620 

EC towers. The outlines of the single oil palm canopies are clearly visible in the LE flux map (Fig. 6), 621 

with the highest LE fluxes occurring in the center of the oil palm canopies. We assume that this spatial 622 

pattern is caused by an increased local LAI in the centers of the oil palm canopies, while leaf area density 623 

decreases towards the outer canopies. Further, the central areas of oil palm canopies are more exposed to 624 

sunlight and wind throughout most of the day, increasing their potential for (evapo)transpiration 625 

compared to canopy edges. Mixed pixel effects (among soil and canopy) likely also contribute to the 626 

observed lower LE fluxes towards the borders of oil palm canopies. Further contributing factors to higher 627 

LE fluxes in the centers of oil palm canopies could be leaf age (with younger leaves in the center) and 628 

additional ET from pockets in the axils of pruned leaves along the stem, which contain small water 629 

reservoirs and epiphytes (Meijide et al., 2017; Tarigan et al., 2018).  630 

 631 

While the DATTUTDUT histogram shows only few pixel values of zero and most pixels closely 632 

distributed around the mean, the TSEB-PT and DTD histograms are much wider distributed and with a 633 

much more pronounced peak. For the DATTUTDUT model mean and median are very similar indicating 634 

close to zero skewness. Such a distribution tending towards unimodality is also considered typical for 635 

landscapes where ET is highly dominated by one species (Xia et al., 2016). Both, the TSEB-PT and the 636 

DTD model show a different, more skewed distribution of LE fluxes (for the same dataset of LST), with 637 

the median of the LE estimates located between the mean and the upper end of the LE flux range. We 638 

assume that this skewness is caused by the TSEB-PT and DTD models being more sensitive to dry 639 

surfaces and hence better represent the lower LE flux from dryer soil areas. 640 

 641 

Drone-based methods have a large untapped potential for ecological applications, e.g. regarding 642 

ecohydrological optimization in land use systems and designing the climate-smart urban landscapes of 643 

the future. We see great potential in the drone-based remote sensing applications presented in this study; 644 

especially when recent developments in drone-environment interaction, mobile edge computing 645 

(potentially on-board of the drone) and communication technologies such as LoRaWan (Long Range 646 

Wide Area Network) or 5G are combined (Becerra, 2019; Marchese et al., 2019). Autonomous acquisition 647 
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of LSTs over EC stations and the surrounding area scan be supplemented by on-board and ground sensors. 648 

Energy-balance models can then potentially be calculated using edge computing schemes on-board the 649 

drone to enable a dense temporal resolution of LST, flux and ET maps in almost real-time. This concept 650 

can e.g. be used for the attribution of fluxes in mixed species plant communities, the study of edge effects 651 

in landscapes, and further be adapted e.g. to detect water stress in agriculture and forests.  652 

 653 

5 Conclusions 654 

 655 

Drone-based thermography and subsequent energy balance modeling under certain configurations can be 656 

considered a highly reliable method for estimating latent heat flux and evapotranspiration; for some 657 

configurations statistical interchangeability is suggested with the established eddy covariance technique. 658 

They thus complement the asset of available methods for evapotranspiration studies by fine grain and 659 

spatially explicit assessments. 660 

 661 

  662 



26 
 

 663 

Data availability 664 

 665 

The final data used for the statistical tests were uploaded in Göttingen Research Online Data with a doi: 666 

https://doi.org/10.25625/IOF18T  667 

Raw thermal images, orthomosaics and terrain data, georeferenced rasters and model configurations are 668 

available upon request to the corresponding author. 669 

 670 

Author Contribution 671 

 672 

The study was conceptualized by DH in cooperation with H (drone measurements) and AK in cooperation 673 

with TJ (eddy covariance measurements). FE led the writing of the paper with help from AR and DH 674 

supervised the work. FE collected and processed the drone data and CS the eddy covariance data. FE 675 

conducted data processing, model application, statistical analysis and production of plots in cooperation 676 

mainly with DH and AR. FE, DH and AR created a first version of the manuscript, which was further 677 

improved in a cooperation of all authors. 678 

 679 

Competing interests 680 

 681 

The authors declare that they have no conflict of interest. 682 

 683 

Acknowledgements 684 

 685 

This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 686 

project number 192626868 – SFB 990 (subprojects A02 and A03) and the Ministry of Research, 687 

Technology and Higher Education (Ristekdikti). We thank Ristekdikti for providing the research permit 688 

for field work (No. 322/SIP/FRP/E5/Dit.KI/IX/2016, No. 329/SIP/FRP/E5/Dit.KI/IX/2016 and No. 689 

28/EXT/SIP/FRP/E5/Dit.KI/VII/2017). We thank our field assistants Zulfi Kamal, Basri, Bayu and 690 

Darwis for great support during the field campaigns and Edgar Tunsch, Malte Puhan, Frank Tiedemann 691 

and Dietmar Fellert for their technical support. We also thank Perseroan Terbatas Perkebunan Nusantara 692 

VI, Batang Hari Unit (PTPN6) for giving us permission to conduct our research at the oil palm plantation. 693 

We thank Hector Nieto for publishing the code for TSEB-PT and DTD (pyTSEB) on www.github.com. 694 

Thanks to all ‘EFForTS’ colleagues and friends in Indonesia, Germany, and around the world.  695 



27 
 

References 696 

Allen, R. G., Pereira, L. S., Raes, D. and Smith, M.: Crop evapotranspiration - Guidelines for computing 697 
crop water requirements - FAO Irrigation and drainage paper 56, FAO, Rome. [online] Available from: 698 
http://www.fao.org/3/X0490E/X0490E00.htm, 1998. 699 

Allen, R. G., Tasumi, M. and Trezza, R.: Satellite-Based Energy Balance for Mapping 700 
Evapotranspiration with Internalized Calibration (METRIC)—Model, J. Irrig. Drain. Eng., 133(4), 701 
380–394, doi:10.1061/(ASCE)0733-9437(2007)133:4(380), 2007. 702 

Anderson, M.: A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal 703 
Infrared Remote Sensing, Remote Sens. Environ., 60(2), 195–216, doi:10.1016/S0034-4257(96)00215-704 
5, 1997. 705 

Armitage, P., Berry, G. and Matthews, J. N. S.: Statistical methods in medical research, 4th ed., 706 
Blackwell Science, Malden, MA., 2001. 707 

Aubrecht, D. M., Helliker, B. R., Goulden, M. L., Roberts, D. A., Still, C. J. and Richardson, A. D.: 708 
Continuous, long-term, high-frequency thermal imaging of vegetation: Uncertainties and 709 
recommended best practices, Agric. For. Meteorol., 228–229, 315–326, 710 
doi:10.1016/j.agrformet.2016.07.017, 2016. 711 

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, 712 
K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., 713 
Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K. 714 
and Wofsy, S.: FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-715 
Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, Bull. Am. Meteorol. Soc., 82(11), 2415–716 
2434, doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001. 717 

Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A. and Holtslag, A. A. M.: A remote sensing surface 718 
energy balance algorithm for land (SEBAL). 1. Formulation, J. Hydrol., 212–213, 198–212, 719 
doi:10.1016/S0022-1694(98)00253-4, 1998. 720 

Becerra, V. M.: Autonomous control of unmanned aerial vehicles, Electronics, 8(4), 452, 721 
doi:10.3390/electronics8040452, 2019. 722 

Berni, J. A. J., Zarco-Tejada, P. J., Sepulcre-Cantó, G., Fereres, E. and Villalobos, F.: Mapping canopy 723 
conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery, 724 
Remote Sens. Environ., 113(11), 2380–2388, doi:10.1016/j.rse.2009.06.018, 2009. 725 

Brenner, C., Thiem, C. E., Wizemann, H.-D., Bernhardt, M. and Schulz, K.: Estimating spatially 726 
distributed turbulent heat fluxes from high-resolution thermal imagery acquired with a UAV system, 727 
Int. J. Remote Sens., 38(8–10), 3003–3026, doi:10.1080/01431161.2017.1280202, 2017. 728 

Brenner, C., Zeeman, M., Bernhardt, M. and Schulz, K.: Estimation of evapotranspiration of temperate 729 
grassland based on high-resolution thermal and visible range imagery from unmanned aerial systems, 730 
Int. J. Remote Sens., 39(15–16), 5141–5174, doi:10.1080/01431161.2018.1471550, 2018. 731 



28 
 

Brutsaert, W.: Evaporation into the Atmosphere. Theory, History, and Applications, Reidel Publishing 732 
Co., 1982. 733 

Burchard-Levine, V., Nieto, H., Riaño, D., Migliavacca, M., El-Madany, T. S., Perez-Priego, O., Carrara, 734 
A. and Martín, M. P.: Adapting the thermal-based two-source energy balance model toestimate energy 735 
fluxes in a complex tree-grass ecosystem, Hydrol. Earth Syst. Sci. Discuss., 1–37, doi:10.5194/hess-736 
2019-354, 2019. 737 

Burridge, D. M. and Gadd, A.J.: The Meteorological Office operational 10-level numerical weather 738 
prediction model (December 1975), British Meteorological Office, Bracknell, England. [online] 739 
Available from: https://trove.nla.gov.au/version/9853886, 1977. 740 

Campbell, G. S. and Norman, J. M.: An Introduction to Environmental Biophysics, Springer, New York, 741 
New York., 1998. 742 

Castro Aguilar, J. L., Gentle, A. R., Smith, G. B. and Chen, D.: A method to measure total atmospheric 743 
long-wave down-welling radiation using a low cost infrared thermometer tilted to the vertical, Energy, 744 
81, 233–244, doi:10.1016/j.energy.2014.12.035, 2015. 745 

Clough, Y., Krishna, V. V., Corre, M. D., Darras, K., Denmead, L. H., Meijide, A., Moser, S., Musshoff, 746 
O., Steinebach, S., Veldkamp, E., Allen, K., Barnes, A. D., Breidenbach, N., Brose, U., Buchori, D., 747 
Daniel, R., Finkeldey, R., Harahap, I., Hertel, D., Holtkamp, A. M., Hörandl, E., Irawan, B., Jaya, I. N. 748 
S., Jochum, M., Klarner, B., Knohl, A., Kotowska, M. M., Krashevska, V., Kreft, H., Kurniawan, S., 749 
Leuschner, C., Maraun, M., Melati, D. N., Opfermann, N., Pérez-Cruzado, C., Prabowo, W. E., 750 
Rembold, K., Rizali, A., Rubiana, R., Schneider, D., Tjitrosoedirdjo, S. S., Tjoa, A., Tscharntke, T. and 751 
Scheu, S.: Land-use choices follow profitability at the expense of ecological functions in Indonesian 752 
smallholder landscapes, Nat. Commun., 7(1), 1–12, doi:10.1038/ncomms13137, 2016. 753 

Cornbleet, P. J. and Gochman, N.: Incorrect Least-Squares Regression Coefficients in Method- 754 
Comparison Analysis, Clin. Chem., (25/3), 432–438, 1979. 755 

Deming, W. E.: Statistical adjustment of data, Dover Books Math. Ser., Dover Publications, 1964. 756 

Drescher, J., Rembold, K., Allen, K., Beckschäfer, P., Buchori, D., Clough, Y., Faust, H., Fauzi, A. M., 757 
Gunawan, D., Hertel, D., Irawan, B., Jaya, I. N. S., Klarner, B., Kleinn, C., Knohl, A., Kotowska, M. M., 758 
Krashevska, V., Krishna, V., Leuschner, C., Lorenz, W., Meijide, A., Melati, D., Nomura, M., Pérez-759 
Cruzado, C., Qaim, M., Siregar, I. Z., Steinebach, S., Tjoa, A., Tscharntke, T., Wick, B., Wiegand, K., 760 
Kreft, H. and Scheu, S.: Ecological and socio-economic functions across tropical land use systems after 761 
rainforest conversion, Philos. Trans. R. Soc. B Biol. Sci., 371(1694), 20150275, 762 
doi:10.1098/rstb.2015.0275, 2016. 763 

Ellsäßer, F., Röll, A., Stiegler, C., Hendrayanto and Hölscher, D.: Introducing QWaterModel, a QGIS 764 
plugin for predicting evapotranspiration from land surface temperatures, Environ. Model. Softw., 130, 765 
6, doi:https://doi.org/10.1016/j.envsoft.2020.104739, 2020. 766 

 767 



29 
 

Ershadi, A., McCabe, M. F., Evans, J. P. and Walker, J. P.: Effects of spatial aggregation on the multi-768 
scale estimation of evapotranspiration, Remote Sens. Environ., 131, 51–62, 769 
doi:10.1016/j.rse.2012.12.007, 2013. 770 

Fan, Y., Roupsard, O., Bernoux, M., Le Maire, G., Panferov, O., Kotowska, M. M. and Knohl, A.: A sub-771 
canopy structure for simulating oil palm in the Community Land Model (CLM-Palm): phenology, 772 
allocation and yield, Geosci. Model Dev., 8(11), 3785–3800, doi:10.5194/gmd-8-3785-2015, 2015. 773 

Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., McCabe, M. F., Hook, S., 774 
Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, J.-P., Waliser, D., 775 
Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of 776 
evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, 777 
agricultural management, and water resources: The future of evapotranspiration, Water Resour. Res., 778 
53(4), 2618–2626, doi:10.1002/2016WR020175, 2017. 779 

Foken, T.: The Energy Balance Closure Problem: An Overview, Ecol. Appl., 18(6), 1351–1367, 780 
doi:10.1890/06-0922.1, 2008. 781 

Garratt, J. R.: The Atmospheric Boundary Layer, Cambridge University Press, Cambridge., 1992. 782 

Glaister, P.: Least Sq. Revisit. Math. Gaz., 85, doi:https://doi.org/10.2307/3620485, 2001. 783 

Göckede, M., Foken, T., Aubinet, M., Aurela, M., Banza, J., Bernhofer, C., Bonnefond, J. M., Brunet, Y., 784 
Carrara, A., Clement, R., Dellwik, E., Elbers, J., Eugster, W., Fuhrer, J., Granier, A., Grünwald, T., 785 
Heinesch, B., Janssens, I. A., Knohl, A., Koeble, R., Laurila, T., Longdoz, B., Manca, G., Marek, M., 786 
Markkanen, T., Mateus, J., Matteucci, G., Mauder, M., Migliavacca, M., Minerbi, S., Moncrieff, J., 787 
Montagnani, L., Moors, E., Ourcival, J.-M., Papale, D., Pereira, J., Pilegaard, K., Pita, G., Rambal, S., 788 
Rebmann, C., Rodrigues, A., Rotenberg, E., Sanz, M. J., Sedlak, P., Seufert, G., Siebicke, L., Soussana, 789 
J. F., Valentini, R., Vesala, T., Verbeeck, H. and Yakir, D.: Quality control of CarboEurope flux data - 790 
Part 1: Coupling footprint analyses with flux data quality assessment to evaluate sites in forest 791 
ecosystems, Biogeosciences, 5(2), 433–450, doi:10.5194/bg-5-433-2008, 2008. 792 

Guzinski, R., Anderson, M. C., Kustas, W. P., Nieto, H. and Sandholt, I.: Using a thermal-based two 793 
source energy balance model with time-differencing to estimate surface energy fluxes with day–night 794 
MODIS observations, Hydrol. Earth Syst. Sci., 17(7), 2809–2825, doi:10.5194/hess-17-2809-2013, 795 
2013. 796 

Guzinski, R., Nieto, H., Jensen, R. and Mendiguren, G.: Remotely sensed land-surface energy fluxes at 797 
sub-field scale in heterogeneous agricultural landscape and coniferous plantation, Biogeosciences, 798 
11(18), 5021–5046, doi:10.5194/bg-11-5021-2014, 2014. 799 

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., 800 
Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O. and 801 
Townshend, J. R. G.: High-Resolution Global Maps of 21st-Century Forest Cover Change, Science, 802 
342(6160), 850–853, doi:10.1126/science.1244693, 2013. 803 

 804 



30 
 

Hoffmann, H., Nieto, H., Jensen, R., Guzinski, R., Zarco-Tejada, P. and Friborg, T.: Estimating 805 
evaporation with thermal UAV data and two-source energy balance models, Hydrol. Earth Syst. Sci., 806 
20(2), 697–713, doi:10.5194/hess-20-697-2016, 2016. 807 

Jones, H. G. and Vaughan, R. A.: Remote sensing of vegetation: principles, techniques, and 808 
applications, Oxford University Press, Oxford ; New York., 2010. 809 

Kustas, W. P. and Norman, J. M.: Evaluation of soil and vegetation heat flux predictions using a simple 810 
two-source model with radiometric temperatures for partial canopy cover, Agric. For. Meteorol., 17, 811 
1999. 812 

Lapidot, O., Ignat, T., Rud, R., Rog, I., Alchanatis, V. and Klein, T.: Use of thermal imaging to detect 813 
evaporative cooling in coniferous and broadleaved tree species of the Mediterranean maquis, Agric. 814 
For. Meteorol., 271, 285–294, doi:10.1016/j.agrformet.2019.02.014, 2019. 815 

Legendre, P. and Legendre, L.: Numerical Ecology, 2/20 ed., Elsevier., 2003. 816 

Li, F., Kustas, W. P., Prueger, J. H., Neale, C. M. U. and Jackson, T. J.: Utility of Remote Sensing–817 
Based Two-Source Energy Balance Model under Low- and High-Vegetation Cover Conditions, J. 818 
Hydrometeorol., 6(6), 878–891, doi:10.1175/JHM464.1, 2005. 819 

Linnet, K.: Evaluation of Regression Procedures for Method Comparison Studies, Clin Chem, (39/3), 820 
424–432, 1993. 821 

Manuilova, E., Schuetzenmeister, A. and Model, F.: mcr: Method Comparison Regression. [online] 822 
Available from: https://cran.r-project.org/web/packages/mcr/index.html, n.d. 823 

Marchese, M., Moheddine, A. and Patrone, F.: IoT and UAV Integration in 5G Hybrid Terrestrial-824 
Satellite Networks, Sensors, 19(17), 3704, doi:10.3390/s19173704, 2019. 825 

Margono, B. A., Turubanova, S., Zhuravleva, I., Potapov, P., Tyukavina, A., Baccini, A., Goetz, S. and 826 
Hansen, M. C.: Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) 827 
using Landsat time series data sets from 1990 to 2010, Environ. Res. Lett., 7(3), 034010, 828 
doi:10.1088/1748-9326/7/3/034010, 2012. 829 

Mauder, M. and Foken, T.: Impact of post-field data processing on eddy covariance flux estimates and 830 
energy balance closure, Meteorol. Z., 15(6), 597–609, doi:10.1127/0941-2948/2006/0167, 2006. 831 

Meijide, A., Röll, A., Fan, Y., Herbst, M., Niu, F., Tiedemann, F., June, T., Rauf, A., Hölscher, D. and 832 
Knohl, A.: Controls of water and energy fluxes in oil palm plantations: Environmental variables and oil 833 
palm age, Agric. For. Meteorol., 239, 71–85, doi:10.1016/j.agrformet.2017.02.034, 2017. 834 

Norman, J. M., Kustas, W. P. and Humes, K. S.: Source approach for estimating soil and vegetation 835 
energy fluxes in observations of directional radiometric surface temperature, Agric. For. Meteorol., 836 
77(3–4), 263–293, doi:10.1016/0168-1923(95)02265-Y, 1995. 837 

 838 



31 
 

Norman, J. M., Kustas, W. P., Prueger, J. H. and Diak, G. R.: Surface flux estimation using radiometric 839 
temperature: A dual-temperature-difference method to minimize measurement errors, Water Resour. 840 
Res., 36(8), 2263–2274, doi:10.1029/2000WR900033, 2000. 841 

Oki, T. and Kanae, S.: Global Hydrological Cycles and World Water Resources, Am. Assoc. Adv. Sci., 842 
313(5790), 1068–1072, doi:10.1126/science.1128845, 2006. 843 

Ortega-Farías, S., Ortega-Salazar, S., Poblete, T., Kilic, A., Allen, R., Poblete-Echeverría, C., Ahumada-844 
Orellana, L., Zuñiga, M. and Sepúlveda, D.: Estimation of Energy Balance Components over a Drip-845 
Irrigated Olive Orchard Using Thermal and Multispectral Cameras Placed on a Helicopter-Based 846 
Unmanned Aerial Vehicle (UAV), Remote Sens., 8(8), 638, doi:10.3390/rs8080638, 2016. 847 

Pan, X., Liu, Y., Fan, X. and Gan, G.: Two energy balance closure approaches: applications and 848 
comparisons over an oasis-desert ecotone, J. Arid Land, 9(1), 51–64, doi:10.1007/s40333-016-0063-2, 849 
2017. 850 

Passing, H. and Bablok, W.: A New Biometrical Procedure for Testing the Equality of Measurements 851 
from Two Different Analytical Methods. Application of linear regression procedures for method 852 
comparison studies in Clinical Chemistry, Part I, Clin. Chem. Lab. Med., 21(11), 853 
doi:10.1515/cclm.1983.21.11.709, 1983. 854 

Prudhomme, C., Giuntoli, I., Robinson, E. L., Clark, D. B., Arnell, N. W., Dankers, R., Fekete, B. M., 855 
Franssen, W., Gerten, D., Gosling, S. N., Hagemann, S., Hannah, D. M., Kim, H., Masaki, Y., Satoh, Y., 856 
Stacke, T., Wada, Y. and Wisser, D.: Hydrological droughts in the 21st century, hotspots and 857 
uncertainties from a global multimodel ensemble experiment, Proc. Natl. Acad. Sci., 111(9), 3262–858 
3267, doi:10.1073/pnas.1222473110, 2014. 859 

Röll, A., Niu, F., Meijide, A., Ahongshangbam, J., Ehbrecht, M., Guillaume, T., Gunawan, D., Hardanto, 860 
A., Hendrayanto, Hertel, D., Kotowska, M. M., Kreft, H., Kuzyakov, Y., Leuschner, C., Nomura, M., 861 
Polle, A., Rembold, K., Sahner, J., Seidel, D., Zemp, D. C., Knohl, A. and Hölscher, D.: Transpiration on 862 
the rebound in lowland Sumatra, Agric. For. Meteorol., 274, 160–171, 863 
doi:10.1016/j.agrformet.2019.04.017, 2019. 864 

Sabajo, C. R., le Maire, G., June, T., Meijide, A., Roupsard, O. and Knohl, A.: Expansion of oil palm and 865 
other cash crops causes an increase of the land surface temperature in the Jambi province in Indonesia, 866 
Biogeosciences, 14(20), 4619–4635, doi:10.5194/bg-14-4619-2017, 2017. 867 

Song, L., Liu, S., Kustas, W. P., Zhou, J., Xu, Z., Xia, T. and Li, M.: Application of remote sensing-based 868 
two-source energy balance model for mapping field surface fluxes with composite and component 869 
surface temperatures, Agric. For. Meteorol., 230–231, 8–19, doi:10.1016/j.agrformet.2016.01.005, 870 
2016. 871 

Still, C., Powell, R., Aubrecht, D., Kim, Y., Helliker, B., Roberts, D., Richardson, A. D. and Goulden, M.: 872 
Thermal imaging in plant and ecosystem ecology: applications and challenges, Ecosphere, 10(6), 873 
e02768, doi:10.1002/ecs2.2768, 2019. 874 

 875 



32 
 

Stoy, P. C., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A., Arain, M. A., Arneth, A., Aurela, 876 
M., Bernhofer, C., Cescatti, A., Dellwik, E., Duce, P., Gianelle, D., van Gorsel, E., Kiely, G., Knohl, A., 877 
Margolis, H., McCaughey, H., Merbold, L., Montagnani, L., Papale, D., Reichstein, M., Saunders, M., 878 
Serrano-Ortiz, P., Sottocornola, M., Spano, D., Vaccari, F. and Varlagin, A.: A data-driven analysis of 879 
energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity, 880 
Agric. For. Meteorol., 171–172, 137–152, doi:10.1016/j.agrformet.2012.11.004, 2013. 881 

Suomalainen, J., Hakala, T., Alves de Oliveira, R., Markelin, L., Viljanen, N., Näsi, R. and Honkavaara, 882 
E.: A Novel Tilt Correction Technique for Irradiance Sensors and Spectrometers On-Board Unmanned 883 
Aerial Vehicles, Remote Sens., 10(12), 2068, doi:10.3390/rs10122068, 2018. 884 

Tarigan, S., Wiegand, K., Sunarti and Slamet, B.: Minimum forest cover required for sustainable water 885 
flow regulation of a watershed: a case study in Jambi Province, Indonesia, Hydrol. Earth Syst. Sci., 886 
22(1), 581–594, doi:10.5194/hess-22-581-2018, 2018. 887 

Timmermans, W. J., Kustas, W. P. and Andreu, A.: Utility of an Automated Thermal-Based Approach 888 
for Monitoring Evapotranspiration, Acta Geophys., 63(6), 1571–1608, doi:10.1515/acgeo-2015-0016, 889 
2015. 890 

Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers, T. P., Prueger, J. H., 891 
Starks, P. J. and Wesely, M. L.: Correcting eddy-covariance flux underestimates over a grassland, Agric. 892 
For. Meteorol., 103(3), 279–300, doi:10.1016/S0168-1923(00)00123-4, 2000. 893 

Xia, T., Kustas, W. P., Anderson, M. C., Alfieri, J. G., Gao, F., McKee, L., Prueger, J. H., Geli, H. M. E., 894 
Neale, C. M. U., Sanchez, L., Alsina, M. M. and Wang, Z.: Mapping evapotranspiration with high-895 
resolution aircraft imagery over vineyards using one- and two-source modeling schemes, Hydrol. Earth 896 
Syst. Sci., 20(4), 1523–1545, doi:10.5194/hess-20-1523-2016, 2016. 897 

Zhang, L., Hu, Z., Fan, J., Zhou, D. and Tang, F.: A meta-analysis of the canopy light extinction 898 
coefficient in terrestrial ecosystems, Front. Earth Sci., 8(4), 599–609, doi:10.1007/s11707-014-0446-7, 899 
2014. 900 

 901 


