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Abstract. For the assessment of evapotranspiration, near-
surface airborne thermography offers new opportunities for
studies with high numbers of spatial replicates and in a fine
spatial resolution. We tested drone-based thermography and
the subsequent application of three energy balance models
(DATTUTDUT, TSEB-PT, DTD) using the widely accepted
eddy covariance technique as a reference method. The study
site was a mature oil palm plantation in lowland Sumatra,
Indonesia. For the 61 flight missions, latent heat flux es-
timates of the DATTUTDUT (Deriving Atmosphere Tur-
bulent Transport Useful To Dummies Using Temperature)
model with measured net radiation agreed well with eddy co-
variance measurements (r2

= 0.85; MAE= 47; RMSE= 60)
across variable weather conditions and times of day. Confi-
dence intervals for slope and intercept of a model II Dem-
ing regression suggest no difference between drone-based
and eddy covariance methods, thus indicating interchange-
ability. TSEB-PT (Two-Source Energy Balance) and DTD
(Dual Temperature Difference) yielded agreeable results, but
all three models are sensitive to the configuration of the net
radiation assessment. Overall, we conclude that drone-based
thermography with energy balance modeling is a reliable
method complementing available methods for evapotranspi-
ration studies. It offers promising, additional opportunities
for fine grain and spatially explicit studies.

1 Introduction

Evapotranspiration (ET) is a central flux in the hydrological
cycle on a regional and on a global scale. Terrestrial ET con-
sumes almost two-thirds of terrestrial precipitation (Oki and
Kanae, 2006). There is an interest in better understanding ET
and its drivers as climate change is expected to increase at-
mospheric evaporative demand, and droughts are predicted to
become more severe and frequent in the future (Prudhomme
et al., 2014). ET is also strongly affected by land-cover and
land-use changes, which are currently very pronounced in
tropical regions (Hansen et al., 2013).

The eddy covariance (EC) technique is a widely accepted
and well-established method to quantify ET at the stand scale
(Baldocchi et al., 2001; Fisher et al., 2017). It results in a sin-
gle latent heat (LE) flux value integrated over the footprint of
the EC tower at a given time that can be converted to an ET
estimate. A spatial fine grain attribution of different surface
patches to this overall ET value is generally not possible. The
EC method is costly and labor intensive; therefore, a rela-
tively low number of spatial replicates within a given region
and among its different ecosystems are typically available.
The EC method also has certain constrains regarding topog-
raphy, atmospheric turbulence and landscape heterogeneity
(Göckede et al., 2008).

A complementary approach for assessing LE at larger spa-
tial scales is the use of remotely sensed land surface tem-
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peratures (LSTs) as boundary conditions for energy balance
modeling and subsequent conversion to ET (Brenner et al.,
2017; Guzinski et al., 2014; Hoffmann et al., 2016; Ortega-
Farías et al., 2016; Xia et al., 2016). Transpiration from leaf
surfaces leads to evaporative cooling of the canopy; LSTs,
along with air temperature, can thus be used as a reliable in-
dicator of plant water use, both in monocultures and in spa-
tially highly heterogeneous systems such as natural forests
(Lapidot et al., 2019). Compared to the EC method, this ap-
proach can potentially increase the number of spatial repli-
cates within and among ecosystems and is also applicable in
challenging terrain. Remotely sensed LSTs are regarded as
good indicators for plant water use, stress and transpiration
(Jones and Vaughan, 2010). One approach to obtain LST data
is the use of satellite-based observations (Allen et al., 2007;
Bastiaanssen et al., 1998; Ershadi et al., 2013). However, the
spatial resolution of LST satellite data such as Landsat TM,
ASTER, MODIS or AVHRR ranges from 90 m to 1 km, lim-
iting the distinction of plant canopies and soil (Berni et al.,
2009). A higher temporal resolution of satellite-based ther-
mal infrared (TIR) observations is usually associated with a
lower spatial resolution, and TIR data from satellites in both
high spatial and high temporal resolutions are not yet avail-
able (Brenner et al., 2017). Additionally, clouds are barriers
for thermal radiation and therefore have a strong effect on
the quality and availability of satellite-based TIR observa-
tions (Guzinski et al., 2013). This is of particular importance
in regions with frequent cloud cover such as in tropical envi-
ronments.

An alternative recently emerging approach to measure
LSTs is the use of drones. Radiometric TIR sensors for
LST recording have become lightweight and affordable,
and drones are now capable of carrying adequate payloads
for reasonable time spans. Near-surface thermography-based
studies allow for temporal resolutions in flexible, e.g., hourly,
time steps and a spatial resolution in the decimeter scale
or finer. Drone-based TIR recording and subsequent model-
ing of LE with energy balance models has previously shown
promising results for short grass and crop vegetation in cen-
tral Europe (Brenner et al., 2018; Hoffmann et al., 2016).
However, remote sensing of LST from drones is challeng-
ing and involves careful planning. Recording LST close to
the surface results in a high resolution but reduces the area
covered in a certain time span compared to surveying from a
higher altitude. Increasing flight altitude reduces spatial res-
olution of LST images and thus increases the averaging of
surface temperatures from individual canopies, soil patches
and branches from neighboring canopies into a single pixel
(Still et al., 2019). Further, air humidity can have a major
effect on measurement accuracy as water vapor not only at-
tenuates the signals from the surface of interest to the sensor
but also emits its own thermal radiation (Still et al., 2019).

Different energy balance models are available to com-
pute LE from LST and subsequently calculate ET. In the
one-source energy balance model DATTUTDUT (Deriving

Atmosphere Turbulent Transport Useful To Dummies Us-
ing Temperature) (Timmermans et al., 2015), fluxes are es-
timated by relating single pixel temperatures to local tem-
perature extremes. Two-source energy balance models such
as TSEB (Two-Source Energy Balance) (Norman et al.,
1995) and DTD (Dual Temperature Difference) (Norman
et al., 2000) divide measured LSTs into a vegetation and
a soil fraction. Several adaptions to these models were de-
veloped; the TSEB-PT model, as described in Hoffmann et
al. (2016), uses the Priestley–Taylor coefficient (PT) to de-
termine canopy H flux and subsequently calculate the other
fractions from the surface energy balance. TSEB-PT is based
on the temperature difference between LST and air temper-
ature (Norman et al., 1995). Expanding this concept, DTD
uses a dual-temperature difference from an additional early
morning set of measurements to account for biases in re-
motely sensed LSTs (Hoffmann et al., 2016; Norman et al.,
2000). Crucial in applying such energy balance models is
how the net radiation (Rn) is implemented. In the original for-
mulation of the DATTUTDUT model, Rn is fully modeled,
assuming a range of prerequisites and environmental condi-
tions (Timmermans et al., 2015). TSEB-PT and DTD mod-
els use measured short- and long-wave radiation to estimate
Rn as a sum of in- and outgoing long- and short-wave radi-
ation (Norman et al., 1995, 2000). Using airplanes or drones
to record LSTs, the three models previously showed promis-
ing results for grass and crop surfaces in temperate and sub-
tropical regions (Brenner et al., 2017, 2018; Hoffmann et
al., 2016; Xia et al., 2016). However, to our knowledge, a
comprehensive method comparison considering potential er-
rors in both a reference method (e.g., the EC technique) and
novel drone-based approaches is not yet available. Since full
method comparisons based on model II regression require
a sample size of at least n= 60 data pairs (Legendre and
Legendre, 2003), many previous studies with smaller sample
sizes were constrained to using error terms and correlation
coefficients.

The current study was conducted in the lowlands of Jambi
province (Sumatra, Indonesia) where, over the last decades,
large areas of rainforest have been converted to rubber and
oil palm plantations (Clough et al., 2016; Margono et al.,
2012). This resulted in regional-scale changes in transpira-
tion (Röll et al., 2019) and land surface warming (Sabajo
et al., 2017). We assessed energy fluxes in a mature mono-
culture oil palm plantation and compared the LE estimates
of drone-based methods with the established EC method
as measured ground-based reference. Three energy balance
models (DATTUTDUT, TSEB-PT, DTD) were tested, each
with three different configurations for the determination of
Rn (fully modeling Rn, Rn estimates based on short-wave
irradiance and measuring Rn). The objectives of our study
were to compare LE estimates from the drone-based methods
to the EC technique, with a special focus on the detection of
proportional and continuous errors among the methods and
an evaluation of the model’s prediction performance. The

Biogeosciences, 18, 1–15, 2021 https://doi.org/10.5194/bg-18-1-2021



F. Ellsäßer et al.: Predicting evapotranspiration from drone-based thermography 3

Figure 1. The study site in a mature commercial oil palm plantation
in the lowlands of Jambi province, Sumatra, Indonesia.

present study focuses on the comparison of different drone-
based methods as a baseline for future ecological studies,
rather than applying the methods to different land-use types.

2 Methods

2.1 Study site

The study site is located in the lowlands of Jambi province
(Sumatra, Indonesia) near the Equator (1.6929879 S,
103.3914411 E; 76 m a.s.l.). Average annual air temperature
in the region is 26.5 ◦C, and average annual precipitation is
2235 mm yr−1 (Drescher et al., 2016). At the time of our
measurement campaign in August 2017, the studied mono-
culture oil palm (Elaeis guineensis) plantation was 15 years
old. Palm stem density was 140 palms ha−1, with an aver-
age palm height of 14.3 m and an average canopy radius of
4.5 m. Leaf area index (LAI) was estimated at 3.64 m2 m−2

(Fan et al., 2015), and canopy cover was estimated to be
90 %. Plantation management included the removal of older
and non-vital leaves from the oil palms, herbicide appli-
cation to remove most understory plants and fertilization
(196 kg N ha−1 yr−1) (Meijide et al., 2017). The average an-
nual oil palm yield is 27.7 Mg ha−1. An EC tower (22 m
height) is situated in the center of the site with a fetch of
up to 500 m in all directions (Meijide et al., 2017) (Fig. 1).

2.2 Drone-based image acquisition

We used an octocopter drone (MK EASY Okto V3; HiSys-
tems, Germany) equipped with a thermal and an RGB

camera mounted in a stereo setup on a gimbal to ensure
nadir perspective. The radiometric thermal camera was a
FLIR Tau 2 640 (FLIR Systems, USA) attached to a TeAx
ThermalCapture module (TeAx Technology, Germany). The
sensor covers spectral bands ranging from 7.5 to 13.5 µm
with a relative thermal accuracy of 0.04 K and an absolute
thermal accuracy of ± 2 K (FLIR Systems, USA). The RGB
camera was based on an Omnivision OV12890 CMOS sen-
sor (Omnivision, USA) with a 170◦ field-of-view (FOV) fish-
eye lens. Instead of the mosaicking approaches applied in
most of the mentioned previous studies, we used a single
image recording concept as faster image acquisition allows
for a denser temporal resolution of LSTs. To capture an area
of 100 m radius around the EC tower in a single shot of the
thermal camera, images were taken from 260 m altitude. Im-
age corners were removed due to vignetting effects. During
a consecutive 5 d flight campaign in August 2017, 61 LST
datasets and matching EC measurements were recorded.
Flights were conducted between 09:00 and 16:00 LT (local
time), in accordance with the 30 min intervals of the EC av-
eraging cycles, resulting in 10 to 14 flights per day. All LSTs
were measured using a fixed emissivity of one as the energy
balance models would introduce specific soil and vegetation
emissivities in the process.

2.3 Energy balance models

LSTs are recorded as “snapshots” representing an in-
stantaneous state of surface temperatures. Soil-Vegetation-
Atmosphere Transfer (SVAT) models use these instantaneous
observations of LST to solve the energy balance equation and
estimate instantaneous fluxes. In our study the one-source
energy balance model DATTUTDUT (Timmermans et al.,
2015) and 2 two-source energy balance models, TSEB-PT
(Norman et al., 1995) and DTD (Norman et al., 2000), were
applied. For the TSEB-PT and DTD model, directional ra-
diometric temperatures are used and no further calculation of
aerodynamic temperature by using an excess resistance term
is needed (Hoffmann et al., 2016). Using drones, the proxim-
ity of the thermal camera to the surface is much closer com-
pared to other typical carriers (such as satellites or planes);
hence, atmospheric effects are supposed to have only a very
minor effect. To use a uniform input for all the applied mod-
els, we used directional radiometric temperature recordings
from the drone as input without applying further corrections.
All models in this study use instantaneous land surface tem-
peratures (LSTs) to solve the energy balance equation:

Rn =G+H +LE, (1)

where Rn is the net radiation, G is the ground heat flux, and
the turbulent fluxes H and LE represent sensible and latent
heat fluxes, respectively. Rn is estimated by calculating the
budget of incoming (↓) and outgoing (↑) long-wave (Rl) and
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short-wave (Rs) radiation:

Rn = Rs ↓ +Rs ↑ +Rl ↓ +Rl ↑

= (1−α) ·Rs ↓ +εsurf · εatm · σ · T
4

air

− εsurf · σ · T (θ)
4
surf, (2)

where the short-wave component is calculated by multiply-
ing incoming short-wave radiation Rs ↓ [W m−2] with its ab-
sorption ratio deducted from the combined soil and vegeta-
tion albedo α. This way, reflected outgoing short-wave radi-
ation Rs ↑ is subtracted from the energy balance. The long-
wave radiation budget is calculated from surface (soil and
vegetation) emissivity εsurf, atmospheric emissivity εatm, the
Stefan–Boltzmann constant σ (5.6704× 10−8 W m−2 K−4),
air temperature Tair and radiometric land surface tempera-
ture T (θ)surf (both in kelvin). The incoming long-wave ra-
diation component is added to the budget and the outgoing
long-wave radiation is component subtracted.

2.3.1 DATTUTDUT

Key input for the DATTUTDUT model is a LST map from
where the hottest and the 0.005 quantile of coldest pixels are
extracted, assuming that hot pixels are a result of very lit-
tle to no evapotranspiration and cold pixels originate from
a high evapotranspiration rate (Timmermans et al., 2015).
Fully modeled Rn is calculated based on downwelling short-
wave radiation estimates calculated using sun–earth geome-
try to solve Eq. (2). Surface albedo P0 is calculated as in Tim-
mermans et al. (2015) based on the assumption that dense
vegetation appears colder than rocks or soil in the thermal
imagery (Brutsaert, 1982; Garratt, 1992):

P0 = 0.05+ ((T0− Tmin)/(Tmax− Tmin)) · 0.2. (3)

Downwelling short-wave radiation Rs ↓ is calculated from
the dimensionless atmospheric transmissivity τ and the
exoatmospheric short-wave radiation SWexo = 1360 W m−2

(Timmermans et al., 2015). Transmissivity τ is calculated as
described in Burridge and Gadd (1977) using the solar eleva-
tion angle α that was determined from the geographic posi-
tion of our site and the coordinated universal time (UTC) of
the measurements:

τ = 0.6+ 0.2 · sin(α), (4)
Rs ↓= τ ·SWexo. (5)

Timmermans et al. (2015) suggest using a constant value
of 0.7 for τ and 0.8 atmospheric emissivity (εatm), but as
our flight times range from 09:00 to 16:30 h local time, we
decided to include the solar elevation angle as in Eq. (4).
Further, we used a constant surface emissivity (εsurf) of 0.98
as recommended for vegetation-dominated areas (Jones and
Vaughan, 2010) and not 1.0 as simplified in the original for-
mulation of the DATTUTDUT model. Air temperature Tair

was calculated as the 0.005 quantile of the coldest pixels in
the image.

As the original DATTUTDUT formulation does not ac-
count for cloud cover, Eq. (5) is replaced by measured short-
wave irradiance as in Brenner et al. (2018) for model runs
with Rn_sw. For model runs with Rn_mes, Eq. (2) was re-
placed by Rn measurements recorded at the EC tower.

The sum of the turbulent fluxes is calculated by subtracting
G from Rn. The result is fractioned into its components H
and LE, using the evaporative fraction (EF) (Timmermans et
al., 2015):

EF= LE/(LE+H) = LE/(Rn−G)

= (Tmax− T (θ)surf)/(Tmax− Tmin) . (6)

For our implementation of the DATTUTDUT model, we
used the QGIS3 plugin QWaterModel (Ellsäßer et al., 2020)
that is provided with an easy-to-use graphical user interface.

2.3.2 TSEB-PT

TSEB-PT calculates surface-energy budgets from the
recorded LSTs, splitting observations into a canopy and a soil
fraction (Norman et al., 1995; Song et al., 2016; Xia et al.,
2016). The model consists of two parts. First, an initializa-
tion part where all parameters that do not depend on soil and
canopy temperature partition and knowledge of atmospheric
stability are computed. Afterwards an iterative part where the
Monin–Obukhov length is stabilized and the fluxes are fi-
nally derived. To begin this process, vegetation cover fc(θ)

is computed as in Campbell and Norman (1998):

fc(θ)= 1− exp((−0.5�(θ) ·LAI)/(cos(θ))) , (7)

where LAI is leaf area index, θ is the sun zenith angle and
� is a nadir view clumping factor to represent the cross-
row structure in which the oil palm is planted (Kustas and
Norman, 1999). Guzinski et al. (2014) suggest a maximum
limit of 0.95 for fc(θ) so that a small fraction of the soil is
still visible and extreme magnitudes for soil temperature are
avoided. Roughness parameters are calculated from vegeta-
tion height. Tair was measured at the EC tower and T (θ )surf
was recorded with the drone, similar to descriptions in Hoff-
mann et al. (2016). For the two-source energy balance mod-
els, we used a canopy emissivity of 0.98 and soil emissiv-
ity of 0.95. The emissivity values are based on averages for
the 8–14 µm spectrum taken from Jones and Vaughan (2010).
The TSEB-PT model requires additional in situ meteorolog-
ical measurements of long- and short-wave radiation, wind
speed, barometric pressure, and relative humidity, which in
our case were recorded at the EC tower. Further, measured
data on LAI as well as surface and canopy albedo are re-
quired. The three resistances in the soil–canopy–atmosphere
heat flux network, the aerodynamic resistance to heat trans-
port (RA), the resistance to heat transport from the soil sur-
face (RS) and the total boundary layer resistance of the leaf
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canopy (RX), are calculated as in Norman et al. (1995, 2000).
Net radiation and the three resistances remain constant dur-
ing the model runs. After finishing the computation of all
constant parameters, the iterative part of the model starts as-
suming Monin–Obukhov length tends to infinity. In the first
iteration Rn is partitioned into soil and canopy fractions by
calculating net radiation divergence 1Rn (Hoffmann et al.,
2016; Norman et al., 2000):

1Rn = Rn ·
(

1− exp
(
(−K ·LAI ·�0)/

√
(2cos(θs))

))
, (8)

where K is an extinction coefficient that varies according to
LAI (Hoffmann et al., 2016). We are aware of the fact, that
the determination of K using LAI is disputed as other stud-
ies found no significant correlation of K and LAI (Zhang et
al., 2014). With 1Rn known, sensible heat flux is then es-
timated using the Priestley–Taylor approximation following
the approach by Hoffmann et al. (2016):

Hc =1Rn · (1−αPT · fG · (D/(D+ γ )) , (9)

where αPT is the Priestley–Taylor coefficient, and both γ
the psychrometric constant and the slope of the saturation
pressure curve D were calculated as in Allen et al. (1998).
Canopy temperature TC was computed using Eq. (A7) and
Eq. (A11) described in Norman et al. (1995), summing up
the resulting TC,lin and 1TC. Knowing canopy temperature
TC and the fraction of view covered by vegetation fθ as in
Hoffmann et al. (2016), soil temperature Ts can be calculated:

Ts =

((
T (θ)4R − fθ · T

4
C

)
/(1− fθ )

)(1/4)
. (10)

With soil and canopy temperatures and the resistances of
the soil–canopy–atmosphere heat flux network known, fluxes
can be calculated with Eqs. (9), (10), (11) and (13) from
Hoffmann et al. (2016). Total latent and sensible heat fluxes
are calculated as the sums of canopy and soil fluxes. In
the following iterations, a recalculation of Monin–Obukhov
length takes place until a stable value is reached and the re-
sulting fluxes are derived. For the model runs with Rn_mod
and Rn_mes, the model net radiation is forced accordingly.

2.3.3 DTD

The Dual Temperature Difference (DTD) model works very
similar to TSEB-PT and differs mainly in the way sensible
heat flux is calculated (Hoffmann et al., 2016). In the DTD
model, the absolute temperatures of land surface and air (as
used in the TSEB-PT) are supplemented with a second set of
early-morning reference measurements of LST and air tem-
perature, thus creating a dual-temperature difference (Nor-
man et al., 2000). The first observation is recorded in the
early morning hours, and the second observation is recorded
later on the same day at any given time. We used two in-
frared thermometers (IRTs) attached to the EC tower (see EC

methodology Sect. 2.4 for details and Sect. 2.7 for the lim-
itations) for the necessary early-morning reference readings
of absolute temperature, and we used the averaged LSTs to
create a uniform map as input for the DTD model (similar
to Hoffmann et al., 2016). This relates measurements at any
time during the day to measurements recorded in the morn-
ing, when fluxes are assumed to be minimal, and thereby
accounts for measurement biases of LST (Anderson, 1997;
Hoffmann et al., 2016). H flux is then calculated using the
time-differential temperature and a series resistance network
as it is recommended for densely vegetated regions to con-
sider interaction of soil and canopy fluxes (Guzinski et al.,
2014; Li et al., 2005).

The actual amount of evapotranspiration (ETw, in
mm h−1) was calculated similar to Timmermans et
al. (2015):

ETw = ((LE · t)/1000000)/

(2.501− 0.002361 · (Tair− 273.15)) , (11)

where LE is the latent heat flux in W m−2, t is the respective
time span in seconds and Tair is the air temperature in kelvin.

2.4 Eddy covariance measurements

The micrometeorological tower is located in the center of the
study site (Fig. 1). The EC technique was used to measure
LE andH fluxes from high-frequency (10 Hz) measurements
of above-canopy water vapor concentration, sonic tempera-
ture and 3-D wind components. The flux system consisted of
a sonic anemometer (Metek uSonic-3 Scientific, Elmshorn,
Germany) and a fast response open-path CO2 /H2O infrared
gas analyzer (Li-Cor7500A, LI-COR Inc., Lincoln, USA) in-
stalled at 22 m height. Meteorological variables were mea-
sured every 10 s, averaged to 10 min means and stored on a
DL16 Pro data logger (Thies Clima, Göttingen, Germany).
Rn and its components were measured with a net radiome-
ter (CNR4, Kipp & Zonen, Delft, the Netherlands) at 22 m
height. Air temperature and relative humidity were measured
with thermohygrometers (type 1.1025.55.000, Thies Clima,
Göttingen, Germany) at 16.3 m height. Further, a wind direc-
tion sensor (Thies Clima, Göttingen, Germany) (22 m height)
and three-cup anemometers (Thies Clima, Göttingen, Ger-
many) (18.5, 15.4, 13 and 2.3 m heights) for wind speed mea-
surements were installed on the tower. The two IRTs used in
our study (IR100 radiometer, Campbell Scientific Inc., Lo-
gan, USA) have a field of view (FOV) of 8–10◦. Consid-
ering the distance from their fixed location on the tower to
the average height of the oil palm canopy, they cover a cir-
cular area of 2.2 m2, over which they average the received
thermal signal. The recorded canopy area comprises differ-
ent functional parts of the canopy (e.g., leaflets, petioles).
On average, we assumed a surface emissivity of 0.98 for the
canopy area (Jones and Vaughan, 2010). We did not correct
the values recorded with the IRTs for any other influences
since the distance from the canopy surface to the sensors
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was only about 10 m. Ground heat flux was measured using
heat flux plates (HFP01, Huxeflux, Delft, the Netherlands) at
10 cm depth. Additional soil moisture and temperature mea-
surements (Trime-Pico 32, Imko, Ettlingen, Germany) above
the heat flux plate at 5 cm depth were used to calculate heat
flux at the soil surface. EC data recording, filtering and pro-
cessing were carried out identical to the methodology de-
scribed in Meijide et al. (2017) for the same study site. As
the applied drone-based models all assume full energy bal-
ance closure, we used the Bowen ratio closure method (Pan
et al., 2017; Twine et al., 2000) to compute full closure for
the EC measurements. The Bowen ratio method was found
to produce the most congruent results in conjunction with
drone-based latent heat flux estimates (Brenner et al., 2017)
and was therefore applied in this study. The energy balance
closure (EBC) of the reference EC measurements was 0.77
(r2
= 0.87), which is in line with EBC reported for other

tall vegetation canopies (Stoy et al., 2013). Since the en-
ergy balance models that were used assume full EBC, we
applied the so-called Bowen ratio closure method to the EC
data (Pan et al., 2017). The method assumes that wind mea-
surements miss some of the total covariance and dispersive
fluxes. Therefore, underestimations of LE and H are car-
ried over proportionally because of similarity among fluxes
(Twine et al., 2000). The Bowen ratio closure method propor-
tionally assigns the underestimated turbulent energy to LE
and H fluxes to reach full EBC.

EC data processing and quality checks were per-
formed following the methodology described in Meijide et
al. (2017). Following Mauder and Foken (2006), flux es-
timates during low turbulence and thus stable atmospheric
conditions were removed from the analysis; however, low
turbulence mainly occurred during night hours and was not
observed during the daytime drone flights. Generally, the EC
method is associated with uncertainties of 5 %–20 % (Foken,
2008). Further limitations are the high costs and quite spe-
cific requirements regarding size and terrain of the study site.

2.5 Statistical analyses

Both methods, the reference EC technique and the drone-
based estimates, are associated with a certain degree of un-
certainty. To account for the uncertainty in both, a model II
Deming regression (Deming, 1964) was applied for the anal-
ysis to consider uncertainties in both x and y variables (Corn-
bleet and Gochman, 1979; Glaister, 2001). We assumed that
the error ratio (σε2/σδ2) of the variances (σ ) of errors on
y (εi) and on x (δi) would not differ from 1, which is the
standard procedure if both uncertainties are unknown (Leg-
endre and Legendre, 2003). We used the interquartile range
method with a factor k = 1.5 to remove outliers from the re-
gression. A Durbin–Watson test was applied to test for corre-
lation in error terms. We checked for heteroscedasticity visu-
ally and using a White test. Normal distribution of error terms
was tested visually plotting standardized residuals vs. theo-

retical quantities and performing a Shapiro–Wilk test. Stan-
dard errors and confidence intervals for slope and intercept
of the Deming regression were calculated using analytical
methods (parametric) and the jackknife method (Armitage et
al., 2001; Linnet, 1993). As further supporting indicators of
model performance, we calculated the coefficients of deter-
mination (r2), the mean absolute error (MAE), the root mean
square error (RMSE), and slope and intercept from the Dem-
ing regression. Statistics such as r2 have their limitations in
method comparison since they are designed to indicate how
well the resulting model of the regression describes the out-
come and are not necessarily a good measure for systematic
bias between methods. However, they are used as a statistic
in this study since they represent an additional indicator for
interpretation. Linearity was checked visually plotting resid-
uals vs. fitted values.

All modeling procedures and parts of the statistical anal-
yses were computed using Python version 3.7.1 (Python
Software Foundation), involving the libraries NumPy 1.14.2,
SciPy 1.1.0, pandas 0.23.1, scikit-learn 0.19.1, gdal 2.3.2,
Astropy 3.2.2 and tkinter 8.6. The Deming regression was
computed using the mcr v2.2.1 package (Manuilova et al.,
2014) in R version 3.6.1 (R Development Core Team, 2019).
Graphic representation was processed in Python using the
Matplotlib 3.0.2 and Seaborn 0.9.0 libraries.

2.6 Dataset characteristics

The dataset offers a comparatively high number of replicates
from 61 drone flights and the corresponding eddy covari-
ance measurements, enabling a method comparison which
requires at least n= 60 observations (Legendre and Legen-
dre, 2003). The data were recorded at a 30 min frequency
to facilitate the analysis of daily courses of evapotranspira-
tion behavior, creating a trade-off situation of more flights
per day with shorter flight times per flight. Because flight
times were so short, only a smaller footprint with a radius
of 100 m around the eddy covariance station was covered,
while the footprint recorded with the eddy covariance sys-
tem ranged up to a 500 m radius around the tower. Therefore,
the reduced area of the drone-recorded LST maps is often
smaller than the extent of the eddy covariance footprint. We
have several reasons to assume that this does not cause ma-
jor problems for the comparison though: the study area is
very homogenous with an elevation difference of 5 m in the
eddy covariance footprint, and the biosphere is strongly dom-
inated by only one species (oil palm). The plantation is very
well managed so that all oil palm canopies are alive; no oil
palms have died and only dry leaves are removed. A further
limitation of the dataset is the lack of morning or night LST
measurements that could not be recorded with the drone due
to security concerns and limited access to the plantation at
night. This does not affect the procedure of the DATTUT-
DUT and TSEB-PT model, but morning measurements are
an important factor for the DTD model. We were able to
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record night and morning measurements with two station-
ary infrared thermometers (IRTs) that were attached to the
tower. As for the DTD model, morning and later recordings
should ideally be recorded with the same camera. To check
whether the two IRTs measure similar temperatures com-
pared to drone-recorded LSTs, we extracted a total of 122
“IRT-footprint-sized” (i.e., ∼ 2.2 m2) LST footprints from
the drone-recorded maps. A correlation of both temperature
measurements revealed a small deviation of the measured
temperatures resulting in a mean absolute error (MAE) and
root mean squared error (RMSE) of 1.59 and 2.15 K, respec-
tively. Since LST measurements are subject to a certain de-
gree of uncertainty and thermal cameras usually have a mea-
surement error of up to ± 1 ◦C (Aubrecht et al., 2016), we
decided to use the morning measurements from the tower
IRTs as input for the morning temperature reference. The
implementation of the DTD model is therefore strictly ex-
perimental and has to be interpreted with the uncertainties of
the morning measurements in mind.

3 Results

3.1 Meteorology

During our 61 flight missions, cloudiness was variable from
clear sky to full cloud cover; short-wave irradiance ranged
from 204 to 1110 W m−2. The prevailing wind direction
was from northeast, at an average wind speed of 1.7 m s−1.
Canopy air temperature ranged from 22.5 to 32.3 ◦C, and rel-
ative humidity varied between 62 % and 99 %. Temperature
differences between measured air temperature at 16.3 m (top
of canopy) and mean land surface temperatures ranged from
0.005 K to a single peak of 8.689 K for the single flights,
while the daily averaged differences ranged from 1.32 to
2.13 K. The energy balance closure of the reference EC mea-
surements was 0.77 (r2

= 0.87).

3.2 Drone-based modeling methods vs. eddy
covariance method

At the time of the drone flights, LE from the EC method
ranged between 87 and 596 W m−2 (mean: 337 W m−2) and
eddy covariance-derived evapotranspiration was on average
0.43± 0.21 mm h−1, with peak evapotranspiration of up to
0.87 mm h−1 during midday. Congruence of LE estimates
with reference EC measurements differed among the three
applied models and was further affected by the configuration
of the Rn assessment (Fig. 2). The assumptions for Rn_mod
were not always met as cloud cover was present during sev-
eral flights; consequently, the corresponding net radiation es-
timates were too high, leading to a substantial overestima-
tion especially of smaller latent heat fluxes. The short-wave
irradiance-based Rn_sw configuration resulted in Rn esti-
mates that were on average very comparable with the mea-
sured net radiation Rn_mes but also showed a rather high

Figure 2. Measured net radiation (Rn_mes) plotted against fully
modeled net radiation (Rn_mod) and net radiation estimates based
on short-wave irradiance (Rn_sw).

variation (Fig. 2). Generally, error metrics were reduced and
agreement was increased the more measurement-controlled
the Rn determination process was.

DATTUTDUT LE estimates closely agreed with EC mea-
surements around noon, but were higher in the morning
and afternoon hours, which is caused by overestimations
of Rn from the Rn_mod method (Fig. 3a). LE estimates
from TSEB-PT were consistently higher than EC mea-
surements, with particularly large divergences around noon
(Fig. 3a). The LE predictions from the DTD model in
Rn_mod configuration were rather overestimated, especially
around noon when compared with the EC reference mea-
surements (Fig. 3a). Models with Rn_sw configuration pro-
duced LE estimates that matched LE from EC more closely
(Fig. 3b). DATTUTDUT computed similar or higher esti-
mates of LE compared to the EC measurements during noon
but mostly underestimated LE fluxes in the morning and af-
ternoon, while TSEB-PT produced more congruent LE esti-
mates for the morning and afternoon hours but also overesti-
mated LE fluxes especially during noon (Fig. 3b). The DTD
model showed a very similar pattern with overestimations
of LE fluxes around noon and more accurate estimates for
morning and afternoon hours (Fig. 3b). Both two-source en-
ergy balance models with Rn_sw configuration yielded com-
parably accurate estimates during the morning and afternoon
hours. With Rn_mes configuration, DATTUTDUT computed
closely matching LE estimates at all times of day across the
5 d measurement period, while TSEB-PT and DTD consis-
tently produced much higher estimates than EC around noon
but otherwise calculating mostly accurate results (Fig. 3c).
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Figure 3. Latent heat flux (LE) from energy balance models (DATTUTDUT, TSEB-PT, DTD) and three different configurations of net
radiation (Rn) determination (Rn_mod, Rn_sw, Rn_mod) and eddy covariance measurements (EC) over five consecutive days (n= 61 flight
missions).

Across all times of day and weather conditions (n=
61 flight missions), congruence among drone-based LE
estimates and reference EC measurements was highest
for the DATTUTDUT model with Rn_mes configuration
(r2
= 0.85); MAE and RMSE were 47 and 60 W m−2, re-

spectively (Fig. 4). To compare the model predictions and
the eddy covariance measurements, we computed a Deming
regression between both LE predictions from the models and
LE estimates by the EC method. The methods are considered
to be statistically interchangeable if the confidence intervals
of the slope and intercept include one and zero, respectively.
If the confidence intervals for the intercept of the Deming
regression include zero, there is no constant or continuous
error between the two methods. If the confidence intervals
for the intercept do not include zero, both methods differ by
a constant amount, i.e., the new method has a continuous er-
ror compared to the reference method. In contrast, the con-
fidence intervals of the slope of the Deming regression indi-
cate whether there is a proportional error between the meth-
ods, which increases proportionally with the magnitude of

the predicted value. Deming regression of the LE estimates of
the DATTUTDUT model with Rn_mes configuration showed
no significant proportional or constant error compared to EC
measurements as the values one and zero lay within the re-
spective 99 % confidence interval ranges of slope and inter-
cept (Fig. 5). It is thus indicated that there is no significant
difference between LE estimates from DATTUTDUT with
Rn_mes configuration and the EC technique. The TSEB-PT
model in Rn_mes configuration also showed no significant
continuous errors but was subject to a minor proportional
bias (Fig. 5c). The TSEB-PT model overestimated LE par-
ticularly around noon, when fluxes are very high (Figs. 3c
and 4c). The DTD model also showed no continuous bias
but indicated a proportional error in the analytical method
and the Jackknife method (Fig. 5c). In the Rn_sw configu-
ration, only the DATTUTDUT model showed no significant
proportional and continuous error of LE estimates compared
to EC measurements (Fig. 5b). TSEB-PT and DTD model
estimates showed no significant constant deviation from the
EC measurements but were subject to a proportional error

Biogeosciences, 18, 1–15, 2021 https://doi.org/10.5194/bg-18-1-2021



F. Ellsäßer et al.: Predicting evapotranspiration from drone-based thermography 9

(Figs. 4b and 5b). However, all confidence intervals for mod-
els with the Rn_sw configuration were rather wide, indicat-
ing a large level of uncertainty. All models in the Rn_mod
configuration showed significant proportional and constant
errors or large biases compared to EC measurements, as well
as very large confidence intervals (Figs. 4a and 5a).

3.3 Spatial distribution of LE

For 9 August 2017, 12:30 h, the DATTUTDUT in Rn_mes
configuration suggested a mean of 526 W m−2 (minimum of
0 on the corrugated iron roof of the EC tower system, max-
imum of 637 W m −2, coefficient of variation 7.53 %, for
the analyzed 18 383 pixels) (Fig. 6), which translates to a
mean ET of 0.778 mm m−2 h−1. Locally, i.e., in the center
of oil palm crowns, high LE of >400 W m−2 was observed,
while LE from soil and ground vegetation areas between oil
palm canopies was lower. The LE fluxes of all pixels were al-
most normally distributed for the one-source energy balance
model DATTUTDUT (Fig. 7), whereas the distribution of the
two-source energy balance model TSEB-PT (for the same
LST dataset) was more skewed, with more LE observations
at the upper end of the range. The spatial LE estimates from
the DTD model resulted in a similar distribution than from
the TSEB-PT model (Fig. 7). Both distributions of the two-
source energy balance models show gaps in the histogram,
while the histogram of the DATTUTDUT model displays a
more continuous distribution (Fig. 7)

4 Discussion

Our study indicates a high agreement between latent heat
fluxes assessed by drone-based thermography and the eddy
covariance technique. However, the performance of the three
applied energy balance models differed among each other
and among different configurations of net radiation assess-
ments in the models (Figs. 3 and 4). Model II Deming re-
gression analyses and associated quality assessments sug-
gest interchangeability between the DATTUTDUT model in
Rn_mes configuration and the EC technique (Figs. 4 and 5).
Applying this configuration, a fine grain spatial analysis of
latent heat fluxes suggests relatively low heterogeneity of LE
in the studied tropical oil palm plantation (Fig. 6).

4.1 Drone-based LE modeling vs. eddy covariance
measurements

The confidence intervals of slope and intercept of the Deming
regression indicate that the one-source energy balance model
DATTUTDUT with Rn_mes configuration is statistically in-
terchangeable with the established EC method for estimat-
ing LE fluxes. There are advantages and limitations to both
methods. For example, the DATTUTDUT model provides
insights into the spatial distribution of LE fluxes within the
full extent of the available LST maps, whereas the EC tech-

nique averages the LE fluxes within its footprint to a single
value. On the other hand, the DATTUTDUT model is tempo-
rally limited to the availability of LST maps, whereas the EC
method can measure fluxes continuously over several years
once the equipment is in place. The DATTUTDUT model
with Rn_mes configuration further requires additional mea-
surements of short- and long-wave radiation. In our study,
these measurements were taken with the EC equipment, but
future stand-alone drone approaches are possible by using
onboard miniaturized radiation sensors (Castro Aguilar et al.,
2015; Suomalainen et al., 2018). However, the accuracy of
such onboard radiation sensors should first be tested against
reference methods, e.g., visually by scatter or intercompar-
ison plots (Castro Aguilar et al., 2015; Suomalainen et al.,
2018) or with a model II regression procedure evaluating
the interchangeability of methods and measurements (Pass-
ing and Bablok, 1983). The two-source energy balance mod-
els TSEB-PT and DTD in the Rn_mes configuration showed
a very similar behavior. Both were found to have no con-
tinuous error when compared to the reference EC method.
However, a small bias towards the overestimation of rela-
tively high fluxes around noon was observed, which might
be removed by improving the balance of, for example, vege-
tation parameters for oil palm.

All models with the Rn_sw configuration showed a sig-
nificant proportional error compared to EC measurements,
which was mainly rooted in the high variance of the Rn_sw
configuration. The short-wave irradiance measurements used
in this study were stored as 10 min averages that probably
did not represent the high level of irradiance variations in the
tropical study area adequately. Previous studies have pointed
out that Rn derivation based on short-wave irradiance mea-
surements is challenging as long-wave radiation budgets are
often completely independent from their short-wave coun-
terparts (Hoffmann et al., 2016). Estimation errors in long-
wave radiation budgets have, for example, been reported to
be related to high relative air humidity, when some of the
original model assumptions are no longer met (Hoffmann et
al., 2016). We observed a negative correlation (r2

= 0.46) be-
tween incoming long-wave irradiance and relative humidity
and assume that the high relative humidity in our tropical
study area may have affected the determination of Rn when
using the Rn_sw configuration through inaccuracies in es-
timating long-wave radiation budgets and therefore causing
the observed significant continuous errors. Since we recorded
the data during very different times of day and weather sit-
uations, the short-wave irradiance-based approach might not
be the most adequate means of Rn derivation. However, this
approach can be very useful for measurements without the
presence of clouds or high levels of relative humidity. We
thus also consider the Rn_sw configuration valuable for fu-
ture research, particularly because measurements of incom-
ing short-wave radiation are much easier to implement than
assessing complete short- and long-wave radiation budgets
as necessary for the Rn_mes configuration. The application
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Figure 4. Model II Deming regression of latent heat flux estimates from drone-based energy balance models (DATTUTDUT, TSEB-PT,
DTD) and different configurations of net radiation (Rn_mod, Rn_sw, Rn_mes) with the eddy covariance method (n= 61 flight missions).

of the Rn_sw configuration for a one-source energy balance
model such as DATTUTDUT was also tested in two previous
studies, with similar results to our study, i.e., a reduction of
errors compared to its original formulation with fully mod-
eled Rn_mod (Brenner et al., 2018; Xia et al., 2016).

Lastly, the model configuration Rn_mod did not produce
accurate LE estimates for all three models, as many of the
basic assumptions for fully modeled Rn determination are
not met in tropical environments such as our equatorial study
area. As such, the sky is often cloudy, while haze frequently
occurs during periods without rainfall. Even if no clouds are
visible, relative humidity is often high, which interferes with
the clear-sky assumptions of the Rn_mod configuration (Still
et al., 2019).

Among the three models applied in our study, the rela-
tively simple DATTUTDUT model produced the most pre-
cise LE estimates compared to eddy covariance reference
measurements. Similar conclusions were reached by Brenner
et al. (2018), where DATTUTDUT marginally outperformed
the more complex TSEB-PT model. On the other hand, con-
trasting observations were made by Xia et al. (2016) in vine-
yards with more extreme temperature divergences between
soil and vegetation, where the TSEB-PT model produced
more precise estimates of LE than the DATTUTDUT model.
This was explained by the better physical representation of
energy and radiative exchange in the TSEB-PT model. The
authors further point out thatRn determination is not the only
source of error in the DATTUTDUT model (Xia et al., 2016).
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Figure 5. Confidence intervals for intercept and slope of Deming re-
gression for the different LE estimation approaches compared with
EC measurements. x level for the bias is the mean of the established
EC reference method. The intercept is displayed in W m−2.

Figure 6. Spatial distribution of latent heat flux from drone-based
thermography and subsequent energy balance modeling (DATTUT-
DUT with Rn_mes configuration, 9 August 2017, 12:30 h).

In our study, the TSEB-PT model slightly outperformed the
more complex DTD model in the Rn_mes configuration re-
garding error terms. However, limitations of the presented
methods compared with the reference EC method still exist.
As such, the thermography-based recording process for land
surface temperatures can be affected by water vapor, haze
or dust, which increase atmospheric emissivity. Also, wind
and turbulence cooling effects that compete with evaporative
cooling are not captured in this approach.

We used the Bowen ratio method to close the energy bal-
ance for the reference EC measurements. As reported by Xia
et al. (2016), agreement between measured EC and mod-
eled LE estimates could potentially be increased by using the
residual method from Twine et al. (2000) for energy balance

Figure 7. Frequency distribution of latent heat flux for the model
output images from the same thermal image as shown in Fig. 5
(9 August 2017, 12:30 h). Absolute histogram bin size was set to
16 W m−2; we used 50 bins from 0 to 800 W m−2.

closure. Further potential improvements include the aerial
sampling alignment with the EC measurement logging cy-
cles. We compared snapshot measurements of LST to 30 min
averages of EC measurements for the corresponding times
in an environment where key variables such as solar irradi-
ance can change very quickly. Better matching the measure-
ment cycle duration may further improve agreement between
the methods and was already suggested in a previous study
(Brenner et al., 2018). Further, in our study the aerial-derived
LST images represented only the center area of the (at times
quite variable and large) EC footprint. Covering the whole
potential area of the footprint in all directions could also in-
crease agreement between the measurements but would re-
quire even higher flight altitude or longer flight times to cover
the whole area; both options would reduce the number of
temporal replicates and increase errors from measurements
and processing but could nonetheless be viable approaches
for other research questions.

Only few previous studies have demonstrated applicability
and limitations of estimating LE with the three energy bal-
ance models from non-satellite data. In these studies, LSTs
were, for example, recorded from drones for European grass-
lands and croplands (Brenner et al., 2018; Hoffmann et al.,
2016) and from drones or airplanes for taller vegetation in-
cluding olive orchards and vineyards (Ortega-Farías et al.,
2016; Xia et al., 2016). Our study adds to this an applica-
tion of these models in a tropical environment, for higher
vegetation (i.e., oil palm) and across variable times of day
and weather conditions. Generally, the equatorial study site
was rather challenging due to high temperatures, high hu-
midity and frequent occurrence of haze, as well as for logis-
tical reasons. Additionally, many previous drone-based stud-
ies were conducted on grasslands (e.g., Brenner et al., 2017,
2018) or on low-growing crops such as wheat fields (Hoff-
mann et al., 2016) but not on crops with a rather complex
canopy structure such as oil palm. On the other hand, our
study site showed large temperature differences between soil
and canopy, which simplified the distinguishing of each frac-
tion. We further analyzed for the first time whether models
and EC measurements based on drone data can be used in-
terchangeably, as our large sample size of n= 61 flights al-
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lowed for a method comparison based on a model II Deming
regression (Legendre and Legendre, 2003). We conclude that
this is the case for some models and configurations, above all
for the DATTUTDUT with Rn_mes configuration.

4.2 Spatial distribution of latent heat fluxes

A particular strength of drone-based thermal imagery is the
high spatial resolution which allows for spatially explicit as-
sessments of evapotranspiration, within and potentially also
beyond the footprints of EC towers. The outlines of the sin-
gle oil palm canopies are clearly visible in the LE flux map
(Fig. 6), with the highest LE fluxes occurring in the center
of the oil palm canopies. We assume that this spatial pattern
is caused by an increased local LAI in the centers of the oil
palm canopies, while leaf area density decreases towards the
outer canopies. Further, the central areas of oil palm canopies
are more exposed to sunlight and wind throughout most of
the day, increasing their potential for (evapo)transpiration
compared to canopy edges. Mixed pixel effects (among soil
and canopy) likely also contribute to the observed lower LE
fluxes towards the borders of oil palm canopies. Further con-
tributing factors to higher LE fluxes in the centers of oil palm
canopies could be leaf age (with younger leaves in the cen-
ter) and additional ET from pockets in the axils of pruned
leaves along the stem, which contain small water reservoirs
and epiphytes (Meijide et al., 2017; Tarigan et al., 2018).

While the DATTUTDUT histogram shows only few pixel
values of zero and most pixels closely distributed around the
mean, the TSEB-PT and DTD histograms are much wider
distributed and with a much more pronounced peak. For the
DATTUTDUT model, mean and median are very similar in-
dicating close to zero skewness. Such a distribution tending
towards unimodality is also considered typical for landscapes
where ET is highly dominated by one species (Xia et al.,
2016). Both the TSEB-PT and the DTD models show a dif-
ferent more skewed distribution of LE fluxes (for the same
dataset of LST), with the median of the LE estimates located
between the mean and the upper end of the LE flux range.
We assume that this skewness is caused by the TSEB-PT and
DTD models being more sensitive to dry surfaces and hence
better represent the lower LE flux from dryer soil areas.

Drone-based methods have a large untapped potential for
ecological applications, e.g., regarding ecohydrological op-
timization in land-use systems and designing the climate-
smart urban landscapes of the future. We see great po-
tential in the drone-based remote sensing applications pre-
sented in this study, especially when recent developments in
drone–environment interaction, mobile edge computing (po-
tentially aboard the drone) and communication technologies
such as LoRaWAN (Long Range Wide Area Network) or 5G
are combined (Becerra, 2019; Marchese et al., 2019). Au-
tonomous acquisition of LSTs over EC stations and the sur-
rounding areas can be supplemented by onboard and ground
sensors. Energy balance models can then potentially be cal-

culated using edge computing schemes aboard the drone to
enable a dense temporal resolution of LST, flux and ET maps
in almost real time. This concept can, for example, be used
for the attribution of fluxes in mixed species plant commu-
nities and the study of edge effects in landscapes, and it can
be further adapted to detect water stress in agriculture and
forests.

5 Conclusions

Drone-based thermography and subsequent energy balance
modeling under certain configurations can be considered a
highly reliable method for estimating latent heat flux and
evapotranspiration; for some configurations, statistical inter-
changeability is suggested with the established eddy covari-
ance technique. They thus complement the asset of available
methods for evapotranspiration studies by fine grain and spa-
tially explicit assessments.
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