

1 **Title:** The relative importance of photodegradation and biodegradation of terrestrially derived
2 dissolved organic carbon across four lakes of differing trophic status

3
4 **Authors:** Christopher M Dempsey^{1*}, Jennifer A Brentrup², Sarah Magyan¹, Lesley B Knoll³,
5 Hilary M Swain⁴, Evelyn E Gaiser⁵, Donald P Morris⁶, Michael T Ganger¹, and Craig E
6 Williamson⁷

7
8 **Author Affiliations:**

9 ¹Gannon University, Biology Department, Erie, PA, USA

10 ²St. Olaf College, Biology and Environmental Studies, Northfield, MN

11 ³University of Minnesota, Itasca Biological Station and Laboratories, Lake Itasca, MN, USA

12 ⁴Archbold Biological Field Station, 123 Main Dr., Venus, FL, USA

13 ⁵Florida International University, Department of Biological Sciences and Institute of
14 Environment, Miami, FL, USA

15 ⁶Lehigh University, Earth and Environmental Sciences Department, Bethlehem, PA, USA

16 ⁷Miami University, Global Change Limnology Laboratory, Department of Biology, Oxford, OH,
17 USA

18
19 *Corresponding author: dempsey007@gannon.edu

20
21 ORCID IDs:

22 Dempsey: 0000-0003-3817-0155

23 Brentrup: 0000-0002-4818-7762

24 Williamson: 0000-0001-7350-1912

25 Gaiser: 0000-0003-2065-4821

26
27
28 **Keywords:** 4-6

29 Photodegradation, biodegradation, dissolved organic carbon, CO₂

Deleted: Potential Reviewers – suggest 3-5¶

Names, institutions, and email addresses¶

¶

Colin Ward (cward@whoi.edu) Woods Hole Oceanographic Institution¶

Cedric Fichot (cgfichot@bu.edu) Boston University¶

Anne Kellerman (akellerman@fsu.edu) Florida State University¶

Michael T. Arts (Michael.Arts@ec.gc.ca) Environment Canada¶

Rose M. Cory (rmcory@umich.edu) University of Michigan¶

Bart T. DeStasio (bart.t.destasio@lawrence.edu) Lawrence

University¶

Lars-Anders Hansson (Lars-anders.hansson@limnol.lu.se) Lund

University¶

Dag Olav Hessen (d.o.hessen@ibv.uio.no) University of Oslo¶

Louis Kaplan (lakaplan@stroudcenter.org) Stroud Water Research

Center¶

Deleted: ¶

Deleted: ¶

65 **Abstract**

66 Outgassing of carbon dioxide (CO₂) from freshwater ecosystems comprises 12-25% of the total
67 carbon flux from soils and bedrock. This CO₂ is largely derived from both biodegradation and
68 photodegradation of terrestrial dissolved organic carbon (DOC) entering lakes from wetlands and
69 soils in the watersheds of lakes. In spite of the significance of these two processes in regulating
70 rates of CO₂ outgassing, their relative importance remains poorly understood in lake ecosystems.
71 In this study, we used groundwater from the watersheds of one subtropical and three temperate
72 lakes of differing trophic status to simulate the effects of increases in terrestrial DOC from storm
73 events. We assessed the relative importance of biodegradation and photodegradation in oxidizing
74 DOC to CO₂. We measured changes in DOC concentration, colored dissolved organic carbon
75 (SUVA₃₂₀ and S_r), dissolved oxygen, and dissolved inorganic carbon (DIC) in short-term
76 experiments from May-August, 2016. In all lakes, photodegradation led to larger changes in
77 DOC and DIC concentrations and optical characteristics than biodegradation. A descriptive
78 discriminant analysis showed that in brown-water lakes, photodegradation led to the largest
79 declines in DOC concentration. In these brown-water systems, ~30% of the DOC was processed
80 by sunlight and a minimum of 1% was photo mineralized. In addition to documenting the
81 importance of photodegradation in lakes, these results also highlight how lakes in the future may
82 respond to changes in DOC inputs.

83
84

85 **Introduction**

86 Lakes are closely linked to their surrounding terrestrial ecosystems. As the lowest point
87 in the landscape, they receive a significant influx of terrestrially-derived dissolved organic
88 carbon (DOC) and nutrients (Williamson et al., 2009; Wilkinson et al., 2013). Climate and land
89 use changes are altering the link between lakes and their surrounding landscapes by
90 strengthening the flow of material during extreme rain events and large wildfires, or weakening
91 it during extended periods of drought (Strock et al., 2016; Williamson et al., 2016). Long-term
92 changes in DOC concentrations are variable and appear to be regionally controlled. In
93 northeastern North American and western European lakes, there has been as much as a doubling
94 of DOC concentrations due to recovery from anthropogenic acidification and climate change
95 (Monteith et al., 2007; Williamson et al., 2015; de Wit et al., 2016). However, DOC
96 concentrations in Greenland lakes (Saros et al., 2015) and the Mississippi River (Duan et al.,
97 2017) have been decreasing. A long-term study of the Florida Everglades showed that some
98 study sites were decreasing in DOC concentration, but the majority of sites were not changing
99 (Julian et al., 2017). As DOC inputs into aquatic ecosystems have increased, stabilized, or
100 decreased, long-term studies have focused on understanding the mechanisms behind the change,
101 but less research has addressed the fate of DOC once it enters a lake.

102 By attenuating light in the water column and also providing a source of energy, DOC
103 serves an important role in lakes by regulating the balance between photosynthesis and
104 respiration (Williamson et al., 1999), and thus the flux of CO₂ to the atmosphere (Cole et al.,
105 1994). Previous studies indicated that most lakes are net heterotrophic, where the breakdown of
106 organic carbon exceeds production (Kling et al., 1991; Cole et al., 1994). Estimates suggest that
107 lakes respire about half of the annual 2 gigaton flux of carbon to the oceans each year as CO₂

108 (Cole et al., 1994; Tranvik et al., 2009; Tranvik, 2014). The traditional paradigm has been that
109 the dominant mechanism causing the release of excess CO₂ from lakes is bacterial respiration of
110 DOC (biodegradation), with photomineralization (conversion of DOC to CO₂) accounting for
111 only 10% of bacterial rates (Granéli et al., 1996; del Giorgio et al., 1997; Jonsson et al., 2001).
112 However, research on over 200 Arctic lakes, rivers, and streams revealed that sunlight dominated
113 the processing of DOC, and photomineralization rates were on average 5x greater than dark
114 bacterial respiration rates (Cory et al., 2014). In addition, the source of inland water CO₂ remains
115 uncertain, due in large part to a lack of measurements (Raymond et al., 2013; Lapierre et al.,
116 2013; Weyhenmeyer et al., 2015) and predicting DOC reactivity has been challenging (Evans et
117 al., 2017). Quantifying the dominant degradation pathways for terrestrial DOC from a range of
118 lakes will improve estimates of carbon fluxes, particularly mineralization rates that currently
119 have a high degree of uncertainty (Hanson et al., 2014).

120 Many past studies have focused on testing the effects of photodegradation and
121 biodegradation on DOC quantity individually, but they have not simultaneously evaluated how
122 these two processes alter the colored dissolved organic carbon (CDOM) (Granéli et al., 1996;
123 Koehler et al., 2014; Vachon et al., 2016a). CDOM is the fraction of dissolved organic matter
124 that is capable of absorbing light. The effects of sunlight on DOC are not isolated to only
125 increasing mineralization rates. Photodegradation can also decrease the color and molecular
126 weight of DOC, which can increase light availability and the subsequent bacterial respiration of
127 DOC (Bertilsson and Tranvik, 2000; Amado et al., 2003; Chen and Jaffé, 2016). Cory et al.
128 (2014) found the dominant degradation process for Arctic lakes to be partial photodegradation,
129 suggesting that in lakes, sunlight-driven changes in CDOM without undergoing complete
130 mineralization may dominate DOC processing.

131 Since light attenuation varies so strongly among lakes of differing trophic status, testing
132 the relative importance of DOC processing via photodegradation or biodegradation with
133 mechanistic experiments is needed. Previous research on DOC degradation has primarily
134 occurred in high DOC lakes, but in clear-water lakes, 1% of surface UV-A and
135 photosynthetically active radiation (PAR), which are the primary wavelengths active in
136 photodegradation (Osburn et al., 2001) can reach significant depths. In some oligotrophic lakes
137 UV-A may reach up to 7 m for UV-A and 14 m for PAR. In some of the clearest lakes in the
138 world, such as Lake Tahoe, PAR can reach depths > 45 m (Rose et al., 2009a; Rose et al.,
139 2009b). Geographic location and time of year influence the amount of solar radiation lakes
140 receive. In the subtropics, PAR and UV light have high intensity across the spectrum year-
141 around, whereas in temperate regions those wavelengths are strongest during the summer
142 months.

143 Watershed land use and lake trophic status have also been shown to influence DOC
144 composition and reactivity (Lu et al., 2013; Hosen et al., 2014; Larson et al., 2014; Evans et al.,
145 2017). DOC from forested systems was more reactive and had different CDOM properties when
146 compared to disturbed environments (Lu et al., 2012; Williams et al., 2015; Evans et al., 2017).
147 Studies examining how terrestrial DOC inputs are processed in lakes are needed, especially with
148 the increasing frequency of extreme rain events (Rahmstorf and Coumou, 2011; Westra et al.,
149 2014; Fischer and Knutti, 2015). Future climate change projections suggest that for northern
150 ecosystems a 10% increase in precipitation could lead to a 30% increase in the mobilization of
151 soil organic matter (de Wit et al., 2016). Extreme rain events deliver fresh DOC not exposed to
152 prior sunlight into lakes, which can lead to significant reductions in light availability, as well as
153 increases in thermal stability and lake heterotrophy (Jennings et al., 2012; Klug et al., 2012; de

154 Eytö et al., 2016; Zwart et al., 2016). As DOC concentrations change globally, understanding the
155 processes that determine the fate of DOC will help predict the systems most likely to release
156 more CO₂.

157 Here our aim was to 1) determine the relative importance of photodegradation and
158 biodegradation for altering terrestrial DOC quantity and CDOM from lakes of varying trophic
159 status, 2) quantify the percentage of the initial DOC pool that was photomineralized, partially-
160 photodegraded, biodegraded or remained unprocessed, and 3) compare the effects of
161 photodegradation on DOC quantity and CDOM across four lakes to understand differences in
162 how terrestrial DOC from the watersheds of different lake types responds to photodegradation.

163 Since lakes are closely linked to their surrounding landscape (i.e. soils and vegetation), we
164 collected terrestrial DOC from the watershed of three temperate lakes and one subtropical lake,
165 all varying in trophic status. This soil organic matter represents the current and future inputs of
166 organic material. We studied changes in the concentration of DOC, dissolved inorganic carbon
167 (DIC), and dissolved oxygen (DO) and measured changes in CDOM. We hypothesized that
168 photodegradation would be more important than biodegradation in all lakes, but the strongest
169 responses to sunlight would be observed in the brown-water lakes.

170

171 **1. Methods**

172 **1.1 Study Sites and Samplers**

173 Groundwater samples were collected from the watersheds immediately adjacent to four
174 lakes used in this study (Table 1). All of the lakes are small, with a surface area $\leq 0.48 \text{ km}^2$ and a
175 maximum depth ranging from 12.5 m in Lake Waynewood to 24 m in Lake Giles. The three
176 temperate lakes (Giles – oligotrophic; Lacawac – brown-water; Waynewood – eutrophic) are in

177 close proximity, located on the Pocono Plateau in northeastern Pennsylvania. Lake Annie
178 (brown-water) is a subtropical, sinkhole lake located on the Lake Wales Ridge in south-central
179 Florida. These lakes were selected because of their variability in the dominant vegetation types
180 in their watersheds that lead to differences in DOC concentration and quality (Table 1). Annie,
181 Giles, and Lacawac are all seepage lakes within protected watersheds, and there have been no
182 significant changes in land use or land cover over the past thirty years. The watersheds of Giles
183 and Lacawac have > 90% cover of mixed and northern hardwood-conifer forests, with oak trees
184 dominating the watershed at Giles, while hemlocks represent the highest proportion of
185 Lacawac's watershed (Moeller et al., 1995). Annie is surrounded by well-drained sandy soils and
186 the major vegetation types include a mixed-scrub community, pinelands, and oak forests (Gaiser,
187 2009). Both Annie and Lacawac are brown-water lakes with moderate DOC concentrations and
188 lower transparency (Table 1). A higher percentage of wetlands (7% for Annie and 25% for
189 Lacawac) in their watersheds likely contribute to their darker color compared to the other lakes
190 (Moeller et al., 1995; H. Swain *unpublished data*). Waynewood is the most eutrophic lake and
191 has the largest watershed with runoff from dairy farms upstream that feeds into the lake through
192 an inlet stream. The forest surrounding Waynewood is similarly dominated by oak and hemlock
193 trees, but there is overall less total forest cover in the watershed than Lacawac and Giles, and
194 there are more homes adjacent to the lake (Moeller et al., 1995). Detailed information about lake
195 residence time calculations and annual precipitation trends can be found for the Pocono lakes
196 (Moeller et al, 1995) and Lake Annie (Swain, 1998; Sacks et al, 1998).

197

198 **Table 1.** Summary characteristics of the four study lakes in May-August 2013–2016 (mean \pm 199 SD). Abbreviations: Chl-*a* (chlorophyll-*a*), DOC (dissolved organic carbon), GW DOC (initial 200 groundwater DOC), PAR (photosynthetically active radiation, 400–700 nm), UV-A (ultraviolet A 201 radiation, 380 nm), UV-B (ultraviolet B radiation, 320 nm), RT (residence time).

Deleted:

Lake	Lat. (°)	Long. (°)	Lake area (km ²)	Max. depth (m)	Chl- <i>a</i> (μ g L ⁻¹) \pm (SD)	Lake DOC (mg L ⁻¹) \pm (SD)	GW DOC (mg L ⁻¹) \pm (SD)	pH \pm (SD)	1% UV-B depth (m) \pm (SD)	1% UV-A depth (m) \pm (SD)	1% PAR depth (m) \pm (SD)	RT (yr)
Lacawac	41° 22' N	75° 17' W	0.21	13	1.9 (1.4)	5.2 (0.8)	59.4 (6.1)	6.6 ⁺	0.4 (0.1)	0.9 (0.2)	5.7 (0.6)	3.3
Annie	27° 12' N	81° 20' W	0.36	20.7	4.0 (1.5)	9.4 (2.5)	20.7 (0.5)	5.5 (0.3)	0.5*	1.3*	4.5 (1.6)	2
Waynewood	41° 23' N	75° 21' W	0.28	12.5	5.3 (3.7)	6.4 (1.0)	7.6 (0.3)	7.5 ⁺	0.3 (0.1)	0.7 (0.2)	4.3 (0.9)	0.42
Giles	41° 22' N	75° 5' W	0.48	24	1.1 (0.7)	2.3 (0.3)	6.0 (0.6)	6.2 ⁺ (0.3)	2.0 (0.5)	4.7 (1.2)	14.4 (2.1)	5.6

*Indicates estimates from a single profile in March 2012. ⁺pH data in Lacawac and Waynewood are from 2015 only and from 2015–2016 in Giles.

Samplers were used to collect groundwater as a proxy for terrestrial DOC runoff entering the lakes. Storm events have been shown to mobilize DOC from shallow groundwater pools into aquatic ecosystems (Boyer et al, 1997). The samplers were installed in close proximity to the Pocono lakes near small inlet streams in sandy or bog areas on 6 July 2015 (~1 year prior to experiments). The groundwater sampler consisted of 1m sections of 7.6cm diameter PVC pipe installed to a depth of 60–81cm below ground. 0.5cm holes were drilled in the sides with a fine mesh covering the holes to let shallow groundwater in but exclude large particulates. At Lake Annie, a groundwater sampler was installed on 17 March 2016 on the south side of the lake near a small, intermittent inlet stream. The groundwater sampler near Lake Annie was a 3m section of PVC pipe installed slightly deeper to 2m below ground to allow continuous access to groundwater during the dry season.

217 On 7 May 2016, 10 L of water was collected using a peristaltic pump from the
218 groundwater samplers at all of the Pocono lakes in acid-washed 18 L bottles. Groundwater
219 samples from Annie were collected from the sampler monthly (25 April, 31 May, 27 June, and 1
220 Aug 2016) prior to starting the experiments and shipped overnight on ice to Pennsylvania. All
221 groundwater samples were kept cold (4 °C) and dark until filtered to avoid sunlight exposure
222 prior to the start of the experiments. Samples for the May experiments were filtered on May 8,
223 2016 through pre-combusted (450 °C) 0.7 µm Whatman GF/F filters. The remaining 8 L of
224 groundwater for the June, July, and August experiments for each Pocono lake were filtered in a
225 similar manner over the next 14 days. Samples were kept cold and dark until the experiments
226 started. Samples for June, July, and August were re-filtered with a pre-combusted 0.7 µm
227 Whatman GF/F filter prior to the start of those experiments. The initial DOC concentration of the
228 groundwater for each lake varied at the start of each experiment, but it was always higher than
229 the in-lake DOC concentration (Table 1).

230

231 **1.2 Sampling Design and Variables Analyzed**

232 To determine the relative importance of photodegradation and biodegradation for
233 processing DOC, we designed three treatments in a manner similar to Cory et al., (2014): 1)
234 photodegradation only, 2) biodegradation only, and 3) control. From each treatment, five
235 different variables were measured including DOC concentration, DIC concentration, DO
236 concentration, SUVA₃₂₀, and S_r. The different variables measured in each treatment required the
237 use of different containers for the sample water. Samples for DOC analysis (concentration and
238 CDOM) were deployed in acid-washed, muffled 35 mL quartz tubes sealed with silicone
239 stoppers. Each quartz tube was filled to a total volume of 30 mL. The quartz tubes had an

240 average transmittance of 96% of solar UV-A and 87% of solar UV-B, which allowed for an
241 accurate representation of *in-situ* solar radiation levels (SFig. 1, Morris and Hargreaves, 1997).
242 However, the quartz tubes were not gas tight, so samples for dissolved inorganic carbon (DIC)
243 and dissolved oxygen (DO) analysis were deployed in gas tight borosilicate extainer vials
244 (138W; Labco, Ceredigion, UK). The borosilicate vials had a volume of 12 mL but were filled to
245 10 mL (i.e. 2 mL of headspace) due to safety concerns with mercury chloride (i.e. corrosive and
246 acute toxicity). A clean 10 mL pipette was used to carefully transfer water into the borosilicate
247 vials. Borosilicate glass has a sharp cut-off at 320 nm and transmits <5% UV-B, but it transmits
248 an average of 63% of UV-A radiation and 90% of PAR (SFig. 1, Reche et al., 1999). The field
249 station at Lacawac is a mixed use facility that is open to the public and supports researchers from
250 a variety of disciplines.

Deleted: (see below)

Deleted:

Deleted:

251 Water samples for all of the treatments were initially filtered through pre-combusted 0.7
252 μm Whatman GF/F filters one day prior to the start of each monthly experiment. For the
253 photodegradation and control treatments detailed below, samples for DO and DIC analysis were
254 treated with 0.35 mL of 1% mercury chloride (HgCl_2) to kill the microbial community. HgCl_2
255 was added with a pipette. All prep work for samples occurred in the laboratory. Samples for
256 DOC concentration and CDOM analysis (SUVA_{320} and S_r) for the same treatments were sterile
257 filtered with a 0.2 μm membrane filter (Sterivex MilliporeSigma, Burlington, MA USA) pre-
258 rinsed with 100 mL of DI water and 50 mL of sample water instead of using HgCl_2 because
259 adding HgCl_2 altered the optical scans. Absorbance scans conducted prior to this experiment
260 using water from Lacawac and Annie showed increased absorbance in samples spiked with 1%
261 HgCl_2 (compared to non-spiked samples). There was a slight increase in absorbance from 800-
262 350nm and then a notable increase in absorbance from 350-200 nm. Sterile filtering has

266 previously been shown to remove the majority of microbes present, and water samples remained
267 sterile for one week following this procedure (Moran et al., 2000; Fasching and Battin, 2011).
268 For the biodegradation treatment, water samples were inoculated with 100 μ L of unfiltered
269 groundwater that was collected 1 day prior to the start of each monthly experiment. By adding a
270 fresh inoculum of groundwater each month, we aimed to re-stimulate the microbial community
271 and assess the short-term response of biodegradation. In the biodegradation treatments, we did
272 not correct for differences in vial size (i.e. 100 μ L was added to both the 12 mL vials and the 35
273 mL tubes). Treatments were deployed in triplicate for each lake (i.e. 3 DOC quartz tubes, 3 DO
274 borosilicate vials, and 3 DIC borosilicate vials for each treatment). Here, we included a summary
275 of the three experimental treatments that were designed as follows:

276 a) *Photodegradation Only*: Water for DOC concentration and CDOM analysis ($SUVA_{320}$
277 and S_r) was sterile filtered and stored in quartz tubes (n = 3 replicates; 30 mL total
278 volume). Water for DIC and DO analysis was treated with 1% $HgCl_2$ and stored in
279 borosilicate vials (n = 6 replicates; 3 replicates for DIC and 3 replicates for DO analysis).
280 b) *Biodegradation Only*: Water for all analyses was inoculated with 100 μ L of unfiltered
281 groundwater. Water samples for DOC concentration and CDOM analysis were stored in
282 quartz tubes (n = 3 replicates). Water samples for DIC and DO analysis were stored in
283 borosilicate vials (n = 6 replicates; 3 replicates for DIC and 3 replicates for DO analysis).
284 Both the quartz tubes and borosilicate vials were wrapped with multiple layers of
285 aluminum foil to eliminate light exposure.
286 c) *Control*: Water for DOC concentration and CDOM analysis was sterile filtered and
287 stored in quartz tubes (n = 3 replicates). Water for DIC and DO analysis was treated with

288 1% HgCl₂ and stored in borosilicate vials (n = 6 replicates; 3 replicates for DIC and 3
289 replicates for DO analysis). All samples were wrapped in aluminum foil (dark).

290
291 The experimental treatments for each lake were deployed for seven days at the surface of
292 Lake Lacawac in May, June, July, and August of 2016 (for exact sampling dates see SI, Table 1).
293 Mean surface lake temperature for each experiment are reported in SI Table 1. Samples were
294 kept at the lake surface using floating racks, and samples from each lake were randomly
295 distributed across the racks. The deployment design ensured that samples stayed at the surface
296 and dipped no deeper than 2 cm in the water column. After the one-week exposure, racks were
297 collected from the surface of Lake Lacawac and samples were immediately transferred into
298 coolers and returned to the lab. We assessed the response of terrestrially derived DOC to
299 photodegradation and biodegradation by measuring changes in the concentrations of DOC, DIC,
300 and DO, and the absorbance properties (SUVA₃₂₀ and S_r) of the CDOM. All samples were
301 analyzed within 72 hours of collection.

302 Dissolved organic carbon concentrations and standards were analyzed using a Shimadzu
303 TOC-VCPH Total Organic Analyzer with an ASI-V auto sampler. External acidification was used
304 for each sample and triplicate measurements were performed following the methods of Sharp
305 (1993). Diluted 50 ppm DOC standards (Aqua Solutions) were used to calibrate the TOC
306 Analyzer and standards were regularly analyzed with the samples. Dissolved inorganic carbon
307 concentrations (as CO₂) were measured with a Shimadzu GC-8A Gas Chromatograph using
308 helium as the carrier gas. Samples were acidified using 0.1 N H₂SO₄ and then stripped with
309 nitrogen gas prior to injection. Dissolved oxygen was measured using a modified Winkler
310 titration (Parson et al., 1984). Samples for gas measurements (DO and DIC) were kept in a 21°C

311 water bath for 30 minutes prior to analysis. These samples were well mixed just prior to analysis.
312 The absorbance properties of CDOM were analyzed using a Shimadzu UV 1800 scanning
313 spectrophotometer at 25°C. Raw absorbance scans were generated from 800 to 200 nm using a 1
314 cm cuvette and were blank corrected with ultra-pure DI water. From the absorbance scans, the
315 spectral slope ratio (S_r ; 275-295 : 350-400 nm) was calculated following Helms et al. (2008).
316 The DOC specific ultraviolet absorbance at 320 nm (SUVA₃₂₀) was calculated following
317 methods in Williamson et al., (2014). S_r can be used as a proxy for the molecular weight of the
318 DOC, while SUVA₃₂₀ can be used as a proxy for DOC color and aromatic carbon content (Helms
319 et al., 2008, Williamson et al., 2014).

320 Due to differences between the borosilicate vials and quartz tubes, the DIC and DO
321 samples were spectrally corrected for the amount of light they received (SI, SFig. 1). Total
322 cumulative energy exposure over the monthly incubations was calculated from a BSI Model
323 GUV-521 (Biospherical Instruments, San Diego, CA) radiometer with cosine irradiance sensors
324 that have a nominal bandwidth of 8 nm for 305 nm, 320 nm, 340 nm, 380 nm, and 400-700 nm
325 (PAR). Daily irradiance for UV-B, UV-A, and PAR were calculated using 15-minute averages of
326 1-second readings from a GUV radiometer located near Lake Lacawac over the 7-day
327 experiments. The area under the curve was calculated by multiplying the measurement frequency
328 (900 sec) by the average of two adjacent time step readings. These values were then summed
329 over the exposure period to calculate the total cumulative energy exposure for each sample.
330 Readings from a profiling BIC sensor (Biospherical Instruments, San Diego, CA) were then used
331 to calculate the percent of the deck cell at the surface rack incubation depth (0.02 m) in Lake
332 Lacawac.
333

334 **1.3 Explanation of Calculations and Statistical Analysis**

335 To determine the fate of terrestrial DOC in the four lakes, we used the measured changes
336 (i.e. final – control) in DOC and DIC concentrations to identify four pools of DOC:
337 photomineralized, partially photodegraded, biodegraded, and unprocessed. The amount of carbon
338 photomineralized (converted to CO₂) was calculated as the concentration of DIC produced by
339 sunlight (i.e. carbon that was completely oxidized by sunlight). The amount of carbon partially
340 photodegraded represents the remainder of the carbon pool that was processed by sunlight (but
341 not completely oxidized to CO₂) and was calculated as the total DOC processed by sunlight
342 minus the amount photomineralized (Eq 1).

343 Equation 1. Partially Photodegraded = [Total Photodegraded – Photomineralized]

344 The amount of carbon biodegraded was calculated as the concentration of DOC lost in the
345 biodegradation treatments. The unprocessed carbon was calculated as the fraction of the carbon
346 pool that was not processed by either sunlight or microbes as shown in Eq. 2

347 Equation 2. Unprocessed = [Control DOC – Photomineralized – Partially Photodegraded –
348 Biodegraded].

349 Each process was determined for each lake and each month. Here we report the average response
350 across all four months for each DOC pool.

351 While we carried out monthly experiments (May-August), here we report the average
352 response across the open-water season (i.e. all four months) to provide a more complete picture
353 of DOC processing. The downside of this approach is that it potentially increases variation in
354 variables associated with DOC processing, since such processing may vary across the season.
355 However, there was not a strong seasonal response to photodegradation or biodegradation in all

356 of our study variables (SI Fig. 3). Furthermore, the majority of the terrestrial DOC was collected
357 on a single date and time (except for Lake Annie).

358 Final treatments were compared relative to the dark and killed (1% HgCl_2) control
359 treatments, as those samples were deployed at the surface of the lake with the photodegradation
360 and biodegradation treatments. We used a t-test to determine whether the photodegradation
361 samples for all of the variables were significantly different from the biodegradation samples ($n =$
362 12 for each treatment) in each lake (Table 2). Photodegradation and biodegradation samples were
363 analyzed separately using a one-way ANOVA to assess differences between lakes. A post-hoc
364 Tukey's multiple comparison test (Sigma Plot 14.0) was used to determine if there were
365 significant differences in the response variables between the lakes to the photodegradation and
366 biodegradation treatments (Fig 1). A descriptive discriminant analysis (DDA) was used to
367 classify the four lakes based on changes in DOC, DIC, DO, SUVA₃₂₀, and S_r measurements due
368 to photodegradation (Fig 3). Since these five measures are likely to be highly correlated with one
369 another, DDA is a good choice since it considers these relationships simultaneously in the
370 analysis (Sherry 2006). In this case, DDA, works by producing linear combinations of the five
371 measured variables (DOC, DIC, DO, SUVA₃₂₀, and S_r). The first linear combination provides the
372 best separation of the four lakes, followed by subsequent linear combinations for axes that are
373 orthogonal (Sherry, 2006). Linear combinations are weighted more heavily by variables that are
374 better able to discriminate between the lakes. In the figures and tables below, we report these
375 data as either average measured changes (i.e. concentrations) or average percent changes and
376 have indicated where appropriate. Data for this experiment were analyzed in either Sigma Plot
377 14.0 (Fig. 1, Table 2) or Systat version 10.2 (Fig. 4).

378

379 **2. Results**

380 Throughout the results and discussion, the use of the lake names is to present the data in a
381 meaningful manner, but it is important to recognize that the actual water samples originated from
382 groundwater samples adjacent to each lake.

383

384 **2.1 Photodegradation and biodegradation responses in each lake**

385 Photodegradation altered DOC quantity and CDOM significantly more than
386 biodegradation for terrestrial DOC from the watersheds of all four lakes (Table 2, Fig. 1). For the
387 photodegradation only treatments, exposure to sunlight resulted in significant production of DIC
388 and increases in S_r , as well as significant decreases in DO, DOC, and SUVA₃₂₀ relative to the
389 biodegradation treatments. The only significant effect of biodegradation on terrestrial DOC was
390 a reduction in DO concentrations compared to the dark control (Fig. 1c). In all other cases, the
391 biodegradation treatments were not significantly different than the control, and the average
392 percent change was close to 0.

393 The terrestrial DOC from the brown-water lakes (Lacawac and Annie) typically followed
394 similar patterns to each other, while the terrestrial DOC from the oligotrophic and eutrophic
395 lakes (Giles and Waynewood) responded more similarly to each other. In the brown-water lakes,
396 we observed a stronger response in DOC quantity (i.e. DOC, DIC, and DO), while the changes in
397 DOC quantity were much more muted in the oligotrophic and eutrophic lakes. The responses of
398 S_r changes in each lake due to sunlight did not differ significantly. All four lakes showed a strong
399 response to changes in terrestrial CDOM (i.e. SUVA₃₂₀ and S_r).

400

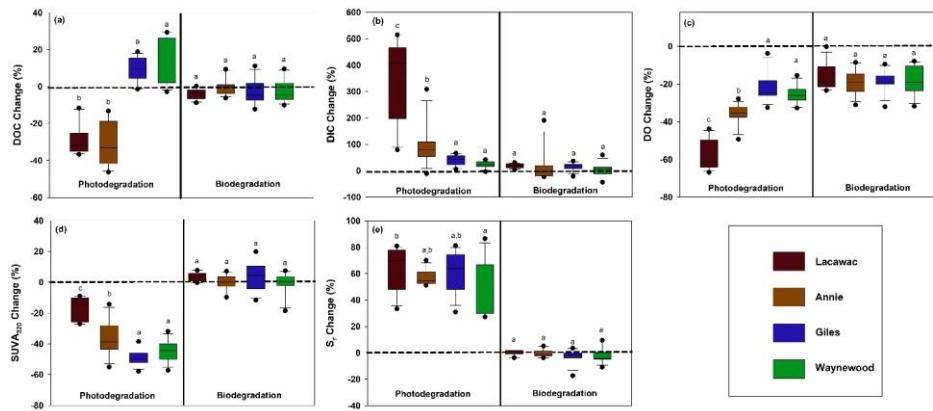
401 **Table 2.** A summary of the mean (\pm SD) final concentration of DOC, DIC, DO, SUVA₃₂₀ and S_r
402 in photodegradation (Photo), biodegradation (Bio), and control experimental treatments in
403 groundwater samples from the watersheds of lakes Lacawac, Annie, Giles, and Waynewood. The
404 mean (\pm SD) initial concentration for each variable is also depicted. The P/B column list the
405 results of a t-test to determine whether photodegradation samples were significantly different
406 from the biodegradation samples (n = 12 for each treatment for the four months). Bolded values
407 indicate the Photo treatments that were statistically different from the Bio treatments (p < 0.05).

Analysis	Treatment	Lacawac (Mean \pm SD)	P/B p-value	Annie (Mean \pm SD)	P/B p-value	Giles (Mean \pm SD)	P/B p-value	Waynewood (Mean \pm SD)	P/B p-value
DOC (μ moles L ⁻¹)	Photo	3600 \pm 330	p < 0.001	1270 \pm 211	p < 0.001	692 \pm 123	p = 0.08	883 \pm 73.3	p = 0.002
	Bio	4910 \pm 674		1810 \pm 45.7		608 \pm 99.0		765 \pm 93.8	
	Control	5110 \pm 628		1820 \pm 76.9		630 \pm 102		783 \pm 73.8	
DIC (μ moles L ⁻¹)	Photo	54 \pm 8.2	p < 0.001	41.9 \pm 11.4	p < 0.001	20.4 \pm 1.9	p = 0.02	32.2 \pm 7.3	p = 0.04
	Bio	16.1 \pm 5.0		25.3 \pm 7.2		17.7 \pm 3.0		27.1 \pm 8.0	
	Control	13.8 \pm 4.6		30.4 \pm 18.2		15.3 \pm 2.1		27.8 \pm 3.5	
DO (μ moles L ⁻¹)	Photo	278 \pm 62.4	p < 0.001	419 \pm 25.9	p < 0.001	536 \pm 35.6	p = 0.16	522 \pm 49.0	p = 0.05
	Bio	556 \pm 46.4		533 \pm 42.2		556 \pm 34.3		577 \pm 76.9	
	Control	660 \pm 29.4		656 \pm 32.1		688 \pm 60.9		702 \pm 57.3	
SUVA ₃₂₀ (m ⁻¹ /mg L ⁻¹)	Photo	4.3 \pm 0.4	p < 0.001	2.4 \pm 0.4	p < 0.001	2.4 \pm 0.2	p < 0.001	1.8 \pm 0.2	p < 0.001
	Bio	5.3 \pm 0.2		3.8 \pm 0.1		4.8 \pm 0.3		3.2 \pm 0.2	
	Control	5.1 \pm 0.2		3.8 \pm 0.1		4.7 \pm 0.2		3.2 \pm 0.1	
S _r	Photo	1.1 \pm 0.0	p < 0.001	1.3 \pm 0.1	p < 0.001	1.4 \pm 0.1	p < 0.001	1.2 \pm 0.1	p < 0.001
	Bio	0.7 \pm 0.1		0.8 \pm 0.0		0.9 \pm 0.1		0.8 \pm 0.1	
	Control	0.7 \pm 0.1		0.8 \pm 0.0		0.9 \pm 0.1		0.9 \pm 0.1	

408

409 Sunlight caused average (\pm SD) DOC losses relative to the control treatments of 30.5 \pm
410 11.5% and 28.9 \pm 8.3% in Lacawac and Annie, respectively (Fig. 1a). In Giles and Waynewood,
411 we observed an average of 9.6 \pm 6.5% and 13.4 \pm 6.2% increase in DOC concentration,
412 respectively following exposure to sunlight. When we compared lakes within each treatment,
413 there were no significant differences in DOC concentration due to sunlight in Giles vs.
414 Waynewood, whereas Annie and Lacawac were significantly different from the prior two lakes
415 and from each other (ANOVA: F_{1,3} = 70.9, p < 0.001).

416 Decreases in DOC concentration due to photodegradation could lead to mineralization
417 (i.e. DIC production; Fig. 1b) and therefore oxidation (i.e. DO consumption; Fig. 1c). We

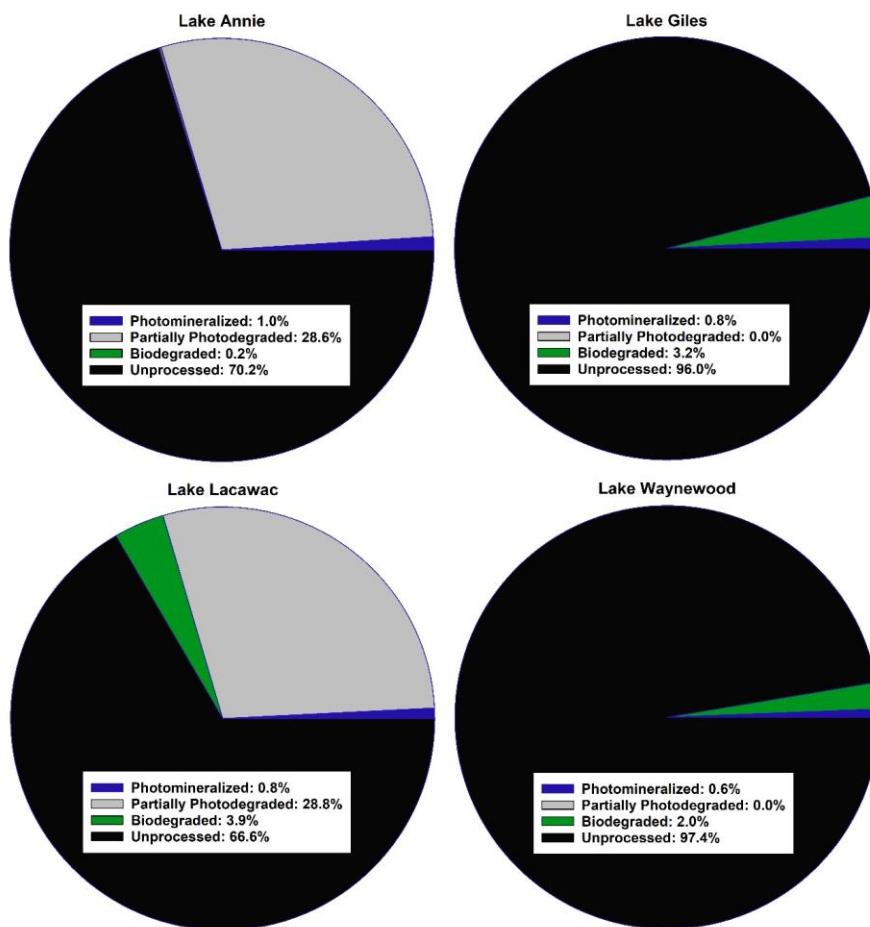

418 observed the production of DIC due to sunlight in all of our lakes (Fig. 1b). In Lacawac and
419 Annie, the average (\pm SD) percent increases in DIC relative to the control treatments were $350 \pm$
420 160% and $96.0 \pm 79.0\%$, respectively. The average percent increases relative to controls in Giles
421 and Waynewood were $40.7 \pm 19.4\%$ and $23.2 \pm 12.7\%$ respectively. The DIC percent change
422 was similar between Giles and Waynewood, and both were statistically different from Annie and
423 Lacawac. The percent DIC change in Lacawac was significantly higher than Annie (ANOVA:
424 $F_{1,3} = 36.4$, $p < 0.001$).

425 In all lakes, both photodegradation and biodegradation led to decreases in DO
426 concentrations (Fig. 1c). Average DO losses due to biodegradation for all four lakes ranged from
427 15 to 18%. DO losses due to photodegradation were more variable. The average DO loss from
428 sunlight in Lacawac and Annie was $58.2 \pm 7.8\%$ and $35.9 \pm 5.4\%$, respectively. In Giles and
429 Waynewood, we observed average DO losses of $21.6 \pm 7.9\%$ and $25.6 \pm 4.7\%$ respectively.
430 While the largest losses of DO due to sunlight were observed in Annie and Lacawac, there was
431 no significant difference between Annie and Waynewood. Giles and Lacawac were significantly
432 different from the other two lakes and from each other (ANOVA: $F_{1,3} = 73.9$, $p < 0.001$).

433 Changes in CDOM due to biodegradation were minimal in all of the lakes (Fig. 1d & 1e).
434 In contrast, photodegradation caused significant changes in all of the lakes, but the magnitude of
435 the change varied by lake. SUVA₃₂₀ decreased in all lakes due to sunlight, but the largest changes
436 were observed in the oligotrophic and eutrophic lakes (Fig. 1d). Average SUVA₃₂₀ values
437 decreased between 16.8% in Lacawac and 48.9% in Giles. The response in Annie and
438 Waynewood were similar, whereas Lacawac and Giles were significantly different from the prior
439 two lakes and each other (ANOVA: $F_{1,3} = 39.7$, $p < 0.001$). In all lakes, S_r increased due to
440 sunlight (Fig. 1e). Average percent increases for the lakes ranged from 46.4% in Waynewood to

441 65.1% in Lacawac. For S_r , the response between Lacawac and Waynewood were significantly
 442 different, but those lakes were no different compared to the remaining lakes (ANOVA: $F_{1,3} = 3.1$,
 443 $p = 0.04$).

444



445
 446 **Figure 1.** The monthly average percent change from the dark and killed control treatments
 447 (dashed line) in each lake for photodegradation (left) and biodegradation (right) for (a) DOC, (b)
 448 DIC, (c) DO, (d) SUVA₃₂₀, and (e) S_r . Statistical differences ($p < 0.05$) between lakes are
 449 indicated by different letters above each boxplot. For each boxplot $n = 12$ replicates.
 450

451 **2.2 Fate of DOC**

452 Of the four pools of carbon we identified in the groundwater samples entering our study
 453 lakes, we found the average amount of carbon processed by sunlight ranged from 0.6% to ~30%
 454 (Fig. 2). Carbon in Giles and Waynewood (< 1%) showed little response to sunlight, whereas the
 455 response in Annie and Lacawac (~30%) was much higher over the 7-day experiments. The
 456 dominant pathway through which sunlight interacted with DOC was through partial
 457 photodegradation in these latter two lakes. About 1% of the carbon pool was photomineralized in
 458 the brown water lakes. The amount of carbon processed via biodegradation was minimal in all

459 lakes (ranging from 0.2–4%). The fraction of the unprocessed carbon pool ranged from a low of
460 66% for Lacawac to a high of 97% for Waynewood. An average of 2.6 to 33% of the carbon
461 pool was processed in one week. The photomineralization data represents a minima value for
462 each lake due to some of the DIC partitioning into the headspace of each vial.

463
464 **Figure 2.** A summary of the average fate of carbon in the groundwater samples from our study
465 lakes (see methods section for explanation of calculations). All terms were converted to a carbon
466 basis. Photomineralized describes the amount of carbon completely mineralized to CO₂ by

467 sunlight. Partially photodegraded describes the amount of carbon processed by sunlight minus
468 the amount photomineralized. Biodegraded describes the amount of carbon lost through
469 biodegradation. Unprocessed carbon describes the remaining carbon that was not processed by
470 photodegradation or biodegradation.

471

472 **2.3 DOC response by lake trophic status**

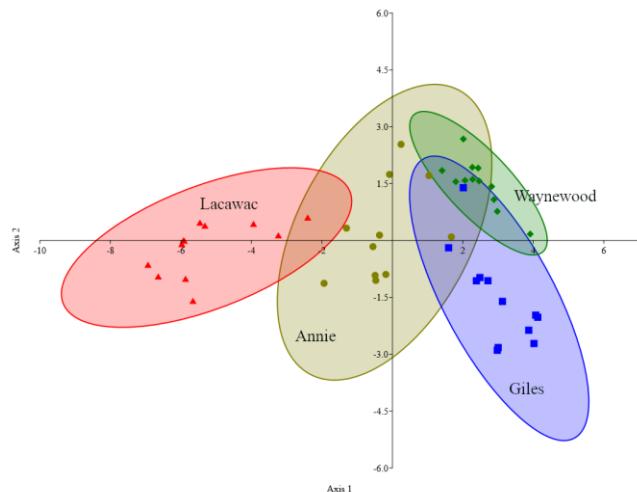
473 For the descriptive discriminant analysis (DDA) to classify the lakes, we found that the
474 five metrics were strongly correlated with one another (Table 3). In general, the changes in DOC,
475 DIC, and DO were more strongly correlated with one another than with SUVA₃₂₀ and S_r and vice
476 versa (Table 3). We will refer to the changes in DOC, DIC, and DO as “DOC quantity” and the
477 changes in SUVA₃₂₀ and S_r as “CDOM” for brevity.

478

479 **Table 3.** Pearson correlations between the measured changes in the five metrics: DOC, DIC, DO,
480 SUVA₃₂₀, and S_r.

	DOC	DIC	DO	SUVA ₃₂₀
DIC	-0.934			
DO	0.869	-0.837		
SUVA ₃₂₀	-0.705	-0.671	-0.666	
S _r	-0.027	0.021	0.163	-0.319

481 DDA produced three functions (axes) with canonical correlations of 0.961, 0.753, and
482 0.181 (Fig. 3). Collectively, the entire model was significant (Wilks' $\lambda = 0.032$; $F_{15, 108} = 17.79$; p
483 < 0.001). Effect size was calculated following Sherry and Henson (2010) as $1 - \text{Wilks}' \lambda$, and
484 therefore the overall model explains 96.8% of the variation among lakes. Functions 1 through 3
485 and 2 through 3 were significant ($p < 0.001$ for both). Function 3 was not significant ($p = 0.710$)
486 and therefore is not discussed further. Functions 1 through 3 collectively explain 92.4% of the
487 shared variance while functions 2 through 3 collectively explain 56.7% of the shared variance.


488 Function 1 represents a new variate that is a linear combination of the changes in the five
489 variables that best discriminates the lakes from one another. This new variate is composed

491 mainly of DOC, with a function coefficient of 0.465 and a structure coefficient of 0.821 (Table
 492 4). Of note are also DIC, DO, and SUVA₃₂₀ that had smaller function coefficients (< 0.45), but
 493 had large structure coefficients (> 0.45). This result suggests that Function 1 is mainly related to
 494 DOC quantity. Function 2, also a new variate that is a linear combination of the five measured
 495 changes, is composed mainly of SUVA₃₂₀ (function coefficient = 0.985 and structure coefficient
 496 = 0.719; Table 4). Function 2 is orthogonal to Function 1 and together they discriminate the four
 497 lakes (Fig. 3).

498
 499 **Table 4.** The solution for changes in measured independent variables that predict the dependent
 500 variable, lake. Structure coefficients (r_s) and communality coefficients greater than |0.45| are in
 501 bold. Coeff = standardized canonical function coefficient; r_s = structure coefficient; r_s^2 = squared
 502 structure coefficient.
 503

Variable	Function 1			Function 2		
	Coeff.	r_s	r_s^2 (%)	Coeff.	r_s	r_s^2 (%)
DOC	0.465	0.821	67.40	0.639	0.278	40.83
DIC	-0.337	-0.703	11.36	-0.059	-0.216	0.35
DO	0.440	0.679	19.36	-0.124	0.009	1.54
SUVA ₃₂₀	-0.139	-0.473	1.93	0.985	0.719	97.02
S _r	0.244	0.068	5.95	-0.238	-0.434	5.66

504

505

506 **Figure 3.** Canonical plot scores and 95% confidence ellipses from descriptive discriminant
 507 analysis of the measured changes (i.e. treatment minus control) in the five variables (DOC, DIC,
 508 DO, SUVA₃₂₀, and S_r) and four lakes: Annie (olive circles), Giles (blue squares), Lacawac (red
 509 triangles), and Waynewood (green diamonds). Only photodegradation samples were included in
 510 this analysis.

511 DDA correctly classified 89.4% of the samples to their collection site (Fig. 3). One
 512 sample from Annie was incorrectly assigned to Waynewood, two samples from Giles were
 513 incorrectly assigned to Waynewood, and two samples from Lacawac were incorrectly assigned
 514 to Annie. All of the Waynewood samples were correctly classified.

515

516 **3. Discussion**

517 **3.1 Comparing the relative importance of photodegradation and biodegradation**

518 Despite a large number of studies examining the effects of either photodegradation or
 519 biodegradation on DOC processing, very few have conducted simultaneous *in-situ* experiments
 520 of the relative importance of both processes for transforming DOC from the watersheds of a
 521 range of different lakes. Our results indicate that sunlight was the primary process in the surface

522 waters responsible for degrading terrestrial DOC from the watershed of all four lakes.
523 Biodegradation played a minimal role in changing the DOC quantity and CDOM. We observed
524 decreases in DOC, DO, and SUVA₃₂₀ due to sunlight and saw increases in DIC and Sr. The loss
525 of DOC, as well as a shift to more photobleached, and lower molecular weight organic material
526 is consistent with prior studies on these lakes that evaluated just the effects of sunlight (Morris
527 and Hargreaves, 1997). Exceptions to DOC loss due to photodegradation occurred in Giles and
528 Waynewood. In these lakes, we observed an increase in average DOC concentrations. In Giles,
529 there was significant production of DOC in June and July. In Waynewood, significant production
530 occurred in May and July. We speculate that this production may be due to the lysing of any
531 microbes remaining in solution. Increases may also be attributed to interactions with iron. We
532 have no measurable evidence, but a number of samples from Giles and Waynewood contained a
533 red precipitate at the conclusion of the one-week experiments. Iron-bound DOC could have been
534 released back into the water. Subsequent photodegradation experiments using water from Giles
535 and Waynewood have also indicated DOC production (Dempsey, unpublished).

536 Dissolved oxygen was the lone variable where biodegradation led to decreases relative to
537 the controls, but the differences between lakes were not significant. We attributed the changes in
538 DO to the “sloppy feeding” of bacteria, where they produce DOC through exudates and then
539 assimilate it (Evans et al., 2017). The above results are similar to observations in Arctic and
540 tropical waters in that photodegradation was more important than biodegradation on short time
541 scales (Cory et al., 2014; Chen and Jaffé, 2014; Amado et al., 2003). Interestingly, we found that
542 terrestrial DOC from the watersheds of lakes of different trophic status was processed
543 differently, resulting in DIC production and DOC degradation for the brown-water lakes
544 (Lacawac and Annie), but greater changes in SUVA₃₂₀ for the oligotrophic and eutrophic lakes

545 (Giles and Waynewood). This highlights the need to account for lake trophic status in predicting
546 DOC processing and CO₂ emissions from lakes.

547

548 **3.2 Dominant degradation process**

549 Based on our study design we were able to identify four pools of carbon:
550 photomineralized, partially photodegraded, biodegraded, and unprocessed. The dominant
551 degradation pathway across all lakes was partial photodegradation (i.e. loss of DOC, but no
552 mineralization), although the size of each carbon pool varied by lake. In the brown-water lakes,
553 ~28% of the total carbon pool was partially photodegraded and ~1% was photomineralized. In
554 the oligotrophic and eutrophic lakes ~0.7% of the carbon was photomineralized and none of the
555 carbon was partially photodegraded. The values reported here for photomineralization are
556 underestimates. Actual values are likely to be higher since we did not account for DIC that
557 partitioned into the headspace of the extainer vials. If we assume a 1:1 (O₂: CO₂) respiration
558 quotient (RQ) (Cory et al, 2014) and use our DO data in the Fig 2 calculations,
559 photomineralization in Annie and Lacawac could be as high as 13 and 7.5% of the carbon pool
560 respectively. Use of the oxygen data is less than ideal since several authors have reported RQ
561 values different than 1:1 (Allesson et al, 2016 and Xie et al, 2004).

562 Observations in Toolik Lake showed 70% of the total carbon pool being processed by
563 sunlight during the open water period (~3 months) (Cory et al., 2014). Other estimates have
564 found that photomineralization of DOC accounts for only 8-14% of total water column CO₂
565 production (Granéli et al., 1996; Jonsson et al., 2001; Koehler et al., 2014; Vachon et al., 2016b).
566 We observed ~30% of the carbon pool being processed by sunlight within one week in our lakes
567 and this was restricted to the brown-water lakes. Similar to Toolik Lake, the dominant

568 degradation process was partial photodegradation. Partial photodegradation can alter CDOM and
569 stimulate subsequent bacterial respiration. Degradation of CDOM can have important effects for
570 downstream ecosystems if it can be further processed and released as CO₂ or instead is buried or
571 exported downstream (Weyhenmeyer et al., 2012; Catalan et al., 2016; Chen and Jaffe, 2014;
572 Biddanda and Cotner, 2003). It is thus important to include all sunlight-driven degradation
573 processes to fully account for its relative importance.

574 Differences between the responses observed in the Arctic and our temperate/subtropical
575 lakes are most likely explained by the initial concentration and quality of terrestrially derived
576 DOC and time. In the Arctic, glacial meltwater can be highly photolabile and dominated by
577 seasonal inputs of DOC from shallow or deep soils (Cory et al., 2014; Spencer et al., 2014; and
578 Kaiser et al., 2017). In temperate regions, DOC tends to contain more humic and fulvic acids
579 derived from soils, which may be less photolabile than Arctic DOC. Additionally, we did not
580 integrate our results over the entire water column because the samples were analyzed on the
581 surface of a single lake. Over the entire water column, photodegradation could have processed
582 additional carbon. In clear-water lakes, DOC may be photodegraded down to the 1% UV-A
583 attenuation depth (Osburn et al., 2001), which ranged from 0.7-4.7 m in our study lakes (Table
584 1).

585

586 **3.3 Response of lakes to photodegradation**

587 With an increase in extreme precipitation events, terrestrial DOC inputs are likely to
588 increase in many aquatic ecosystems (Rahmstorf and Coumou, 2011; Westra et al., 2014). By
589 using groundwater as a proxy of terrestrial inputs from the watersheds of different types of lakes,
590 we simulated the effects of storm events and compared the sensitivity of different terrestrial

591 DOC sources to photodegradation. Interestingly, we found DOC from the watersheds of
592 oligotrophic and eutrophic lakes showed stronger changes in CDOM, compared to DOC from the
593 watersheds of the brown-water lakes that showed significantly larger changes in DOC quantity.
594 This difference may be due to the more allochthonous nature of the brown-water DOC, which is
595 highly photolabile, resulting in greater changes in DOC quantity due to its ability to absorb UV
596 radiation (Bertilsson and Tranvik, 2000). The less allochthonous and more microbially derived
597 DOC from the watersheds of the eutrophic and oligotrophic lakes may be less photolabile with
598 fewer UV-absorbing chromophores. Results of the DDA may be helpful in predicting changes in
599 other lakes based on their trophic status. SUVA₃₂₀ is the variable most likely to change due to
600 photodegradation in eutrophic and oligotrophic lakes. In contrast, DOC concentration is the
601 variable most likely to change in brown-water lakes due to photodegradation. Both results (DOC
602 and SUVA₃₂₀) highlight how lakes of varying trophic status respond to photodegradation. These
603 results can be used to predict how lakes not included in this study will respond to increased DOC
604 concentrations (i.e. browning).

605 Across our study lakes, changes in DIC production scaled linearly with initial
606 groundwater DOC concentration. Lacawac had the highest initial DOC concentration (59.4 ± 6.1
607 mg L⁻¹) and the highest average DIC production, while Giles had the lowest initial DOC
608 concentration (6.0 ± 0.6 mg L⁻¹) and the lowest average DIC production. This suggests that the
609 initial DOC concentration plays a critical role in determining the fate of DOC (Leech et al.,
610 2014; Lapierre et al., 2013). Lake temperature can also influence photodegradation. In this
611 study, average lake temperature increased from May through July (SI Table 1). Porcal et al.
612 (2015) showed that the largest loss of DOC occurred in warmer (i.e. 25 °C) waters due to
613 photodegradation. Additionally, DIC production was higher in those waters compared to colder

614 water (9 °C) (Porcal et al., 2015) Recent research has also reported that residence time controls
615 organic carbon decomposition across a wide range of freshwater ecosystems (Catalan et al.,
616 2016, Evans et al., 2017). However, extreme precipitation events may shorten the residence time
617 of lakes, effectively flushing out fresh DOC and preventing significant in-lake degradation from
618 occurring (de Wit et al., 2018). For the terrestrial DOC from the oligotrophic and eutrophic
619 lakes, a significant fraction was not degraded, which may mean that terrestrial inputs from these
620 watersheds undergoes less immediate in-lake processing and instead is exported downstream.
621 Our results indicate that differences in the fate and processing of DOC from the watersheds of a
622 range of lake types have important implications for determining which lakes may release more
623 CO₂ versus export DOC downstream (Weyhenmeyer et al., 2012; Zwart et al., 2015;
624 Weyhenmeyer and Conley, 2017).

625 Even though we observed similar responses to photodegradation in the brown-water lakes
626 (Fig. 1), the magnitude of the response varied and may have been related to the initial DOC
627 concentration. Initial concentrations (mg L⁻¹) of terrestrial DOC from Lacawac (59.4 ± 6.1) were
628 almost 3x higher than Annie (20.7 ± 0.5). Average DOC losses for both lakes due to
629 photodegradation were ~30%. The main difference between Lacawac and Annie was the DIC
630 percent change due to photodegradation (Fig. 1b). Average percent increases in DIC for Lacawac
631 were close to 400%, whereas in Annie it was ~85%. Despite the fact that both Annie and
632 Lacawac are brown-water lakes, their different DIC production rates indicate that certain types of
633 terrestrial DOC may be more photolabile than others and capable of outgassing large amounts of
634 CO₂. The DDA analysis did also pick out the separation between Lacawac and Annie primarily
635 on axis 1 (DOC). The responses in Annie shared similarities with the other 3 lakes while
636 Lacawac only overlapped with Annie. When put in the context of the entire DOC pool for each

637 lake, photomineralization accounted for 1% of the carbon loss. We anticipated that terrestrial
638 DOC from subtropical lakes would undergo additional microbial processing due to the higher
639 temperatures year-round. In a comparison between boreal Swedish and tropical Brazilian lakes,
640 Graneli et al., (1998) also found strong similarities in changes of DOC concentrations and DIC
641 production between lakes from the different latitudes. A weak significant correlation between
642 DOC concentration and DIC production has also been observed in Amazon clear water systems
643 (Amado et al., 2003)

644

645 **Conclusions**

646 Here we showed that photodegradation can be more important than biodegradation in
647 processing watershed inputs of terrestrial DOC on short time scales in the surface waters of a
648 lake. The responses that we observed varied with lake trophic status. Quantitative changes in
649 DOC, DIC, and DO were strongest in the terrestrial DOC from the watersheds of the brown-
650 water lakes, whereas the largest changes in SUVA₃₂₀ were observed in the terrestrial DOC from
651 the watersheds of the eutrophic and oligotrophic lakes. Consistent with prior studies, we found
652 that sunlight can impact not only changes in the concentration, but also CDOM characteristics.
653 We observed a range of 2.6 to 33% of the carbon pool processed in one week. As DOC
654 concentrations increase in some aquatic ecosystems, the potential for increased CO₂ outgassing
655 due to photo-mineralization also increases. On short time scales, sunlight had important impacts
656 on our study lakes. Future studies should focus on additional lakes, longer timescales, and
657 integrating DIC production throughout the water column.

658 Over the next century, DOC concentrations in northern boreal lakes are projected to
659 increase by 65% (Larsen et al., 2011). Thus, understanding the fate of terrestrial sourced organic

660 material will be essential for predicting the ecological consequences for lakes and downstream
661 ecosystems (Solomon et al., 2015; Williamson et al., 2015; Finstad et al., 2016). Improving
662 estimates of organic carbon processing in lakes will be an important component of creating more
663 complete carbon budgets (Hanson et al., 2004; 2014) and global estimates of CO₂ emissions can
664 be more accurately scaled to reflect the ability of lakes to act as CO₂ sinks or sources as
665 browning continues (Lapierre et al., 2013, Evans et al., 2017).

666

667 **Acknowledgements**

668 This project was supported by NSF grants DBI-1318747 (LBK, CEW, and others), DBI-1542085
669 (LBK, CEW, CMD), DEB 1754276 (CEW), the Robert Estabrook Moeller Research Fellow
670 Award (CMD, JAB), the Isabel and Arthur Watres Student Research Award (SM), and the staff
671 and resources of Archbold Biological Station. Data were provided by Archbold Biological
672 Station. We would like to thank Kevin Main for assistance in collecting Lake Annie water
673 samples and Erin Overholt for assistance in the lab and logistical support. The authors would like
674 to thank four anonymous reviewers for their assistance in improving the manuscript. The authors
675 declare no competing interests.

676

677 **Data Availability:**

678 Data and metadata will be made available in the Environmental Data Initiative repository. Data
679 archiving will be led by C. Dempsey and J. Brentrup.

680

681

682

683 **Author Contribution Statement**

684 CMD, JAB, and CEW designed the study with help from LBK, EEG, and HMS. CMD, JAB,
685 SM, and HMS collected the water samples and ran the experiments. DPM provided the
686 analytical equipment for measuring DIC and DOC. CMD and JAB analyzed the data, and CMD
687 and MTG conducted the statistical and DDA analyses. CMD and JAB wrote the manuscript with
688 contributions from all of the authors.

689

References

690
691
692 Allesson, L., Ström, L., and Berggren, M. Impact of photochemical processing of DOC on the
693 bacterioplankton respiratory quotient in aquatic ecosystems. *Geophysical Research Letters*,
694 43: 7538-7545. 2016.
695 Amado, A.M., Farjalla, V.F., Esteves, F.A., and Bozelli, R.L. DOC photo-oxidation in clear
696 water Amazonian aquatic ecosystems. *Amazonia* 17 (3/4): 513-523, 2003.
697 Bertilsson, S. and L. J. Tranvik. Photochemical transformation of dissolved organic matter in
698 lakes. *Limnology and Oceanography* 45: 753-762. doi:10.4319/lo.2000.45.4.0753, 2000.
699 Biddanda, B.A. and Cotner, J.B. Enhancement of Dissolved Organic Matter Bioavailability by
700 Sunlight and Its Role in the Carbon Cycle of Lakes Superior and Michigan. *Journal of Great
701 Lakes Research* 29 (2): 228-241, 2003.
702 Catalan, N., R. Marcé, D. N. Kothawala, and L. J. Tranvik. Organic carbon decomposition rates
703 controlled by water retention time across inland waters. *Nature Geoscience* 9: 501-504.
704 doi:10.1038/ngeo2720, 2006.
705 Cole, J. J., N. F. Caraco, G. W. Kling, and T. K. Kratz. Carbon dioxide supersaturation in the
706 surface waters of lakes. *Science* 265: 1568-1570, 1994.
707 Cory, R. M., C. P. Ward, B. C. Crump, and G. W. Kling. Sunlight controls water column
708 processing of carbon in arctic fresh waters. *Science* 345: 925-928.
709 doi:10.1126/science.1253119, 2014.
710 Chen, M. and R. Jaffe. Photo- and bio-reactivity patterns of dissolved organic matter from
711 biomass and soil leachates and surface waters in a subtropical wetland. *Water Research* 61:
712 181-190. DOI: 10.1016/j.watres.2014.03.075, 2014.
713 Chen, M., Jaffé, R. Quantitative assessment of photo- and bio-reactivity of chromophoric and
714 fluorescent dissolved organic matter from biomass and soil leachates and from surface
715 waters in a subtropical wetland. *Biogeochemistry* 129: 273-289.
716 <https://doi.org/10.1007/s10533-016-0231-7>, 2016.
717 de Etyo, E., E. Jennings, E. Ryder, K. Sparber, M. Dillane, C. Dalton, and R. Poole. Response of
718 a humic lake ecosystem to an extreme precipitation event: physical, chemical, and biological
719 implications. *Inland Waters* 6: 483-498. doi:10.5268/IW-6.4.875, 2016.
720 de Wit, H. A., S. Valinia, G. A. Weyhenmeyer, and others. Current Browning of Surface Waters
721 Will Be Further Promoted by Wetter Climate. *Environ. Sci. Technol. Lett.* 3: 430-435.
722 doi:10.1021/acs.estlett.6b00396, 2016.
723 de Wit, H.A., Couture, R.M., Jackson-Blake, L., Futter, M.N., Valinia, S., Austnes, K., Guerrero,
724 J., and Lin, Y. Pipes or chimneys? For carbon cycling in small boreal lakes, precipitation
725 matters most. *Limnology and Oceanography Letters* 3:275-284, 2018.
726 del Giorgio, P. A., J. J. Cole, and A. Cimberis. Respiration rates in bacteria exceed
727 phytoplankton production in unproductive aquatic systems. *Nature* 385: 148-151, 1997.
728 Duan, S., He, Y., Kaushal, S.S., Bianchi, T.S., Ward, N.D., and Guo, L. Impact of wetland
729 decline on decreasing dissolved organic carbon concentrations along the Mississippi River
730 continuum. *Frontiers in Marine Science* 3:280. doi: 10.3389/fmars.2016.00280, 2017.
731 Evans, C.D., Futter, M.N., Moldan, F., Valinia, S., Frogbrook, Z., and Kothawala, D.N.
732 Variability in organic carbon reactivity across lake residence time and trophic gradients.
733 *Nature Geosciences* 3: 832-837. doi: 10.1038/NGEO3051, 2017.
734 Fasching, C., and T. J. Battin. Exposure of dissolved organic matter to UV-radiation increases
735 bacterial growth efficiency in a clear-water Alpine stream and its adjacent groundwater.

736 Aquatic Sciences 74: 143–153. doi:10.1007/s00027-011-0205-8, 2011.

737 Finstad, A. G., T. Andersen, S. Larsen, K. Tominaga, S. Blumentrath, H. A. de Wit, H.

738 Tømmervik, and D. O. Hessen. From greening to browning: Catchment vegetation

739 development and reduced S-deposition promote organic carbon load on decadal time scales

740 in Nordic lakes. *Sci. Rep.* 6: 31944–9. doi:10.1038/srep31944, 2016.

741 Fischer, E. M., and R. Knutti. Anthropogenic contribution to global occurrence of heavy

742 precipitation and high-temperature extremes. *Nature Climate Change* 5: 560–564.

743 doi:10.1038/nclimate2617, 2015.

744 Gaiser, E.E., Deyrup, N.D., Bachmann, R.W., Battoe, L.E. and Swain, H.M. Effects of climate

745 variability on transparency and thermal structure in subtropical, monomictic Lake Annie,

746 Florida. *Fundamental and Applied Limnology*. Vol 175 (3): 217-230, 2009.

747 Granéli, W., M. Lindell, and L. Tranvik. Photo-oxidative production of dissolved inorganic

748 carbon in lakes of different humic content. *Limnology and Oceanography* 41: 698–706.

749 doi:10.4319/lo.1996.41.4.0698, 1996.

750 Granéli, W., Lindell, M., de Faria, B.M., and de Assis Esteves, F. Photoproduction of dissolved

751 inorganic carbon in temperate and tropical lakes – dependence on wavelength band and

752 dissolved organic carbon concentration. *Biogeochemistry* 43: 175–195, 1998.

753 Hanson, P. C., A. I. Pollard, D. L. Bade, K. Predick, S. R. Carpenter, and J. A. Foley. A model of

754 carbon evasion and sedimentation in temperate lakes. *Global Change Biology* 10: 1285–

755 1298. doi:10.1111/j.1529-8817.2003.00805.x, 2004.

756 Hanson, P. C., M. L. Pace, S. R. Carpenter, J. J. Cole, and E. H. Stanley. Integrating Landscape

757 Carbon Cycling: Research Needs for Resolving Organic Carbon Budgets of Lakes.

758 *Ecosystems* 18: 363–375. doi:10.1007/s10021-014-9826-9, 2014.

759 Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and Mopper, K. Absorption

760 spectral slopes and slope ratios as indicators of molecular weight, source, and

761 photobleaching of chromophoric dissolved organic matter, *Limnol. Oceanogr.*, 53, 955–969,

762 2008.

763 Hosen, J.D., O.T. McDonough, C.M. Febria, and M.A. Palmer. Altered stream dissolved organic

764 matter composition and bioavailability with urbanization. *Environmental Science &*

765 *Technology*. 48:7817-7824, 2014.

766 Jennings, E., S. Jones, L. Arvola, and others. Effects of weather-related episodic events in lakes:

767 an analysis based on high-frequency data. *Freshwater Biology* 57: 589–601.

768 doi:10.1111/j.1365-2427.2011.02729.x, 2012.

769 Jonsson, A., M. Meili, A.-K. Bergström, and M. Jansson. Whole-lake mineralization of

770 allochthonous and autochthonous organic carbon in a large humic lake (Oertraesk, N.

771 Sweden). *Limnology and Oceanography* 46: 1691–1700, 2001.

772 Julian II, P., Gerber, S., Wright, A.L., Gu, B., and Osborne, T.Z. Carbon pool trends and

773 dynamics within a subtropical peatland during long-term restoration. *Ecological Processes*

774 6:43. DOI 10.1186/s13717-017-0110-8, 2017.

775 Kaiser, K., Candedo-Oropeza, M., McMahon, R., and Amon, R.M. Origins and transformations

776 of dissolved organic matter in large Arctic rivers. *Scientific Reports* 7, 13064, 2017.

777 Kling, G. W., G. W. Kipphut, and M. C. Miller. Arctic lakes and rivers as gas conduits to the

778 atmosphere: implications for tundra carbon budgets. *Science* 251:298-301, 1991.

779 Klug, J. L., D. C. Richardson, H. A. Ewing, and others. Ecosystem Effects of a Tropical Cyclone

780 on a Network of Lakes in Northeastern North America. *Environmental Science &*

781 *Technology* 46: 11693–11701. doi:10.1021/es302063v, 2012.

782 Koehler, B., T. Landelius, G. A. Weyhenmeyer, N. Machida, and L. J. Tranvik. Sunlight-induced
783 carbon dioxide emissions from inland waters. *Global Biogeochemical Cycles* 28: 696–711.
784 doi:10.1002/2014GB004850, 2014.

785 Lapierre, J.-F., F. Guillemette, M. Berggren, and P. A. del Giorgio. Increases in terrestrially
786 derived carbon stimulate organic carbon processing and CO₂ emissions in boreal aquatic
787 ecosystems. *Nat Comms* 4. doi:10.1038/ncomms3972, 2013.

788 Larsen, S., T. Andersen, and D. O. Hessen. Climate change predicted to cause severe increase of
789 organic carbon in lakes. *Global Change Biology* 17: 1186–1192. doi:10.1111/j.1365-
790 2486.2010.02257.x, 2011.

791 Larson, J., Frost, P., Xenopoulos, M., Williams, C., Morales-Williams, A., Vallazza, J., Nelson,
792 J., and Richardson, W. Relationships Between Land Cover and Dissolved Organic Matter
793 Change Along the River to Lake Transition. *Ecosystems*. 17. 10.1007/s10021-014-9804-2,
794 2014.

795 Leech, D., M. Snyder, and R. Wetzel. Alterations in the photomineralization of allochthonous
796 DOM related to elevated atmospheric CO₂. *Inland Waters* 4: 147–156. doi:10.5268/IW-
797 4.2.626, 2014.

798 Lu, Y. H., J. E. Bauer, E. A. Canuel, Y. Yamashita, R. M. Chambers, and R. Jaffe'.
799 Photochemical and microbial alteration of dissolved organic matter in temperate headwater
800 streams associated with different land use, *J. Geophys. Res. Biogeosci.*, 118, 566–580,
801 doi:10.1002/jgrg.20048, 2013.

802 Madronich, S. UV radiation in the natural and perturbed atmosphere. Pages 17–69 in M. Tevini,
803 editor. *Environmental effects of UV (ultraviolet) radiation*. Lewis Publisher, Boca Raton,
804 Florida, 1993.

805 Moeller, R.E., Williamson, C.E., Hargreaves, B.R., and Morris, D.P. *Limnology of lakes
806 Lacawac, Giles, and Waynewood 1989-1993: An introduction to the core lakes of the
807 Pocono comparative lakes program*. Lehigh University, 1995.

808 Monteith, D. T., J. L. Stoddard, C. D. Evans, and others. Dissolved organic carbon trends
809 resulting from changes in atmospheric deposition chemistry. *Nature* 450: 537–540.
810 doi:10.1038/nature06316, 2007.

811 Moran, M. A., W. M. Sheldon Jr, and R. G. Zepp. Carbon loss and optical property changes
812 during long-term photochemical and biological degradation of estuarine dissolved organic
813 matter. *Limnology and Oceanography* 45: 1254–1264. doi:10.4319/lo.2000.45.6.1254, 2000.

814 Morris, D.P. and Hargreaves, B.R. The role of photochemical degradation of dissolved organic
815 carbon in regulating the UV transparency of three lakes on the Pocono Plateau. *Limnology
816 and Oceanography* 42(2): 239–249, 1997.

817 Osburn, C. L., H. E. Zagarese, D. P. Morris, B. R. Hargreaves, and W. E. Cravero. Calculation of
818 spectral weighting functions for the solar photobleaching of chromophoric dissolved organic
819 matter in temperate lakes. *Limnology and Oceanography* 46: 1455–1467.
820 doi:10.4319/lo.2001.46.6.1455, 2001.

821 Parsons, T. R., Y. Maita, and C. M. Lalli. *A manual for chemical and biological methods for
822 seawater analysis*. Pergamon Press, 1984.

823 Porcal, P., Dillon, P.J., Molot, L.A. Temperature Dependence of Photodegradation of Dissolved Organic
824 Matter to Dissolved Inorganic Carbon and Particulate Organic Carbon. *PLoS ONE* 10 (6), e0128884.
825 2015.

826 Rahmstorf, S., and D. Coumou. Increase of extreme events in a warming world. *Proceedings of
827 the National Academy of Sciences of the United States of America* 108: 17905–17909.
828 doi:10.1073/pnas.1101766108, 2011.

829 Raymond, P. A., D. L. Hartmann, R. Lauerwald, and others. Global carbon dioxide emissions
830 from inland waters. *Nature* 503: 355–359. doi:10.1038/nature12760, 2013.

831 Reche, I., Pace, M.L, and Cole, J.J. Relationship of trophic and chemical conditions to
832 photobleaching of dissolved organic matter in lake ecosystems. *Biogeochemistry* 44: 259–
833 280, 1999.

834 Rose, K.C., Williamson, C.E., Saros, J.E., Sommaruga, R., and Fisher, J.M. Differences in UV
835 transparency and thermal structure between alpine and subalpine lakes: implications for
836 organisms. *Photochemical and Photobiological Sciences*. Volume 8(9): 1244-56.
837 doi:10.1039/b9056, 2009a.

838 Rose, K.C., Williamson, C.E., Schladow, S. G., Winder, M., and Oris, J.T. Patterns of spatial and
839 temporal variability of UV transparency in Lake Tahoe, California-Nevada. *Journal of*
840 *Geophysical Research Biogeosciences*. Volume 114(G2). doi:10.1029/2008JG000816, 2009,
841 2009b.

842 Sacks, L.A., Swancar, A., and Lee, T.M. Estimating ground-water exchange with lakes using
843 water-budget and chemical mass-balance approaches for ten lakes in ridge areas of Polk and
844 Highlands Counties, Florida. U.S. Geological Survey: Water-Resources Investigations
845 Report 98-4133. 1998.

846 Saros, J. E., C. L. Osburn, R.M.Northington, S.D. Birkel, J.D. Auger, C. A. Stedmon, and N. J.
847 Anderson. Recent decrease in DOC concentrations in Arctic lakes of southwest Greenland,
848 *Geophys. Res. Lett.*, 42, 6703–6709, doi:10.1002/2015GL065075, 2015.

849 Sharp, J.H., and others. Procedures subgroup report. *Marine Chemistry*. Volume 41. 1993. pp 37–
850 49, 1993.

851 Sherry, A. Discriminant analysis in counseling psychology research. *The Counseling*
852 *Psychologist* 34: 661-683, 2006.

853 Sherry, A., and R. K. Henson. Conducting and interpreting canonical correlation analysis in
854 personality research: A user-friendly primer. *Journal of Personality Assessment* 84: 37-48,
855 2010.

856 Solomon, C. T., S. E. Jones, B. C. Weidel, and others. Ecosystem Consequences of Changing
857 Inputs of Terrestrial Dissolved Organic Matter to Lakes: Current Knowledge and Future
858 Challenges. *Ecosystems* 18: 376–389. doi:10.1007/s10021-015-9848-y, 2015.

859 Spencer, R.G.M., Guo, W. Raymond, P.A., Dittmar, T., Hood, E., Fellman, J., and Stubbins, A.
860 Source and biolability of ancient dissolved organic matter in glacier and lake ecosystems on
861 the Tibetan Plateau. *Geochemicia et Cosmochimica Acta*. Vol 142:1-64-74, 2014.

862 Strock, K. E., J. E. Saros, S. J. Nelson, S. D. Birkel, J. S. Kahl, and W. H. McDowell. Extreme
863 weather years drive episodic changes in lake chemistry: implications for recovery from
864 sulfate deposition and long-term trends in dissolved organic carbon. *Biogeochemistry* 127:
865 353–365. doi:10.1007/s10533-016-0185-9, 2016.

866 Swain, H. Archbold Biological Station and the Macarthur Agro-Ecology Research Center.
867 *Bulletin of the Ecological Society of America*, Vol 79 (1). 1998.

868 Tranvik, L. J., J. A. Downing, J. B. Cotner, and others. Lakes and reservoirs as regulators of
869 carbon cycling and climate. *Limnology and Oceanography* 54: 2298–2314, 2009.

870 Tranvik, L. Carbon cycling in the Arctic. *Science* 345: 870–870. doi:10.1126/science.1258235,
871 2014.

872 Vachon, D., C. T. Solomon, and P. A. del Giorgio. Reconstructing the seasonal dynamics and
873 relative contribution of the major processes sustaining CO₂ emissions in northern lakes.
874 *Limnology and Oceanography* 62: 706–722. doi:10.1002/lno.10454, 2016a.

875 Vachon, D., J.-F. Lapierre, and P. A. del Giorgio. Seasonality of photochemical dissolved
876 organic carbon mineralization and its relative contribution to pelagic CO₂ production in
877 northern lakes. *J. Geophys. Res. Biogeosci.* 121: 864–878. doi:10.1002/2015JG003244,
878 2016b.

879 Westra, S., H. J. Fowler, J. P. Evans, and others. Future changes to the intensity and frequency of
880 short-duration extreme rainfall. *Reviews of Geophysics* 52: 522–555.
881 doi:10.1002/2014RG000464, 2014.

882 Weyhenmeyer, G. A., M. Fröberg, E. Karlton, M. Khalil, D. Kothawala, J. Temnerud, and L. J.
883 Tranvik. Selective decay of terrestrial organic carbon during transport from land to sea.
884 *Global Change Biology* 18: 349–355, 2012.

885 Weyhenmeyer, G. A., S. Kosten, M. B. Wallin, L. J. Tranvik, E. Jeppesen, and F. Roland.
886 Significant fraction of CO₂ emissions from boreal lakes derived from hydrologic inorganic
887 carbon inputs. *Nature Geosci.* doi:10.1038/ngeo2582, 2015.

888 Weyhenmeyer, G. A., and D. J. Conley. Large differences between carbon and nutrient loss rates
889 along the land to ocean aquatic continuum-implications for energy:nutrient ratios at
890 downstream sites. *Limnology and Oceanography* 10: 141–11. doi:10.1002/lno.10589, 2017.

891 Wilkinson, G. M., M. L. Pace, and J. J. Cole. Terrestrial dominance of organic matter in north
892 temperate lakes. *Global Biogeochemical Cycles* 27: 43–51. doi:10.1029/2012GB004453,
893 2013.

894 Williams, C.J., Frost, P.C., Morales-Williams, A.M., Larson, J.H., Richardson, W.B., Chiandet,
895 A.S. and Xenopoulos, M.A. Human activities cause distinct dissolved organic
896 matter composition across freshwater ecosystems. *Glob Change Biol.* 22: 613–626.
897 doi:10.1111/gcb.13094, 2016.

898 Williamson, C. E., D. P. Morris, M. L. Pace, and O. G. Olson. Dissolved organic carbon and
899 nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm.
900 *Limnology and Oceanography* 44: 795–803. doi:10.4319/lo.1999.44.3_part_2.0795, 1999.

901 Williamson, C. E., J. E. Saros, W. F. Vincent, and J. P. Smol. Lakes and reservoirs as sentinels,
902 integrators, and regulators of climate change. *Limnology and Oceanography* 54: 2273–2282,
903 2009.

904 Williamson, C.E., J.A. Brentrup, J. Zhang, W.H. Renwick, B.R. Hargreaves, L.B. Knoll, E.P.
905 Overholt, and K.C. Rose. Lakes as sensors in the landscape: Optical metrics as scalable
906 sentinel responses to climate change. *Limnology and Oceanography* 59: 840–850, 2014.

907 Williamson, C. E., E. P. Overholt, R. M. Pilla, T. H. Leach, J. A. Brentrup, L. B. Knoll, E. M.
908 Mette, and R. E. Moeller. Ecological consequences of long- term browning in lakes. *Sci.
909 Rep.* 5. doi:10.1038/srep18666, 2015.

910 Williamson, C. E., E. P. Overholt, J. A. Brentrup, and others. Sentinel responses to droughts,
911 wildfires, and floods: effects of UV radiation on lakes and their ecosystem services.
912 *Frontiers in Ecology and the Environment* 14: 102–109. doi:10.1002/fee.1228, 2016.

913 Xie, H., Zafiriou, O.C., Cai, W.-J., Zepp, R.G., Wang, Y., 2004. Photooxidation and Its Effects on the
914 Carboxyl Content of Dissolved Organic Matter in Two Coastal Rivers in the Southeastern United
915 States. *Environmental Science & Technology* 38 (15), 4113–4119.

916 Zwart, J. A., N. Craig, P. T. Kelly, S. D. Sebestyen, C. T. Solomon, B. C. Weidel, and S. E.
917 Jones. Metabolic and physiochemical responses to a whole-lake experimental increase in
918 dissolved organic carbon in a north-temperate lake. *Limnology and Oceanography* 61: 723–
919 734. doi:10.1002/lno.10248, 2015.

920

921

922 **Response to Reviewer Comments**

923
924 The authors would like to thank the reviewer for taking the time to provide comments and
925 improve the quality of the manuscript. We recognize the headspace issue is less than ideal, but
926 still think the main points are relevant and the data should be published. Answers to each line
927 items are detailed below in red. The reviewer comments were appreciated.

928
929
930 Comments on bg-2020-manuscript-version4

931
932 Line 226: What exactly were the safety concerns about using mercury chloride that gave rise to
933 the 2 ml headspace? As it isn't explained below despite the statement on this line. It should be
934 made clearer the dangers of using mercury and exactly how the sampling design came about.
935 Was it the risk from overflowing the extainer? It should also be reported how this procedure
936 was done in the field or lab, as it should be all performed within a tray so spills are contained.
937 Was this procedure carried out with a pipette or a syringe?

938 The main concerns were the toxicity and corrosiveness of handling HgCl₂. I (CMD) wanted to
939 avoid any chance of spilling in the lab as it is a mixed use lab that supports undergraduate
940 students, graduate students, and other faculty researchers. In addition, part of the field station is
941 open to the public. Safety was my key concern when I made the decision. We were generally
942 following the methods laid out in Cory et al (2014). Mercury chloride was added with a pipette.

943
944 Line 250: Is there a possibility that the presence of such a high concentration of Hg²⁺ could have
945 catalysed photoreduction of the CDOM (Luo et al., 2020)? This might lead to greater CDOM
946 losses, it does not seem to have been considered in other works so it is hard to judge and the role
947 or iron CDOM complexes is likely more important here but it is worth considering. It would help
948 here to also explain in more detail how the mercury chloride impacted the CDOM
949 measurements. Mercury chloride has been shown previously to have an absorption maximum
950 around 305 nm (as seen for example in (Dash and Das, 2016)). This obviously would impact any
951 optical measurements and in this case would also increase the amount of photons absorbed in the
952 samples amended with Hg compared to those without and this facet of the work has not been
953 commented on before it seems. It would be good to discuss then a possible alternative to mercury
954 chloride that was optically clear.

955 This may be possible. We did not use the 1% HgCl₂ in our CDOM samples. CDOM scans were
956 generated on water that was sterile filtered. We added text to clarify our own observations from
957 pre-experiments as to how HgCl₂ impacted the absorbance scans in a subset of samples.

958
959 You do bring up a really good point though. Since the absorbance is higher with HgCl₂, more
960 photons are being absorbed by the dissolved organic carbon. It does bring up the possibility that
961 when HgCl₂ is used in these types of experiments that more DIC is produced (or DO consumed).

962
963 The only other microbial inhibitor we explored was sodium azide (Osburn et al, 2001). It is also
964 toxic.

965
966 Line 250: Information on the headspace in the bottles should be included here.
967 This was added.

968 Line 254: It is not clear from the text if there is a headspace in the quartz tubes as well as for the
969 exetainers (borosilicate vials). This information could be added here so that it is immediately
970 clear how the experimental treatments differed.

971 **There was headspace in the quartz tubes (5 mL)**

972
973 Line 259: as for the previous comment.

974
975 Line 399: The inclusion of a headspace in the exetainers will also have reduced the apparent
976 oxygen consumption in the samples by bringing introducing oxygen from the air into the solution
977 contained in the exetainer. Thus, likely some of these samples may have been significantly lower
978 in dissolved oxygen at the time of sampling. Handling of the samples (mixing) etc would also
979 have been critical.

980 **This is possible. All treatments were prepared in the same manner and then analyzed together.**
981 **We compared our treatments to the control samples for each lake, which also had 2 mL of**
982 **headspace. The amount of oxygen in the control samples was subtracted from the treatments so**
983 **that we could record the amount consumed.**

984
985 Line 532: As noted above the inclusion of a headspace in the exetainers will also have reduced
986 the apparent oxygen consumption in the samples and then coupled with this approach will lead to
987 a further underestimation of the DOC photo remineralization.

988 **Same comment as above.**

989
990 References cited:

991
992 Cory, R. M., C. P. Ward, B. C. Crump, and G. W. Kling. Sunlight controls water column
993 processing of carbon in arctic fresh waters. *Science* 345: 925–928.
994 doi:10.1126/science.1253119, 2014.

995
996 Osburn, C. L., H. E. Zagarese, D. P. Morris, B. R. Hargreaves, and W. E. Cravero. Calculation of
997 spectral weighting functions for the solar photobleaching of chromophoric dissolved organic
998 matter in temperate lakes. *Limnology and Oceanography* 46: 1455–1467.
999 doi:10.4319/lo.2001.46.6.1455, 2001.

1000