

1 **Title:** The relative importance of photodegradation and biodegradation of terrestrially derived
2 dissolved organic carbon across four lakes of differing trophic status
3

4 **Authors:** Christopher M Dempsey^{1*}, Jennifer A Brentrup², Sarah Magyan¹, Lesley B Knoll³,
5 Hilary M Swain⁴, Evelyn E Gaiser⁵, Donald P Morris⁶, Michael T Ganger¹, and Craig E
6 Williamson⁷
7

8 **Author Affiliations:**

9 ¹Gannon University, Biology Department, Erie, PA, USA
10 ²St. Olaf College, Biology and Environmental Studies, Northfield, MN
11 ³University of Minnesota, Itasca Biological Station and Laboratories, Lake Itasca, MN, USA
12 ⁴Archbold Biological Field Station, 123 Main Dr., Venus, FL, USA
13 ⁵Florida International University, Department of Biological Sciences and Institute of
14 Environment, Miami, FL, USA
15 ⁶Lehigh University, Earth and Environmental Sciences Department, Bethlehem, PA, USA
16 ⁷Miami University, Global Change Limnology Laboratory, Department of Biology, Oxford, OH,
17 USA
18

19 *Corresponding author: dempsey007@gannon.edu
20

21 **ORCID IDs:**

22 Dempsey: 0000-0003-3817-0155
23 Brentrup: 0000-0002-4818-7762
24 Williamson: 0000-0001-7350-1912
25 Gaiser: 0000-0003-2065-4821
26

27 **Potential Reviewers** – suggest 3-5

28 Names, institutions, and email addresses
29

30 Colin Ward (cward@whoi.edu) Woods Hole Oceanographic Institution
31 Cedric Fichot (cgfichot@bu.edu) Boston University
32 Anne Kellerman (akellerman@fsu.edu) Florida State University
33 Michael T. Arts (Michael.Arts@ec.gc.ca) Environment Canada
34 Rose M. Cory (rmcory@umich.edu) University of Michigan
35 Bart T. DeStasio (bart.t.destasio@lawrence.edu) Lawrence University
36 Lars-Anders Hansson (Lars-anders.hansson@limnol.lu.se) Lund University
37 Dag Olav Hessen (d.o.hessen@ibv.uio.no) University of Oslo
38 Louis Kaplan (lakaplan@stroudcenter.org) Stroud Water Research Center
39

40 **Keywords:** 4-6

41 Photodegradation, biodegradation, dissolved organic carbon, CO₂
42
43
44
45
46

47

48 **Abstract**

49 Outgassing of carbon dioxide (CO_2) from freshwater ecosystems comprises 12-25% of the total
50 carbon flux from soils and bedrock. This CO_2 is largely derived from both biodegradation and
51 photodegradation of terrestrial dissolved organic carbon (DOC) entering lakes from wetlands and
52 soils in the watersheds of lakes. In spite of the significance of these two processes in regulating
53 rates of CO_2 outgassing, their relative importance remains poorly understood in lake ecosystems.
54 In this study, we used groundwater from the watersheds of one subtropical and three temperate
55 lakes of differing trophic status to simulate the effects of increases in terrestrial DOC from storm
56 events. We assessed the relative importance of biodegradation and photodegradation in oxidizing
57 DOC to CO_2 . We measured changes in DOC concentration, colored dissolved organic carbon
58 (SUVA_{320} and S_r), dissolved oxygen, and dissolved inorganic carbon (DIC) in short-term
59 experiments from May-August, 2016. In all lakes, photodegradation led to larger changes in
60 DOC and DIC concentrations and optical characteristics than biodegradation. A descriptive
61 discriminant analysis showed that in brown-water lakes, photodegradation led to the largest
62 declines in DOC concentration. In these brown-water systems, ~30% of the DOC was processed
63 by sunlight and a minimum of 1% was photo mineralized. In addition to documenting the
64 importance of photodegradation in lakes, these results also highlight how lakes in the future may
65 respond to changes in DOC inputs.

66

67

68 **Introduction**

69 Lakes are closely linked to their surrounding terrestrial ecosystems. As the lowest point
70 in the landscape, they receive a significant influx of terrestrially-derived dissolved organic
71 carbon (DOC) and nutrients (Williamson et al., 2009; Wilkinson et al., 2013). Climate and land
72 use changes are altering the link between lakes and their surrounding landscapes by
73 strengthening the flow of material during extreme rain events and large wildfires, or weakening
74 it during extended periods of drought (Strock et al., 2016; Williamson et al., 2016). Long-term
75 changes in DOC concentrations are variable and appear to be regionally controlled. In
76 northeastern North American and western European lakes, there has been as much as a doubling
77 of DOC concentrations due to recovery from anthropogenic acidification and climate change
78 (Monteith et al., 2007; Williamson et al., 2015; de Wit et al., 2016). However, DOC
79 concentrations in Greenland lakes (Saros et al., 2015) and the Mississippi River (Duan et al.,
80 2017) have been decreasing. A long-term study of the Florida Everglades showed that some
81 study sites were decreasing in DOC concentration, but the majority of sites were not changing
82 (Julian et al., 2017). As DOC inputs into aquatic ecosystems have increased, stabilized, or
83 decreased, long-term studies have focused on understanding the mechanisms behind the change,
84 but less research has addressed the fate of DOC once it enters a lake.

85 By attenuating light in the water column and also providing a source of energy, DOC
86 serves an important role in lakes by regulating the balance between photosynthesis and
87 respiration (Williamson et al., 1999), and thus the flux of CO₂ to the atmosphere (Cole et al.,
88 1994). Previous studies indicated that most lakes are net heterotrophic, where the breakdown of
89 organic carbon exceeds production (Kling et al., 1991; Cole et al., 1994). Estimates suggest that
90 lakes respire about half of the annual 2 gigaton flux of carbon to the oceans each year as CO₂

91 (Cole et al., 1994; Tranvik et al., 2009; Tranvik, 2014). The traditional paradigm has been that
92 the dominant mechanism causing the release of excess CO₂ from lakes is bacterial respiration of
93 DOC (biodegradation), with photomineralization (conversion of DOC to CO₂) accounting for
94 only 10% of bacterial rates (Granéli et al., 1996; del Giorgio et al., 1997; Jonsson et al., 2001).
95 However, research on over 200 Arctic lakes, rivers, and streams revealed that sunlight dominated
96 the processing of DOC, and photomineralization rates were on average 5x greater than dark
97 bacterial respiration rates (Cory et al., 2014). In addition, the source of inland water CO₂ remains
98 uncertain, due in large part to a lack of measurements (Raymond et al., 2013; Lapierre et al.,
99 2013; Weyhenmeyer et al., 2015) and predicting DOC reactivity has been challenging (Evans et
100 al., 2017). Quantifying the dominant degradation pathways for terrestrial DOC from a range of
101 lakes will improve estimates of carbon fluxes, particularly mineralization rates that currently
102 have a high degree of uncertainty (Hanson et al., 2014).

103 Many past studies have focused on testing the effects of photodegradation and
104 biodegradation on DOC quantity individually, but they have not simultaneously evaluated how
105 these two processes alter the colored dissolved organic carbon (CDOM) (Granéli et al., 1996;
106 Koehler et al., 2014; Vachon et al., 2016a). CDOM is the fraction of dissolved organic matter
107 that is capable of absorbing light. The effects of sunlight on DOC are not isolated to only
108 increasing mineralization rates. Photodegradation can also decrease the color and molecular
109 weight of DOC, which can increase light availability and the subsequent bacterial respiration of
110 DOC (Bertilsson and Tranvik, 2000; Amado et al., 2003; Chen and Jaffé, 2016). Cory et al.
111 (2014) found the dominant degradation process for Arctic lakes to be partial photodegradation,
112 suggesting that in lakes, sunlight-driven changes in CDOM without undergoing complete
113 mineralization may dominate DOC processing.

114 Since light attenuation varies so strongly among lakes of differing trophic status, testing
115 the relative importance of DOC processing via photodegradation or biodegradation with
116 mechanistic experiments is needed. Previous research on DOC degradation has primarily
117 occurred in high DOC lakes, but in clear-water lakes, 1% of surface UV-A and
118 photosynthetically active radiation (PAR), which are the primary wavelengths active in
119 photodegradation (Osburn et al., 2001) can reach significant depths. In some oligotrophic lakes
120 UV-A may reach up to 7 m for UV-A and 14 m for PAR. In some of the clearest lakes in the
121 world, such as Lake Tahoe, PAR can reach depths > 45 m (Rose et al., 2009a; Rose et al.,
122 2009b). Geographic location and time of year influence the amount of solar radiation lakes
123 receive. In the subtropics, PAR and UV light have high intensity across the spectrum year-
124 around, whereas in temperate regions those wavelengths are strongest during the summer
125 months.

126 Watershed land use and lake trophic status have also been shown to influence DOC
127 composition and reactivity (Lu et al., 2013; Hosen et al., 2014; Larson et al., 2014; Evans et al.,
128 2017). DOC from forested systems was more reactive and had different CDOM properties when
129 compared to disturbed environments (Lu et al., 2012; Williams et al., 2015; Evans et al., 2017).
130 Studies examining how terrestrial DOC inputs are processed in lakes are needed, especially with
131 the increasing frequency of extreme rain events (Rahmstorf and Coumou, 2011; Westra et al.,
132 2014; Fischer and Knutti, 2015). Future climate change projections suggest that for northern
133 ecosystems a 10% increase in precipitation could lead to a 30% increase in the mobilization of
134 soil organic matter (de Wit et al., 2016). Extreme rain events deliver fresh DOC not exposed to
135 prior sunlight into lakes, which can lead to significant reductions in light availability, as well as
136 increases in thermal stability and lake heterotrophy (Jennings et al., 2012; Klug et al., 2012; de

137 Eyto et al., 2016; Zwart et al., 2016). As DOC concentrations change globally, understanding the
138 processes that determine the fate of DOC will help predict the systems most likely to release
139 more CO₂.

140 Here our aim was to 1) determine the relative importance of photodegradation and
141 biodegradation for altering terrestrial DOC quantity and CDOM from lakes of varying trophic
142 status, 2) quantify the percentage of the initial DOC pool that was photomineralized, partially-
143 photodegraded, biodegraded or remained unprocessed, and 3) compare the effects of
144 photodegradation on DOC quantity and CDOM across four lakes to understand differences in
145 how terrestrial DOC from the watersheds of different lake types responds to photodegradation.
146 Since lakes are closely linked to their surrounding landscape (i.e. soils and vegetation), we
147 collected terrestrial DOC from the watershed of three temperate lakes and one subtropical lake,
148 all varying in trophic status. This soil organic matter represents the current and future inputs of
149 organic material. We studied changes in the concentration of DOC, dissolved inorganic carbon
150 (DIC), and dissolved oxygen (DO) and measured changes in CDOM. We hypothesized that
151 photodegradation would be more important than biodegradation in all lakes, but the strongest
152 responses to sunlight would be observed in the brown-water lakes.

153

154 **1. Methods**

155 **1.1 Study Sites and Samplers**

156 Groundwater samples were collected from the watersheds immediately adjacent to four
157 lakes used in this study (Table 1). All of the lakes are small, with a surface area $\leq 0.48 \text{ km}^2$ and a
158 maximum depth ranging from 12.5 m in Lake Waynewood to 24 m in Lake Giles. The three
159 temperate lakes (Giles – oligotrophic; Lacawac – brown-water; Waynewood – eutrophic) are in

160 close proximity, located on the Pocono Plateau in northeastern Pennsylvania. Lake Annie
161 (brown-water) is a subtropical, sinkhole lake located on the Lake Wales Ridge in south-central
162 Florida. These lakes were selected because of their variability in the dominant vegetation types
163 in their watersheds that lead to differences in DOC concentration and quality (Table 1). Annie,
164 Giles, and Lacawac are all seepage lakes within protected watersheds, and there have been no
165 significant changes in land use or land cover over the past thirty years. The watersheds of Giles
166 and Lacawac have > 90% cover of mixed and northern hardwood-conifer forests, with oak trees
167 dominating the watershed at Giles, while hemlocks represent the highest proportion of
168 Lacawac's watershed (Moeller et al., 1995). Annie is surrounded by well-drained sandy soils and
169 the major vegetation types include a mixed-scrub community, pinelands, and oak forests (Gaiser,
170 2009). Both Annie and Lacawac are brown-water lakes with moderate DOC concentrations and
171 lower transparency (Table 1). A higher percentage of wetlands (7% for Annie and 25% for
172 Lacawac) in their watersheds likely contribute to their darker color compared to the other lakes
173 (Moeller et al., 1995; H. Swain *unpublished data*). Waynewood is the most eutrophic lake and
174 has the largest watershed with runoff from dairy farms upstream that feeds into the lake through
175 an inlet stream. The forest surrounding Waynewood is similarly dominated by oak and hemlock
176 trees, but there is overall less total forest cover in the watershed than Lacawac and Giles, and
177 there are more homes adjacent to the lake (Moeller et al., 1995). Detailed information about lake
178 residence time calculations and annual precipitation trends can be found for the Pocono lakes
179 (Moeller et al, 1995) and Lake Annie (Swain, 1998; Sacks et al, 1998).
180

181 **Table 1.** Summary characteristics of the four study lakes in May-August 2013–2016 (mean \pm SD). Abbreviations: Chl-*a* (chlorophyll-*a*), DOC (dissolved organic carbon), GW DOC (initial groundwater DOC), PAR (photosynthetically active radiation, 400–700 nm), UV-A (ultraviolet A radiation, 380 nm), UV-B (ultraviolet B radiation, 320 nm), RT (residence time).

Lake	Lat. (°)	Long. (°)	Lake area (km ²)	Max. depth (m)	Chl- <i>a</i> (μ g L ⁻¹) \pm (SD)	Lake DOC (mg L ⁻¹) \pm (SD)	GW DOC (mg L ⁻¹) \pm (SD)	pH [±] (SD)	1% UV-B depth (m) \pm (SD)	1% UV-A depth (m) \pm (SD)	1% PAR depth (m) \pm (SD)	RT (yr)
Lacawac	41° 22' N	75° 17' W	0.21	13	1.9 (1.4)	5.2 (0.8)	59.4 (6.1)	6.6 ⁺	0.4 (0.1)	0.9 (0.2)	5.7 (0.6)	3.3
Annie	27° 12' N	81° 20' W	0.36	20.7	4.0 (1.5)	9.4 (2.5)	20.7 (0.5)	5.5 (0.3)	0.5* (0.5)	1.3* (0.5)	4.5 (1.6)	2
Wayne- wood	41° 23' N	75° 21' W	0.28	12.5	5.3 (3.7)	6.4 (1.0)	7.6 (0.3)	7.5 ⁺	0.3 (0.1)	0.7 (0.2)	4.3 (0.9)	0.42
Giles	41° 22' N	75° 5' W	0.48	24	1.1 (0.7)	2.3 (0.3)	6.0 (0.6)	6.2 ⁺ (0.3)	2.0 (0.5)	4.7 (1.2)	14.4 (2.1)	5.6

*Indicates estimates from a single profile in March 2012. ⁺pH data in Lacawac and Waynewood are from 2015 only and from 2015–2016 in Giles.

Samplers were used to collect groundwater as a proxy for terrestrial DOC runoff entering the lakes. Storm events have been shown to mobilize DOC from shallow groundwater pools into aquatic ecosystems (Boyer et al, 1997). The samplers were installed in close proximity to the Pocono lakes near small inlet streams in sandy or bog areas on 6 July 2015 (~1 year prior to experiments). The groundwater sampler consisted of 1m sections of 7.6cm diameter PVC pipe installed to a depth of 60–81cm below ground. 0.5cm holes were drilled in the sides with a fine mesh covering the holes to let shallow groundwater in but exclude large particulates. At Lake Annie, a groundwater sampler was installed on 17 March 2016 on the south side of the lake near a small, intermittent inlet stream. The groundwater sampler near Lake Annie was a 3m section of PVC pipe installed slightly deeper to 2m below ground to allow continuous access to groundwater during the dry season.

199 On 7 May 2016, 10 L of water was collected using a peristaltic pump from the
200 groundwater samplers at all of the Pocono lakes in acid-washed 18 L bottles. Groundwater
201 samples from Annie were collected from the sampler monthly (25 April, 31 May, 27 June, and 1
202 Aug 2016) prior to starting the experiments and shipped overnight on ice to Pennsylvania. All
203 groundwater samples were kept cold (4 °C) and dark until filtered to avoid sunlight exposure
204 prior to the start of the experiments. Samples for the May experiments were filtered on May 8,
205 2016 through pre-combusted (450 °C) 0.7 µm Whatman GF/F filters. The remaining 8 L of
206 groundwater for the June, July, and August experiments for each Pocono lake were filtered in a
207 similar manner over the next 14 days. Samples were kept cold and dark until the experiments
208 started. Samples for June, July, and August were re-filtered with a pre-combusted 0.7 µm
209 Whatman GF/F filter prior to the start of those experiments. The initial DOC concentration of the
210 groundwater for each lake varied at the start of each experiment, but it was always higher than
211 the in-lake DOC concentration (Table 1).

212

213 **1.2 Sampling Design and Variables Analyzed**

214 To determine the relative importance of photodegradation and biodegradation for
215 processing DOC, we designed three treatments in a manner similar to Cory et al., (2014): 1)
216 photodegradation only, 2) biodegradation only, and 3) control. From each treatment, five
217 different variables were measured including DOC concentration, DIC concentration, DO
218 concentration, SUVA₃₂₀, and S_r. The different variables measured in each treatment required the
219 use of different containers for the sample water. Samples for DOC analysis (concentration and
220 CDOM) were deployed in acid-washed, muffled 35 mL quartz tubes sealed with silicone
221 stoppers. The quartz tubes had an average transmittance of 96% of solar UV-A and 87% of solar

222 UV-B, which allowed for an accurate representation of *in-situ* solar radiation levels (SFig. 1,
223 Morris and Hargreaves, 1997). However, the quartz tubes were not gas tight, so samples for
224 dissolved inorganic carbon (DIC) and dissolved oxygen (DO) analysis were deployed in gas tight
225 borosilicate exetainer vials (138W; Labco, Ceredigion, UK). The borosilicate vials had a volume
226 of 12 mL but were filled to 10 mL (i.e. 2 mL of headspace) due to safety concerns with mercury
227 chloride (see below). A clean 10 mL pipette was used to carefully transfer water into the
228 borosilicate vials. Borosilicate glass has a sharp cut-off at 320 nm and transmits <5% UV-B, but
229 it transmits an average of 63% of UV-A radiation and 90% of PAR (SFig. 1, Reche et al., 1999).

230 Water samples for all of the treatments were initially filtered through pre-combusted 0.7
231 μm Whatman GF/F filters one day prior to the start of each monthly experiment. For the
232 photodegradation and control treatments detailed below, samples for DO and DIC analysis were
233 treated with 0.35 mL of 1% mercury chloride (HgCl_2) to kill the microbial community. Samples
234 for DOC concentration and CDOM analysis (SUVA_{320} and S_r) for the same treatments were
235 sterile filtered with a 0.2 μm membrane filter (Sterivex MilliporeSigma, Burlington, MA USA)
236 pre-rinsed with 100 mL of DI water and 50 mL of sample water instead of using HgCl_2 because
237 adding HgCl_2 altered the optical scans. Sterile filtering has previously been shown to remove the
238 majority of microbes present, and water samples remained sterile for one week following this
239 procedure (Moran et al., 2000; Fasching and Battin, 2011). For the biodegradation treatment,
240 water samples were inoculated with 100 μL of unfiltered groundwater that was collected 1 day
241 prior to the start of each monthly experiment. By adding a fresh inoculum of groundwater each
242 month, we aimed to re-stimulate the microbial community and assess the short-term response of
243 biodegradation. In the biodegradation treatments, we did not correct for differences in vial size
244 (i.e. 100 μL was added to both the 12 mL vials and the 35 mL tubes). Treatments were deployed

245 in triplicate for each lake (i.e. 3 DOC quartz tubes, 3 DO borosilicate vials, and 3 DIC
246 borosilicate vials for each treatment). Here, we included a summary of the three experimental
247 treatments that were designed as follows:

248 a) *Photodegradation Only*: Water for DOC concentration and CDOM analysis (SUVA₃₂₀
249 and S_r) was sterile filtered and stored in quartz tubes (n = 3 replicates). Water for DIC
250 and DO analysis was treated with 1% HgCl₂ and stored in borosilicate vials (n = 6
251 replicates; 3 replicates for DIC and 3 replicates for DO analysis).

252 b) *Biodegradation Only*: Water for all analyses was inoculated with 100 µL of unfiltered
253 groundwater. Water samples for DOC concentration and CDOM analysis were stored in
254 quartz tubes (n = 3 replicates). Water samples for DIC and DO analysis were stored in
255 borosilicate vials (n = 6 replicates; 3 replicates for DIC and 3 replicates for DO analysis).
256 Both the quartz tubes and borosilicate vials were wrapped with multiple layers of
257 aluminum foil to eliminate light exposure.

258 c) *Control*: Water for DOC concentration and CDOM analysis was sterile filtered and
259 stored in quartz tubes (n = 3 replicates). Water for DIC and DO analysis was treated with
260 1% HgCl₂ and stored in borosilicate vials (n = 6 replicates; 3 replicates for DIC and 3
261 replicates for DO analysis). All samples were wrapped in aluminum foil (dark).

262

263 The experimental treatments for each lake were deployed for seven days at the surface of
264 Lake Lacawac in May, June, July, and August of 2016 (for exact sampling dates see SI, Table 1).
265 Mean surface lake temperature for each experiment are reported in SI Table 1. Samples were
266 kept at the lake surface using floating racks, and samples from each lake were randomly
267 distributed across the racks. The deployment design ensured that samples stayed at the surface

268 and dipped no deeper than 2 cm in the water column. After the one-week exposure, racks were
269 collected from the surface of Lake Lacawac and samples were immediately transferred into
270 coolers and returned to the lab. We assessed the response of terrestrially derived DOC to
271 photodegradation and biodegradation by measuring changes in the concentrations of DOC, DIC,
272 and DO, and the absorbance properties (SUVA₃₂₀ and S_r) of the CDOM. All samples were
273 analyzed within 72 hours of collection.

274 Dissolved organic carbon concentrations and standards were analyzed using a Shimadzu
275 TOC-V_{CPH} Total Organic Analyzer with an ASI-V auto sampler. External acidification was used
276 for each sample and triplicate measurements were performed following the methods of Sharp
277 (1993). Diluted 50 ppm DOC standards (Aqua Solutions) were used to calibrate the TOC
278 Analyzer and standards were regularly analyzed with the samples. Dissolved inorganic carbon
279 concentrations (as CO₂) were measured with a Shimadzu GC-8A Gas Chromatograph using
280 helium as the carrier gas. Samples were acidified using 0.1 N H₂SO₄ and then stripped with
281 nitrogen gas prior to injection. Dissolved oxygen was measured using a modified Winkler
282 titration (Parson et al., 1984). Samples for gas measurements (DO and DIC) were kept in a 21°C
283 water bath for 30 minutes prior to analysis. These samples were well mixed just prior to analysis.
284 The absorbance properties of CDOM were analyzed using a Shimadzu UV 1800 scanning
285 spectrophotometer at 25°C. Raw absorbance scans were generated from 800 to 200 nm using a 1
286 cm cuvette and were blank corrected with ultra-pure DI water. From the absorbance scans, the
287 spectral slope ratio (S_r; 275-295 : 350-400 nm) was calculated following Helms et al. (2008).
288 The DOC specific ultraviolet absorbance at 320 nm (SUVA₃₂₀) was calculated following
289 methods in Williamson et al., (2014). S_r can be used as a proxy for the molecular weight of the

290 DOC, while SUVA₃₂₀ can be used as a proxy for DOC color and aromatic carbon content (Helms
291 et al., 2008, Williamson et al., 2014).

292 Due to differences between the borosilicate vials and quartz tubes, the DIC and DO
293 samples were spectrally corrected for the amount of light they received (SI, SFig. 1). Total
294 cumulative energy exposure over the monthly incubations was calculated from a BSI Model
295 GUV-521 (Biospherical Instruments, San Diego, CA) radiometer with cosine irradiance sensors
296 that have a nominal bandwidth of 8 nm for 305 nm, 320 nm, 340 nm, 380 nm, and 400-700 nm
297 (PAR). Daily irradiance for UV-B, UV-A, and PAR were calculated using 15-minute averages of
298 1-second readings from a GUV radiometer located near Lake Lacawac over the 7-day
299 experiments. The area under the curve was calculated by multiplying the measurement frequency
300 (900 sec) by the average of two adjacent time step readings. These values were then summed
301 over the exposure period to calculate the total cumulative energy exposure for each sample.
302 Readings from a profiling BIC sensor (Biospherical Instruments, San Diego, CA) were then used
303 to calculate the percent of the deck cell at the surface rack incubation depth (0.02 m) in Lake
304 Lacawac.

305

306 ***1.3 Explanation of Calculations and Statistical Analysis***

307 To determine the fate of terrestrial DOC in the four lakes, we used the measured changes
308 (i.e. final – control) in DOC and DIC concentrations to identify four pools of DOC:
309 photomineralized, partially photodegraded, biodegraded, and unprocessed. The amount of carbon
310 photomineralized (converted to CO₂) was calculated as the concentration of DIC produced by
311 sunlight (i.e. carbon that was completely oxidized by sunlight). The amount of carbon partially
312 photodegraded represents the remainder of the carbon pool that was processed by sunlight (but

313 not completely oxidized to CO_2) and was calculated as the total DOC processed by sunlight
314 minus the amount photomineralized (Eq 1).

315 Equation 1. Partially Photodegraded = [Total Photodegraded – Photomineralized]

316 The amount of carbon biodegraded was calculated as the concentration of DOC lost in the
317 biodegradation treatments. The unprocessed carbon was calculated as the fraction of the carbon
318 pool that was not processed by either sunlight or microbes as shown in Eq. 2

321 Each process was determined for each lake and each month. Here we report the average response
322 across all four months for each DOC pool.

323 While we carried out monthly experiments (May-August), here we report the average
324 response across the open-water season (i.e. all four months) to provide a more complete picture
325 of DOC processing. The downside of this approach is that it potentially increases variation in
326 variables associated with DOC processing, since such processing may vary across the season.
327 However, there was not a strong seasonal response to photodegradation or biodegradation in all
328 of our study variables (SI Fig. 3). Furthermore, the majority of the terrestrial DOC was collected
329 on a single date and time (except for Lake Annie).

Final treatments were compared relative to the dark and killed (1% HgCl_2) control treatments, as those samples were deployed at the surface of the lake with the photodegradation and biodegradation treatments. We used a t-test to determine whether the photodegradation samples for all of the variables were significantly different from the biodegradation samples ($n = 12$ for each treatment) in each lake (Table 2). Photodegradation and biodegradation samples were analyzed separately using a one-way ANOVA to assess differences between lakes. A post-hoc

336 Tukey's multiple comparison test (Sigma Plot 14.0) was used to determine if there were
337 significant differences in the response variables between the lakes to the photodegradation and
338 biodegradation treatments (Fig 1). A descriptive discriminant analysis (DDA) was used to
339 classify the four lakes based on changes in DOC, DIC, DO, SUVA₃₂₀, and S_r measurements due
340 to photodegradation (Fig 3). Since these five measures are likely to be highly correlated with one
341 another, DDA is a good choice since it considers these relationships simultaneously in the
342 analysis (Sherry 2006). In this case, DDA, works by producing linear combinations of the five
343 measured variables (DOC, DIC, DO, SUVA₃₂₀, and S_r). The first linear combination provides the
344 best separation of the four lakes, followed by subsequent linear combinations for axes that are
345 orthogonal (Sherry, 2006). Linear combinations are weighted more heavily by variables that are
346 better able to discriminate between the lakes. In the figures and tables below, we report these
347 data as either average measured changes (i.e. concentrations) or average percent changes and
348 have indicated where appropriate. Data for this experiment were analyzed in either Sigma Plot
349 14.0 (Fig. 1, Table 2) or Systat version 10.2 (Fig. 4).

350

351 **2. Results**

352 Throughout the results and discussion, the use of the lake names is to present the data in a
353 meaningful manner, but it is important to recognize that the actual water samples originated from
354 groundwater samples adjacent to each lake.

355

356 **2.1 Photodegradation and biodegradation responses in each lake**

357 Photodegradation altered DOC quantity and CDOM significantly more than
358 biodegradation for terrestrial DOC from the watersheds of all four lakes (Table 2, Fig. 1). For the

359 photodegradation only treatments, exposure to sunlight resulted in significant production of DIC
360 and increases in S_r , as well as significant decreases in DO, DOC, and SUVA₃₂₀ relative to the
361 biodegradation treatments. The only significant effect of biodegradation on terrestrial DOC was
362 a reduction in DO concentrations compared to the dark control (Fig. 1c). In all other cases, the
363 biodegradation treatments were not significantly different than the control, and the average
364 percent change was close to 0.

365 The terrestrial DOC from the brown-water lakes (Lacawac and Annie) typically followed
366 similar patterns to each other, while the terrestrial DOC from the oligotrophic and eutrophic
367 lakes (Giles and Waynewood) responded more similarly to each other. In the brown-water lakes,
368 we observed a stronger response in DOC quantity (i.e. DOC, DIC, and DO), while the changes in
369 DOC quantity were much more muted in the oligotrophic and eutrophic lakes. The responses of
370 S_r changes in each lake due to sunlight did not differ significantly. All four lakes showed a strong
371 response to changes in terrestrial CDOM (i.e. SUVA₃₂₀ and S_r).

372

373 **Table 2.** A summary of the mean (\pm SD) final concentration of DOC, DIC, DO, SUVA₃₂₀ and S_r
 374 in photodegradation (Photo), biodegradation (Bio), and control experimental treatments in
 375 groundwater samples from the watersheds of lakes Lacawac, Annie, Giles, and Waynewood. The
 376 mean (\pm SD) initial concentration for each variable is also depicted. The P/B column list the
 377 results of a t-test to determine whether photodegradation samples were significantly different
 378 from the biodegradation samples (n = 12 for each treatment for the four months). Bolded values
 379 indicate the Photo treatments that were statistically different from the Bio treatments (p < 0.05).

Analysis	Treatment	Lacawac (Mean \pm SD)	P/B p-value	Annie (Mean \pm SD)	P/B p-value	Giles (Mean \pm SD)	P/B p-value	Waynewood (Mean \pm SD)	P/B p-value
DOC (μ moles L ⁻¹)	Photo	3600 \pm 330	p < 0.001	1270 \pm 211	p < 0.001	692 \pm 123	p = 0.08	883 \pm 73.3	p = 0.002
	Bio	4910 \pm 674		1810 \pm 45.7		608 \pm 99.0		765 \pm 93.8	
	Control	5110 \pm 628		1820 \pm 76.9		630 \pm 102		783 \pm 73.8	
DIC (μ moles L ⁻¹)	Photo	54 \pm 8.2	p < 0.001	41.9 \pm 11.4	p < 0.001	20.4 \pm 1.9	p = 0.02	32.2 \pm 7.3	p = 0.04
	Bio	16.1 \pm 5.0		25.3 \pm 7.2		17.7 \pm 3.0		27.1 \pm 8.0	
	Control	13.8 \pm 4.6		30.4 \pm 18.2		15.3 \pm 2.1		27.8 \pm 3.5	
DO (μ moles L ⁻¹)	Photo	278 \pm 62.4	p < 0.001	419 \pm 25.9	p < 0.001	536 \pm 35.6	p = 0.16	522 \pm 49.0	p = 0.05
	Bio	556 \pm 46.4		533 \pm 42.2		556 \pm 34.3		577 \pm 76.9	
	Control	660 \pm 29.4		656 \pm 32.1		688 \pm 60.9		702 \pm 57.3	
SUVA ₃₂₀ (m ⁻¹ /mg L ⁻¹)	Photo	4.3 \pm 0.4	p < 0.001	2.4 \pm 0.4	p < 0.001	2.4 \pm 0.2	p < 0.001	1.8 \pm 0.2	p < 0.001
	Bio	5.3 \pm 0.2		3.8 \pm 0.1		4.8 \pm 0.3		3.2 \pm 0.2	
	Control	5.1 \pm 0.2		3.8 \pm 0.1		4.7 \pm 0.2		3.2 \pm 0.1	
S _r	Photo	1.1 \pm 0.0	p < 0.001	1.3 \pm 0.1	p < 0.001	1.4 \pm 0.1	p < 0.001	1.2 \pm 0.1	p < 0.001
	Bio	0.7 \pm 0.1		0.8 \pm 0.0		0.9 \pm 0.1		0.8 \pm 0.1	
	Control	0.7 \pm 0.1		0.8 \pm 0.0		0.9 \pm 0.1		0.9 \pm 0.1	

380

381 Sunlight caused average (\pm SD) DOC losses relative to the control treatments of 30.5 \pm
 382 11.5% and 28.9 \pm 8.3% in Lacawac and Annie, respectively (Fig. 1a). In Giles and Waynewood,
 383 we observed an average of 9.6 \pm 6.5% and 13.4 \pm 6.2% increase in DOC concentration,
 384 respectively following exposure to sunlight. When we compared lakes within each treatment,
 385 there were no significant differences in DOC concentration due to sunlight in Giles vs.
 386 Waynewood, whereas Annie and Lacawac were significantly different from the prior two lakes
 387 and from each other (ANOVA: $F_{1,3} = 70.9$, p < 0.001).

388 Decreases in DOC concentration due to photodegradation could lead to mineralization
 389 (i.e. DIC production; Fig. 1b) and therefore oxidation (i.e. DO consumption; Fig. 1c). We

390 observed the production of DIC due to sunlight in all of our lakes (Fig. 1b). In Lacawac and
391 Annie, the average (\pm SD) percent increases in DIC relative to the control treatments were $350 \pm$
392 160% and $96.0 \pm 79.0\%$, respectively. The average percent increases relative to controls in Giles
393 and Waynewood were $40.7 \pm 19.4\%$ and $23.2 \pm 12.7\%$ respectively. The DIC percent change
394 was similar between Giles and Waynewood, and both were statistically different from Annie and
395 Lacawac. The percent DIC change in Lacawac was significantly higher than Annie (ANOVA:
396 $F_{1,3} = 36.4$, $p < 0.001$).

397 In all lakes, both photodegradation and biodegradation led to decreases in DO
398 concentrations (Fig. 1c). Average DO losses due to biodegradation for all four lakes ranged from
399 15 to 18%. DO losses due to photodegradation were more variable. The average DO loss from
400 sunlight in Lacawac and Annie was $58.2 \pm 7.8\%$ and $35.9 \pm 5.4\%$, respectively. In Giles and
401 Waynewood, we observed average DO losses of $21.6 \pm 7.9\%$ and $25.6 \pm 4.7\%$ respectively.
402 While the largest losses of DO due to sunlight were observed in Annie and Lacawac, there was
403 no significant difference between Annie and Waynewood. Giles and Lacawac were significantly
404 different from the other two lakes and from each other (ANOVA: $F_{1,3} = 73.9$, $p < 0.001$).

405 Changes in CDOM due to biodegradation were minimal in all of the lakes (Fig. 1d & 1e).
406 In contrast, photodegradation caused significant changes in all of the lakes, but the magnitude of
407 the change varied by lake. SUVA₃₂₀ decreased in all lakes due to sunlight, but the largest changes
408 were observed in the oligotrophic and eutrophic lakes (Fig. 1d). Average SUVA₃₂₀ values
409 decreased between 16.8% in Lacawac and 48.9% in Giles. The response in Annie and
410 Waynewood were similar, whereas Lacawac and Giles were significantly different from the prior
411 two lakes and each other (ANOVA: $F_{1,3} = 39.7$, $p < 0.001$). In all lakes, S_r increased due to
412 sunlight (Fig. 1e). Average percent increases for the lakes ranged from 46.4% in Waynewood to

413 65.1% in Lacawac. For S_r , the response between Lacawac and Waynewood were significantly
 414 different, but those lakes were no different compared to the remaining lakes (ANOVA: $F_{1,3} = 3.1$,
 415 $p = 0.04$).

416

417

418 **Figure 1.** The monthly average percent change from the dark and killed control treatments
 419 (dashed line) in each lake for photodegradation (left) and biodegradation (right) for (a) DOC, (b)
 420 DIC, (c) DO, (d) SUVA₃₂₀, and (e) S_r . Statistical differences ($p < 0.05$) between lakes are
 421 indicated by different letters above each boxplot. For each boxplot $n = 12$ replicates.

422

423 **2.2 Fate of DOC**

424 Of the four pools of carbon we identified in the groundwater samples entering our study
 425 lakes, we found the average amount of carbon processed by sunlight ranged from 0.6% to ~30%
 426 (Fig. 2). Carbon in Giles and Waynewood (< 1%) showed little response to sunlight, whereas the
 427 response in Annie and Lacawac (~30%) was much higher over the 7-day experiments. The
 428 dominant pathway through which sunlight interacted with DOC was through partial
 429 photodegradation in these latter two lakes. About 1% of the carbon pool was photomineralized in
 430 the brown water lakes. The amount of carbon processed via biodegradation was minimal in all

431 lakes (ranging from 0.2–4%). The fraction of the unprocessed carbon pool ranged from a low of
432 66% for Lacawac to a high of 97% for Waynewood. An average of 2.6 to 33% of the carbon
433 pool was processed in one week. The photomineralization data represents a minima value for
434 each lake due to some of the DIC partitioning into the headspace of each vial.

435

436 **Figure 2.** A summary of the average fate of carbon in the groundwater samples from our study
437 lakes (see methods section for explanation of calculations). All terms were converted to a carbon
438 basis. Photomineralized describes the amount of carbon completely mineralized to CO₂ by

439 sunlight. Partially photodegraded describes the amount of carbon processed by sunlight minus
440 the amount photomineralized. Biodegraded describes the amount of carbon lost through
441 biodegradation. Unprocessed carbon describes the remaining carbon that was not processed by
442 photodegradation or biodegradation.

443

444 **2.3 DOC response by lake trophic status**

445 For the descriptive discriminant analysis (DDA) to classify the lakes, we found that the
446 five metrics were strongly correlated with one another (Table 3). In general, the changes in DOC,
447 DIC, and DO were more strongly correlated with one another than with SUVA₃₂₀ and S_r and vice
448 versa (Table 3). We will refer to the changes in DOC, DIC, and DO as “DOC quantity” and the
449 changes in SUVA₃₂₀ and S_r as “CDOM” for brevity.

450

451 **Table 3.** Pearson correlations between the measured changes in the five metrics: DOC, DIC, DO,
452 SUVA₃₂₀, and S_r.

	DOC	DIC	DO	SUVA ₃₂₀
DIC	-0.934			
DO	0.869	-0.837		
SUVA ₃₂₀	-0.705	-0.671	-0.666	
S _r	-0.027	0.021	0.163	-0.319

453

454 DDA produced three functions (axes) with canonical correlations of 0.961, 0.753, and
455 0.181 (Fig. 3). Collectively, the entire model was significant (Wilks' $\lambda = 0.032$; $F_{15, 108} = 17.79$; $p < 0.001$). Effect size was calculated following Sherry and Henson (2010) as $1 - \text{Wilks}' \lambda$, and
456 therefore the overall model explains 96.8% of the variation among lakes. Functions 1 through 3
457 and 2 through 3 were significant ($p < 0.001$ for both). Function 3 was not significant ($p = 0.710$)
458 and therefore is not discussed further. Functions 1 through 3 collectively explain 92.4% of the
459 shared variance while functions 2 through 3 collectively explain 56.7% of the shared variance.

460
461 Function 1 represents a new variate that is a linear combination of the changes in the five
462 variables that best discriminates the lakes from one another. This new variate is composed

463 mainly of DOC, with a function coefficient of 0.465 and a structure coefficient of 0.821 (Table
 464 4). Of note are also DIC, DO, and SUVA₃₂₀ that had smaller function coefficients (< 0.45), but
 465 had large structure coefficients (> 0.45). This result suggests that Function 1 is mainly related to
 466 DOC quantity. Function 2, also a new variate that is a linear combination of the five measured
 467 changes, is composed mainly of SUVA₃₂₀ (function coefficient = 0.985 and structure coefficient
 468 = 0.719; Table 4). Function 2 is orthogonal to Function 1 and together they discriminate the four
 469 lakes (Fig. 3).

470
 471 **Table 4.** The solution for changes in measured independent variables that predict the dependent
 472 variable, lake. Structure coefficients (r_s) and communality coefficients greater than |0.45| are in
 473 bold. Coeff = standardized canonical function coefficient; r_s = structure coefficient; r_s^2 = squared
 474 structure coefficient.

475

Variable	Function 1			Function 2		
	Coeff.	r_s	r_s^2 (%)	Coeff.	r_s	r_s^2 (%)
DOC	0.465	0.821	67.40	0.639	0.278	40.83
DIC	-0.337	-0.703	11.36	-0.059	-0.216	0.35
DO	0.440	0.679	19.36	-0.124	0.009	1.54
SUVA ₃₂₀	-0.139	-0.473	1.93	0.985	0.719	97.02
S _r	0.244	0.068	5.95	-0.238	-0.434	5.66

476

477

478 **Figure 3.** Canonical plot scores and 95% confidence ellipses from descriptive discriminant
 479 analysis of the measured changes (i.e. treatment minus control) in the five variables (DOC, DIC,
 480 DO, SUVA₃₂₀, and S_r) and four lakes: Annie (olive circles), Giles (blue squares), Lacawac (red
 481 triangles), and Waynewood (green diamonds). Only photodegradation samples were included in
 482 this analysis.

483 DDA correctly classified 89.4% of the samples to their collection site (Fig. 3). One
 484 sample from Annie was incorrectly assigned to Waynewood, two samples from Giles were
 485 incorrectly assigned to Waynewood, and two samples from Lacawac were incorrectly assigned
 486 to Annie. All of the Waynewood samples were correctly classified.

487

488 **3. Discussion**

489 **3.1 Comparing the relative importance of photodegradation and biodegradation**

490 Despite a large number of studies examining the effects of either photodegradation or
 491 biodegradation on DOC processing, very few have conducted simultaneous *in-situ* experiments
 492 of the relative importance of both processes for transforming DOC from the watersheds of a
 493 range of different lakes. Our results indicate that sunlight was the primary process in the surface

494 waters responsible for degrading terrestrial DOC from the watershed of all four lakes.
495 Biodegradation played a minimal role in changing the DOC quantity and CDOM. We observed
496 decreases in DOC, DO, and SUVA₃₂₀ due to sunlight and saw increases in DIC and S_r. The loss
497 of DOC, as well as a shift to more photobleached, and lower molecular weight organic material
498 is consistent with prior studies on these lakes that evaluated just the effects of sunlight (Morris
499 and Hargreaves, 1997). Exceptions to DOC loss due to photodegradation occurred in Giles and
500 Waynewood. In these lakes, we observed an increase in average DOC concentrations. In Giles,
501 there was significant production of DOC in June and July. In Waynewood, significant production
502 occurred in May and July. We speculate that this production may be due to the lysing of any
503 microbes remaining in solution. Increases may also be attributed to interactions with iron. We
504 have no measurable evidence, but a number of samples from Giles and Waynewood contained a
505 red precipitate at the conclusion of the one-week experiments. Iron-bound DOC could have been
506 released back into the water. Subsequent photodegradation experiments using water from Giles
507 and Waynewood have also indicated DOC production (Dempsey, unpublished).

508 Dissolved oxygen was the lone variable where biodegradation led to decreases relative to
509 the controls, but the differences between lakes were not significant. We attributed the changes in
510 DO to the “sloppy feeding” of bacteria, where they produce DOC through exudates and then
511 assimilate it (Evans et al., 2017). The above results are similar to observations in Arctic and
512 tropical waters in that photodegradation was more important than biodegradation on short time
513 scales (Cory et al., 2014; Chen and Jaffé, 2014; Amado et al., 2003). Interestingly, we found that
514 terrestrial DOC from the watersheds of lakes of different trophic status was processed
515 differently, resulting in DIC production and DOC degradation for the brown-water lakes
516 (Lacawac and Annie), but greater changes in SUVA₃₂₀ for the oligotrophic and eutrophic lakes

517 (Giles and Waynewood). This highlights the need to account for lake trophic status in predicting
518 DOC processing and CO₂ emissions from lakes.

519

520 **3.2 Dominant degradation process**

521 Based on our study design we were able to identify four pools of carbon:
522 photomineralized, partially photodegraded, biodegraded, and unprocessed. The dominant
523 degradation pathway across all lakes was partial photodegradation (i.e. loss of DOC, but no
524 mineralization), although the size of each carbon pool varied by lake. In the brown-water lakes,
525 ~28% of the total carbon pool was partially photodegraded and ~1% was photomineralized. In
526 the oligotrophic and eutrophic lakes ~0.7% of the carbon was photomineralized and none of the
527 carbon was partially photodegraded. The values reported here for photomineralization are
528 underestimates. Actual values are likely to be higher since we did not account for DIC that
529 partitioned into the headspace of the exetainer vials. If we assume a 1:1 (O₂: CO₂) respiration
530 quotient (RQ) (Cory et al, 2014) and use our DO data in the Fig 2 calculations,
531 photomineralization in Annie and Lacawac could be as high as 13 and 7.5% of the carbon pool
532 respectively. Use of the oxygen data is less than ideal since several authors have reported RQ
533 values different than 1:1 (Allesson et al, 2016 and Xie et al, 2004).

534 Observations in Toolik Lake showed 70% of the total carbon pool being processed by
535 sunlight during the open water period (~3 months) (Cory et al., 2014). Other estimates have
536 found that photomineralization of DOC accounts for only 8-14% of total water column CO₂
537 production (Granéli et al., 1996; Jonsson et al., 2001; Koehler et al., 2014; Vachon et al., 2016b).
538 We observed ~30% of the carbon pool being processed by sunlight within one week in our lakes
539 and this was restricted to the brown-water lakes. Similar to Toolik Lake, the dominant

540 degradation process was partial photodegradation. Partial photodegradation can alter CDOM and
541 stimulate subsequent bacterial respiration. Degradation of CDOM can have important effects for
542 downstream ecosystems if it can be further processed and released as CO₂ or instead is buried or
543 exported downstream (Weyhenmeyer et al., 2012; Catalan et al., 2016; Chen and Jaffe, 2014;
544 Biddanda and Cotner, 2003). It is thus important to include all sunlight-driven degradation
545 processes to fully account for its relative importance.

546 Differences between the responses observed in the Arctic and our temperate/subtropical
547 lakes are most likely explained by the initial concentration and quality of terrestrially derived
548 DOC and time. In the Arctic, glacial meltwater can be highly photolabile and dominated by
549 seasonal inputs of DOC from shallow or deep soils (Cory et al., 2014; Spencer et al., 2014; and
550 Kaiser et al., 2017). In temperate regions, DOC tends to contain more humic and fulvic acids
551 derived from soils, which may be less photolabile than Arctic DOC. Additionally, we did not
552 integrate our results over the entire water column because the samples were analyzed on the
553 surface of a single lake. Over the entire water column, photodegradation could have processed
554 additional carbon. In clear-water lakes, DOC may be photodegraded down to the 1% UV-A
555 attenuation depth (Osburn et al., 2001), which ranged from 0.7-4.7 m in our study lakes (Table
556 1).

557

558 ***3.3 Response of lakes to photodegradation***

559 With an increase in extreme precipitation events, terrestrial DOC inputs are likely to
560 increase in many aquatic ecosystems (Rahmstorf and Coumou, 2011; Westra et al., 2014). By
561 using groundwater as a proxy of terrestrial inputs from the watersheds of different types of lakes,
562 we simulated the effects of storm events and compared the sensitivity of different terrestrial

563 DOC sources to photodegradation. Interestingly, we found DOC from the watersheds of
564 oligotrophic and eutrophic lakes showed stronger changes in CDOM, compared to DOC from the
565 watersheds of the brown-water lakes that showed significantly larger changes in DOC quantity.
566 This difference may be due to the more allochthonous nature of the brown-water DOC, which is
567 highly photolabile, resulting in greater changes in DOC quantity due to its ability to absorb UV
568 radiation (Bertilsson and Tranvik, 2000). The less allochthonous and more microbially derived
569 DOC from the watersheds of the eutrophic and oligotrophic lakes may be less photolabile with
570 fewer UV-absorbing chromophores. Results of the DDA may be helpful in predicting changes in
571 other lakes based on their trophic status. SUVA₃₂₀ is the variable most likely to change due to
572 photodegradation in eutrophic and oligotrophic lakes. In contrast, DOC concentration is the
573 variable most likely to change in brown-water lakes due to photodegradation. Both results (DOC
574 and SUVA₃₂₀) highlight how lakes of varying trophic status respond to photodegradation. These
575 results can be used to predict how lakes not included in this study will respond to increased DOC
576 concentrations (i.e. browning).

577 Across our study lakes, changes in DIC production scaled linearly with initial
578 groundwater DOC concentration. Lacawac had the highest initial DOC concentration (59.4 ± 6.1
579 mg L⁻¹) and the highest average DIC production, while Giles had the lowest initial DOC
580 concentration (6.0 ± 0.6 mg L⁻¹) and the lowest average DIC production. This suggests that the
581 initial DOC concentration plays a critical role in determining the fate of DOC (Leech et al.,
582 2014; Lapierre et al., 2013). Lake temperature can also influence photodegradation. In this
583 study, average lake temperature increased from May through July (SI Table 1). Porcal et al.
584 (2015) showed that the largest loss of DOC occurred in warmer (i.e. 25 °C) waters due to
585 photodegradation. Additionally, DIC production was higher in those waters compared to colder

586 water (9 °C) (Porcal et al., 2015) Recent research has also reported that residence time controls
587 organic carbon decomposition across a wide range of freshwater ecosystems (Catalan et al.,
588 2016, Evans et al., 2017). However, extreme precipitation events may shorten the residence time
589 of lakes, effectively flushing out fresh DOC and preventing significant in-lake degradation from
590 occurring (de Wit et al., 2018). For the terrestrial DOC from the oligotrophic and eutrophic
591 lakes, a significant fraction was not degraded, which may mean that terrestrial inputs from these
592 watersheds undergoes less immediate in-lake processing and instead is exported downstream.
593 Our results indicate that differences in the fate and processing of DOC from the watersheds of a
594 range of lake types have important implications for determining which lakes may release more
595 CO₂ versus export DOC downstream (Weyhenmeyer et al., 2012; Zwart et al., 2015;
596 Weyhenmeyer and Conley, 2017).

597 Even though we observed similar responses to photodegradation in the brown-water lakes
598 (Fig. 1), the magnitude of the response varied and may have been related to the initial DOC
599 concentration. Initial concentrations (mg L⁻¹) of terrestrial DOC from Lacawac (59.4 ± 6.1) were
600 almost 3x higher than Annie (20.7 ± 0.5). Average DOC losses for both lakes due to
601 photodegradation were ~30%. The main difference between Lacawac and Annie was the DIC
602 percent change due to photodegradation (Fig. 1b). Average percent increases in DIC for Lacawac
603 were close to 400%, whereas in Annie it was ~85%. Despite the fact that both Annie and
604 Lacawac are brown-water lakes, their different DIC production rates indicate that certain types of
605 terrestrial DOC may be more photolabile than others and capable of outgassing large amounts of
606 CO₂. The DDA analysis did also pick out the separation between Lacawac and Annie primarily
607 on axis 1 (DOC). The responses in Annie shared similarities with the other 3 lakes while
608 Lacawac only overlapped with Annie. When put in the context of the entire DOC pool for each

609 lake, photomineralization accounted for 1% of the carbon loss. We anticipated that terrestrial
610 DOC from subtropical lakes would undergo additional microbial processing due to the higher
611 temperatures year-round. In a comparison between boreal Swedish and tropical Brazilian lakes,
612 Graneli et al., (1998) also found strong similarities in changes of DOC concentrations and DIC
613 production between lakes from the different latitudes. A weak significant correlation between
614 DOC concentration and DIC production has also been observed in Amazon clear water systems
615 (Amado et al., 2003)

616

617 **Conclusions**

618 Here we showed that photodegradation can be more important than biodegradation in
619 processing watershed inputs of terrestrial DOC on short time scales in the surface waters of a
620 lake. The responses that we observed varied with lake trophic status. Quantitative changes in
621 DOC, DIC, and DO were strongest in the terrestrial DOC from the watersheds of the brown-
622 water lakes, whereas the largest changes in SUVA₃₂₀ were observed in the terrestrial DOC from
623 the watersheds of the eutrophic and oligotrophic lakes. Consistent with prior studies, we found
624 that sunlight can impact not only changes in the concentration, but also CDOM characteristics.
625 We observed a range of 2.6 to 33% of the carbon pool processed in one week. As DOC
626 concentrations increase in some aquatic ecosystems, the potential for increased CO₂ outgassing
627 due to photo-mineralization also increases. On short time scales, sunlight had important impacts
628 on our study lakes. Future studies should focus on additional lakes, longer timescales, and
629 integrating DIC production throughout the water column.

630 Over the next century, DOC concentrations in northern boreal lakes are projected to
631 increase by 65% (Larsen et al., 2011). Thus, understanding the fate of terrestrial sourced organic

632 material will be essential for predicting the ecological consequences for lakes and downstream
633 ecosystems (Solomon et al., 2015; Williamson et al., 2015; Finstad et al., 2016). Improving
634 estimates of organic carbon processing in lakes will be an important component of creating more
635 complete carbon budgets (Hanson et al., 2004; 2014) and global estimates of CO₂ emissions can
636 be more accurately scaled to reflect the ability of lakes to act as CO₂ sinks or sources as
637 browning continues (Lapierre et al., 2013, Evans et al., 2017).

638

639 **Acknowledgements**

640 This project was supported by NSF grants DBI-1318747 (LBK, CEW, and others), DBI-1542085
641 (LBK, CEW, CMD), DEB 1754276 (CEW), the Robert Estabrook Moeller Research Fellow
642 Award (CMD, JAB), the Isabel and Arthur Watres Student Research Award (SM), and the staff
643 and resources of Archbold Biological Station. Data were provided by Archbold Biological
644 Station. We would like to thank Kevin Main for assistance in collecting Lake Annie water
645 samples and Erin Overholt for assistance in the lab and logistical support. The authors would like
646 to thank four anonymous reviewers for their assistance in improving the manuscript. The authors
647 declare no competing interests.

648

649 **Data Availability:**

650 Data and metadata will be made available in the Environmental Data Initiative repository. Data
651 archiving will be led by C. Dempsey and J. Brentrup.

652

653

654

655 **Author Contribution Statement**

656 CMD, JAB, and CEW designed the study with help from LBK, EEG, and HMS. CMD, JAB,
657 SM, and HMS collected the water samples and ran the experiments. DPM provided the
658 analytical equipment for measuring DIC and DOC. CMD and JAB analyzed the data, and CMD
659 and MTG conducted the statistical and DDA analyses. CMD and JAB wrote the manuscript with
660 contributions from all of the authors.

661

References

662
663
664 Allesson, L., Ström, L., and Berggren, M. Impact of photochemical processing of DOC on the
665 bacterioplankton respiratory quotient in aquatic ecosystems. *Geophysical Research Letters*,
666 43: 7538-7545. 2016.
667 Amado, A.M., Farjalla, V.F., Esteves, F.A., and Bozelli, R.L. DOC photo-oxidation in clear
668 water Amazonian aquatic ecosystems. *Amazonia* 17 (3/4): 513-523, 2003.
669 Bertilsson, S. and L. J. Tranvik. Photochemical transformation of dissolved organic matter in
670 lakes. *Limnology and Oceanography* 45: 753-762. doi:10.4319/lo.2000.45.4.0753, 2000.
671 Biddanda, B.A. and Cotner, J.B. Enhancement of Dissolved Organic Matter Bioavailability by
672 Sunlight and Its Role in the Carbon Cycle of Lakes Superior and Michigan. *Journal of Great
673 Lakes Research* 29 (2): 228-241, 2003.
674 Catalan, N., R. Marcé, D. N. Kothawala, and L. J. Tranvik. Organic carbon decomposition rates
675 controlled by water retention time across inland waters. *Nature Geoscience* 9: 501-504.
676 doi:10.1038/ngeo2720, 2006.
677 Cole, J. J., N. F. Caraco, G. W. Kling, and T. K. Kratz. Carbon dioxide supersaturation in the
678 surface waters of lakes. *Science* 265: 1568-1570, 1994.
679 Cory, R. M., C. P. Ward, B. C. Crump, and G. W. Kling. Sunlight controls water column
680 processing of carbon in arctic fresh waters. *Science* 345: 925-928.
681 doi:10.1126/science.1253119, 2014.
682 Chen, M. and R. Jaffe. Photo- and bio-reactivity patterns of dissolved organic matter from
683 biomass and soil leachates and surface waters in a subtropical wetland. *Water Research* 61:
684 181-190. DOI: 10.1016/j.watres.2014.03.075, 2014.
685 Chen, M., Jaffé, R. Quantitative assessment of photo- and bio-reactivity of chromophoric and
686 fluorescent dissolved organic matter from biomass and soil leachates and from surface
687 waters in a subtropical wetland. *Biogeochemistry* 129: 273-289.
688 <https://doi.org/10.1007/s10533-016-0231-7>, 2016.
689 de Eyto, E., E. Jennings, E. Ryder, K. Sparber, M. Dillane, C. Dalton, and R. Poole. Response of
690 a humic lake ecosystem to an extreme precipitation event: physical, chemical, and biological
691 implications. *Inland Waters* 6: 483-498. doi:10.5268/IW-6.4.875, 2016.
692 de Wit, H. A., S. Valinia, G. A. Weyhenmeyer, and others. Current Browning of Surface Waters
693 Will Be Further Promoted by Wetter Climate. *Environ. Sci. Technol. Lett.* 3: 430-435.
694 doi:10.1021/acs.estlett.6b00396, 2016.
695 de Wit, H.A., Couture, R.M., Jackson-Blake, L., Futter, M.N., Valinia, S., Austnes, K., Guerrero,
696 J., and Lin, Y. Pipes or chimneys? For carbon cycling in small boreal lakes, precipitation
697 matters most. *Limnology and Oceanography Letters* 3:275-284, 2018.
698 del Giorgio, P. A., J. J. Cole, and A. Cimberis. Respiration rates in bacteria exceed
699 phytoplankton production in unproductive aquatic systems. *Nature* 385: 148-151, 1997.
700 Duan, S., He, Y., Kaushal, S.S., Bianchi, T.S., Ward, N.D., and Guo, L. Impact of wetland
701 decline on decreasing dissolved organic carbon concentrations along the Mississippi River
702 continuum. *Frontiers in Marine Science* 3:280. doi: 10.3389/fmars.2016.00280, 2017.
703 Evans, C.D., Futter, M.N., Moldan, F., Valinia, S., Frogbrook, Z., and Kothawala, D.N.
704 Variability in organic carbon reactivity across lake residence time and trophic gradients.
705 *Nature Geosciences* 3: 832-837. doi: 10.1038/NGEO3051, 2017.
706 Fasching, C., and T. J. Battin. Exposure of dissolved organic matter to UV-radiation increases
707 bacterial growth efficiency in a clear-water Alpine stream and its adjacent groundwater.

708 Aquatic Sciences 74: 143–153. doi:10.1007/s00027-011-0205-8, 2011.

709 Finstad, A. G., T. Andersen, S. Larsen, K. Tominaga, S. Blumentrath, H. A. de Wit, H.

710 Tømmervik, and D. O. Hessen. From greening to browning: Catchment vegetation

711 development and reduced S-deposition promote organic carbon load on decadal time scales

712 in Nordic lakes. *Sci. Rep.* 6: 31944–9. doi:10.1038/srep31944, 2016.

713 Fischer, E. M., and R. Knutti. Anthropogenic contribution to global occurrence of heavy

714 precipitation and high-temperature extremes. *Nature Climate Change* 5: 560–564.

715 doi:10.1038/nclimate2617, 2015.

716 Gaiser, E.E., Deyrup, N.D., Bachmann, R.W., Battoe, L.E. and Swain, H.M. Effects of climate

717 variability on transparency and thermal structure in subtropical, monomictic Lake Annie,

718 Florida. *Fundamental and Applied Limnology*. Vol 175 (3): 217-230, 2009.

719 Granéli, W., M. Lindell, and L. Tranvik. Photo-oxidative production of dissolved inorganic

720 carbon in lakes of different humic content. *Limnology and Oceanography* 41: 698–706.

721 doi:10.4319/lo.1996.41.4.0698, 1996.

722 Granéli, W., Lindell, M., de Faria, B.M., and de Assis Esteves, F. Photoproduction of dissolved

723 inorganic carbon in temperate and tropical lakes – dependence on wavelength band and

724 dissolved organic carbon concentration. *Biogeochemistry* 43: 175-195, 1998.

725 Hanson, P. C., A. I. Pollard, D. L. Bade, K. Predick, S. R. Carpenter, and J. A. Foley. A model of

726 carbon evasion and sedimentation in temperate lakes. *Global Change Biology* 10: 1285–

727 1298. doi:10.1111/j.1529-8817.2003.00805.x, 2004.

728 Hanson, P. C., M. L. Pace, S. R. Carpenter, J. J. Cole, and E. H. Stanley. Integrating Landscape

729 Carbon Cycling: Research Needs for Resolving Organic Carbon Budgets of Lakes.

730 *Ecosystems* 18: 363–375. doi:10.1007/s10021-014-9826-9, 2014.

731 Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and Mopper, K. Absorption

732 spectral slopes and slope ratios as indicators of molecular weight, source, and

733 photobleaching of chromophoric dissolved organic matter, *Limnol. Oceanogr.*, 53, 955–969,

734 2008.

735 Hosen, J.D., O.T. McDonough, C.M. Febria, and M.A. Palmer. Altered stream dissolved organic

736 matter composition and bioavailability with urbanization. *Environmental Science &*

737 *Technology*. 48:7817-7824, 2014.

738 Jennings, E., S. Jones, L. Arvola, and others. Effects of weather-related episodic events in lakes:

739 an analysis based on high-frequency data. *Freshwater Biology* 57: 589–601.

740 doi:10.1111/j.1365-2427.2011.02729.x, 2012.

741 Jonsson, A., M. Meili, A.-K. Bergström, and M. Jansson. Whole-lake mineralization of

742 allochthonous and autochthonous organic carbon in a large humic lake (Oertraesk, N.

743 Sweden). *Limnology and Oceanography* 46: 1691–1700, 2001.

744 Julian II, P., Gerber, S., Wright, A.L., Gu, B., and Osborne, T.Z. Carbon pool trends and

745 dynamics within a subtropical peatland during long-term restoration. *Ecological Processes*

746 6:43. DOI 10.1186/s13717-017-0110-8, 2017.

747 Kaiser, K., Candedo-Oropeza, M., McMahon, R., and Amon, R.M. Origins and transformations

748 of dissolved organic matter in large Arctic rivers. *Scientific Reports* 7, 13064, 2017.

749 Kling, G. W., G. W. Kipphut, and M. C. Miller. Arctic lakes and rivers as gas conduits to the

750 atmosphere: implications for tundra carbon budgets. *Science* 251:298-301, 1991.

751 Klug, J. L., D. C. Richardson, H. A. Ewing, and others. Ecosystem Effects of a Tropical Cyclone

752 on a Network of Lakes in Northeastern North America. *Environmental Science &*

753 *Technology* 46: 11693–11701. doi:10.1021/es302063v, 2012.

754 Koehler, B., T. Landelius, G. A. Weyhenmeyer, N. Machida, and L. J. Tranvik. Sunlight-induced
755 carbon dioxide emissions from inland waters. *Global Biogeochemical Cycles* 28: 696–711.
756 doi:10.1002/2014GB004850, 2014.

757 Lapierre, J.-F., F. Guillemette, M. Berggren, and P. A. del Giorgio. Increases in terrestrially
758 derived carbon stimulate organic carbon processing and CO₂ emissions in boreal aquatic
759 ecosystems. *Nat Comms* 4. doi:10.1038/ncomms3972, 2013.

760 Larsen, S., T. Andersen, and D. O. Hessen. Climate change predicted to cause severe increase of
761 organic carbon in lakes. *Global Change Biology* 17: 1186–1192. doi:10.1111/j.1365-
762 2486.2010.02257.x, 2011.

763 Larson, J., Frost, P., Xenopoulos, M., Williams, C., Morales-Williams, A., Vallazza, J., Nelson,
764 J., and Richardson, W. Relationships Between Land Cover and Dissolved Organic Matter
765 Change Along the River to Lake Transition. *Ecosystems*. 17. 10.1007/s10021-014-9804-2,
766 2014.

767 Leech, D., M. Snyder, and R. Wetzel. Alterations in the photomineralization of allochthonous
768 DOM related to elevated atmospheric CO₂. *Inland Waters* 4: 147–156. doi:10.5268/IW-
769 4.2.626, 2014.

770 Lu, Y. H., J. E. Bauer, E. A. Canuel, Y. Yamashita, R. M. Chambers, and R. Jaffe'.
771 Photochemical and microbial alteration of dissolved organic matter in temperate headwater
772 streams associated with different land use, *J. Geophys. Res. Biogeosci.*, 118, 566–580,
773 doi:10.1002/jgrg.20048, 2013.

774 Madronich, S. UV radiation in the natural and perturbed atmosphere. Pages 17–69 in M. Tevini,
775 editor. *Environmental effects of UV (ultraviolet) radiation*. Lewis Publisher, Boca Raton,
776 Florida, 1993.

777 Moeller, R.E., Williamson, C.E., Hargreaves, B.R., and Morris, D.P. *Limnology of lakes
778 Lacawac, Giles, and Waynewood 1989-1993: An introduction to the core lakes of the
779 Pocono comparative lakes program*. Lehigh University, 1995.

780 Monteith, D. T., J. L. Stoddard, C. D. Evans, and others. Dissolved organic carbon trends
781 resulting from changes in atmospheric deposition chemistry. *Nature* 450: 537–540.
782 doi:10.1038/nature06316, 2007.

783 Moran, M. A., W. M. Sheldon Jr, and R. G. Zepp. Carbon loss and optical property changes
784 during long-term photochemical and biological degradation of estuarine dissolved organic
785 matter. *Limnology and Oceanography* 45: 1254–1264. doi:10.4319/lo.2000.45.6.1254, 2000.

786 Morris, D.P. and Hargreaves, B.R. The role of photochemical degradation of dissolved organic
787 carbon in regulating the UV transparency of three lakes on the Pocono Plateau. *Limnology
788 and Oceanography* 42(2): 239–249, 1997.

789 Osburn, C. L., H. E. Zagarese, D. P. Morris, B. R. Hargreaves, and W. E. Cravero. Calculation of
790 spectral weighting functions for the solar photobleaching of chromophoric dissolved organic
791 matter in temperate lakes. *Limnology and Oceanography* 46: 1455–1467.
792 doi:10.4319/lo.2001.46.6.1455, 2001.

793 Parsons, T. R., Y. Maita, and C. M. Lalli. *A manual for chemical and biological methods for
794 seawater analysis*, Pergamon Press, 1984.

795 Porcal, P., Dillon, P.J., Molot, L.A. Temperature Dependence of Photodegradation of Dissolved Organic
796 Matter to Dissolved Inorganic Carbon and Particulate Organic Carbon. *PLoS ONE* 10 (6), e0128884.
797 2015.

798 Rahmstorf, S., and D. Coumou. Increase of extreme events in a warming world. *Proceedings of
799 the National Academy of Sciences of the United States of America* 108: 17905–17909.
800 doi:10.1073/pnas.1101766108, 2011.

801 Raymond, P. A., D. L. Hartmann, R. Lauerwald, and others. Global carbon dioxide emissions
802 from inland waters. *Nature* 503: 355–359. doi:10.1038/nature12760, 2013.

803 Reche, I., Pace, M.L., and Cole, J.J. Relationship of trophic and chemical conditions to
804 photobleaching of dissolved organic matter in lake ecosystems. *Biogeochemistry* 44: 259–
805 280, 1999.

806 Rose, K.C., Williamson, C.E., Saros, J.E., Sommaruga, R., and Fisher, J.M. Differences in UV
807 transparency and thermal structure between alpine and subalpine lakes: implications for
808 organisms. *Photochemical and Photobiological Sciences*. Volume 8(9): 1244–56.
809 doi:10.1039/b9056, 2009a.

810 Rose, K.C., Williamson, C.E., Schladow, S. G., Winder, M., and Oris, J.T. Patterns of spatial and
811 temporal variability of UV transparency in Lake Tahoe, California-Nevada. *Journal of*
812 *Geophysical Research Biogeosciences*. Volume 114(G2). doi:10.1029/2008JG000816, 2009,
813 2009b.

814 Sacks, L.A., Swancar, A., and Lee, T.M. Estimating ground-water exchange with lakes using
815 water-budget and chemical mass-balance approaches for ten lakes in ridge areas of Polk and
816 Highlands Counties, Florida. U.S. Geological Survey: Water-Resources Investigations
817 Report 98-4133. 1998.

818 Saros, J. E., C. L. Osburn, R.M.Northington, S.D. Birkel, J.D. Auger, C. A. Stedmon, and N. J.
819 Anderson. Recent decrease in DOC concentrations in Arctic lakes of southwest Greenland,
820 *Geophys. Res. Lett.*, 42, 6703–6709, doi:10.1002/2015GL065075, 2015.

821 Sharp, J.H., and others. Procedures subgroup report. *Marine Chemistry*. Volume 41. 1993. pp 37–
822 49, 1993.

823 Sherry, A. Discriminant analysis in counseling psychology research. *The Counseling*
824 *Psychologist* 34: 661–683, 2006.

825 Sherry, A., and R. K. Henson. Conducting and interpreting canonical correlation analysis in
826 personality research: A user-friendly primer. *Journal of Personality Assessment* 84: 37–48,
827 2010.

828 Solomon, C. T., S. E. Jones, B. C. Weidel, and others. Ecosystem Consequences of Changing
829 Inputs of Terrestrial Dissolved Organic Matter to Lakes: Current Knowledge and Future
830 Challenges. *Ecosystems* 18: 376–389. doi:10.1007/s10021-015-9848-y, 2015.

831 Spencer, R.G.M., Guo, W. Raymond, P.A., Dittmar, T., Hood, E., Fellman, J., and Stubbins, A.
832 Source and biolability of ancient dissolved organic matter in glacier and lake ecosystems on
833 the Tibetan Plateau. *Geochemicia et Cosmochimica Acta*. Vol 142:1-64-74, 2014.

834 Strock, K. E., J. E. Saros, S. J. Nelson, S. D. Birkel, J. S. Kahl, and W. H. McDowell. Extreme
835 weather years drive episodic changes in lake chemistry: implications for recovery from
836 sulfate deposition and long-term trends in dissolved organic carbon. *Biogeochemistry* 127:
837 353–365. doi:10.1007/s10533-016-0185-9, 2016.

838 Swain, H. Archbold Biological Station and the Macarthur Agro-Ecology Research Center.
839 *Bulletin of the Ecological Society of America*, Vol 79 (1). 1998.

840 Tranvik, L. J., J. A. Downing, J. B. Cotner, and others. Lakes and reservoirs as regulators of
841 carbon cycling and climate. *Limnology and Oceanography* 54: 2298–2314, 2009.

842 Tranvik, L. Carbon cycling in the Arctic. *Science* 345: 870–870. doi:10.1126/science.1258235,
843 2014.

844 Vachon, D., C. T. Solomon, and P. A. del Giorgio. Reconstructing the seasonal dynamics and
845 relative contribution of the major processes sustaining CO₂ emissions in northern lakes.
846 *Limnology and Oceanography* 62: 706–722. doi:10.1002/lno.10454, 2016a.

847 Vachon, D., J.-F. Lapierre, and P. A. del Giorgio. Seasonality of photochemical dissolved
848 organic carbon mineralization and its relative contribution to pelagic CO₂ production in
849 northern lakes. *J. Geophys. Res. Biogeosci.* 121: 864–878. doi:10.1002/2015JG003244,
850 2016b.

851 Westra, S., H. J. Fowler, J. P. Evans, and others. Future changes to the intensity and frequency of
852 short-duration extreme rainfall. *Reviews of Geophysics* 52: 522–555.
853 doi:10.1002/2014RG000464, 2014.

854 Weyhenmeyer, G. A., M. Fröberg, E. Karlton, M. Khalil, D. Kothawala, J. Temnerud, and L. J.
855 Tranvik. Selective decay of terrestrial organic carbon during transport from land to sea.
856 *Global Change Biology* 18: 349–355, 2012.

857 Weyhenmeyer, G. A., S. Kosten, M. B. Wallin, L. J. Tranvik, E. Jeppesen, and F. Roland.
858 Significant fraction of CO₂ emissions from boreal lakes derived from hydrologic inorganic
859 carbon inputs. *Nature Geosci.* doi:10.1038/ngeo2582, 2015.

860 Weyhenmeyer, G. A., and D. J. Conley. Large differences between carbon and nutrient loss rates
861 along the land to ocean aquatic continuum-implications for energy:nutrient ratios at
862 downstream sites. *Limnology and Oceanography* 10: 141–11. doi:10.1002/lno.10589, 2017.

863 Wilkinson, G. M., M. L. Pace, and J. J. Cole. Terrestrial dominance of organic matter in north
864 temperate lakes. *Global Biogeochemical Cycles* 27: 43–51. doi:10.1029/2012GB004453,
865 2013.

866 Williams, C.J., Frost, P.C., Morales-Williams, A.M., Larson, J.H., Richardson, W.B., Chiandet,
867 A.S. and Xenopoulos, M.A. Human activities cause distinct dissolved organic
868 matter composition across freshwater ecosystems. *Glob Change Biol.* 22: 613–626.
869 doi:10.1111/gcb.13094, 2016.

870 Williamson, C. E., D. P. Morris, M. L. Pace, and O. G. Olson. Dissolved organic carbon and
871 nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm.
872 *Limnology and Oceanography* 44: 795–803. doi:10.4319/lo.1999.44.3_part_2.0795, 1999.

873 Williamson, C. E., J. E. Saros, W. F. Vincent, and J. P. Smol. Lakes and reservoirs as sentinels,
874 integrators, and regulators of climate change. *Limnology and Oceanography* 54: 2273–2282,
875 2009.

876 Williamson, C.E., J.A. Brentrup, J. Zhang, W.H. Renwick, B.R. Hargreaves, L.B. Knoll, E.P.
877 Overholt, and K.C. Rose. Lakes as sensors in the landscape: Optical metrics as scalable
878 sentinel responses to climate change. *Limnology and Oceanography* 59: 840–850, 2014.

879 Williamson, C. E., E. P. Overholt, R. M. Pilla, T. H. Leach, J. A. Brentrup, L. B. Knoll, E. M.
880 Mette, and R. E. Moeller. Ecological consequences of long- term browning in lakes. *Sci. Rep.* 5. doi:10.1038/srep18666, 2015.

882 Williamson, C. E., E. P. Overholt, J. A. Brentrup, and others. Sentinel responses to droughts,
883 wildfires, and floods: effects of UV radiation on lakes and their ecosystem services.
884 *Frontiers in Ecology and the Environment* 14: 102–109. doi:10.1002/fee.1228, 2016.

885 Xie, H., Zafiriou, O.C., Cai, W.-J., Zepp, R.G., Wang, Y., 2004. Photooxidation and Its Effects on the
886 Carboxyl Content of Dissolved Organic Matter in Two Coastal Rivers in the Southeastern United
887 States. *Environmental Science & Technology* 38 (15), 4113–4119.

888 Zwart, J. A., N. Craig, P. T. Kelly, S. D. Sebestyen, C. T. Solomon, B. C. Weidel, and S. E.
889 Jones. Metabolic and physiochemical responses to a whole-lake experimental increase in
890 dissolved organic carbon in a north-temperate lake. *Limnology and Oceanography* 61: 723–
891 734. doi:10.1002/lno.10248, 2015.