

1 **Title:** The relative importance of photodegradation and biodegradation of terrestrially derived
2 dissolved organic carbon across four lakes of differing trophic status
3

4 **Authors:** Christopher M Dempsey^{1*}, Jennifer A Brentrup², Sarah Magyan¹, Lesley B Knoll³,
5 Hilary M Swain⁴, Evelyn E Gaiser⁵, Donald P Morris⁶, Michael T Ganger¹, and Craig E
6 Williamson⁷
7

8 **Author Affiliations:**

9 ¹Gannon University, Biology Department, Erie, PA, USA
10 ²St. Olaf College, Biology and Environmental Studies, Northfield, MN
11 ³University of Minnesota, Itasca Biological Station and Laboratories, Lake Itasca, MN, USA
12 ⁴Archbold Biological Field Station, 123 Main Dr., Venus, FL, USA
13 ⁵Florida International University, Department of Biological Sciences and Institute of
14 Environment, Miami, FL, USA
15 ⁶Lehigh University, Earth and Environmental Sciences Department, Bethlehem, PA, USA
16 ⁷Miami University, Global Change Limnology Laboratory, Department of Biology, Oxford, OH,
17 USA
18

19 *Corresponding author: dempsey007@gannon.edu
20

21 **ORCID IDs:**

22 Dempsey: 0000-0003-3817-0155
23 Brentrup: 0000-0002-4818-7762
24 Williamson: 0000-0001-7350-1912
25 Gaiser: 0000-0003-2065-4821
26
27

28 **Keywords:** 4-6

29 Photodegradation, biodegradation, dissolved organic carbon, CO₂
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47 **Abstract**
48 Outgassing of carbon dioxide (CO₂) from freshwater ecosystems comprises 12-25% of the total
49 carbon flux from soils and bedrock. This CO₂ is largely derived from both biodegradation and
50 photodegradation of terrestrial dissolved organic carbon (DOC) entering lakes from wetlands and
51 soils in the watersheds of lakes. In spite of the significance of these two processes in regulating
52 rates of CO₂ outgassing, their relative importance remains poorly understood in lake ecosystems.
53 In this study, we used groundwater from the watersheds of one subtropical and three temperate
54 lakes of differing trophic status to simulate the effects of increases in terrestrial DOC from storm
55 events. We assessed the relative importance of biodegradation and photodegradation in oxidizing
56 DOC to CO₂. We measured changes in DOC concentration, colored dissolved organic carbon
57 (SUVA₃₂₀ and S_r), dissolved oxygen, and dissolved inorganic carbon (DIC) in short-term
58 experiments from May-August, 2016. In all lakes, photodegradation led to larger changes in
59 DOC and DIC concentrations and optical characteristics than biodegradation. A descriptive
60 discriminant analysis showed that in brown-water lakes, photodegradation led to the largest
61 declines in DOC concentration. In these brown-water systems, ~30% of the DOC was processed
62 by sunlight and a minimum of 1% was photo mineralized. In addition to documenting the
63 importance of photodegradation in lakes, these results also highlight how lakes in the future may
64 respond to changes in DOC inputs.
65
66

67 **Introduction**

68 Lakes are closely linked to their surrounding terrestrial ecosystems. As the lowest point
69 in the landscape, they receive a significant influx of terrestrially-derived dissolved organic
70 carbon (DOC) and nutrients (Williamson et al., 2009; Wilkinson et al., 2013). Climate and land
71 use changes are altering the link between lakes and their surrounding landscapes by
72 strengthening the flow of material during extreme rain events and large wildfires, or weakening
73 it during extended periods of drought (Strock et al., 2016; Williamson et al., 2016). Long-term
74 changes in DOC concentrations are variable and appear to be regionally controlled. In
75 northeastern North American and western European lakes, there has been as much as a doubling
76 of DOC concentrations due to recovery from anthropogenic acidification and climate change
77 (Monteith et al., 2007; Williamson et al., 2015; de Wit et al., 2016). However, DOC
78 concentrations in Greenland lakes (Saros et al., 2015) and the Mississippi River (Duan et al.,
79 2017) have been decreasing. A long-term study of the Florida Everglades showed that some
80 study sites were decreasing in DOC concentration, but the majority of sites were not changing
81 (Julian et al., 2017). As DOC inputs into aquatic ecosystems have increased, stabilized, or
82 decreased, long-term studies have focused on understanding the mechanisms behind the change,
83 but less research has addressed the fate of DOC once it enters a lake.

84 By attenuating light in the water column and also providing a source of energy, DOC
85 serves an important role in lakes by regulating the balance between photosynthesis and
86 respiration (Williamson et al., 1999), and thus the flux of CO₂ to the atmosphere (Cole et al.,
87 1994). Previous studies indicated that most lakes are net heterotrophic, where the breakdown of
88 organic carbon exceeds production (Kling et al., 1991; Cole et al., 1994). Estimates suggest that
89 lakes respire about half of the annual 2 gigaton flux of carbon to the oceans each year as CO₂

90 (Cole et al., 1994; Tranvik et al., 2009; Tranvik, 2014). The traditional paradigm has been that
91 the dominant mechanism causing the release of excess CO₂ from lakes is bacterial respiration of
92 DOC (biodegradation), with photomineralization (conversion of DOC to CO₂) accounting for
93 only 10% of bacterial rates (Granéli et al., 1996; del Giorgio et al., 1997; Jonsson et al., 2001).
94 However, research on over 200 Arctic lakes, rivers, and streams revealed that sunlight dominated
95 the processing of DOC, and photomineralization rates were on average 5x greater than dark
96 bacterial respiration rates (Cory et al., 2014). In addition, the source of inland water CO₂ remains
97 uncertain, due in large part to a lack of measurements (Raymond et al., 2013; Lapierre et al.,
98 2013; Weyhenmeyer et al., 2015) and predicting DOC reactivity has been challenging (Evans et
99 al., 2017). Quantifying the dominant degradation pathways for terrestrial DOC from a range of
100 lakes will improve estimates of carbon fluxes, particularly mineralization rates that currently
101 have a high degree of uncertainty (Hanson et al., 2014).

102 Many past studies have focused on testing the effects of photodegradation and
103 biodegradation on DOC quantity individually, but they have not simultaneously evaluated how
104 these two processes alter the colored dissolved organic carbon (CDOM) (Granéli et al., 1996;
105 Koehler et al., 2014; Vachon et al., 2016a). CDOM is the fraction of dissolved organic matter
106 that is capable of absorbing light. The effects of sunlight on DOC are not isolated to only
107 increasing mineralization rates. Photodegradation can also decrease the color and molecular
108 weight of DOC, which can increase light availability and the subsequent bacterial respiration of
109 DOC (Bertilsson and Tranvik, 2000; Amado et al., 2003; Chen and Jaffé, 2016). Cory et al.
110 (2014) found the dominant degradation process for Arctic lakes to be partial photodegradation,
111 suggesting that in lakes, sunlight-driven changes in CDOM without undergoing complete
112 mineralization may dominate DOC processing.

113 Since light attenuation varies so strongly among lakes of differing trophic status, testing
114 the relative importance of DOC processing via photodegradation or biodegradation with
115 mechanistic experiments is needed. Previous research on DOC degradation has primarily
116 occurred in high DOC lakes, but in clear-water lakes, 1% of surface UV-A and
117 photosynthetically active radiation (PAR), which are the primary wavelengths active in
118 photodegradation (Osburn et al., 2001) can reach significant depths. In some oligotrophic lakes
119 UV-A may reach up to 7 m for UV-A and 14 m for PAR. In some of the clearest lakes in the
120 world, such as Lake Tahoe, PAR can reach depths > 45 m (Rose et al., 2009a; Rose et al.,
121 2009b). Geographic location and time of year influence the amount of solar radiation lakes
122 receive. In the subtropics, PAR and UV light have high intensity across the spectrum year-
123 around, whereas in temperate regions those wavelengths are strongest during the summer
124 months.

125 Watershed land use and lake trophic status have also been shown to influence DOC
126 composition and reactivity (Lu et al., 2013; Hosen et al., 2014; Larson et al., 2014; Evans et al.,
127 2017). DOC from forested systems was more reactive and had different CDOM properties when
128 compared to disturbed environments (Lu et al., 2012; Williams et al., 2015; Evans et al., 2017).
129 Studies examining how terrestrial DOC inputs are processed in lakes are needed, especially with
130 the increasing frequency of extreme rain events (Rahmstorf and Coumou, 2011; Westra et al.,
131 2014; Fischer and Knutti, 2015). Future climate change projections suggest that for northern
132 ecosystems a 10% increase in precipitation could lead to a 30% increase in the mobilization of
133 soil organic matter (de Wit et al., 2016). Extreme rain events deliver fresh DOC not exposed to
134 prior sunlight into lakes, which can lead to significant reductions in light availability, as well as
135 increases in thermal stability and lake heterotrophy (Jennings et al., 2012; Klug et al., 2012; de

136 Eyto et al., 2016; Zwart et al., 2016). As DOC concentrations change globally, understanding the
137 processes that determine the fate of DOC will help predict the systems most likely to release
138 more CO₂.

139 Here our aim was to 1) determine the relative importance of photodegradation and
140 biodegradation for altering terrestrial DOC quantity and CDOM from lakes of varying trophic
141 status, 2) quantify the percentage of the initial DOC pool that was photomineralized, partially-
142 photodegraded, biodegraded or remained unprocessed, and 3) compare the effects of
143 photodegradation on DOC quantity and CDOM across four lakes to understand differences in
144 how terrestrial DOC from the watersheds of different lake types responds to photodegradation.
145 Since lakes are closely linked to their surrounding landscape (i.e. soils and vegetation), we
146 collected terrestrial DOC from the watershed of three temperate lakes and one subtropical lake,
147 all varying in trophic status. This soil organic matter represents the current and future inputs of
148 organic material. We studied changes in the concentration of DOC, dissolved inorganic carbon
149 (DIC), and dissolved oxygen (DO) and measured changes in CDOM. We hypothesized that
150 photodegradation would be more important than biodegradation in all lakes, but the strongest
151 responses to sunlight would be observed in the brown-water lakes.

152

153 **1. Methods**

154 **1.1 Study Sites and Samplers**

155 Groundwater samples were collected from the watersheds immediately adjacent to four
156 lakes used in this study (Table 1). All of the lakes are small, with a surface area $\leq 0.48 \text{ km}^2$ and a
157 maximum depth ranging from 12.5 m in Lake Waynewood to 24 m in Lake Giles. The three
158 temperate lakes (Giles – oligotrophic; Lacawac – brown-water; Waynewood – eutrophic) are in

159 close proximity, located on the Pocono Plateau in northeastern Pennsylvania. Lake Annie
160 (brown-water) is a subtropical, sinkhole lake located on the Lake Wales Ridge in south-central
161 Florida. These lakes were selected because of their variability in the dominant vegetation types
162 in their watersheds that lead to differences in DOC concentration and quality (Table 1). Annie,
163 Giles, and Lacawac are all seepage lakes within protected watersheds, and there have been no
164 significant changes in land use or land cover over the past thirty years. The watersheds of Giles
165 and Lacawac have > 90% cover of mixed and northern hardwood-conifer forests, with oak trees
166 dominating the watershed at Giles, while hemlocks represent the highest proportion of
167 Lacawac's watershed (Moeller et al., 1995). Annie is surrounded by well-drained sandy soils and
168 the major vegetation types include a mixed-scrub community, pinelands, and oak forests (Gaiser,
169 2009). Both Annie and Lacawac are brown-water lakes with moderate DOC concentrations and
170 lower transparency (Table 1). A higher percentage of wetlands (7% for Annie and 25% for
171 Lacawac) in their watersheds likely contribute to their darker color compared to the other lakes
172 (Moeller et al., 1995; H. Swain *unpublished data*). Waynewood is the most eutrophic lake and
173 has the largest watershed with runoff from dairy farms upstream that feeds into the lake through
174 an inlet stream. The forest surrounding Waynewood is similarly dominated by oak and hemlock
175 trees, but there is overall less total forest cover in the watershed than Lacawac and Giles, and
176 there are more homes adjacent to the lake (Moeller et al., 1995). Detailed information about lake
177 residence time calculations and annual precipitation trends can be found for the Pocono lakes
178 (Moeller et al, 1995) and Lake Annie (Swain, 1998; Sacks et al, 1998).

179

180 **Table 1.** Summary characteristics of the four study lakes in May-August 2013–2016 (mean \pm SD). Abbreviations: Chl-*a* (chlorophyll-a), DOC (dissolved organic carbon), GW DOC (initial groundwater DOC), PAR (photosynthetically active radiation, 400-700 nm), UV-A (ultraviolet A radiation, 380 nm), UV-B (ultraviolet B radiation, 320 nm), RT (residence time).

Lake	Lat. (°)	Long. (°)	Lake area (km ²)	Max. depth (m)	Chl- <i>a</i> ($\mu\text{g L}^{-1}$) \pm (SD)	Lake DOC (mg L ⁻¹) \pm (SD)	GW DOC (mg L ⁻¹) \pm (SD)	pH \pm (SD)	1% UV-B depth (m) \pm (SD)	1% UV-A depth (m) \pm (SD)	1% PAR depth (m) \pm (SD)	RT (yr)
Lacawac	41° 22' N	75° 17' W	0.21	13	1.9 (1.4)	5.2 (0.8)	59.4 (6.1)	6.6 ⁺	0.4 (0.1)	0.9 (0.2)	5.7 (0.6)	3.3
Annie	27° 12' N	81° 20' W	0.36	20.7	4.0 (1.5)	9.4 (2.5)	20.7 (0.5)	5.5 (0.3)	0.5* (0.5)	1.3* (0.5)	4.5 (1.6)	2
Wayne- wood	41° 23' N	75° 21' W	0.28	12.5	5.3 (3.7)	6.4 (1.0)	7.6 (0.3)	7.5 ⁺	0.3 (0.1)	0.7 (0.2)	4.3 (0.9)	0.42
Giles	41° 22' N	75° 5' W	0.48	24	1.1 (0.7)	2.3 (0.3)	6.0 (0.6)	6.2 ⁺ (0.3)	2.0 (0.5)	4.7 (1.2)	14.4 (2.1)	5.6

184 *Indicates estimates from a single profile in March 2012. ⁺pH data in Lacawac and Waynewood
185 are from 2015 only and from 2015-2016 in Giles.

186
187 Samplers were used to collect groundwater as a proxy for terrestrial DOC runoff entering
188 the lakes. Storm events have been shown to mobilize DOC from shallow groundwater pools into
189 aquatic ecosystems (Boyer et al, 1997). The samplers were installed in close proximity to the
190 Pocono lakes near small inlet streams in sandy or bog areas on 6 July 2015 (~1 year prior to
191 experiments). The groundwater sampler consisted of 1m sections of 7.6cm diameter PVC pipe
192 installed to a depth of 60-81cm below ground. 0.5cm holes were drilled in the sides with a fine
193 mesh covering the holes to let shallow groundwater in but exclude large particulates. At Lake
194 Annie, a groundwater sampler was installed on 17 March 2016 on the south side of the lake near
195 a small, intermittent inlet stream. The groundwater sampler near Lake Annie was a 3m section of
196 PVC pipe installed slightly deeper to 2m below ground to allow continuous access to
197 groundwater during the dry season.

198 On 7 May 2016, 10 L of water was collected using a peristaltic pump from the
199 groundwater samplers at all of the Pocono lakes in acid-washed 18 L bottles. Groundwater
200 samples from Annie were collected from the sampler monthly (25 April, 31 May, 27 June, and 1
201 Aug 2016) prior to starting the experiments and shipped overnight on ice to Pennsylvania. All
202 groundwater samples were kept cold (4 °C) and dark until filtered to avoid sunlight exposure
203 prior to the start of the experiments. Samples for the May experiments were filtered on May 8,
204 2016 through pre-combusted (450 °C) 0.7 µm Whatman GF/F filters. The remaining 8 L of
205 groundwater for the June, July, and August experiments for each Pocono lake were filtered in a
206 similar manner over the next 14 days. Samples were kept cold and dark until the experiments
207 started. Samples for June, July, and August were re-filtered with a pre-combusted 0.7 µm
208 Whatman GF/F filter prior to the start of those experiments. The initial DOC concentration of the
209 groundwater for each lake varied at the start of each experiment, but it was always higher than
210 the in-lake DOC concentration (Table 1).

211

212 **1.2 Sampling Design and Variables Analyzed**

213 To determine the relative importance of photodegradation and biodegradation for
214 processing DOC, we designed three treatments in a manner similar to Cory et al., (2014): 1)
215 photodegradation only, 2) biodegradation only, and 3) control. From each treatment, five
216 different variables were measured including DOC concentration, DIC concentration, DO
217 concentration, SUVA₃₂₀, and S_r. The different variables measured in each treatment required the
218 use of different containers for the sample water. Samples for DOC analysis (concentration and
219 CDOM) were deployed in acid-washed, muffled 35 mL quartz tubes sealed with silicone
220 stoppers. Each quartz tube was filled to a total volume of 30 mL. The quartz tubes had an

221 average transmittance of 96% of solar UV-A and 87% of solar UV-B, which allowed for an
222 accurate representation of *in-situ* solar radiation levels (SFig. 1, Morris and Hargreaves, 1997).
223 However, the quartz tubes were not gas tight, so samples for dissolved inorganic carbon (DIC)
224 and dissolved oxygen (DO) analysis were deployed in gas tight borosilicate exetainer vials
225 (138W; Labco, Ceredigion, UK). The borosilicate vials had a volume of 12 mL but were filled to
226 10 mL (i.e. 2 mL of headspace) due to safety concerns with mercury chloride (i.e. corrosive and
227 acute toxicity). A clean 10 mL pipette was used to carefully transfer water into the borosilicate
228 vials. Borosilicate glass has a sharp cut-off at 320 nm and transmits <5% UV-B, but it transmits
229 an average of 63% of UV-A radiation and 90% of PAR (SFig. 1, Reche et al., 1999). The field
230 station at Lacawac is a mixed use facility that is open to the public and supports researchers from
231 a variety of disciplines.

232 Water samples for all of the treatments were initially filtered through pre-combusted 0.7
233 μm Whatman GF/F filters one day prior to the start of each monthly experiment. For the
234 photodegradation and control treatments detailed below, samples for DO and DIC analysis were
235 treated with 0.35 mL of 1% mercury chloride (HgCl_2) to kill the microbial community. HgCl_2
236 was added with a pipette. All prep work for samples occurred in the laboratory. Samples for
237 DOC concentration and CDOM analysis (SUVA_{320} and S_r) for the same treatments were sterile
238 filtered with a 0.2 μm membrane filter (Sterivex MilliporeSigma, Burlington, MA USA) pre-
239 rinsed with 100 mL of DI water and 50 mL of sample water instead of using HgCl_2 because
240 adding HgCl_2 altered the optical scans. Absorbance scans conducted prior to this experiment
241 using water from Lacawac and Annie showed increased absorbance in samples spiked with 1%
242 HgCl_2 (compared to non-spiked samples). There was a slight increase in absorbance from 800-
243 350nm and then a notable increase in absorbance from 350-200 nm. Sterile filtering has

244 previously been shown to remove the majority of microbes present, and water samples remained
245 sterile for one week following this procedure (Moran et al., 2000; Fasching and Battin, 2011).
246 For the biodegradation treatment, water samples were inoculated with 100 μ L of unfiltered
247 groundwater that was collected 1 day prior to the start of each monthly experiment. By adding a
248 fresh inoculum of groundwater each month, we aimed to re-stimulate the microbial community
249 and assess the short-term response of biodegradation. In the biodegradation treatments, we did
250 not correct for differences in vial size (i.e. 100 μ L was added to both the 12 mL vials and the 35
251 mL tubes). Treatments were deployed in triplicate for each lake (i.e. 3 DOC quartz tubes, 3 DO
252 borosilicate vials, and 3 DIC borosilicate vials for each treatment). Here, we included a summary
253 of the three experimental treatments that were designed as follows:

254 a) *Photodegradation Only*: Water for DOC concentration and CDOM analysis ($SUVA_{320}$
255 and S_r) was sterile filtered and stored in quartz tubes ($n = 3$ replicates; 30 mL total
256 volume). Water for DIC and DO analysis was treated with 1% $HgCl_2$ and stored in
257 borosilicate vials ($n = 6$ replicates; 3 replicates for DIC and 3 replicates for DO analysis).
258 b) *Biodegradation Only*: Water for all analyses was inoculated with 100 μ L of unfiltered
259 groundwater. Water samples for DOC concentration and CDOM analysis were stored in
260 quartz tubes ($n = 3$ replicates). Water samples for DIC and DO analysis were stored in
261 borosilicate vials ($n = 6$ replicates; 3 replicates for DIC and 3 replicates for DO analysis).
262 Both the quartz tubes and borosilicate vials were wrapped with multiple layers of
263 aluminum foil to eliminate light exposure.
264 c) *Control*: Water for DOC concentration and CDOM analysis was sterile filtered and
265 stored in quartz tubes ($n = 3$ replicates). Water for DIC and DO analysis was treated with

266 1% HgCl₂ and stored in borosilicate vials (n = 6 replicates; 3 replicates for DIC and 3
267 replicates for DO analysis). All samples were wrapped in aluminum foil (dark).

268

269 The experimental treatments for each lake were deployed for seven days at the surface of
270 Lake Lacawac in May, June, July, and August of 2016 (for exact sampling dates see SI, Table 1).
271 Mean surface lake temperature for each experiment are reported in SI Table 1. Samples were
272 kept at the lake surface using floating racks, and samples from each lake were randomly
273 distributed across the racks. The deployment design ensured that samples stayed at the surface
274 and dipped no deeper than 2 cm in the water column. After the one-week exposure, racks were
275 collected from the surface of Lake Lacawac and samples were immediately transferred into
276 coolers and returned to the lab. We assessed the response of terrestrially derived DOC to
277 photodegradation and biodegradation by measuring changes in the concentrations of DOC, DIC,
278 and DO, and the absorbance properties (SUVA₃₂₀ and S_r) of the CDOM. All samples were
279 analyzed within 72 hours of collection.

280 Dissolved organic carbon concentrations and standards were analyzed using a Shimadzu
281 TOC-V_{CPH} Total Organic Analyzer with an ASI-V auto sampler. External acidification was used
282 for each sample and triplicate measurements were performed following the methods of Sharp
283 (1993). Diluted 50 ppm DOC standards (Aqua Solutions) were used to calibrate the TOC
284 Analyzer and standards were regularly analyzed with the samples. Dissolved inorganic carbon
285 concentrations (as CO₂) were measured with a Shimadzu GC-8A Gas Chromatograph using
286 helium as the carrier gas. Samples were acidified using 0.1 N H₂SO₄ and then stripped with
287 nitrogen gas prior to injection. Dissolved oxygen was measured using a modified Winkler
288 titration (Parson et al., 1984). Samples for gas measurements (DO and DIC) were kept in a 21°C

289 water bath for 30 minutes prior to analysis. These samples were well mixed just prior to analysis.
290 The absorbance properties of CDOM were analyzed using a Shimadzu UV 1800 scanning
291 spectrophotometer at 25°C. Raw absorbance scans were generated from 800 to 200 nm using a 1
292 cm cuvette and were blank corrected with ultra-pure DI water. From the absorbance scans, the
293 spectral slope ratio (S_r ; 275-295 : 350-400 nm) was calculated following Helms et al. (2008).
294 The DOC specific ultraviolet absorbance at 320 nm ($SUVA_{320}$) was calculated following
295 methods in Williamson et al., (2014). S_r can be used as a proxy for the molecular weight of the
296 DOC, while $SUVA_{320}$ can be used as a proxy for DOC color and aromatic carbon content (Helms
297 et al., 2008, Williamson et al., 2014).

298 Due to differences between the borosilicate vials and quartz tubes, the DIC and DO
299 samples were spectrally corrected for the amount of light they received (SI, SFig. 1). Total
300 cumulative energy exposure over the monthly incubations was calculated from a BSI Model
301 GUV-521 (Biospherical Instruments, San Diego, CA) radiometer with cosine irradiance sensors
302 that have a nominal bandwidth of 8 nm for 305 nm, 320 nm, 340 nm, 380 nm, and 400-700 nm
303 (PAR). Daily irradiance for UV-B, UV-A, and PAR were calculated using 15-minute averages of
304 1-second readings from a GUV radiometer located near Lake Lacawac over the 7-day
305 experiments. The area under the curve was calculated by multiplying the measurement frequency
306 (900 sec) by the average of two adjacent time step readings. These values were then summed
307 over the exposure period to calculate the total cumulative energy exposure for each sample.
308 Readings from a profiling BIC sensor (Biospherical Instruments, San Diego, CA) were then used
309 to calculate the percent of the deck cell at the surface rack incubation depth (0.02 m) in Lake
310 Lacawac.

311

312 **1.3 Explanation of Calculations and Statistical Analysis**

313 To determine the fate of terrestrial DOC in the four lakes, we used the measured changes
314 (i.e. final – control) in DOC and DIC concentrations to identify four pools of DOC:
315 photomineralized, partially photodegraded, biodegraded, and unprocessed. The amount of carbon
316 photomineralized (converted to CO₂) was calculated as the concentration of DIC produced by
317 sunlight (i.e. carbon that was completely oxidized by sunlight). The amount of carbon partially
318 photodegraded represents the remainder of the carbon pool that was processed by sunlight (but
319 not completely oxidized to CO₂) and was calculated as the total DOC processed by sunlight
320 minus the amount photomineralized (Eq 1).

321 Equation 1. Partially Photodegraded = [Total Photodegraded – Photomineralized]

322 The amount of carbon biodegraded was calculated as the concentration of DOC lost in the
323 biodegradation treatments. The unprocessed carbon was calculated as the fraction of the carbon
324 pool that was not processed by either sunlight or microbes as shown in Eq. 2

325 Equation 2. Unprocessed = [Control DOC – Photomineralized – Partially Photodegraded –
326 Biodegraded].

327 Each process was determined for each lake and each month. Here we report the average response
328 across all four months for each DOC pool.

329 While we carried out monthly experiments (May-August), here we report the average
330 response across the open-water season (i.e. all four months) to provide a more complete picture
331 of DOC processing. The downside of this approach is that it potentially increases variation in
332 variables associated with DOC processing, since such processing may vary across the season.
333 However, there was not a strong seasonal response to photodegradation or biodegradation in all

334 of our study variables (SI Fig. 3). Furthermore, the majority of the terrestrial DOC was collected
335 on a single date and time (except for Lake Annie).

336 Final treatments were compared relative to the dark and killed (1% HgCl_2) control
337 treatments, as those samples were deployed at the surface of the lake with the photodegradation
338 and biodegradation treatments. We used a t-test to determine whether the photodegradation
339 samples for all of the variables were significantly different from the biodegradation samples ($n =$
340 12 for each treatment) in each lake (Table 2). Photodegradation and biodegradation samples were
341 analyzed separately using a one-way ANOVA to assess differences between lakes. A post-hoc
342 Tukey's multiple comparison test (Sigma Plot 14.0) was used to determine if there were
343 significant differences in the response variables between the lakes to the photodegradation and
344 biodegradation treatments (Fig 1). A descriptive discriminant analysis (DDA) was used to
345 classify the four lakes based on changes in DOC, DIC, DO, SUVA₃₂₀, and S_r measurements due
346 to photodegradation (Fig 3). Since these five measures are likely to be highly correlated with one
347 another, DDA is a good choice since it considers these relationships simultaneously in the
348 analysis (Sherry 2006). In this case, DDA, works by producing linear combinations of the five
349 measured variables (DOC, DIC, DO, SUVA₃₂₀, and S_r). The first linear combination provides the
350 best separation of the four lakes, followed by subsequent linear combinations for axes that are
351 orthogonal (Sherry, 2006). Linear combinations are weighted more heavily by variables that are
352 better able to discriminate between the lakes. In the figures and tables below, we report these
353 data as either average measured changes (i.e. concentrations) or average percent changes and
354 have indicated where appropriate. Data for this experiment were analyzed in either Sigma Plot
355 14.0 (Fig. 1, Table 2) or Systat version 10.2 (Fig. 4).

356

357 **2. Results**

358 Throughout the results and discussion, the use of the lake names is to present the data in a
359 meaningful manner, but it is important to recognize that the actual water samples originated from
360 groundwater samples adjacent to each lake.

361

362 ***2.1 Photodegradation and biodegradation responses in each lake***

363 Photodegradation altered DOC quantity and CDOM significantly more than
364 biodegradation for terrestrial DOC from the watersheds of all four lakes (Table 2, Fig. 1). For the
365 photodegradation only treatments, exposure to sunlight resulted in significant production of DIC
366 and increases in S_r , as well as significant decreases in DO, DOC, and SUVA₃₂₀ relative to the
367 biodegradation treatments. The only significant effect of biodegradation on terrestrial DOC was
368 a reduction in DO concentrations compared to the dark control (Fig. 1c). In all other cases, the
369 biodegradation treatments were not significantly different than the control, and the average
370 percent change was close to 0.

371 The terrestrial DOC from the brown-water lakes (Lacawac and Annie) typically followed
372 similar patterns to each other, while the terrestrial DOC from the oligotrophic and eutrophic
373 lakes (Giles and Waynewood) responded more similarly to each other. In the brown-water lakes,
374 we observed a stronger response in DOC quantity (i.e. DOC, DIC, and DO), while the changes in
375 DOC quantity were much more muted in the oligotrophic and eutrophic lakes. The responses of
376 S_r changes in each lake due to sunlight did not differ significantly. All four lakes showed a strong
377 response to changes in terrestrial CDOM (i.e. SUVA₃₂₀ and S_r).

378

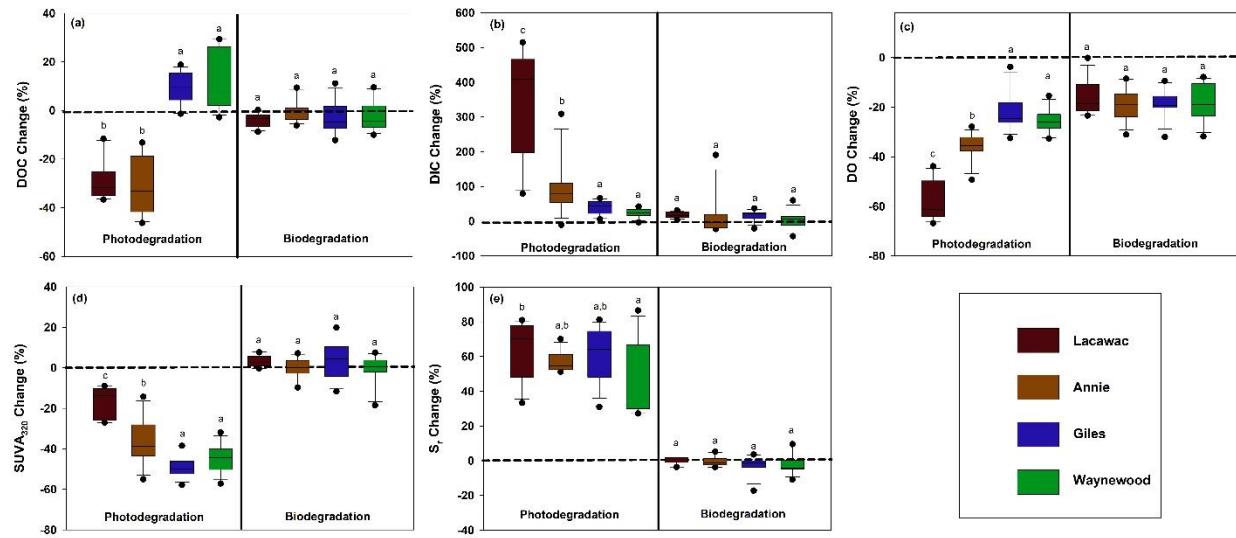
379 **Table 2.** A summary of the mean (\pm SD) final concentration of DOC, DIC, DO, SUVA₃₂₀ and S_r
 380 in photodegradation (Photo), biodegradation (Bio), and control experimental treatments in
 381 groundwater samples from the watersheds of lakes Lacawac, Annie, Giles, and Waynewood. The
 382 mean (\pm SD) initial concentration for each variable is also depicted. The P/B column list the
 383 results of a t-test to determine whether photodegradation samples were significantly different
 384 from the biodegradation samples (n = 12 for each treatment for the four months). Bolded values
 385 indicate the Photo treatments that were statistically different from the Bio treatments (p < 0.05).

Analysis	Treatment	Lacawac (Mean \pm SD)	P/B p-value	Annie (Mean \pm SD)	P/B p-value	Giles (Mean \pm SD)	P/B p-value	Waynewood (Mean \pm SD)	P/B p-value
DOC (μ moles L ⁻¹)	Photo	3600 \pm 330	p < 0.001	1270 \pm 211	p < 0.001	692 \pm 123	p = 0.08	883 \pm 73.3	p = 0.002
	Bio	4910 \pm 674		1810 \pm 45.7		608 \pm 99.0		765 \pm 93.8	
	Control	5110 \pm 628		1820 \pm 76.9		630 \pm 102		783 \pm 73.8	
DIC (μ moles L ⁻¹)	Photo	54 \pm 8.2	p < 0.001	41.9 \pm 11.4	p < 0.001	20.4 \pm 1.9	p = 0.02	32.2 \pm 7.3	p = 0.04
	Bio	16.1 \pm 5.0		25.3 \pm 7.2		17.7 \pm 3.0		27.1 \pm 8.0	
	Control	13.8 \pm 4.6		30.4 \pm 18.2		15.3 \pm 2.1		27.8 \pm 3.5	
DO (μ moles L ⁻¹)	Photo	278 \pm 62.4	p < 0.001	419 \pm 25.9	p < 0.001	536 \pm 35.6	p = 0.16	522 \pm 49.0	p = 0.05
	Bio	556 \pm 46.4		533 \pm 42.2		556 \pm 34.3		577 \pm 76.9	
	Control	660 \pm 29.4		656 \pm 32.1		688 \pm 60.9		702 \pm 57.3	
SUVA ₃₂₀ (m ⁻¹ /mg L ⁻¹)	Photo	4.3 \pm 0.4	p < 0.001	2.4 \pm 0.4	p < 0.001	2.4 \pm 0.2	p < 0.001	1.8 \pm 0.2	p < 0.001
	Bio	5.3 \pm 0.2		3.8 \pm 0.1		4.8 \pm 0.3		3.2 \pm 0.2	
	Control	5.1 \pm 0.2		3.8 \pm 0.1		4.7 \pm 0.2		3.2 \pm 0.1	
S _r	Photo	1.1 \pm 0.0	p < 0.001	1.3 \pm 0.1	p < 0.001	1.4 \pm 0.1	p < 0.001	1.2 \pm 0.1	p < 0.001
	Bio	0.7 \pm 0.1		0.8 \pm 0.0		0.9 \pm 0.1		0.8 \pm 0.1	
	Control	0.7 \pm 0.1		0.8 \pm 0.0		0.9 \pm 0.1		0.9 \pm 0.1	

386

387 Sunlight caused average (\pm SD) DOC losses relative to the control treatments of 30.5 \pm
 388 11.5% and 28.9 \pm 8.3% in Lacawac and Annie, respectively (Fig. 1a). In Giles and Waynewood,
 389 we observed an average of 9.6 \pm 6.5% and 13.4 \pm 6.2% increase in DOC concentration,
 390 respectively following exposure to sunlight. When we compared lakes within each treatment,
 391 there were no significant differences in DOC concentration due to sunlight in Giles vs.
 392 Waynewood, whereas Annie and Lacawac were significantly different from the prior two lakes
 393 and from each other (ANOVA: $F_{1,3} = 70.9$, p < 0.001).

394 Decreases in DOC concentration due to photodegradation could lead to mineralization
 395 (i.e. DIC production; Fig. 1b) and therefore oxidation (i.e. DO consumption; Fig. 1c). We

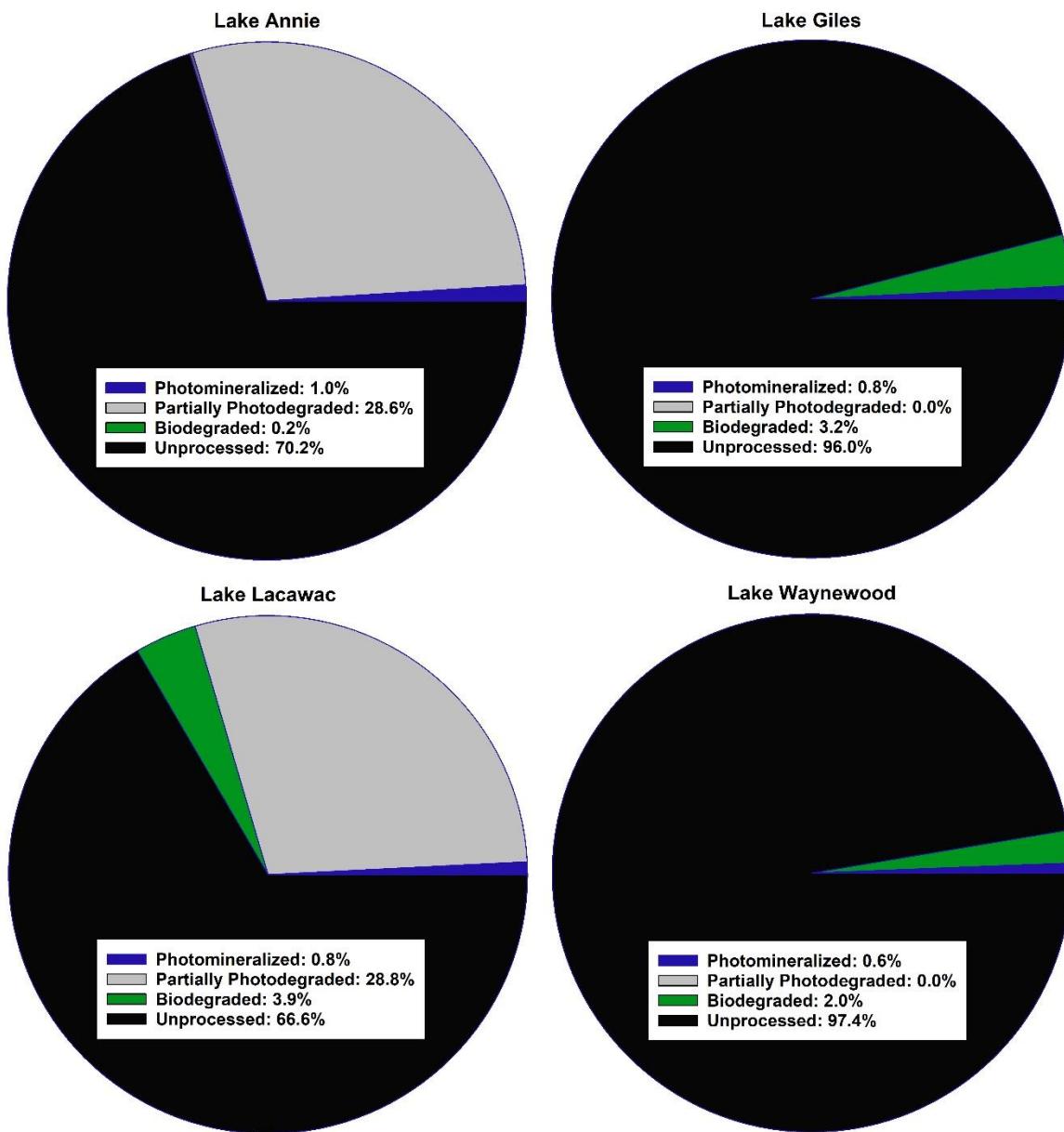

396 observed the production of DIC due to sunlight in all of our lakes (Fig. 1b). In Lacawac and
397 Annie, the average (\pm SD) percent increases in DIC relative to the control treatments were $350 \pm$
398 160% and $96.0 \pm 79.0\%$, respectively. The average percent increases relative to controls in Giles
399 and Waynewood were $40.7 \pm 19.4\%$ and $23.2 \pm 12.7\%$ respectively. The DIC percent change
400 was similar between Giles and Waynewood, and both were statistically different from Annie and
401 Lacawac. The percent DIC change in Lacawac was significantly higher than Annie (ANOVA:
402 $F_{1,3} = 36.4$, $p < 0.001$).

403 In all lakes, both photodegradation and biodegradation led to decreases in DO
404 concentrations (Fig. 1c). Average DO losses due to biodegradation for all four lakes ranged from
405 15 to 18%. DO losses due to photodegradation were more variable. The average DO loss from
406 sunlight in Lacawac and Annie was $58.2 \pm 7.8\%$ and $35.9 \pm 5.4\%$, respectively. In Giles and
407 Waynewood, we observed average DO losses of $21.6 \pm 7.9\%$ and $25.6 \pm 4.7\%$ respectively.
408 While the largest losses of DO due to sunlight were observed in Annie and Lacawac, there was
409 no significant difference between Annie and Waynewood. Giles and Lacawac were significantly
410 different from the other two lakes and from each other (ANOVA: $F_{1,3} = 73.9$, $p < 0.001$).

411 Changes in CDOM due to biodegradation were minimal in all of the lakes (Fig. 1d & 1e).
412 In contrast, photodegradation caused significant changes in all of the lakes, but the magnitude of
413 the change varied by lake. SUVA₃₂₀ decreased in all lakes due to sunlight, but the largest changes
414 were observed in the oligotrophic and eutrophic lakes (Fig. 1d). Average SUVA₃₂₀ values
415 decreased between 16.8% in Lacawac and 48.9% in Giles. The response in Annie and
416 Waynewood were similar, whereas Lacawac and Giles were significantly different from the prior
417 two lakes and each other (ANOVA: $F_{1,3} = 39.7$, $p < 0.001$). In all lakes, S_r increased due to
418 sunlight (Fig. 1e). Average percent increases for the lakes ranged from 46.4% in Waynewood to

419 65.1% in Lacawac. For S_r , the response between Lacawac and Waynewood were significantly
 420 different, but those lakes were no different compared to the remaining lakes (ANOVA: $F_{1,3} = 3.1$,
 421 $p = 0.04$).

422


423 **Figure 1.** The monthly average percent change from the dark and killed control treatments
 424 (dashed line) in each lake for photodegradation (left) and biodegradation (right) for (a) DOC, (b)
 425 DIC, (c) DO, (d) SUVA₃₂₀, and (e) Sr. Statistical differences ($p < 0.05$) between lakes are
 426 indicated by different letters above each boxplot. For each boxplot $n = 12$ replicates.
 427

428

429 **2.2 Fate of DOC**

430 Of the four pools of carbon we identified in the groundwater samples entering our study
 431 lakes, we found the average amount of carbon processed by sunlight ranged from 0.6% to ~30%
 432 (Fig. 2). Carbon in Giles and Waynewood (< 1%) showed little response to sunlight, whereas the
 433 response in Annie and Lacawac (~30%) was much higher over the 7-day experiments. The
 434 dominant pathway through which sunlight interacted with DOC was through partial
 435 photodegradation in these latter two lakes. About 1% of the carbon pool was photomineralized in
 436 the brown water lakes. The amount of carbon processed via biodegradation was minimal in all

437 lakes (ranging from 0.2–4%). The fraction of the unprocessed carbon pool ranged from a low of
438 66% for Lacawac to a high of 97% for Waynewood. An average of 2.6 to 33% of the carbon
439 pool was processed in one week. The photomineralization data represents a minima value for
440 each lake due to some of the DIC partitioning into the headspace of each vial.

441
442 **Figure 2.** A summary of the average fate of carbon in the groundwater samples from our study
443 lakes (see methods section for explanation of calculations). All terms were converted to a carbon
444 basis. Photomineralized describes the amount of carbon completely mineralized to CO₂ by

445 sunlight. Partially photodegraded describes the amount of carbon processed by sunlight minus
446 the amount photomineralized. Biodegraded describes the amount of carbon lost through
447 biodegradation. Unprocessed carbon describes the remaining carbon that was not processed by
448 photodegradation or biodegradation.

449

450 **2.3 DOC response by lake trophic status**

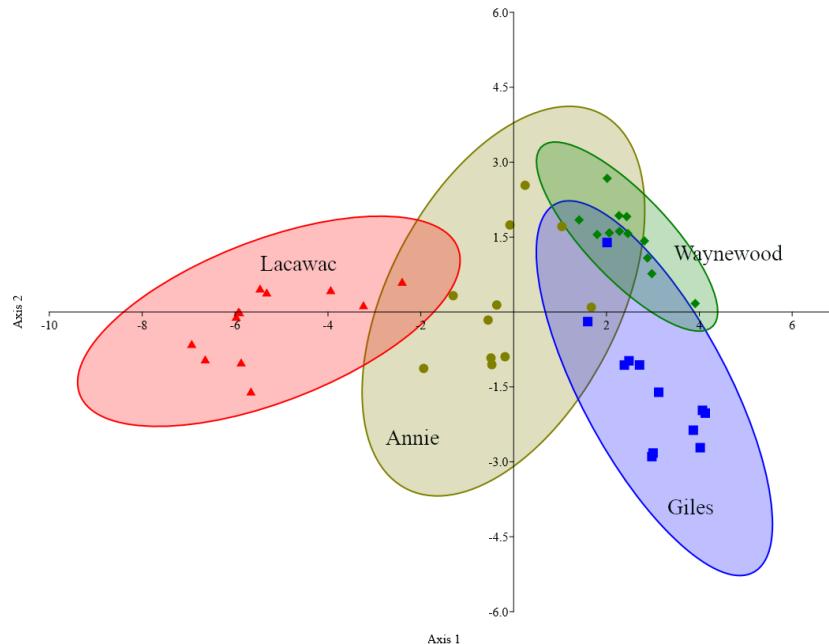
451 For the descriptive discriminant analysis (DDA) to classify the lakes, we found that the
452 five metrics were strongly correlated with one another (Table 3). In general, the changes in DOC,
453 DIC, and DO were more strongly correlated with one another than with SUVA₃₂₀ and S_r and vice
454 versa (Table 3). We will refer to the changes in DOC, DIC, and DO as “DOC quantity” and the
455 changes in SUVA₃₂₀ and S_r as “CDOM” for brevity.

456

457 **Table 3.** Pearson correlations between the measured changes in the five metrics: DOC, DIC, DO,
458 SUVA₃₂₀, and S_r.

	DOC	DIC	DO	SUVA ₃₂₀
DIC	-0.934			
DO	0.869	-0.837		
SUVA ₃₂₀	-0.705	-0.671	-0.666	
S _r	-0.027	0.021	0.163	-0.319

459
460 DDA produced three functions (axes) with canonical correlations of 0.961, 0.753, and
461 0.181 (Fig. 3). Collectively, the entire model was significant (Wilks' $\lambda = 0.032$; $F_{15, 108} = 17.79$; $p < 0.001$). Effect size was calculated following Sherry and Henson (2010) as $1 - \text{Wilks}' \lambda$, and
462 therefore the overall model explains 96.8% of the variation among lakes. Functions 1 through 3
463 and 2 through 3 were significant ($p < 0.001$ for both). Function 3 was not significant ($p = 0.710$)
464 and therefore is not discussed further. Functions 1 through 3 collectively explain 92.4% of the
465 shared variance while functions 2 through 3 collectively explain 56.7% of the shared variance.


466
467 Function 1 represents a new variate that is a linear combination of the changes in the five
468 variables that best discriminates the lakes from one another. This new variate is composed

469 mainly of DOC, with a function coefficient of 0.465 and a structure coefficient of 0.821 (Table
 470 4). Of note are also DIC, DO, and SUVA₃₂₀ that had smaller function coefficients (< 0.45), but
 471 had large structure coefficients (> 0.45). This result suggests that Function 1 is mainly related to
 472 DOC quantity. Function 2, also a new variate that is a linear combination of the five measured
 473 changes, is composed mainly of SUVA₃₂₀ (function coefficient = 0.985 and structure coefficient
 474 = 0.719; Table 4). Function 2 is orthogonal to Function 1 and together they discriminate the four
 475 lakes (Fig. 3).

476
 477 **Table 4.** The solution for changes in measured independent variables that predict the dependent
 478 variable, lake. Structure coefficients (r_s) and communality coefficients greater than |0.45| are in
 479 bold. Coeff = standardized canonical function coefficient; r_s = structure coefficient; r_s^2 = squared
 480 structure coefficient.

Variable	Coeff.	Function 1		Function 2		
		r_s	r_s^2 (%)	Coeff.	r_s	r_s^2 (%)
DOC	0.465	0.821	67.40	0.639	0.278	40.83
DIC	-0.337	-0.703	11.36	-0.059	-0.216	0.35
DO	0.440	0.679	19.36	-0.124	0.009	1.54
SUVA ₃₂₀	-0.139	-0.473	1.93	0.985	0.719	97.02
S _r	0.244	0.068	5.95	-0.238	-0.434	5.66

482

483

484 **Figure 3.** Canonical plot scores and 95% confidence ellipses from descriptive discriminant
 485 analysis of the measured changes (i.e. treatment minus control) in the five variables (DOC, DIC,
 486 DO, SUVA₃₂₀, and S_r) and four lakes: Annie (olive circles), Giles (blue squares), Lacawac (red
 487 triangles), and Waynewood (green diamonds). Only photodegradation samples were included in
 488 this analysis.

489 DDA correctly classified 89.4% of the samples to their collection site (Fig. 3). One
 490 sample from Annie was incorrectly assigned to Waynewood, two samples from Giles were
 491 incorrectly assigned to Waynewood, and two samples from Lacawac were incorrectly assigned
 492 to Annie. All of the Waynewood samples were correctly classified.

493

494 **3. Discussion**

495 **3.1 Comparing the relative importance of photodegradation and biodegradation**

496 Despite a large number of studies examining the effects of either photodegradation or
 497 biodegradation on DOC processing, very few have conducted simultaneous *in-situ* experiments
 498 of the relative importance of both processes for transforming DOC from the watersheds of a
 499 range of different lakes. Our results indicate that sunlight was the primary process in the surface

500 waters responsible for degrading terrestrial DOC from the watershed of all four lakes.
501 Biodegradation played a minimal role in changing the DOC quantity and CDOM. We observed
502 decreases in DOC, DO, and SUVA₃₂₀ due to sunlight and saw increases in DIC and S_r. The loss
503 of DOC, as well as a shift to more photobleached, and lower molecular weight organic material
504 is consistent with prior studies on these lakes that evaluated just the effects of sunlight (Morris
505 and Hargreaves, 1997). Exceptions to DOC loss due to photodegradation occurred in Giles and
506 Waynewood. In these lakes, we observed an increase in average DOC concentrations. In Giles,
507 there was significant production of DOC in June and July. In Waynewood, significant production
508 occurred in May and July. We speculate that this production may be due to the lysing of any
509 microbes remaining in solution. Increases may also be attributed to interactions with iron. We
510 have no measurable evidence, but a number of samples from Giles and Waynewood contained a
511 red precipitate at the conclusion of the one-week experiments. Iron-bound DOC could have been
512 released back into the water. Subsequent photodegradation experiments using water from Giles
513 and Waynewood have also indicated DOC production (Dempsey, unpublished).

514 Dissolved oxygen was the lone variable where biodegradation led to decreases relative to
515 the controls, but the differences between lakes were not significant. We attributed the changes in
516 DO to the “sloppy feeding” of bacteria, where they produce DOC through exudates and then
517 assimilate it (Evans et al., 2017). The above results are similar to observations in Arctic and
518 tropical waters in that photodegradation was more important than biodegradation on short time
519 scales (Cory et al., 2014; Chen and Jaffé, 2014; Amado et al., 2003). Interestingly, we found that
520 terrestrial DOC from the watersheds of lakes of different trophic status was processed
521 differently, resulting in DIC production and DOC degradation for the brown-water lakes
522 (Lacawac and Annie), but greater changes in SUVA₃₂₀ for the oligotrophic and eutrophic lakes

523 (Giles and Waynewood). This highlights the need to account for lake trophic status in predicting
524 DOC processing and CO₂ emissions from lakes.

525

526 **3.2 Dominant degradation process**

527 Based on our study design we were able to identify four pools of carbon:
528 photomineralized, partially photodegraded, biodegraded, and unprocessed. The dominant
529 degradation pathway across all lakes was partial photodegradation (i.e. loss of DOC, but no
530 mineralization), although the size of each carbon pool varied by lake. In the brown-water lakes,
531 ~28% of the total carbon pool was partially photodegraded and ~1% was photomineralized. In
532 the oligotrophic and eutrophic lakes ~0.7% of the carbon was photomineralized and none of the
533 carbon was partially photodegraded. The values reported here for photomineralization are
534 underestimates. Actual values are likely to be higher since we did not account for DIC that
535 partitioned into the headspace of the exetainer vials. If we assume a 1:1 (O₂: CO₂) respiration
536 quotient (RQ) (Cory et al, 2014) and use our DO data in the Fig 2 calculations,
537 photomineralization in Annie and Lacawac could be as high as 13 and 7.5% of the carbon pool
538 respectively. Use of the oxygen data is less than ideal since several authors have reported RQ
539 values different than 1:1 (Allesson et al, 2016 and Xie et al, 2004).

540 Observations in Toolik Lake showed 70% of the total carbon pool being processed by
541 sunlight during the open water period (~3 months) (Cory et al., 2014). Other estimates have
542 found that photomineralization of DOC accounts for only 8-14% of total water column CO₂
543 production (Granéli et al., 1996; Jonsson et al., 2001; Koehler et al., 2014; Vachon et al., 2016b).
544 We observed ~30% of the carbon pool being processed by sunlight within one week in our lakes
545 and this was restricted to the brown-water lakes. Similar to Toolik Lake, the dominant

546 degradation process was partial photodegradation. Partial photodegradation can alter CDOM and
547 stimulate subsequent bacterial respiration. Degradation of CDOM can have important effects for
548 downstream ecosystems if it can be further processed and released as CO₂ or instead is buried or
549 exported downstream (Weyhenmeyer et al., 2012; Catalan et al., 2016; Chen and Jaffe, 2014;
550 Biddanda and Cotner, 2003). It is thus important to include all sunlight-driven degradation
551 processes to fully account for its relative importance.

552 Differences between the responses observed in the Arctic and our temperate/subtropical
553 lakes are most likely explained by the initial concentration and quality of terrestrially derived
554 DOC and time. In the Arctic, glacial meltwater can be highly photolabile and dominated by
555 seasonal inputs of DOC from shallow or deep soils (Cory et al., 2014; Spencer et al., 2014; and
556 Kaiser et al., 2017). In temperate regions, DOC tends to contain more humic and fulvic acids
557 derived from soils, which may be less photolabile than Arctic DOC. Additionally, we did not
558 integrate our results over the entire water column because the samples were analyzed on the
559 surface of a single lake. Over the entire water column, photodegradation could have processed
560 additional carbon. In clear-water lakes, DOC may be photodegraded down to the 1% UV-A
561 attenuation depth (Osburn et al., 2001), which ranged from 0.7-4.7 m in our study lakes (Table
562 1).

563

564 **3.3 Response of lakes to photodegradation**

565 With an increase in extreme precipitation events, terrestrial DOC inputs are likely to
566 increase in many aquatic ecosystems (Rahmstorf and Coumou, 2011; Westra et al., 2014). By
567 using groundwater as a proxy of terrestrial inputs from the watersheds of different types of lakes,
568 we simulated the effects of storm events and compared the sensitivity of different terrestrial

569 DOC sources to photodegradation. Interestingly, we found DOC from the watersheds of
570 oligotrophic and eutrophic lakes showed stronger changes in CDOM, compared to DOC from the
571 watersheds of the brown-water lakes that showed significantly larger changes in DOC quantity.
572 This difference may be due to the more allochthonous nature of the brown-water DOC, which is
573 highly photolabile, resulting in greater changes in DOC quantity due to its ability to absorb UV
574 radiation (Bertilsson and Tranvik, 2000). The less allochthonous and more microbially derived
575 DOC from the watersheds of the eutrophic and oligotrophic lakes may be less photolabile with
576 fewer UV-absorbing chromophores. Results of the DDA may be helpful in predicting changes in
577 other lakes based on their trophic status. SUVA₃₂₀ is the variable most likely to change due to
578 photodegradation in eutrophic and oligotrophic lakes. In contrast, DOC concentration is the
579 variable most likely to change in brown-water lakes due to photodegradation. Both results (DOC
580 and SUVA₃₂₀) highlight how lakes of varying trophic status respond to photodegradation. These
581 results can be used to predict how lakes not included in this study will respond to increased DOC
582 concentrations (i.e. browning).

583 Across our study lakes, changes in DIC production scaled linearly with initial
584 groundwater DOC concentration. Lacawac had the highest initial DOC concentration (59.4 ± 6.1
585 mg L⁻¹) and the highest average DIC production, while Giles had the lowest initial DOC
586 concentration (6.0 ± 0.6 mg L⁻¹) and the lowest average DIC production. This suggests that the
587 initial DOC concentration plays a critical role in determining the fate of DOC (Leech et al.,
588 2014; Lapierre et al., 2013). Lake temperature can also influence photodegradation. In this
589 study, average lake temperature increased from May through July (SI Table 1). Porcal et al.
590 (2015) showed that the largest loss of DOC occurred in warmer (i.e. 25 °C) waters due to
591 photodegradation. Additionally, DIC production was higher in those waters compared to colder

592 water (9 °C) (Porcal et al., 2015) Recent research has also reported that residence time controls
593 organic carbon decomposition across a wide range of freshwater ecosystems (Catalan et al.,
594 2016, Evans et al., 2017). However, extreme precipitation events may shorten the residence time
595 of lakes, effectively flushing out fresh DOC and preventing significant in-lake degradation from
596 occurring (de Wit et al., 2018). For the terrestrial DOC from the oligotrophic and eutrophic
597 lakes, a significant fraction was not degraded, which may mean that terrestrial inputs from these
598 watersheds undergoes less immediate in-lake processing and instead is exported downstream.
599 Our results indicate that differences in the fate and processing of DOC from the watersheds of a
600 range of lake types have important implications for determining which lakes may release more
601 CO₂ versus export DOC downstream (Weyhenmeyer et al., 2012; Zwart et al., 2015;
602 Weyhenmeyer and Conley, 2017).

603 Even though we observed similar responses to photodegradation in the brown-water lakes
604 (Fig. 1), the magnitude of the response varied and may have been related to the initial DOC
605 concentration. Initial concentrations (mg L⁻¹) of terrestrial DOC from Lacawac (59.4 ± 6.1) were
606 almost 3x higher than Annie (20.7 ± 0.5). Average DOC losses for both lakes due to
607 photodegradation were ~30%. The main difference between Lacawac and Annie was the DIC
608 percent change due to photodegradation (Fig. 1b). Average percent increases in DIC for Lacawac
609 were close to 400%, whereas in Annie it was ~85%. Despite the fact that both Annie and
610 Lacawac are brown-water lakes, their different DIC production rates indicate that certain types of
611 terrestrial DOC may be more photolabile than others and capable of outgassing large amounts of
612 CO₂. The DDA analysis did also pick out the separation between Lacawac and Annie primarily
613 on axis 1 (DOC). The responses in Annie shared similarities with the other 3 lakes while
614 Lacawac only overlapped with Annie. When put in the context of the entire DOC pool for each

615 lake, photomineralization accounted for 1% of the carbon loss. We anticipated that terrestrial
616 DOC from subtropical lakes would undergo additional microbial processing due to the higher
617 temperatures year-round. In a comparison between boreal Swedish and tropical Brazilian lakes,
618 Graneli et al., (1998) also found strong similarities in changes of DOC concentrations and DIC
619 production between lakes from the different latitudes. A weak significant correlation between
620 DOC concentration and DIC production has also been observed in Amazon clear water systems
621 (Amado et al., 2003)

622

623 **Conclusions**

624 Here we showed that photodegradation can be more important than biodegradation in
625 processing watershed inputs of terrestrial DOC on short time scales in the surface waters of a
626 lake. The responses that we observed varied with lake trophic status. Quantitative changes in
627 DOC, DIC, and DO were strongest in the terrestrial DOC from the watersheds of the brown-
628 water lakes, whereas the largest changes in SUVA₃₂₀ were observed in the terrestrial DOC from
629 the watersheds of the eutrophic and oligotrophic lakes. Consistent with prior studies, we found
630 that sunlight can impact not only changes in the concentration, but also CDOM characteristics.
631 We observed a range of 2.6 to 33% of the carbon pool processed in one week. As DOC
632 concentrations increase in some aquatic ecosystems, the potential for increased CO₂ outgassing
633 due to photo-mineralization also increases. On short time scales, sunlight had important impacts
634 on our study lakes. Future studies should focus on additional lakes, longer timescales, and
635 integrating DIC production throughout the water column.

636 Over the next century, DOC concentrations in northern boreal lakes are projected to
637 increase by 65% (Larsen et al., 2011). Thus, understanding the fate of terrestrial sourced organic

638 material will be essential for predicting the ecological consequences for lakes and downstream
639 ecosystems (Solomon et al., 2015; Williamson et al., 2015; Finstad et al., 2016). Improving
640 estimates of organic carbon processing in lakes will be an important component of creating more
641 complete carbon budgets (Hanson et al., 2004; 2014) and global estimates of CO₂ emissions can
642 be more accurately scaled to reflect the ability of lakes to act as CO₂ sinks or sources as
643 browning continues (Lapierre et al., 2013, Evans et al., 2017).

644

645 **Acknowledgements**

646 This project was supported by NSF grants DBI-1318747 (LBK, CEW, and others), DBI-1542085
647 (LBK, CEW, CMD), DEB 1754276 (CEW), the Robert Estabrook Moeller Research Fellow
648 Award (CMD, JAB), the Isabel and Arthur Watres Student Research Award (SM), and the staff
649 and resources of Archbold Biological Station. Data were provided by Archbold Biological
650 Station. We would like to thank Kevin Main for assistance in collecting Lake Annie water
651 samples and Erin Overholt for assistance in the lab and logistical support. The authors would like
652 to thank four anonymous reviewers for their assistance in improving the manuscript. The authors
653 declare no competing interests.

654

655 **Data Availability:**

656 Data and metadata will be made available in the Environmental Data Initiative repository. Data
657 archiving will be led by C. Dempsey and J. Brentrup.

658

659

660

661 **Author Contribution Statement**

662 CMD, JAB, and CEW designed the study with help from LBK, EEG, and HMS. CMD, JAB,
663 SM, and HMS collected the water samples and ran the experiments. DPM provided the
664 analytical equipment for measuring DIC and DOC. CMD and JAB analyzed the data, and CMD
665 and MTG conducted the statistical and DDA analyses. CMD and JAB wrote the manuscript with
666 contributions from all of the authors.

667

References

668
669
670 Allesson, L., Ström, L., and Berggren, M. Impact of photochemical processing of DOC on the
671 bacterioplankton respiratory quotient in aquatic ecosystems. *Geophysical Research Letters*,
672 43: 7538-7545. 2016.
673 Amado, A.M., Farjalla, V.F., Esteves, F.A., and Bozelli, R.L. DOC photo-oxidation in clear
674 water Amazonian aquatic ecosystems. *Amazonia* 17 (3/4): 513-523, 2003.
675 Bertilsson, S. and L. J. Tranvik. Photochemical transformation of dissolved organic matter in
676 lakes. *Limnology and Oceanography* 45: 753-762. doi:10.4319/lo.2000.45.4.0753, 2000.
677 Biddanda, B.A. and Cotner, J.B. Enhancement of Dissolved Organic Matter Bioavailability by
678 Sunlight and Its Role in the Carbon Cycle of Lakes Superior and Michigan. *Journal of Great
679 Lakes Research* 29 (2): 228-241, 2003.
680 Catalan, N., R. Marcé, D. N. Kothawala, and L. J. Tranvik. Organic carbon decomposition rates
681 controlled by water retention time across inland waters. *Nature Geoscience* 9: 501-504.
682 doi:10.1038/ngeo2720, 2006.
683 Cole, J. J., N. F. Caraco, G. W. Kling, and T. K. Kratz. Carbon dioxide supersaturation in the
684 surface waters of lakes. *Science* 265: 1568-1570, 1994.
685 Cory, R. M., C. P. Ward, B. C. Crump, and G. W. Kling. Sunlight controls water column
686 processing of carbon in arctic fresh waters. *Science* 345: 925-928.
687 doi:10.1126/science.1253119, 2014.
688 Chen, M. and R. Jaffe. Photo- and bio-reactivity patterns of dissolved organic matter from
689 biomass and soil leachates and surface waters in a subtropical wetland. *Water Research* 61:
690 181-190. DOI: 10.1016/j.watres.2014.03.075, 2014.
691 Chen, M., Jaffé, R. Quantitative assessment of photo- and bio-reactivity of chromophoric and
692 fluorescent dissolved organic matter from biomass and soil leachates and from surface
693 waters in a subtropical wetland. *Biogeochemistry* 129: 273-289.
694 <https://doi.org/10.1007/s10533-016-0231-7>, 2016.
695 de Eyto, E., E. Jennings, E. Ryder, K. Sparber, M. Dillane, C. Dalton, and R. Poole. Response of
696 a humic lake ecosystem to an extreme precipitation event: physical, chemical, and biological
697 implications. *Inland Waters* 6: 483-498. doi:10.5268/IW-6.4.875, 2016.
698 de Wit, H. A., S. Valinia, G. A. Weyhenmeyer, and others. Current Browning of Surface Waters
699 Will Be Further Promoted by Wetter Climate. *Environ. Sci. Technol. Lett.* 3: 430-435.
700 doi:10.1021/acs.estlett.6b00396, 2016.
701 de Wit, H.A., Couture, R.M., Jackson-Blake, L., Futter, M.N., Valinia, S., Austnes, K., Guerrero,
702 J., and Lin, Y. Pipes or chimneys? For carbon cycling in small boreal lakes, precipitation
703 matters most. *Limnology and Oceanography Letters* 3:275-284, 2018.
704 del Giorgio, P. A., J. J. Cole, and A. Cimberis. Respiration rates in bacteria exceed
705 phytoplankton production in unproductive aquatic systems. *Nature* 385: 148-151, 1997.
706 Duan, S., He, Y., Kaushal, S.S., Bianchi, T.S., Ward, N.D., and Guo, L. Impact of wetland
707 decline on decreasing dissolved organic carbon concentrations along the Mississippi River
708 continuum. *Frontiers in Marine Science* 3:280. doi: 10.3389/fmars.2016.00280, 2017.
709 Evans, C.D., Futter, M.N., Moldan, F., Valinia, S., Frogbrook, Z., and Kothawala, D.N.
710 Variability in organic carbon reactivity across lake residence time and trophic gradients.
711 *Nature Geosciences* 3: 832-837. doi: 10.1038/NGEO3051, 2017.
712 Fasching, C., and T. J. Battin. Exposure of dissolved organic matter to UV-radiation increases
713 bacterial growth efficiency in a clear-water Alpine stream and its adjacent groundwater.

714 Aquatic Sciences 74: 143–153. doi:10.1007/s00027-011-0205-8, 2011.

715 Finstad, A. G., T. Andersen, S. Larsen, K. Tominaga, S. Blumentrath, H. A. de Wit, H.

716 Tømmervik, and D. O. Hessen. From greening to browning: Catchment vegetation

717 development and reduced S-deposition promote organic carbon load on decadal time scales

718 in Nordic lakes. *Sci. Rep.* 6: 31944–9. doi:10.1038/srep31944, 2016.

719 Fischer, E. M., and R. Knutti. Anthropogenic contribution to global occurrence of heavy

720 precipitation and high-temperature extremes. *Nature Climate Change* 5: 560–564.

721 doi:10.1038/nclimate2617, 2015.

722 Gaiser, E.E., Deyrup, N.D., Bachmann, R.W., Battoe, L.E. and Swain, H.M. Effects of climate

723 variability on transparency and thermal structure in subtropical, monomictic Lake Annie,

724 Florida. *Fundamental and Applied Limnology*. Vol 175 (3): 217-230, 2009.

725 Granéli, W., M. Lindell, and L. Tranvik. Photo-oxidative production of dissolved inorganic

726 carbon in lakes of different humic content. *Limnology and Oceanography* 41: 698–706.

727 doi:10.4319/lo.1996.41.4.0698, 1996.

728 Granéli, W., Lindell, M., de Faria, B.M., and de Assis Esteves, F. Photoproduction of dissolved

729 inorganic carbon in temperate and tropical lakes – dependence on wavelength band and

730 dissolved organic carbon concentration. *Biogeochemistry* 43: 175-195, 1998.

731 Hanson, P. C., A. I. Pollard, D. L. Bade, K. Predick, S. R. Carpenter, and J. A. Foley. A model of

732 carbon evasion and sedimentation in temperate lakes. *Global Change Biology* 10: 1285–

733 1298. doi:10.1111/j.1529-8817.2003.00805.x, 2004.

734 Hanson, P. C., M. L. Pace, S. R. Carpenter, J. J. Cole, and E. H. Stanley. Integrating Landscape

735 Carbon Cycling: Research Needs for Resolving Organic Carbon Budgets of Lakes.

736 *Ecosystems* 18: 363–375. doi:10.1007/s10021-014-9826-9, 2014.

737 Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and Mopper, K. Absorption

738 spectral slopes and slope ratios as indicators of molecular weight, source, and

739 photobleaching of chromophoric dissolved organic matter, *Limnol. Oceanogr.*, 53, 955–969,

740 2008.

741 Hosen, J.D., O.T. McDonough, C.M. Febria, and M.A. Palmer. Altered stream dissolved organic

742 matter composition and bioavailability with urbanization. *Environmental Science &*

743 *Technology*. 48:7817-7824, 2014.

744 Jennings, E., S. Jones, L. Arvola, and others. Effects of weather-related episodic events in lakes:

745 an analysis based on high-frequency data. *Freshwater Biology* 57: 589–601.

746 doi:10.1111/j.1365-2427.2011.02729.x, 2012.

747 Jonsson, A., M. Meili, A.-K. Bergström, and M. Jansson. Whole-lake mineralization of

748 allochthonous and autochthonous organic carbon in a large humic lake (Oertraesk, N.

749 Sweden). *Limnology and Oceanography* 46: 1691–1700, 2001.

750 Julian II, P., Gerber, S., Wright, A.L., Gu, B., and Osborne, T.Z. Carbon pool trends and

751 dynamics within a subtropical peatland during long-term restoration. *Ecological Processes*

752 6:43. DOI 10.1186/s13717-017-0110-8, 2017.

753 Kaiser, K., Candedo-Oropeza, M., McMahon, R., and Amon, R.M. Origins and transformations

754 of dissolved organic matter in large Arctic rivers. *Scientific Reports* 7, 13064, 2017.

755 Kling, G. W., G. W. Kipphut, and M. C. Miller. Arctic lakes and rivers as gas conduits to the

756 atmosphere: implications for tundra carbon budgets. *Science* 251:298-301, 1991.

757 Klug, J. L., D. C. Richardson, H. A. Ewing, and others. Ecosystem Effects of a Tropical Cyclone

758 on a Network of Lakes in Northeastern North America. *Environmental Science &*

759 *Technology* 46: 11693–11701. doi:10.1021/es302063v, 2012.

760 Koehler, B., T. Landelius, G. A. Weyhenmeyer, N. Machida, and L. J. Tranvik. Sunlight-induced
761 carbon dioxide emissions from inland waters. *Global Biogeochemical Cycles* 28: 696–711.
762 doi:10.1002/2014GB004850, 2014.

763 Lapierre, J.-F., F. Guillemette, M. Berggren, and P. A. del Giorgio. Increases in terrestrially
764 derived carbon stimulate organic carbon processing and CO₂ emissions in boreal aquatic
765 ecosystems. *Nat Comms* 4. doi:10.1038/ncomms3972, 2013.

766 Larsen, S., T. Andersen, and D. O. Hessen. Climate change predicted to cause severe increase of
767 organic carbon in lakes. *Global Change Biology* 17: 1186–1192. doi:10.1111/j.1365-
768 2486.2010.02257.x, 2011.

769 Larson, J., Frost, P., Xenopoulos, M., Williams, C., Morales-Williams, A., Vallazza, J., Nelson,
770 J., and Richardson, W. Relationships Between Land Cover and Dissolved Organic Matter
771 Change Along the River to Lake Transition. *Ecosystems*. 17. 10.1007/s10021-014-9804-2,
772 2014.

773 Leech, D., M. Snyder, and R. Wetzel. Alterations in the photomineralization of allochthonous
774 DOM related to elevated atmospheric CO₂. *Inland Waters* 4: 147–156. doi:10.5268/IW-
775 4.2.626, 2014.

776 Lu, Y. H., J. E. Bauer, E. A. Canuel, Y. Yamashita, R. M. Chambers, and R. Jaffe'.
777 Photochemical and microbial alteration of dissolved organic matter in temperate headwater
778 streams associated with different land use, *J. Geophys. Res. Biogeosci.*, 118, 566–580,
779 doi:10.1002/jgrg.20048, 2013.

780 Madronich, S. UV radiation in the natural and perturbed atmosphere. Pages 17–69 in M. Tevini,
781 editor. *Environmental effects of UV (ultraviolet) radiation*. Lewis Publisher, Boca Raton,
782 Florida, 1993.

783 Moeller, R.E., Williamson, C.E., Hargreaves, B.R., and Morris, D.P. *Limnology of lakes
784 Lacawac, Giles, and Waynewood 1989-1993: An introduction to the core lakes of the
785 Pocono comparative lakes program*. Lehigh University, 1995.

786 Monteith, D. T., J. L. Stoddard, C. D. Evans, and others. Dissolved organic carbon trends
787 resulting from changes in atmospheric deposition chemistry. *Nature* 450: 537–540.
788 doi:10.1038/nature06316, 2007.

789 Moran, M. A., W. M. Sheldon Jr, and R. G. Zepp. Carbon loss and optical property changes
790 during long-term photochemical and biological degradation of estuarine dissolved organic
791 matter. *Limnology and Oceanography* 45: 1254–1264. doi:10.4319/lo.2000.45.6.1254, 2000.

792 Morris, D.P. and Hargreaves, B.R. The role of photochemical degradation of dissolved organic
793 carbon in regulating the UV transparency of three lakes on the Pocono Plateau. *Limnology
794 and Oceanography* 42(2): 239–249, 1997.

795 Osburn, C. L., H. E. Zagarese, D. P. Morris, B. R. Hargreaves, and W. E. Cravero. Calculation of
796 spectral weighting functions for the solar photobleaching of chromophoric dissolved organic
797 matter in temperate lakes. *Limnology and Oceanography* 46: 1455–1467.
798 doi:10.4319/lo.2001.46.6.1455, 2001.

799 Parsons, T. R., Y. Maita, and C. M. Lalli. *A manual for chemical and biological methods for
800 seawater analysis*, Pergamon Press, 1984.

801 Porcal, P., Dillon, P.J., Molot, L.A. Temperature Dependence of Photodegradation of Dissolved Organic
802 Matter to Dissolved Inorganic Carbon and Particulate Organic Carbon. *PLoS ONE* 10 (6), e0128884.
803 2015.

804 Rahmstorf, S., and D. Coumou. Increase of extreme events in a warming world. *Proceedings of
805 the National Academy of Sciences of the United States of America* 108: 17905–17909.
806 doi:10.1073/pnas.1101766108, 2011.

807 Raymond, P. A., D. L. Hartmann, R. Lauerwald, and others. Global carbon dioxide emissions
808 from inland waters. *Nature* 503: 355–359. doi:10.1038/nature12760, 2013.

809 Reche, I., Pace, M.L., and Cole, J.J. Relationship of trophic and chemical conditions to
810 photobleaching of dissolved organic matter in lake ecosystems. *Biogeochemistry* 44: 259–
811 280, 1999.

812 Rose, K.C., Williamson, C.E., Saros, J.E., Sommaruga, R., and Fisher, J.M. Differences in UV
813 transparency and thermal structure between alpine and subalpine lakes: implications for
814 organisms. *Photochemical and Photobiological Sciences*. Volume 8(9): 1244–56.
815 doi:10.1039/b9056, 2009a.

816 Rose, K.C., Williamson, C.E., Schladow, S. G., Winder, M., and Oris, J.T. Patterns of spatial and
817 temporal variability of UV transparency in Lake Tahoe, California-Nevada. *Journal of*
818 *Geophysical Research Biogeosciences*. Volume 114(G2). doi:10.1029/2008JG000816, 2009,
819 2009b.

820 Sacks, L.A., Swancar, A., and Lee, T.M. Estimating ground-water exchange with lakes using
821 water-budget and chemical mass-balance approaches for ten lakes in ridge areas of Polk and
822 Highlands Counties, Florida. U.S. Geological Survey: Water-Resources Investigations
823 Report 98-4133. 1998.

824 Saros, J. E., C. L. Osburn, R.M.Northington, S.D. Birkel, J.D. Auger, C. A. Stedmon, and N. J.
825 Anderson. Recent decrease in DOC concentrations in Arctic lakes of southwest Greenland,
826 *Geophys. Res. Lett.*, 42, 6703–6709, doi:10.1002/2015GL065075, 2015.

827 Sharp, J.H., and others. Procedures subgroup report. *Marine Chemistry*. Volume 41. 1993. pp 37–
828 49, 1993.

829 Sherry, A. Discriminant analysis in counseling psychology research. *The Counseling*
830 *Psychologist* 34: 661–683, 2006.

831 Sherry, A., and R. K. Henson. Conducting and interpreting canonical correlation analysis in
832 personality research: A user-friendly primer. *Journal of Personality Assessment* 84: 37–48,
833 2010.

834 Solomon, C. T., S. E. Jones, B. C. Weidel, and others. Ecosystem Consequences of Changing
835 Inputs of Terrestrial Dissolved Organic Matter to Lakes: Current Knowledge and Future
836 Challenges. *Ecosystems* 18: 376–389. doi:10.1007/s10021-015-9848-y, 2015.

837 Spencer, R.G.M., Guo, W. Raymond, P.A., Dittmar, T., Hood, E., Fellman, J., and Stubbins, A.
838 Source and biolability of ancient dissolved organic matter in glacier and lake ecosystems on
839 the Tibetan Plateau. *Geochemicia et Cosmochimica Acta*. Vol 142:1-64-74, 2014.

840 Strock, K. E., J. E. Saros, S. J. Nelson, S. D. Birkel, J. S. Kahl, and W. H. McDowell. Extreme
841 weather years drive episodic changes in lake chemistry: implications for recovery from
842 sulfate deposition and long-term trends in dissolved organic carbon. *Biogeochemistry* 127:
843 353–365. doi:10.1007/s10533-016-0185-9, 2016.

844 Swain, H. Archbold Biological Station and the Macarthur Agro-Ecology Research Center.
845 *Bulletin of the Ecological Society of America*, Vol 79 (1). 1998.

846 Tranvik, L. J., J. A. Downing, J. B. Cotner, and others. Lakes and reservoirs as regulators of
847 carbon cycling and climate. *Limnology and Oceanography* 54: 2298–2314, 2009.

848 Tranvik, L. Carbon cycling in the Arctic. *Science* 345: 870–870. doi:10.1126/science.1258235,
849 2014.

850 Vachon, D., C. T. Solomon, and P. A. del Giorgio. Reconstructing the seasonal dynamics and
851 relative contribution of the major processes sustaining CO₂ emissions in northern lakes.
852 *Limnology and Oceanography* 62: 706–722. doi:10.1002/lno.10454, 2016a.

853 Vachon, D., J.-F. Lapierre, and P. A. del Giorgio. Seasonality of photochemical dissolved
854 organic carbon mineralization and its relative contribution to pelagic CO₂ production in
855 northern lakes. *J. Geophys. Res. Biogeosci.* 121: 864–878. doi:10.1002/2015JG003244,
856 2016b.

857 Westra, S., H. J. Fowler, J. P. Evans, and others. Future changes to the intensity and frequency of
858 short-duration extreme rainfall. *Reviews of Geophysics* 52: 522–555.
859 doi:10.1002/2014RG000464, 2014.

860 Weyhenmeyer, G. A., M. Fröberg, E. Karlton, M. Khalil, D. Kothawala, J. Temnerud, and L. J.
861 Tranvik. Selective decay of terrestrial organic carbon during transport from land to sea.
862 *Global Change Biology* 18: 349–355, 2012.

863 Weyhenmeyer, G. A., S. Kosten, M. B. Wallin, L. J. Tranvik, E. Jeppesen, and F. Roland.
864 Significant fraction of CO₂ emissions from boreal lakes derived from hydrologic inorganic
865 carbon inputs. *Nature Geosci.* doi:10.1038/ngeo2582, 2015.

866 Weyhenmeyer, G. A., and D. J. Conley. Large differences between carbon and nutrient loss rates
867 along the land to ocean aquatic continuum-implications for energy:nutrient ratios at
868 downstream sites. *Limnology and Oceanography* 10: 141–11. doi:10.1002/lno.10589, 2017.

869 Wilkinson, G. M., M. L. Pace, and J. J. Cole. Terrestrial dominance of organic matter in north
870 temperate lakes. *Global Biogeochemical Cycles* 27: 43–51. doi:10.1029/2012GB004453,
871 2013.

872 Williams, C.J., Frost, P.C., Morales-Williams, A.M., Larson, J.H., Richardson, W.B., Chiandet,
873 A.S. and Xenopoulos, M.A. Human activities cause distinct dissolved organic
874 matter composition across freshwater ecosystems. *Glob Change Biol.* 22: 613–626.
875 doi:10.1111/gcb.13094, 2016.

876 Williamson, C. E., D. P. Morris, M. L. Pace, and O. G. Olson. Dissolved organic carbon and
877 nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm.
878 *Limnology and Oceanography* 44: 795–803. doi:10.4319/lo.1999.44.3_part_2.0795, 1999.

879 Williamson, C. E., J. E. Saros, W. F. Vincent, and J. P. Smol. Lakes and reservoirs as sentinels,
880 integrators, and regulators of climate change. *Limnology and Oceanography* 54: 2273–2282,
881 2009.

882 Williamson, C.E., J.A. Brentrup, J. Zhang, W.H. Renwick, B.R. Hargreaves, L.B. Knoll, E.P.
883 Overholt, and K.C. Rose. Lakes as sensors in the landscape: Optical metrics as scalable
884 sentinel responses to climate change. *Limnology and Oceanography* 59: 840–850, 2014.

885 Williamson, C. E., E. P. Overholt, R. M. Pilla, T. H. Leach, J. A. Brentrup, L. B. Knoll, E. M.
886 Mette, and R. E. Moeller. Ecological consequences of long- term browning in lakes. *Sci. Rep.* 5. doi:10.1038/srep18666, 2015.

888 Williamson, C. E., E. P. Overholt, J. A. Brentrup, and others. Sentinel responses to droughts,
889 wildfires, and floods: effects of UV radiation on lakes and their ecosystem services.
890 *Frontiers in Ecology and the Environment* 14: 102–109. doi:10.1002/fee.1228, 2016.

891 Xie, H., Zafiriou, O.C., Cai, W.-J., Zepp, R.G., Wang, Y., 2004. Photooxidation and Its Effects on the
892 Carboxyl Content of Dissolved Organic Matter in Two Coastal Rivers in the Southeastern United
893 States. *Environmental Science & Technology* 38 (15), 4113–4119.

894 Zwart, J. A., N. Craig, P. T. Kelly, S. D. Sebestyen, C. T. Solomon, B. C. Weidel, and S. E.
895 Jones. Metabolic and physiochemical responses to a whole-lake experimental increase in
896 dissolved organic carbon in a north-temperate lake. *Limnology and Oceanography* 61: 723–
897 734. doi:10.1002/lno.10248, 2015.