

- Title: The relative importance of photodegradation and biodegradation of terrestrially derived
- dissolved organic carbon across four lakes of differing trophic status
- **Authors:** Christopher M Dempsey^{1*}, Jennifer A Brentrup², Sarah Magyan¹, Lesley B Knoll³, Hilary M Swain⁴, Evelyn E Gaiser⁵, Donald P Morris⁶, Michael T Ganger¹, and Craig E
- Williamson⁷

Author Affiliations:

- ¹Gannon University, Biology Department, Erie, PA, USA
- ²University of Vermont, Rubenstein Ecosystem Science Laboratory, Burlington, VT, USA
- ³University of Minnesota, Itasca Biological Station and Laboratories, Lake Itasca, MN, USA
- ⁴Archbold Biological Field Station, 123 Main Dr., Venus, FL, USA
- ⁵Florida International University, Department of Biological Sciences and Institute of
- Environment, Miami, FL, USA
- ⁶Lehigh University, Earth and Environmental Sciences Department, Bethlehem, PA, USA
- ⁷Miami University, Global Change Limnology Laboratory, Department of Biology, Oxford, OH, USA
- *Corresponding author: <u>dempsey007@gannon.edu</u>
- ORCID IDs:
- Dempsey: 0000-0003-3817-0155
- Brentrup: 0000-0002-4818-7762
- Williamson: 0000-0001-7350-1912
- Gaiser: 0000-0003-2065-4821

- Keywords: 4-6
- Photodegradation, biodegradation, dissolved organic carbon, CO₂

47

48 Abstract

- 49 Outgassing of carbon dioxide (CO₂) from freshwater ecosystems comprises 12-25% of the total
- 50 carbon flux from soils and bedrock. This CO₂ is largely derived from both biodegradation and
- 51 photodegradation of terrestrial dissolved organic carbon (DOC) entering lakes from wetlands and
- 52 soils in the watersheds of lakes. In spite of the significance of these two processes in regulating
- rates of CO_2 outgassing, their relative importance remains poorly understood in lake ecosystems. In this study, we used groundwater from the watersheds of one subtropical and three temperate
- 54 In this study, we used groundwater from the watersheds of one subtropical and three temperate 55 lakes of differing trophic status to simulate the effects of increases in terrestrial DOC from storm
- 56 events. We assessed the relative importance of biodegradation and photodegradation in oxidizing
- 57 DOC to CO₂. We measured changes in DOC concentration, the optical characteristics of the
- 57 DOC to CO_2 . We measured enanges in DOC concentration, the optical enanceensities of the 58 DOC (SUVA₃₂₀ and S_r), dissolved oxygen, and dissolved inorganic carbon (DIC) in short-term
- experiments from May-August, 2016. In all lakes, photodegradation led to larger changes in
- 60 DOC and DIC concentrations and optical characteristics than biodegradation. A descriptive
- discriminant analysis showed that in brown-water lakes, photodegradation led to the largest
- 62 declines in DOC concentration. In these brown-water systems, ~30% of the DOC was processed
- 63 by sunlight and ~2% was photo mineralized. In addition to documenting the importance of
- 64 photodegradation in lakes, these results also highlight how lakes in the future may respond to
- 65 changes in DOC inputs.
- 66

68 Introductio

69	Lakes are closely linked to their surrounding terrestrial ecosystems. As the lowest point
70	in the landscape, they receive a significant influx of terrestrially-derived dissolved organic
71	carbon (DOC) and nutrients (Williamson et al., 2009; Wilkinson et al., 2013). Climate and land
72	use changes are altering the link between lakes and their surrounding landscapes by
73	strengthening the flow of material during extreme rain events and large wildfires, or weakening
74	it during extended periods of drought (Strock et al., 2016; Williamson et al., 2016). Long-term
75	changes in DOC concentrations are variable and appear to be regionally controlled. In
76	northeastern North American and western European lakes, there has been as much as a doubling
77	of DOC concentrations due to recovery from anthropogenic acidification and climate change
78	(Monteith et al., 2007; Williamson et al., 2015; de Wit et al., 2016). However, DOC
79	concentrations in Greenland lakes (Saros et al., 2015) and the Mississippi River (Duan et al.,
80	2017) have been decreasing. A long-term study of the Florida Everglades showed that some
81	study sites were decreasing in DOC concentration, but the majority of sites were not changing
82	(Julian et al., 2017). As DOC inputs into aquatic ecosystems have increased, stabilized, or
83	decreased, long-term studies have focused on understanding the mechanisms behind the change,
84	but less research has addressed the fate of DOC once it enters a lake.
85	By attenuating light in the water column and also providing a source of energy, DOC
86	serves an important role in lakes by regulating the balance between photosynthesis and
87	respiration (Williamson et al., 1999), and thus the flux of CO ₂ to the atmosphere (Cole et al.,
88	1994). Previous studies indicated that most lakes are net heterotrophic, where the breakdown of
89	organic carbon exceeds production (Kling et al., 1991; Cole et al., 1994). Estimates suggest that
90	lakes respire about half of the annual 2 gigaton flux of carbon to the oceans each year as CO_2

91	(Cole et al., 1994; Tranvik et al., 2009; Tranvik, 2014). The traditional paradigm has been that
92	the dominant mechanism causing the release of excess CO_2 from lakes is bacterial respiration of
93	DOC (biodegradation), with photomineralization accounting for only 10% of bacterial rates
94	(Granéli et al., 1996; del Giorgio et al., 1997; Jonsson et al., 2001). However, research on over
95	200 Arctic lakes, rivers, and streams revealed that sunlight dominated the processing of DOC,
96	and photomineralization rates were on average 5x greater than dark bacterial respiration rates
97	(Cory et al., 2014). In addition, the source of inland water CO ₂ remains uncertain (Raymond et
98	al., 2013; Lapierre et al., 2013; Weyhenmeyer et al., 2015) and predicting DOC reactivity has
99	been challenging (Evans et al., 2017). Quantifying the dominant degradation pathways for
100	terrestrial DOC from a range of lakes will improve estimates of carbon fluxes, particularly
101	mineralization rates that currently have a high degree of uncertainty (Hanson et al., 2014).
102	Many past studies have focused on testing the effects of photodegradation and
103	biodegradation on DOC quantity individually, but they have not simultaneously evaluated how
104	these two processes alter the absorbance characteristics of DOC, hereafter referred to as colored
105	dissolved organic matter (CDOM) (Granéli et al., 1996; Koehler et al., 2014; Vachon et al.,
106	2016a). The effects of sunlight on DOC are not isolated to only increasing mineralization rates;
107	photodegradation can also decrease the color and molecular weight of DOC, which can increase
108	light availability and the subsequent bacterial respiration of DOC (Bertilsson and Tranvik, 2000;
109	Amado et al., 2003; Chen and Jaffé, 2016). Cory et al. (2014) found the dominant degradation
110	process for Arctic lakes to be partial photodegradation, suggesting that in lakes, sunlight-driven
111	changes in CDOM without undergoing complete mineralization may dominate DOC processing.
112	Since light attenuation varies so strongly among lakes of differing trophic status, testing
113	the relative importance of DOC processing via photodegradation or biodegradation with

114	mechanistic experiments is needed. Previous research on DOC degradation has primarily
115	occurred in high DOC lakes, but in clear-water lakes, 1% of surface UV-A and
116	photosynthetically active radiation (PAR), which are the primary wavelengths active in
117	photodegradation (Osburn et al., 2001), may reach up to 5-7 m for UV-A and 12-14 m for PAR
118	in oligotrophic lakes and depths of >45-50 m in some of the clearest lakes in the world, such as
119	Lake Tahoe (Rose et al., 2009a; Rose et al., 2009b). Geographic location and time of year
120	influence the amount of solar radiation lakes receive. In the subtropics, PAR and UV light have
121	high intensity across the spectrum year-around, whereas in temperate regions those wavelengths
122	are strongest during the summer months.
123	Watershed land use and lake trophic status have also been shown to influence DOC
124	composition and reactivity (Lu et al., 2013; Hosen et al., 2014; Larson et al., 2014; Evans et al.,
125	2017). DOC from forested systems was more reactive when compared to disturbed environments
126	and had different optical properties (Lu et al., 2012; Williams et al., 2015; Evans et al., 2017).
127	Studies examining how terrestrial DOC inputs are processed in lakes are needed, especially with
128	the increasing frequency of extreme rain events (Rahmstorf and Coumou, 2011; Westra et al.,
129	2014; Fischer and Knutti, 2015). Future climate change projections suggest that for northern
130	ecosystems a 10% increase in precipitation could lead to a 30% increase in the mobilization of
131	soil organic matter (de Wit et al., 2016). Extreme rain events deliver fresh DOC not exposed to
132	prior sunlight into lakes, which can lead to significant reductions in light availability, as well as
133	increases in thermal stability and lake heterotrophy (Jennings et al., 2012; Klug et al., 2012; de
134	Eyto et al., 2016; Zwart et al., 2016). As DOC concentrations change globally, understanding the
135	processes that determine the fate of DOC will help predict the systems most likely to release
136	more CO ₂ .

137	Here our aim was to 1) determine the relative importance of photodegradation and
138	biodegradation for altering terrestrial DOC quantity and CDOM from lakes of varying trophic
139	status, 2) quantify the percentage of the initial DOC pool that was photomineralized, partially-
140	photodegraded, biodegraded or remained unprocessed, and 3) compare the effects of
141	photodegradation on DOC quantity and CDOM across four lakes to understand differences in
142	how terrestrial DOC from the watersheds of different lake types responds to photodegradation.
143	Since lakes are closely linked to their surrounding landscape (i.e. soils and vegetation), we
144	collected terrestrial DOC from the watershed of three temperate lakes and one subtropical lake,
145	all varying in trophic status. This soil organic matter represents the current and future inputs of
146	organic material. We studied changes in the concentration of DOC, dissolved inorganic carbon
147	(DIC), and dissolved oxygen (DO) and measured changes in CDOM. We hypothesized that
148	photodegradation would be more important than biodegradation in all lakes, but the strongest
149	responses to sunlight would be observed in the brown-water lakes.
150	
151	1. Methods
152	1.1 Study Sites and Samplers
153	Groundwater samples were collected from the watersheds immediately adjacent to four
154	lakes used in this study (Table 1). All of the lakes are small, with a surface area ≤ 0.48 km ² and a
155	maximum depth ranging from 12.5 m in Lake Waynewood to 24 m in Lake Giles. The three

- 156 temperate lakes (Giles oligotrophic; Lacawac brown-water; Waynewood eutrophic) are in
- 157 close proximity, located on the Pocono Plateau in northeastern Pennsylvania. Lake Annie
- 158 (brown-water) is a subtropical, sinkhole lake located on the Lake Wales Ridge in south-central
- 159 Florida. These lakes were selected because of their variability in the dominant vegetation types

- 160 in their watersheds that lead to differences in DOC concentration and quality (Table 1). Annie, 161 Giles, and Lacawac are all seepage lakes within protected watersheds, and there have been no 162 significant changes in land use or land cover over the past thirty years. The watersheds of Giles 163 and Lacawac have > 90% cover of mixed and northern hardwood-conifer forests, with oak trees 164 dominating the watershed at Giles, while hemlocks represent the highest proportion of 165 Lacawac's watershed (Moeller et al., 1995). Annie is surrounded by well-drained sandy soils and 166 the major vegetation types include a mixed-scrub community, pinelands, and oak forests (Gaiser, 167 2009). Both Annie and Lacawac are brown-water lakes with moderate DOC concentrations and lower transparency (Table 1). A higher percentage of wetlands (7% for Annie and 25% for 168 169 Lacawac) in their watersheds likely contribute to their darker color compared to the other lakes 170 (Moeller et al., 1995; H. Swain unpublished data). Waynewood is the most eutrophic lake and 171 has the largest watershed with runoff from dairy farms upstream that feeds into the lake through 172 an inlet stream. The forest surrounding Waynewood is similarly dominated by oak and hemlock 173 trees, but there is overall less total forest cover in the watershed than Lacawac and Giles, and 174 there are more homes adjacent to the lake (Moeller et al., 1995).
- 175

- 176 **Table 1**. Summary characteristics of the four study lakes in May-August 2013–2016 (mean ±
- 177 SD). Abbreviations: Chl-*a* (chlorophyll-a), DOC (dissolved organic carbon), GW DOC (initial
- 178 groundwater DOC), PAR (photosynthetically active radiation, 400-700 nm), UV-A (ultraviolet
- 179 A radiation, 380 nm), UV-B (ultraviolet B radiation, 320 nm), RT (residence time).

Lake	Lat. (°)	Long. (°)	Lake area (km ²)	Max. depth (m)	Chl- a (μ g L ⁻¹) \pm (SD)	Lake DOC $(mg L^{-1}) \pm$ (SD)	$\begin{array}{c} GW\\ DOC\\ (mg \ L^{-1})\\ \pm \ (SD) \end{array}$	$pH \pm (SD)$	1% UV-B depth (m) ± (SD)	1% UV-A depth (m) ± (SD)	1% PAR depth (m) ± (SD)	RT (yr)
Lacawac	41° 22' N	75° 17' W	0.21	13	1.9 (1.4)	5.2 (0.8)	59.4 (6.1)	6.6^{+}	0.4 (0.1)	0.9 (0.2)	5.7 (0.6)	3.3
Annie	27° 12' N	81° 20' W	0.36	20.7	4.0 (1.5)	9.4 (2.5)	20.7 (0.5)	5.5 (0.3)	0.5*	1.3*	4.5 (1.6)	2
Wayne- wood	41° 23' N	75° 21' W	0.28	12.5	5.3 (3.7)	6.4 (1.0)	7.6 (0.3)	7.5+	0.3 (0.1)	0.7 (0.2)	4.3 (0.9)	0.42
Giles	41° 22' N	75° 5′ W	0.48	24	1.1 (0.7)	2.3 (0.3)	6.0 (0.6)	6.2^+ (0.3)	2.0 (0.5)	4.7 (1.2)	14.4 (2.1)	5.6

^{*}Indicates estimates from a single profile in March 2012. ⁺pH data in Lacawac and Waynewood are from 2015 only and from 2015-2016 in Giles.

182

183 Samplers were used to collect groundwater as a proxy for terrestrial DOC runoff entering 184 the lakes. The samplers were installed in close proximity to the Pocono lakes near small inlet 185 streams in sandy or bog areas on 6 July 2015 (~1 year prior to experiments). The groundwater 186 sampler consisted of 1m sections of 7.6cm diameter PVC pipe installed to a depth of 60-81cm 187 below ground. 0.5cm holes were drilled in the sides with a fine mesh covering the holes to let 188 shallow groundwater in but exclude large particulates. At Lake Annie, a groundwater sampler 189 was installed on 17 March 2016 on the south side of the lake near a small, intermittent inlet 190 stream. The groundwater sampler near Lake Annie was a 3m section of PVC pipe installed 191 slightly deeper to 2m below ground to allow continuous access to groundwater during the dry

192 season.

193	On 7 May 2016, 10 L of water was collected using a peristaltic pump from the
194	groundwater samplers at all of the Pocono lakes in acid-washed 18 L bottles. Groundwater
195	samples from Annie were collected from the sampler monthly (25 April, 31 May, 27 June, and 1
196	Aug 2016) prior to starting the experiments and shipped overnight on ice to Pennsylvania. All
197	groundwater samples were kept cold (4 $^{\circ}$ C) and dark until filtered to avoid sunlight exposure
198	prior to the start of the experiments. Samples for the May experiments were filtered on May 8,
199	2016 through a 0.7 μm Whatman GF/F filter. The remaining 8 L of groundwater for the June,
200	July, and August experiments for each Pocono lake were filtered in a similar manner over the
201	next 14 days. Samples were kept cold and dark until the experiments started. Samples for June,
202	July, and August were re-filtered with a 0.7 μm Whatman GF/F filter prior to the start of those
203	experiments. The initial DOC concentration of the groundwater for each lake varied at the start
204	of each experiment, but it was always higher than the in-lake DOC concentration (Table 1).
205	

206 **1.2** Sampling Design and Variables Analyzed

207 To determine the relative importance of photodegradation and biodegradation for 208 processing DOC, we designed three treatments in a manner similar to Cory et al., (2014): 1) 209 photodegradation only, 2) biodegradation only, and 3) control. From each treatment, five 210 different variables were measured including DOC concentration, DIC concentration, DO 211 concentration, SUVA₃₂₀, and S_r . The different variables measured in each treatment required the 212 use of different containers for the sample water. Samples for DOC analysis (concentration and 213 CDOM) were deployed in acid-washed, muffled 35 mL quartz tubes sealed with silicone 214 stoppers. The quartz tubes had an average transmittance of 96% of solar UV-A and 87% of solar 215 UV-B, which allowed for an accurate representation of *in-situ* solar radiation levels (SFig. 1,

216	Morris and Hargreaves, 1997). However, the quartz tubes were not gas tight, so samples for
217	dissolved inorganic carbon (DIC) and dissolved oxygen (DO) analysis were deployed in gas tight
218	borosilicate vials (Labco, Ceredigion, UK). The borosilicate vials had a volume of 12 mL but
219	were filled to 10 mL due to safety concerns with mercury chloride (see below). A clean 10 mL
220	pipette was used to carefully transfer water into the borosilicate vials. Borosilicate glass has a
221	sharp cut-off at 320 nm and transmits <5% UV-B, but it transmits an average of 63% of UV-A
222	radiation and 90% of PAR (SFig. 1, Reche et al., 1999).
223	Water samples for all of the treatments were initially filtered through ashed 0.7 μm
224	Whatman GF/F filters one day prior to the start of each monthly experiment. For the
225	photodegradation and control treatments detailed below, samples for DO and DIC analysis were
226	treated with 0.35 mL of 1% mercury chloride (HgCl ₂) to kill the microbial community. Samples
227	for DOC concentration and CDOM analysis (SUVA_{320} and $S_{\rm r})$ for the same treatments were
228	sterile filtered with a 0.2 μ m membrane filter (Sterivex MilliporeSigma, Burlington, MA USA)
229	pre-rinsed with 100 mL of DI water and 50 mL of sample water instead of using $HgCl_2$ because
230	adding $HgCl_2$ altered the optical scans. Sterile filtering has previously been shown to remove the
231	majority of microbes present, and water samples remained sterile for one week following this
232	procedure (Moran et al., 2000; Fasching and Battin, 2011). For the biodegradation treatment,
233	water samples were inoculated with 100 μL of unfiltered groundwater that was collected 1 day
234	prior to the start of each monthly experiment. By adding a fresh inoculum of groundwater each
235	month, we aimed to re-stimulate the microbial community and assess the short-term response of
236	biodegradation. Treatments were deployed in triplicate for each lake (i.e. 3 DOC quartz tubes, 3
237	DO borosilicate vials, and 3 DIC borosilicate vials for each treatment). Here, we included a
238	summary of the three experimental treatments that were designed as follows:

239	a) <i>Photodegradation Only</i> : Water for DOC concentration and CDOM analysis (SUVA ₃₂₀
240	and S_r) was sterile filtered and stored in quartz tubes (n = 3 replicates). Water for DIC
241	and DO analysis was treated with 1% $HgCl_2$ and stored in borosilicate vials (n = 6
242	replicates; 3 replicates for DIC and 3 replicates for DO analysis).
243	b) Biodegradation Only: Water for all analyses was inoculated with 100 μ L of unfiltered
244	groundwater. Water samples for DOC concentration and CDOM analysis were stored in
245	quartz tubes ($n = 3$ replicates). Water samples for DIC and DO analysis were stored in
246	borosilicate vials ($n = 6$ replicates; 3 replicates for DIC and 3 replicates for DO analysis).
247	Both the quartz tubes and borosilicate vials were wrapped with multiple layers of
248	aluminum foil to eliminate light exposure.
249	c) Control: Water for DOC concentration and CDOM analysis was sterile filtered and
250	stored in quartz tubes (n = 3 replicates). Water for DIC and DO analysis was treated with
251	1% HgCl ₂ and stored in borosilicate vials ($n = 6$ replicates; 3 replicates for DIC and 3
252	replicates for DO analysis). All samples were wrapped in aluminum foil (dark).
253	
254	The experimental treatments for each lake were deployed for seven days at the surface of
255	Lake Lacawac in May, June, July, and August of 2016 (for exact sampling dates see SI, Table 1).
256	Samples were kept at the lake surface using floating racks, and samples from each lake were
257	randomly distributed across the racks. The deployment design ensured that samples stayed at the
258	surface and dipped no deeper than 2 cm in the water column. After the one-week exposure, racks
259	were collected from the surface of Lake Lacawac and samples were immediately transferred into
260	coolers and returned to the lab. We assessed the response of terrestrially derived DOC to
261	photodegradation and biodegradation by measuring changes in the concentrations of DOC, DIC,

and DO, and the absorbance properties (SUVA $_{320}$ and S_r) of the CDOM. All samples were

analyzed within 72 hours of collection.

264	Dissolved organic carbon concentrations were analyzed using a Shimadzu TOC-V $_{\rm CPH}$
265	Total Organic Analyzer with an ASI-V auto sampler. External acidification was used for each
266	sample and triplicate measurements were performed following the methods of Sharp (1993).
267	Dissolved inorganic carbon concentrations (as CO ₂) were measured with a Shimadzu GC-8A
268	Gas Chromatograph using helium as the carrier gas. Samples were acidified using 0.1 N H_2SO_4
269	and then stripped with nitrogen gas prior to injection. Dissolved oxygen was measured using a
270	modified Winkler titration (Parson et al., 1984). Samples for gas measurements (DO and DIC)
271	were kept in a 21°C water bath for 30 minutes prior to analysis. These samples were well mixed
272	just prior to analysis. The absorbance properties of CDOM were analyzed using a Shimadzu UV
273	1800 scanning spectrophotometer at 25°C. Raw absorbance scans were generated from 800 to
274	200 nm using a 1 cm cuvette and were blank corrected with ultra-pure DI water. From the
275	absorbance scans, the spectral slope ratio (S_r) was calculated following Helms et al., (2008). The
276	DOC specific ultraviolet absorbance at 320 nm (SUVA ₃₂₀) was calculated following methods in
277	Williamson et al., (2014). S_r can be used as a proxy for the molecular weight of the DOC, while
278	SUVA ₃₂₀ can be used as a proxy for DOC color and aromatic carbon content (Helms et al., 2008,
279	Williamson et al., 2014).
280	Due to differences between the borosilicate vials and quartz tubes, the DIC and DO
281	samples were spectrally corrected for the amount of light they received (SI, SFig. 1). Total
282	cumulative energy exposure over the monthly incubations was calculated from a BSI Model
283	GUV-521 (Biospherical Instruments, San Diego, CA) radiometer with cosine irradiance sensors
284	that have a nominal bandwidth of 8 nm for 305 nm, 320 nm, 340 nm, 380 nm, and 400-700 nm

285	(PAR). Daily irradiance for UV-B, UV-A, and PAR were calculated using 15-minute averages of
286	1-second readings from a GUV radiometer located near Lake Lacawac over the 7-day
287	experiments. The area under the curve was calculated by multiplying the measurement frequency
288	(900 sec) by the average of two adjacent time step readings. These values were then summed
289	over the exposure period to calculate the total cumulative energy exposure for each sample.
290	Readings from a profiling BIC sensor (Biospherical Instruments, San Diego, CA) were then used
291	to calculate the percent of the deck cell at the surface rack incubation depth (0.02 m) in Lake
292	Lacawac.
293	
294	1.3 Explanation of Calculations and Statistical Analysis
295	To determine the fate of terrestrial DOC in the four lakes, we used the measured changes
296	(i.e. final – control) in DOC and DIC concentrations to identify four pools of DOC:
297	photomineralized, partially photodegraded, biodegraded, and unprocessed. Each pool was
298	converted to a carbon basis, and we assumed a conversion of 0.5 moles CO ₂ for each mole of
299	DOC consumed (Cory et al., 2014). The amount of carbon photomineralized (converted to CO ₂)
300	was calculated as the concentration of DIC produced [DIC*2] by sunlight (i.e. carbon that was
301	completely oxidized by sunlight). The amount of carbon partially photodegraded represents the
302	remainder of the carbon pool that was processed by sunlight (but not completely oxidized to
303	CO ₂) and was calculated as the total DOC processed by sunlight minus the amount
304	photomineralized [Total Photodegraded - Photomineralized]. The amount of carbon biodegraded
305	was calculated as the concentration of DOC lost in the biodegradation treatments. The
306	unprocessed carbon was calculated as the fraction of the carbon pool that was not processed by
307	either sunlight or microbes [Control DOC – Photomineralized – Partially Photodegraded –

308 Biodegraded]. Each process was determined for each lake and each month. Here we report the 309 average response across all four months for each DOC pool.

310 While we carried out monthly experiments (May-August), here we report the average 311 response across the open-water season (i.e. all four months) to provide a more complete picture 312 of DOC processing. The downside of this approach is that it potentially increases variation in 313 variables associated with DOC processing, since such processing may vary across the season. 314 However, there was not a strong seasonal response to photodegradation or biodegradation in all 315 of our study variables (SI Fig. 3). Furthermore, the majority of the terrestrial DOC was collected 316 on a single date and time (except for Lake Annie). 317 Final treatments were compared relative to the dark and killed (1% HgCl₂) control 318 treatments, as those samples were deployed at the surface of the lake with the photodegradation 319 and biodegradation treatments. We used a t-test to determine whether the photodegradation 320 samples for all of the variables were significantly different from the biodegradation samples (n =321 12 for each treatment) in each lake. Photodegradation and biodegradation samples were analyzed 322 separately using a one-way ANOVA to assess differences between lakes. A post-hoc Tukey's 323 multiple comparison test (Sigma Plot 14.0) was used to determine if there were significant 324 differences in the response variables between the lakes to the photodegradation and 325 biodegradation treatments. A descriptive discriminant analysis (DDA) was used to classify the 326 four lakes based on changes in DOC, DIC, DO, SUVA₃₂₀, and S_r measurements due to 327 photodegradation. Since these five measures are likely to be highly correlated with one another, 328 DDA is a good choice since it considers these relationships simultaneously in the analysis 329 (Sherry 2006). In this case, DDA, works by producing linear combinations of the five measured 330 variables (DOC, DIC, DO, SUVA₃₂₀, and S_r). The first linear combination provides the best

331	separation of the four lakes, followed by subsequent linear combinations for axes that are
332	orthogonal (Sherry, 2006). Linear combinations are weighted more heavily by variables that are
333	better able to discriminate between the lakes. In the figures and tables below, we report these
334	data as either average measured changes (i.e. concentrations) or average percent changes and
335	have indicated where appropriate. Data for this experiment were analyzed in either Sigma Plot
336	14.0 (Fig. 1, Table 2) or Systat version 10.2 (Fig. 4).
337	
338	2. Results
339	Throughout the results and discussion, the use of the lake names is to present the data in a
340	meaningful manner, but it is important to recognize that the actual water samples originated from
341	groundwater samples adjacent to each lake.
342	
343	2.1 Photodegradation and biodegradation responses in each lake
344	Photodegradation altered DOC quantity and CDOM significantly more than
345	biodegradation for terrestrial DOC from the watersheds of all four lakes (Table 2, Fig. 1). For the
346	photodegradation only treatments, exposure to sunlight resulted in significant production of DIC
347	and increases in S_r , as well as significant decreases in DO, DOC, and SUVA ₃₂₀ relative to the
348	biodegradation treatments. The only significant effect of biodegradation on terrestrial DOC was
349	a reduction in DO concentrations compared to the dark control (Fig. 1c). In all other cases, the
350	biodegradation treatments were not significantly different than the control, and the average
351	percent change was close to 0.
352	The terrestrial DOC from the brown-water lakes (Lacawac and Annie) typically followed
353	similar patterns to each other, while the terrestrial DOC from the oligotrophic and eutrophic

- 354 lakes (Giles and Waynewood) responded more similarly to each other. In the brown-water lakes,
- 355 we observed a stronger response in DOC quantity (i.e. DOC, DIC, and DO), while the changes in
- 356 DOC quantity were much more muted in the oligotrophic and eutrophic lakes. The responses of
- 357 S_r changes in each lake due to sunlight did not differ significantly. All four lakes showed a strong
- 358 response to changes in terrestrial CDOM (i.e. SUVA₃₂₀ and S_r).
- 359

- 361 in photodegradation (Photo), biodegradation (Bio), and control experimental treatments in
- 362 groundwater samples from the watersheds of lakes Lacawac, Annie, Giles, and Waynewood. The
- 363 mean (\pm SD) initial concentration for each variable is also depicted. The P/B column list the
- results of a t-test to determine whether photodegradation samples were significantly different

from the biodegradation samples (n = 12 for each treatment for the four months). Bolded values

indicate the Photo treatments that were statistically different from the Bio treatments (p < 0.05).

Analysis	Treatment	Lacawac (Mean ± SD)	P/B p-value	Annie (Mean ± SD)	P/B p-value	Giles (Mean ± SD)	P/B p-value	Waynewood (Mean ± SD)	P/B p-value
	Photo	3600 ± 330	p <	1270 ± 211	p <	692 ± 123	p <	883 ± 73.3	p < 0.001
DOC (umples L^{-1})	Bio	4910 ± 674	0.001	1810 ± 45.7	0.001	608 ± 99.0	0.001	765 ± 93.8	
(µ1110105 E)	Control	5110 ± 628		1820 ± 76.9		630 ± 102		783 ± 73.8	
510	Photo	54 ± 8.2	p <	41.9 ± 11.4	p <	20.4 ± 1.9	p <	32.2 ± 7.3	p = 0.02
DIC (umples L^{-1})	Bio	16.1 ± 5.0	0.001	25.3 ± 7.2	0.001	17.7 ± 3.0	0.001	27.1 ± 8.0	
(µnioles E)	Control	13.8 ± 4.6		30.4 ± 18.2		15.3 ± 2.1		27.8 ± 3.5	
DO	Photo	278 ± 62.4	p <	419 ± 25.9	p <	536 ± 35.6	p = 0.09	522 ± 49.0	p <
$(\text{umoles } \text{L}^{-1})$	Bio	556 ± 46.4	0.001	533 ± 42.2	0.001	556 ± 34.3		577 ± 76.9	0.001
(µ	Control	660 ± 29.4		656 ± 32.1		688 ± 60.9		702 ± 57.3	
	Photo	4.3 ± 0.4	p <	2.4 ± 0.4	p <	2.4 ± 0.2	p <	1.8 ± 0.2	p <
$SUVA_{320}$ (m ⁻¹ /mg L ⁻¹)	Bio	5.3 ± 0.2	0.001	3.8 ± 0.1	0.001	4.8 ± 0.3	0.001	3.2 ± 0.2	0.001
(m , mg E)	Control	5.1 ± 0.2		3.8 ± 0.1		4.7 ± 0.2		3.2 ±0.1	
	Photo	1.1 ± 0.0	p <	1.3 ± 0.1	p <	1.4 ± 0.1	p <	1.2 ± 0.1	p <
\mathbf{S}_{r}	Bio	0.7 ± 0.1	0.001	0.8 ± 0.0	0.001	0.9 ± 0.1	0.001	0.8 ± 0.1	0.001
	Control	0.7 ± 0.1		0.8 ± 0.0		0.9 ± 0.1		0.9 ± 0.1	

367

368 Sunlight caused average (\pm SD) DOC losses relative to the control treatments of 30.5 \pm

369 11.5% and $28.9 \pm 8.3\%$ in Lacawac and Annie, respectively (Fig. 1a). In Giles and Waynewood,

370 we observed an average of $9.6 \pm 6.5\%$ and $13.4 \pm 6.2\%$ increase in DOC concentration,

371 respectively following exposure to sunlight. When we compared lakes within each treatment,

there were no significant differences in DOC concentration due to sunlight in Giles vs.

373 Waynewood, whereas Annie and Lacawac were significantly different from the prior two lakes

374 and from each other (ANOVA: $F_{1,3} = 70.9$, p < 0.001).

375 Decreases in DOC concentration due to photodegradation could lead to mineralization

376 (i.e. DIC production; Fig. 1b) and therefore oxidation (i.e. DO consumption; Fig. 1c). We

377	observed the production of DIC due to sunlight in all of our lakes (Fig. 1b). In Lacawac and
378	Annie, the average (± SD) percent increases in DIC relative to the control treatments were 350 \pm
379	160% and 96.0 \pm 79.0%, respectively. The average percent increases relative to controls in Giles
380	and Waynewood were 40.7 \pm 19.4% and 23.2 \pm 12.7% respectively. The DIC percent change
381	was similar between Giles and Waynewood, and both were statistically different from Annie and
382	Lacawac. The percent DIC change in Lacawac was significantly higher than Annie (ANOVA:
383	$F_{1,3} = 36.4, p < 0.001$).
384	In all lakes, both photodegradation and biodegradation led to decreases in DO
385	concentrations (Fig. 1c). Average DO losses due to biodegradation for all four lakes ranged from
386	15 to 18%. DO losses due to photodegradation were more variable. The average DO loss from
387	sunlight in Lacawac and Annie was $58.2\pm7.8\%$ and $35.9\pm5.4\%,$ respectively. In Giles and
388	Waynewood, we observed average DO losses of $21.6 \pm 7.9\%$ and $25.6 \pm 4.7\%$ respectively.
389	While the largest losses of DO due to sunlight were observed in Annie and Lacawac, there was
390	no significant difference between Annie and Waynewood. Giles and Lacawac were significantly
391	different from the other two lakes and from each other (ANOVA: $F_{1,3} = 73.9$, p < 0.001).
392	Changes in CDOM due to biodegradation were minimal in all of the lakes (Fig. 1d & 1e).
393	In contrast, photodegradation caused significant changes in all of the lakes, but the magnitude of
394	the change varied by lake. $SUVA_{320}$ decreased in all lakes due to sunlight, but the largest changes
395	were observed in the oligotrophic and eutrophic lakes (Fig. 1d). Average SUVA ₃₂₀ values
396	decreased between 16.8% in Lacawac and 48.9% in Giles. The response in Annie and
397	Waynewood were similar, whereas Lacawac and Giles were significantly different from the prior
398	two lakes and each other (ANOVA: $F_{1,3}$ = 39.7, p < 0.001). In all lakes, S _r increased due to
399	sunlight (Fig. 1e). Average percent increases for the lakes ranged from 46.4% in Waynewood to

- 400 65.1% in Lacawac. For S_r, the response between Lacawac and Waynewood were significantly
- 401 different, but those lakes were no different compared to the remaining lakes (ANOVA: $F_{1,3} = 3.1$,

402 p = 0.04).

403

404

405Figure 1. The monthly average percent change from the dark and killed control treatments406(dashed line) in each lake for photodegradation (left) and biodegradation (right) for (a) DOC, (b)407DIC, (c) DO, (d) SUVA₃₂₀, and (e) S_r. Statistical differences (p < 0.05) between lakes are408indicated by different letters above each boxplot. For each boxplot n =12 replicates.409

410 **2.2** *Fate of DOC*

411 Of the four pools of carbon we identified in the groundwater samples entering our study

412 lakes, we found the average amount of carbon processed by sunlight ranged from 1.2% to ~30%

- 413 (Fig. 2). Carbon in Giles and Waynewood (< 2%) showed little response to sunlight, whereas the
- 414 response in Annie and Lacawac (~30%) was much higher over the 7-day experiments. The
- 415 dominant pathway through which sunlight interacted with DOC was through partial
- 416 photodegradation in these latter two lakes. About 2% of the carbon pool was photomineralized in
- 417 the brown water lakes. The amount of carbon processed via biodegradation was minimal in all

- 418 lakes (ranging from 0.2–4%). The fraction of the unprocessed carbon pool ranged from a low of
- 419 66% for Lacawac to a high of 97% for Waynewood. An average of 3.4 to 34% of the carbon
- 420 pool was processed in one week.

421

Figure 2. A summary of the average fate of carbon in the groundwater samples from our study lakes (see methods section for explanation of calculations). All terms were converted to a carbon basis. Photomineralized describes the amount of carbon completely mineralized to CO₂ by sunlight. Partially photodegraded describes the amount of carbon processed by sunlight minus the amount photomineralized. Biodegraded describes the amount of carbon lost through biodegradation. Unprocessed carbon describes the remaining carbon that was not processed by photodegradation.

429

430 **2.3** DOC response by lake trophic status

431 For the descriptive discriminant analysis (DDA) to classify the lakes, we found that the

432 five metrics were strongly correlated with one another (Table 3). In general, the changes in DOC,

- 433 DIC, and DO were more strongly correlated with one another than with SUVA₃₂₀ and S_r and vice
- 434 versa (Table 3). We will refer to the changes in DOC, DIC, and DO as "DOC quantity" and the
- 435 changes in SUVA₃₂₀ and S_r as "CDOM" for brevity.
- 436

437 **Table 3**. Pearson correlations between the measured changes in the five metrics: DOC, DIC, DO, 438 SUVA₃₂₀, and S_r .

$50 V A_{320}$, al	lu S _r .			
	DOC	DIC	DO	SUVA ₃₂₀
	200	210	20	5 6 11 1320
DIC	-0.934			
DO	0.960	0.927		
DO	0.809	-0.657		
SUVA ₃₂₀	-0.705	-0.671	-0.666	
$\mathbf{S}_{\mathbf{r}}$	-0.027	0.021	0.163	-0.319

⁴³⁹

440 DDA produced three functions (axes) with canonical correlations of 0.961, 0.753, and 0.181 (Fig. 3). Collectively, the entire model was significant (Wilks' $\lambda = 0.032$; F_{15, 108} = 17.79; p 441 442 < 0.001). Effect size was calculated following Sherry and Henson (2010) as 1 – Wilks' λ , and 443 therefore the overall model explains 96.8% of the variation among lakes. Functions 1 through 3 444 and 2 through 3 were significant (p < 0.001 for both). Function 3 was not significant (p = 0.710) 445 and therefore is not discussed further. Functions 1 through 3 collectively explain 92.4% of the 446 shared variance while functions 2 through 3 collectively explain 56.7% of the shared variance. 447 Function 1 represents a new variate that is a linear combination of the changes in the five variables that best discriminates the lakes from one another. This new variate is composed 448 449 mainly of DOC, with a function coefficient of 0.465 and a structure coefficient of 0.821 (Table 450 4). Of note are also DIC, DO, and SUVA₃₂₀ that had smaller function coefficients (< 0.45), but 451 had large structure coefficients (> 0.45). This result suggests that Function 1 is mainly related to 452 DOC quantity. Function 2, also a new variate that is a linear combination of the five measured 453 changes, is composed mainly of SUVA₃₂₀ (function coefficient = 0.985 and structure coefficient

- 454 = 0.719; Table 4). Function 2 is orthogonal to Function 1 and together they discriminate the four
- 455 lakes (Fig. 3).

456

- **Table 4**. The solution for changes in measured independent variables that predict the dependent
- 458 variable, lake. Structure coefficients (r_s) and communality coefficients greater than |0.45| are in
- bold. Coeff = standardized canonical function coefficient; r_s = structure coefficient; r_s^2 = squared structure coefficient.
- 461

		Function 1			Function	2
Variable	Coeff.	r_s	$r_{s}^{2}(\%)$	Coeff.	r_s	$r_{s}^{2}(\%)$
DOC	0.465	0.821	67.40	0.639	0.278	40.83
DIC	-0.337	-0.703	11.36	-0.059	-0.216	0.35
DO	0.440	0.679	19.36	-0.124	0.009	1.54
SUVA ₃₂₀	-0.139	-0.473	1.93	0.985	0.719	97.02
Sr	0.244	0.068	5.95	-0.238	-0.434	5.66

462

463

Figure 3. Canonical plot scores and 95% confidence ellipses from descriptive discriminant

465 analysis of the measured changes (i.e. treatment minus control) in the five variables (DOC, DIC,

466 DO, SUVA₃₂₀, and S_r) and four lakes: Annie (olive circles), Giles (blue squares), Lacawac (red

triangles), and Waynewood (green diamonds). Only photodegradation samples were included inthis analysis.

469	DDA correctly classified 89.4% of the samples to their collection site (Fig. 3). One
470	sample from Annie was incorrectly assigned to Waynewood, two samples from Giles were
471	incorrectly assigned to Waynewood, and two samples from Lacawac were incorrectly assigned
472	to Annie. All of the Waynewood samples were correctly classified.
473	
474	3. Discussion
475	3.1 Comparing the relative importance of photodegradation and biodegradation
476	Despite a large number of studies examining the effects of either photodegradation or
477	biodegradation on DOC processing, very few have conducted simultaneous in-situ experiments
478	of the relative importance of both processes for transforming DOC from the watersheds of a
479	range of different lakes. Our results indicate that sunlight was the primary process in the surface
480	waters responsible for degrading terrestrial DOC from the watershed of all four lakes.
481	Biodegradation played a minimal role in changing the DOC quantity and CDOM. We observed
482	decreases in DOC, DO, and SUVA $_{320}$ due to sunlight and saw increases in DIC and S _r . The loss
483	of DOC, as well as a shift to more photobleached, and lower molecular weight organic material
484	is consistent with prior studies on these lakes that evaluated just the effects of sunlight (Morris
485	and Hargreaves, 1997). Exceptions to DOC loss due to photodegradation occurred in Giles and
486	Waynewood. In these lakes, we observed an increase in average DOC concentrations. In Giles,
487	there was significant production of DOC in June and July. In Waynewood, significant production
488	occurred in May and July. We speculate that this production may be due to the lysing of any
489	microbes remaining in solution. Increases may also be attributed to interactions with iron. We
490	have no measurable evidence, but a number of samples from Giles and Waynewood contained a

- red precipitate at the conclusion of the one-week experiments. Previously iron-bound DOC could
- 492 have been released back into the water.

493	Dissolved oxygen was the lone variable where biodegradation led to decreases in DO
494	relative to the controls, but the differences between lakes were not significant. We attributed the
495	changes in DO to the "sloppy feeding" of bacteria, where they produce DOC through exudates
496	and then assimilate it (Evans et al., 2017). The above results are similar to observations in Arctic
497	and tropical waters in that photodegradation was more important than biodegradation on short
498	time scales (Cory et al., 2014; Chen and Jaffé, 2014; Amado et al., 2003). Interestingly, we
499	found that terrestrial DOC from the watersheds of lakes of different trophic status was processed
500	differently, resulting in DIC production and DOC degradation for the brown-water lakes
501	(Lacawac and Annie), but greater changes in SUVA ₃₂₀ for the oligotrophic and eutrophic lakes
502	(Giles and Waynewood). This highlights the need to account for lake trophic status in predicting
503	DOC processing and CO ₂ emissions from lakes.
504	
505	3.2 Dominant degradation process
506	Based on our study design we were able to identify four pools of carbon:
507	photomineralized, partially photodegraded, biodegraded, and unprocessed. The dominant
508	degradation pathway across all lakes was partial photodegradation (i.e. loss of DOC, but no
509	mineralization), although the size of each carbon pool varied by lake. In the brown-water lakes,
510	~28% of the total carbon pool was partially photodegraded and ~2% was photomineralized. In

- 511 the oligotrophic and eutrophic lakes ~1.4% of the carbon was photodegraded and none of the
- 512 carbon was photomineralized.

513	Observations in Toolik Lake showed 70% of the total carbon pool being processed by
514	sunlight during the open water period (~3 months) (Cory et al., 2014). Other estimates have
515	found that photomineralization of DOC accounts for only 8-14% of total water column CO_2
516	production (Granéli et al., 1996; Jonsson et al., 2001; Koehler et al., 2014; Vachon et al., 2016b).
517	We observed 30% of the carbon pool being processed by sunlight within one week in our lakes
518	and this was restricted to the brown-water lakes. Similar to Toolik Lake, the dominant
519	degradation process was partial photodegradation. Partial photodegradation can alter CDOM and
520	stimulate subsequent bacterial respiration. Degradation of CDOM can have important effects for
521	downstream ecosystems if it can be further processed and released as CO_2 or instead is buried or
522	exported downstream (Weyhenmeyer et al., 2012; Catalan et al., 2016; Chen and Jaffe, 2014;
523	Biddanda and Cotner, 2003). It is thus important to include all sunlight-driven degradation
524	processes to fully account for its relative importance.
525	Differences between the responses observed in the Arctic and our temperate/subtropical
526	lakes are most likely explained by the initial concentration and quality of terrestrially derived
527	DOC. In the Arctic, glacial meltwater can be highly photolabile and dominated by seasonal
528	inputs of DOC from shallow or deep soils (Cory et al., 2014; Spencer et al., 2014; and Kaiser et
529	al., 2017). In temperate regions, DOC tends to contain more humic and fulvic acids derived from
530	soils, which may be less photolabile than Arctic DOC. Additionally, we did not integrate our
531	results over the entire water column because the samples were analyzed on the surface of a single
532	lake. Over the entire water column, photodegradation could have processed additional carbon. In
533	clear-water lakes, DOC may be photodegraded down to the 1% UV-A attenuation depth (Osburn
534	et al., 2001), which ranged from 0.7-4.7 m in our study lakes (Table 1).

535

536 **3.3** Response of lakes to photodegradation

537	With an increase in extreme precipitation events, terrestrial DOC inputs are likely to
538	increase in many aquatic ecosystems (Rahmstorf and Coumou, 2011; Westra et al., 2014). By
539	using groundwater as a proxy of terrestrial inputs from the watersheds of different types of lakes,
540	we simulated the effects of storm events and compared the sensitivity of different terrestrial
541	DOC sources to photodegradation. Interestingly, we found DOC from the watersheds of
542	oligotrophic and eutrophic lakes showed stronger changes in CDOM, compared to DOC from the
543	watersheds of the brown-water lakes that showed significantly larger changes in DOC quantity.
544	This difference may be due to the more allochthonous nature of the brown-water DOC, which is
545	highly photolabile, resulting in greater changes in DOC quantity due to its ability to absorb UV
546	radiation (Bertilsson and Tranvik, 2000). The less allochthonous and more microbially derived
547	DOC from the watersheds of the eutrophic and oligotrophic lakes may be less photolabile with
548	fewer UV-absorbing chromophores. Results of the DDA may be helpful in predicting changes in
549	other lakes based on their trophic status. $SUVA_{320}$ is the variable most likely to change due to
550	photodegradation in eutrophic and oligotrophic lakes. In contrast, DOC concentration is the
551	variable most likely to change in brown-water lakes due to photodegradation. Both results (DOC
552	and SUVA ₃₂₀) highlight how lakes of varying trophic status respond to photodegradation. These
553	results can be used to predict how lakes not included in this study will respond to increased DOC
554	concentrations (i.e. browning).
555	Across our study lakes, changes in DIC production scaled linearly with initial
556	groundwater DOC concentration. Lacawac had the highest initial DOC concentration (59.4 \pm

557 6.1) and the highest average DIC production, while Giles had the lowest initial DOC

558 concentration (6.0 \pm 0.6) and the lowest average DIC production. This suggests that DOC

- 559 concentration plays a critical role in determining the fate of DOC (Leech et al., 2014; Lapierre et
- al., 2013). Recent research has also reported that residence time controls organic carbon
- decomposition across a wide range of freshwater ecosystems (Catalan et al., 2016, Evans et al.,
- 562 2017). However, extreme precipitation events may shorten the residence time of lakes,
- 563 effectively flushing out fresh DOC and preventing significant in-lake degradation from occurring
- 564 (de Wit et al., 2018). For the terrestrial DOC from the oligotrophic and eutrophic lakes, a
- significant fraction was not degraded, which may mean that terrestrial inputs from these
- 566 watersheds undergoes less immediate in-lake processing and instead is exported downstream.
- 567 Our results indicate that differences in the fate and processing of DOC from the watersheds of a
- 568 range of lake types have important implications for determining which lakes may release more
- 569 CO₂ versus export DOC downstream (Weyhenmeyer et al., 2012; Zwart et al., 2015;
- 570 Weyhenmeyer and Conley, 2017).
- 571 Even though we observed similar responses to photodegradation in the brown-water lakes
- 572 (Fig. 1), the magnitude of the response varied and may have been related to the initial DOC
- 573 concentration. Initial concentrations (mg L^{-1}) of terrestrial DOC from Lacawac (59.4 ± 6.1) were
- almost 3x higher than Annie (20.7 ± 0.5). Average DOC losses for both lakes due to
- 575 photodegradation were ~35%. The main difference between Lacawac and Annie was the DIC
- 576 percent change due to photodegradation (Fig. 1). Average percent increases in DIC for Lacawac
- 577 were close to 400%, whereas in Annie it was ~85%. Despite the fact that both Annie and
- 578 Lacawac are brown-water lakes, their different DIC production rates indicate that certain types of
- terrestrial DOC may be more photolabile than others and capable of outgassing large amounts of
- 580 CO₂. The DDA analysis did also pick out the separation between Lacawac and Annie primarily
- 581 on axis 1 (DOC). The responses in Annie shared similarities with the other 3 lakes while

582 Lacawac only overlapped with Annie. When put in the context of the entire DOC pool for each 583 lake, photomineralization accounted for 2% of the carbon loss. We anticipated that terrestrial 584 DOC from subtropical lakes would undergo additional microbial processing due to the higher 585 temperatures year-round. In a comparison between boreal Swedish and tropical Brazilian lakes, 586 Graneli et al., (1998) also found strong similarities in changes of DOC concentrations and DIC 587 production between lakes from the different latitudes. A weak significant correlation between 588 DOC concentration and DIC production has also been observed in Amazon clear water systems 589 (Amado et al., 2003)

590

591 Conclusions

592 Here we showed that photodegradation can be more important than biodegradation in 593 processing watershed inputs of terrestrial DOC on short time scales in the surface waters of a 594 lake. The responses that we observed varied with lake trophic status. Quantitative changes in 595 DOC, DIC, and DO were strongest in the terrestrial DOC from the watersheds of the brown-596 water lakes, whereas the largest changes in $SUVA_{320}$ were observed in the terrestrial DOC from 597 the watersheds of the eutrophic and oligotrophic lakes. Consistent with prior studies, we found 598 that sunlight can impact not only changes in the concentration, but also the absorbance properties 599 of the DOC pool. We observed a range of 1.2 to 34% of the carbon pool processed in one week. 600 As DOC concentrations increase in some aquatic ecosystems, the potential for increased CO_2 601 outgassing due to photo-mineralization also increases. On short time scales, sunlight had 602 important impacts on our study lakes. Future studies should focus on additional lakes, longer 603 timescales, and integrating DIC production throughout the water column.

604	Over the next century, DOC concentrations in northern boreal lakes are projected to
605	increase by 65% (Larsen et al., 2011). Thus, understanding the fate of terrestrial sourced organic
606	material will be essential for predicting the ecological consequences for lakes and downstream
607	ecosystems (Solomon et al., 2015; Williamson et al., 2015; Finstad et al., 2016). Improving
608	estimates of organic carbon processing in lakes will be an important component of creating more
609	complete carbon budgets (Hanson et al., 2004; 2014) and global estimates of CO_2 emissions can
610	be more accurately scaled to reflect the ability of lakes to act as CO ₂ sinks or sources as
611	browning continues (Lapierre et al., 2013, Evans et al., 2017).
612	
613	Acknowledgements
614	This project was supported by NSF grants DBI-1318747 (LBK, CEW, and others), DBI-1542085
615	(LBK, CEW, CMD), DEB 1754276 (CEW), the Robert Estabrook Moeller Research Fellow
616	Award (CMD, JAB), the Isabel and Arthur Watres Student Research Award (SM), and the staff
617	and resources of Archbold Biological Station. Data were provided by Archbold Biological
618	Station. We would like to thank Kevin Main for assistance in collecting Lake Annie water
619	samples and Erin Overholt for assistance in the lab and logistical support. The authors would like
620	to thank two anonymous reviewers for their assistance in improving the manuscript. The authors
621	declare no competing interests.
622	
623	Data Availability:
624	Data and metadata will be made available in the Environmental Data Initiative repository. Data
625	archiving will be led by C. Dempsey and J. Brentrup.

627 Author Contribution Statement

- 628 CMD, JAB, and CEW designed the study with help from LBK, EEG, and HMS. CMD, JAB,
- 629 SM, and HMS collected the water samples and ran the experiments. DPM provided the
- analytical equipment for measuring DIC and DOC. CMD and JAB analyzed the data, and CMD
- and MTG conducted the statistical and DDA analyses. CMD and JAB wrote the manuscript with
- 632 contributions from all of the authors.

634 635	References
636	Amado, A.M., Farjalla, V.F., Esteves, F.A., and Bozelli, R.L. DOC photo-oxidation in clear
637	water Amazonian aquatic ecosystems. Amazonia 17 (3/4): 513-523, 2003.
638	Bertilsson, S. and L. J. Tranvik. Photochemical transformation of dissolved organic matter in
639	lakes. Limnology and Oceanography 45: 753-762. doi:10.4319/lo.2000.45.4.0753, 2000.
640	Biddanda, B.A. and Cotner, J.B. Enhancement of Dissolved Organic Matter Bioavailability by
641	Sunlight and Its Role in the Carbon Cycle of Lakes Superior and Michigan. Journal of Great
642	Lakes Research 29 (2): 228-241, 2003.
643	Catalan, N., R. Marcé, D. N. Kothawala, and L. J. Tranvik. Organic carbon decomposition rates
644 645	controlled by water retention time across inland waters. Nature Geoscience 9: 501–504. doi:10.1038/ngeo2720, 2006.
646	Cole, J. J., N. F. Caraco, G. W. Kling, and T. K. Kratz. Carbon dioxide supersaturation in the
647	surface waters of lakes. Science 265: 1568–1570, 1994.
648	Cory, R. M., C. P. Ward, B. C. Crump, and G. W. Kling. Sunlight controls water column
649	processing of carbon in arctic fresh waters. Science 345: 925–928.
650	doi:10.1126/science.1253119, 2014.
651	Chen, M. and R. Jaffe. Photo- and bio-reactivity patterns of dissolved organic matter from
652	biomass and soil leachates and surface waters in a subtropical wetland. Water Research 61:
653	181-190. DOI: 10.1016/j.watres.2014.03.075, 2014.
654	Chen, M., Jaffé, R. Quantitative assessment of photo- and bio-reactivity of chromophoric and
655	fluorescent dissolved organic matter from biomass and soil leachates and from surface
656	waters in a subtropical wetland. Biogeochemistry 129: 273-289.
657	https://doi.org/10.1007/s10533-016-0231-7, 2016.
658	de Eyto, E., E. Jennings, E. Ryder, K. Sparber, M. Dillane, C. Dalton, and R. Poole. Response of
659	a humic lake ecosystem to an extreme precipitation event: physical, chemical, and biological
660	implications. Inland Waters 6: 483–498. doi:10.5268/IW-6.4.875, 2016.
661	de Wit, H. A., S. Valinia, G. A. Weyhenmeyer, and others. Current Browning of Surface Waters
662	Will Be Further Promoted by Wetter Climate. Environ. Sci. Technol. Lett. 3: 430–435.
663	doi:10.1021/acs.estlett.6b00396, 2016.
664	de Wit, H.A., Couture, R.M., Jackson-Blake, L., Futter, M.N., Valinia, S., Austnes, K., Guerrero,
665	J., and Lin, Y. Pipes or chimneys? For carbon cycling in small boreal lakes, precipitation
666	matters most. Limnology and Oceanography Letters 3:275-284, 2018.
667	del Giorgio, P. A., J. J. Cole, and A. Cimbleris. Respiration rates in bacteria exceed
668	phytoplankton production in unproductive aquatic systems. Nature 385: 148–151, 1997.
669	Duan, S., He, Y., Kaushai, S.S., Bianchi, T.S., Ward, N.D., and Guo, L. Impact of wetland
670	decline on decreasing dissolved organic carbon concentrations along the Mississippi River
671	continuum. Frontiers in Marine Science 3:280. doi: 10.3389/fmars.2016.00280, 2017.
672	Evans, C.D., Futter, M.N., Moldan, F., Valinia, S., Frogbrook, Z., and Kothawala, D.N.
673	Variability in organic carbon reactivity across lake residence time and trophic gradients.
6/4	Nature Geosciences 3: 832-837. doi: 10.1038/NGEO3051, 2017.
0/J 676	Fasching, U., and I. J. Battin. Exposure of dissolved organic matter to UV-radiation increases
0/0 677	A quotio Sciences 74, 142, 152, doi:10.1007/c00027.011.0205.8, 2011
077 679	Aquate Sciences /4: 145–155. doi:10.100//S0002/-011-0205-8, 2011.
670	Tinsiau, A. O., I. Anucisch, S. Laisch, K. Ionningga, S. Diumenuaui, H. A. ue wil, H. Tammeruk and D. O. Hessen. From greening to browning: Catchment vagatation
019	rommervik, and D. O. Hessen. From greening to browning. Catchinent vegetation

680	development and reduced S-deposition promote organic carbon load on decadal time scales
681	in Nordic lakes. Sci. Rep. 6: 31944–9. doi:10.1038/srep31944, 2016.
682	Fischer, E. M., and R. Knutti. Anthropogenic contribution to global occurrence of heavy
683	precipitation and high-temperature extremes. Nature Climate Change 5: 560–564.
684	doi:10.1038/nclimate2617, 2015.
685	Gaiser, E.E., Deyrup, N.D., Bachmann, R.W., Battoe, L.E. and Swain, H.M. Effects of climate
686	variability on transparency and thermal structure in subtropical, monomictic Lake Annie,
687	Florida. Fundamental and Applied Limnology. Vol 175 (3): 217-230, 2009.
688	Granéli, W., M. Lindell, and L. Tranvik. Photo-oxidative production of dissolved inorganic
689	carbon in lakes of different humic content. Limnology and Oceanography 41: 698–706.
690	doi:10.4319/lo.1996.41.4.0698, 1996.
691	Granéli, W., Lindell, M., de Faria, B.M., and de Assis Esteves, F. Photoproduction of dissolved
692	inorganic carbon in temperate and tropical lakes – dependence on wavelength band and
693	dissolved organic carbon concentration. Biogeochemistry 43: 175-195, 1998.
694	Hanson, P. C., A. I. Pollard, D. L. Bade, K. Predick, S. R. Carpenter, and J. A. Foley. A model of
695	carbon evasion and sedimentation in temperate lakes. Global Change Biology 10: 1285-
696	1298. doi:10.1111/j.1529-8817.2003.00805.x, 2004.
697	Hanson, P. C., M. L. Pace, S. R. Carpenter, J. J. Cole, and E. H. Stanley. Integrating Landscape
698	Carbon Cycling: Research Needs for Resolving Organic Carbon Budgets of Lakes.
699	Ecosystems 18: 363–375. doi:10.1007/s10021-014-9826-9, 2014.
700	Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and Mopper, K. Absorption
701	spectral slopes and slope ratios as indicators of molecular weight, source, and
702	photobleaching of chromophoric dissolved organic matter, Limnol. Oceanogr., 53, 955–969,
703	2008.
704	Hosen, J.D., O.T. McDonough, C.M. Febria, and M.A. Palmer. Altered stream dissolved organic
705	matter composition and bioavailability with urbanization. Environmental Science &
706	Technology. 48: /81/-/824, 2014.
707	Jennings, E., S. Jones, L. Arvola, and others. Effects of weather-related episodic events in lakes:
/08	an analysis based on high-frequency data. Freshwater Biology 57: 589–601.
709	doi: 10.1111/j.1365-2427.2011.02729.x, 2012.
/10	Jonsson, A., M. Melli, AK. Bergstrom, and M. Jansson. Whole-lake mineralization of
/11	allochtnonous and autochtnonous organic carbon in a large numic lake (Oertraesket, N.
/12	Sweden). Limnology and Oceanography 40: 1091–1700, 2001.
713	dynamics within a subtranical postland during long term restartion. Ecological Processes
714	6.42 DOI 10.1186/s12717.017.0110.8.2017
716	0.45. DOI 10.1100/SI5/1/-01/-0110-8, 2017.
710	of discolved organic matter in large Arctic rivers. Scientific Penerts 7, 13064, 2017
719	Ving G W G W Kinnbut and M C Miller Aratic lakes and rivers as gas conduits to the
710	stmosphere: implications for tundra carbon budgets. Science 251:208-201, 1001
720	Klug L L D C Richardson H A Ewing and others Ecosystem Effects of a Tropical Cyclone
720	on a Network of Lakes in Northeastern North America. Environmental Science &
721	Technology 46: 11693–11701 doi:10.1021/es302063y. 2012
723	Koehler B T Landelius G A Weyhenmeyer N Machida and I I Tranvik Sunlight-induced
724	carbon dioxide emissions from inland waters. Global Riogeochemical Cycles 28: 696–711
725	doi:10.1002/2014GB004850. 2014.
~	

- 726 Lapierre, J.-F., F. Guillemette, M. Berggren, and P. A. del Giorgio. Increases in terrestrially 727 derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic 728 ecosystems. Nat Comms 4. doi:10.1038/ncomms3972, 2013. 729 Larsen, S., T. Andersen, and D. O. Hessen. Climate change predicted to cause severe increase of 730 organic carbon in lakes. Global Change Biology 17: 1186–1192. doi:10.1111/j.1365-731 2486.2010.02257.x, 2011. 732 Larson, J., Frost, P., Xenopoulos, M., Williams, C., Morales-Williams, A., Vallazza, J., Nelson, 733 J., and Richardson, W. Relationships Between Land Cover and Dissolved Organic Matter 734 Change Along the River to Lake Transition. Ecosystems. 17. 10.1007/s10021-014-9804-2, 735 2014. 736 Leech, D., M. Snyder, and R. Wetzel. Alterations in the photomineralization of allochthonous 737 DOM related to elevated atmospheric CO2. Inland Waters 4: 147–156. doi:10.5268/IW-738 4.2.626, 2014. 739 Lu, Y. H., J. E. Bauer, E. A. Canuel, Y. Yamashita, R. M. Chambers, and R. Jaffe'. 740 Photochemical and microbial alteration of dissolved organic matter in temperate headwater streams associated with different land use, J. Geophys. Res. Biogeosci., 118, 566-580, 741 742 doi:10.1002/jgrg.20048, 2013. 743 Madronich, S. UV radiation in the natural and perturbed atmosphere. Pages 17-69 in M. Tevini, 744 editor. Environmental effects of UV (ultraviolet) radiation. Lewis Publisher, Boca Raton, 745 Florida, 1993. 746 Moeller, R.E., Williamson, C.E., Hargreaves, B.R., and Morris, D.P. Limnology of lakes 747 Lacawac, Giles, and Waynewood 1989-1993: An introduction to the core lakes of the 748 Pocono comparative lakes program. Lehigh University, 1995. 749 Monteith, D. T., J. L. Stoddard, C. D. Evans, and others. Dissolved organic carbon trends 750 resulting from changes in atmospheric deposition chemistry. Nature 450: 537-540. 751 doi:10.1038/nature06316, 2007. 752 Moran, M. A., W. M. Sheldon Jr, and R. G. Zepp. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic 753 754 matter. Limnology and Oceanography 45: 1254–1264. doi:10.4319/lo.2000.45.6.1254, 2000. 755 Morris, D.P. and Hargreaves, B.R. The role of photochemical degradation of dissolved organic 756 carbon in regulating the UV transparency of three lakes on the Pocono Plateau. Limnology 757 and Oceanography 42(2): 239-249, 1997. 758 Osburn, C. L., H. E. Zagarese, D. P. Morris, B. R. Hargreaves, and W. E. Cravero. Calculation of 759 spectral weighting functions for the solar photobleaching of chromophoric dissolved organic 760 matter in temperate lakes. Limnology and Oceanography 46: 1455–1467. doi:10.4319/lo.2001.46.6.1455, 2001. 761 762 Parsons, T. R., Y. Maita, and C. M. Lalli. A manual for chemical and biological methods for 763 seawater analysis, Pergamon Press, 1984. 764 Rahmstorf, S., and D. Coumou. Increase of extreme events in a warming world. Proceedings of 765 the National Academy of Sciences of the United States of America 108: 17905–17909. 766 doi:10.1073/pnas.1101766108, 2011. Raymond, P. A., D. L. Hartmann, R. Lauerwald, and others. Global carbon dioxide emissions 767 768 from inland waters. Nature 503: 355-359. doi:10.1038/nature12760, 2013. 769 Reche, I., Pace, M.L, and Cole, J.J. Relationship of trophic and chemical conditions to 770 photobleaching of dissolved organic matter in lake ecosystems. Biogeochemistry 44: 259-771 280, 1999.
 - 33

772	Rose, K.C., Williamson, C.E., Saros, J.E., Sommaruga, R., and Fisher, J.M. Differences in UV
773	transparency and thermal structure between alpine and subalpine lakes: implications for
774	organisms. Photochemical and Photobiological Sciences. Volume 8(9): 1244-56.
775	doi:10.1039/b9056, 2009a.
776	Rose, K.C., Williamson, C.E., Schladow, S. G., Winder, M., and Oris, J.T. Patterns of spatial and
777	temporal variability of UV transparency in Lake Tahoe, California-Nevada. Journal of
778	Geophysical Research Biogeosciences. Volume 114(G2). doi:10.1029/2008JG000816, 2009,
779	2009b.
780	Saros, J. E., C. L. Osburn, R.M.Northington, S.D. Birkel, J.D. Auger, C. A. Stedmon, and N. J.
781	Anderson. Recent decrease in DOC concentrations in Arctic lakes of southwest Greenland,
782	Geophys. Res. Lett., 42, 6703–6709, doi:10.1002/2015GL065075, 2015.
783	Sharp, J.H., and others. Procedures subgroup report. Marine Chemistry. Volume 41. 1993. pp 37-
/84	49, 1993. Sharma A. Disasing in a static in a second line merchale as a second the Gausseline
185 786	Developerate 24, 661, 692, 2006
700	Psychologist 54, 001-065, 2000.
/0/ 788	personality research: A user friendly primer Journal of Dersonality Assessment 84: 37.48
780	2010
790	Solomon C T S E Jones B C Weidel and others Ecosystem Consequences of Changing
791	Inputs of Terrestrial Dissolved Organic Matter to Lakes: Current Knowledge and Future
792	Challenges Ecosystems 18: 376–389 doi:10.1007/s10021-015-9848-y. 2015
793	Spencer, R.G.M., Guo, W. Raymond, P.A., Dittmar, T., Hood, E., Fellman, J., and Stubbins, A.
794	Source and biolability of ancient dissolved organic matter in glacier and lake ecosystems on
795	the Tibetan Plateau. Geochemicia et Cosmochimica Acta. Vol 142:1-64-74, 2014.
796	Strock, K. E., J. E. Saros, S. J. Nelson, S. D. Birkel, J. S. Kahl, and W. H. McDowell. Extreme
797	weather years drive episodic changes in lake chemistry: implications for recovery from
798	sulfate deposition and long-term trends in dissolved organic carbon. Biogeochemistry 127:
799	353–365. doi:10.1007/s10533-016-0185-9, 2016.
800	Tranvik, L. J., J. A. Downing, J. B. Cotner, and others. Lakes and reservoirs as regulators of
801	carbon cycling and climate. Limnology and Oceanography 54: 2298–2314, 2009.
802	Tranvik, L. Carbon cycling in the Arctic. Science 345: 870–870. doi:10.1126/science.1258235,
803	2014.
804	Vachon, D., C. T. Solomon, and P. A. del Giorgio. Reconstructing the seasonal dynamics and
805	relative contribution of the major processes sustaining CO_2 emissions in northern lakes.
806	Limnology and Oceanography 62: $706-722$. doi:10.1002/ino.10454, 2016a.
807	Vachon, D., JF. Lapierre, and P. A. del Giorgio. Seasonality of photochemical dissolved
808	organic carbon mineralization and its relative contribution to pelagic CO2 production in
810	101 meni lakes. J. Geophys. Res. Biogeosci. 121: 804–878. doi:10.1002/2015JG005244,
810 811	20100. Westra S H I Fowler I D Evens and others Future changes to the intensity and frequency of
812	short-duration extreme rainfall Reviews of Geophysics 52: 522–555
813	doi:10.1002/2014RG000464_2014
814	Weyhenmeyer G A M Fröherg E Karltun M Khalil D Kothawala I Temperud and L I
815	Tranvik. Selective decay of terrestrial organic carbon during transport from land to sea
816	Global Change Biology 18: 349–355, 2012.
817	Weyhenmeyer, G. A., S. Kosten, M. B. Wallin, L. J. Tranvik, E. Jeppesen, and F. Roland.
	· · · · · · · · · · · · · · · · · · ·

818	Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic
819	carbon inputs. Nature Geosci. doi:10.1038/ngeo2582, 2015.
820	Weyhenmeyer, G. A., and D. J. Conley. Large differences between carbon and nutrient loss rates
821	along the land to ocean aquatic continuum-implications for energy:nutrient ratios at
822	downstream sites. Limnology and Oceanography 10: 141-11. doi:10.1002/lno.10589, 2017.
823	Wilkinson, G. M., M. L. Pace, and J. J. Cole. Terrestrial dominance of organic matter in north
824	temperate lakes. Global Biogeochemical Cycles 27: 43-51. doi:10.1029/2012GB004453,
825	2013.
826	Williams, C.J., Frost, P.C., Morales-Williams, A.M., Larson, J.H., Richardson, W.B., Chiandet,
827	A.S. and Xenopoulos, M.A. Human activities cause distinct dissolved organic
828	matter composition across freshwater ecosystems. Glob Change Biol, 22: 613-626.
829	doi:10.1111/gcb.13094, 2016.
830	Williamson, C. E., D. P. Morris, M. L. Pace, and O. G. Olson. Dissolved organic carbon and
831	nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm.
832	Limnology and Oceanography 44: 795-803. doi:10.4319/lo.1999.44.3_part_2.0795, 1999.
833	Williamson, C. E., J. E. Saros, W. F. Vincent, and J. P. Smol. Lakes and reservoirs as sentinels,
834	integrators, and regulators of climate change. Limnology and Oceanography 54: 2273–2282,
835	2009.
836	Williamson, C.E., J.A. Brentrup, J. Zhang, W.H. Renwick, B.R. Hargreaves, L.B. Knoll, E.P.
837	Overholt, and K.C. Rose. Lakes as sensors in the landscape: Optical metrics as scalable
838	sentinel responses to climate change. Limnology and Oceanography 59: 840-850, 2014.
839	Williamson, C. E., E. P. Overholt, R. M. Pilla, T. H. Leach, J. A. Brentrup, L. B. Knoll, E. M.
840	Mette, and R. E. Moeller. Ecological consequences of long- term browning in lakes. Sci.
841	Rep. 5. doi:10.1038/srep18666, 2015.
842	Williamson, C. E., E. P. Overholt, J. A. Brentrup, and others. Sentinel responses to droughts,
843	wildfires, and floods: effects of UV radiation on lakes and their ecosystem services.
844	Frontiers in Ecology and the Environment 14: 102–109. doi:10.1002/fee.1228, 2016.
845	Zwart, J. A., N. Craig, P. T. Kelly, S. D. Sebestyen, C. T. Solomon, B. C. Weidel, and S. E.
846	Jones. Metabolic and physiochemical responses to a whole-lake experimental increase in
847	dissolved organic carbon in a north-temperate lake. Limnology and Oceanography 61: 723–

848 734. doi:10.1002/lno.10248, 2015.