

Dear Dr. Lutz Merbold,

On behalf of my co-authors, we thank you for facilitating the review of our manuscript, **bg-2020-164**. We also extend our sincere gratitude to the reviewers for their insightful reviews and comments; they all had excellent suggestions that greatly improve our revised manuscript. We have now incorporated all the changes we stipulated in our answers to the reviewers' comments.

For ease in reference, our answers to the reviewers' comments are now provided with the line numbers where the changes in our revised manuscript are reflected. All the line numbers are based on the revised manuscript (not on the marked-up version where the line numbers change).

We hope that our revisions will satisfy the reviewers' questions and the standards of Biogeosciences. We look forward to hearing back from you. If there are any questions regarding our manuscript, I would be happy to clarify.

Sincerely yours,

Najeeb A. Iddris

Comments from Reviewer 1 (Dr. Yit Arn Teh)

First, I was curious if the trees sampled in this study had similar or different functional traits (see points 5 and 6 below)? From the experimental design, the authors indicated that they sampled the dominant taxa in each cover type. I had wondered if the dominant trees were functionally similar to each other or if they were functionally different (e.g. do they fall within a similar “space” along the plant economic spectrum, or do the taxa span different life history strategies)? If the former, then the similarities in stem fluxes among taxa or between cover types may be partially explained by the similarity in the functional traits or ecophysiology of the sampled trees. This could mean that plant communities with very different functional traits could show different flux rates or

responses to environmental variables. If the latter (i.e. the dominant trees include a mixture of plants with different functional traits), then the findings from this work could be more widely generalizable across communities at different successional stages or with different species compositions.

Author's response: Thank you very much for this important observation. The tree species we measured at the study sites spanned different life history strategies and functional traits, which we have now provided as an appendix table (Table A2) in the revised manuscript and mentioned in Materials and Methods.

Author's changes in the manuscript: Addition of a new table (Table A2) in the revised manuscript, which summarises the ecological guild and functional traits of the measured tree species at our sites, L 889–898.

Second, I was curious if the authors could use isotope mixing models or other data/techniques to infer how much of the N₂O was derived from the soil rather than from other sources, such as plant tissues (see point 7)? For example, if there are data from ex situ experiments (e.g. mesocosm or greenhouse experiments) that indicate how much N₂O could be produced from within plant tissues, then it may be possible to conservatively estimate what the potential flux rate was from this source under field conditions. Likewise, if plant-derived N₂O has a different stable isotope composition from soil-derived N₂O then it may be possible to use mixing models to ascertain how much N₂O was derived from each source.

Author's response: We agree that it will be interesting to separate plant-associated fluxes of N₂O from soils and other sources using stable isotope techniques, but there still haven't been enough studies to support an estimate of the potential flux rate from the tree source alone. We are still in the relatively early stages of tree stem flux measurements, and we think that it is perhaps more important to assess the magnitude of stem fluxes for unknown regions, and to ascertain the source

of tree stem emissions, which is currently only speculated in the literature; these form part of the main focus of this study. We have provided a more specific answer below (see response to comment # 7).

Author's changes in the manuscript: please see answers to specific comment #7 below

Third, it was not clear if forest age or size structure could play a role in influencing rates of stem flux. The data presented in Table A1 tends to imply that the forests and cacao agroforestry have a similar size structure (i.e. see basal area data). However, it is not clear if there could be an effect of stem size on flux rates (i.e. would stem emissions be similar or different for stands with smaller or larger stems?). If there is an effect of stem size on flux this could have implications for stands of different successional stages or ages.

Author's response: We did not find an effect of stem diameter size on stem fluxes, probably due to the small diameter range of our measured trees (10–18 cm DBH for cacao trees and 10–30 cm DBH for the forest trees), which mirrored the average DBH of trees in our study sites (see Table A1 of the original manuscript). We incorporated this comment by including the following paragraph in the revised manuscript: “We did not find an effect of tree diameter sizes on stem N_2O fluxes at our study sites. This was due to the narrow range between the DBH of our measured trees (10–18 cm DBH for cacao trees and 10–30 cm DBH for the forest trees), which reflected the mean stem diameter of trees in our sites (Table A1). Future studies should incorporate trees of wide-ranging diameter size classes, if present at the site, as they may influence N_2O flux estimates at the ecosystem-scale.”

Author's changes in the manuscript: we added this at L 427–432

SPECIFIC COMMENTS

#1. Lines 68-70: The literature on the effects of soil N availability, fertilizer and farm management practices is relatively well-developed, and I recommend adding a few more references here to add weight to your statement. To keep the referencing concise, you could cite one or two of the excellent review or synthesis papers published by colleagues such as Eric Davidson, Pam Matson or Peter Groffman?

Author's response: We revised this in the manuscript by adding the following references: Davidson and Verchot (2000) Testing the hole-in-the-pipe model of nitric and nitrous oxide emissions from soils using the TRAGNET database; Groffman et al. (2000) Evaluating annual nitrous oxide fluxes at the ecosystem scale; Veldkamp et al., (2020) Deforestation and reforestation impacts on soils in the tropics.

Author's changes in the manuscript: we removed the reference Veldkamp et al., 2008, and added the above references at Line 69–70

#2. Lines 86-94: What techniques can be used to determine the main transport mechanism for N₂O for the trees in your study site? For example, are there differences in the isotopic fractionation for N₂O transported via aerenchyma versus xylem sap?

Author's response: This is a very interesting question; isotopic labelling experiments will be useful for unravelling the source and main transport mechanism of stem-emitted N₂O. But to the best of our knowledge, there has been no measurements on the isotopic composition of N₂O emitted via the different transport mechanisms (either xylem sap or aerenchyma) to enable a definite assessment of the dominant transport medium in our site. However, because the trees in our study sites typically lacked aerenchyma tissues, N₂O is more likely to move in its dissolved

form through the xylem via the transpiration stream of the trees, where it is then emitted to the atmosphere via the stomata (Machacova et al., 2013, 2019; Wen et al., 2017).

Author's changes in the manuscript: no change.

#3. Lines 95-106: For prior stem flux studies on wet soils (i.e. Sunitha Pangala & Vince Gauci's work), wood density was found to be predictor for stem flux rates. Was this a variable measured here, or was wood density thought to be unimportant given that flux is likely to be via xylem transport (rather than aerenchymatic tissues)?

Author's response: This is also a very interesting point. Wood density is important to measure as tree physiological traits have been shown to affect stem fluxes. However, this has mostly been related to trees having aerenchyma tissues, as the increased pore spaces of such trees (low wood density) suggest for greater transport of water from the soil (e.g. Pangala et al., 2013; Wang et al., 2017). Although we did not determine the wood density of the trees we measured at our study sites, their wood densities published in literature (Table A2) did not correlate with the stem N₂O fluxes. Our findings of similar stem N₂O emissions among the different tree species (Fig. 1) we measured also suggest that wood density was not the main factor influencing the stem N₂O emissions at our study sites.

Author's changes in the manuscript: no change.

#4. Line 109: To give readers a bit more insight into how you selected tree species for study, you may consider adding a sentence or phrase indicating that the trees measured represented the most dominant species in each plot.

Author's response: Thank you for the suggestion. We expounded this in detail in the Materials and Methods (lines 154–163) and therefore suggest maintaining line 109 as it is in the introduction.

Author's changes in the manuscript: no change.

#5. Line 154-156: The only issue to be aware of here is that the most dominant species may have similar characteristics to each other because they may occupy a similar “space” along the plant economic spectrum and possess similar functional traits (e.g. in old-growth systems, the dominant species tend to show similar traits such as slow growth, high wood density, low tissue turnover times, higher N-use efficiency, shade tolerance, etc.). It’s possible that plants with different functional traits (e.g. fast-growing species) may show slightly different physiological characteristics and consequently show differences in stem fluxes.

#6. Lines 411-412: I think it is significant that there do not appear to be any statistically significant, species-specific differences in N₂O flux in either forest or agro-forestry systems, suggesting that the mean or median N₂O flux may be similar for trees growing on well-drained soils. The only potential issue to be aware of is whether or not this may be because the dominant trees sampled in this study possessed similar functional traits (assuming that they may occupy the same “space” along the plant economic spectrum; see point 5 above). This may be something worthwhile discussing further in the paper.

Author's response: We combined addressing the comments #5 and 6 in our revision since they both centre on the same point. As we mentioned in our answer above, the tree species we measured at our study sites have different life history strategies, including a mixture of pioneers, non-pioneer light demanders, and shade bearers. We incorporated these excellent suggestions by expanding our discussions in the implication section as follows: “Our measured tree species spanned different life history strategies and functional traits (a mixture of pioneers, non-pioneer light demanders, and shade tolerants; Table A2); the lack of species-specific differences suggest that our findings could be more widely generalizable across communities with different species compositions, at least from highly weathered soils. However, the narrow range of tree DBH

classes of our measured trees may have important implications for stands of different successional stages or ages, as stem diameter size, wood density and other physiological characteristics may possibly influence stem N₂O fluxes (Machacova et al., 2019; Welch et al., 2019). Also, the possibility for large N₂O fluxes at the stem base near the ground (Barba et al., 2019; Welch et al., 2019), which we could not measure due to irregular surface of buttresses, warrants further investigation. All these combined may imply that our quantified stem N₂O emissions result in a conservative estimate of the overall stem N₂O budget from this important region”.

Author's changes in the manuscript: we added these suggestions in the implication section at L 550-561, and also provided a table (Table A2) summarising the ecological guild and functional traits of our studied tree species, at L 889–898.

7. Lines 451-460: I understand the logic behind this statement and broadly agree with the interpretation; the soil does seem to be the most likely source of N₂O, given that the turnover of N in soil is probably significantly greater than N turnover in plant tissues, on roots (the rhizoplane) or within roots. My one question here is whether or not there is a way to use mixing models to infer how much of the N₂O was derived from the soil versus to N₂O produced within the plant? Does the isotope value of N₂O derived from in-tree processes differ enough from soil-produced N₂O that you could estimate how much N₂O is coming from each process? If this is possible, this would lend weight to the authors' argument.

Author's response: This is another intriguing question. If there would be enough information on the isotopocule fingerprint of stem-derived N₂O, then we could estimate how much N₂O is been emitted by the stem itself. To the best of our knowledge, only one study has investigated stable isotopes of plant-emitted N₂O from leaves of a single species (Lenhart et al., 2019). Although the isotopic values of plant-emitted N₂O were different from the range of known dual isotopocule values of N₂O from chemical and microbial production, the range of the isotopic values of plant-

emitted N₂O were relatively small and the pathway and extent to which it contributed to total N₂O flux was unknown. While we did carryout a ¹⁵N-isotope tracing experiment, our purpose was just to ascertain if N₂O produced in the soil can be detected from the stem emissions, which is currently unknown and has been speculated as one of the mechanisms in the literature but without any field-based measurements.

Author's changes in the manuscript: no change.

8. Lines 493-505: I like that the authors have been bold enough to report annualised, upscaled estimates of N₂O flux from their study sites, as not all investigators would have been confident to do so. Given how little data exists for African systems (and for stem fluxes in general), these kinds of upscaling exercises enable the wider flux community to understand how stem fluxes may fit into the bigger picture of regional and global N₂O cycling. Even if these numbers are refined or improved upon by future field experiments, we now have a starting point or baseline to compare against. My recommendation here is that it may be worthwhile to briefly expand this section of the text to discuss the other ways this kind of upscaling could be done to derive annualised fluxes. For example, for landscapes that are spatially structured due factors such as agricultural/forestry planting patterns, topography, soil moisture, fertility, differences in soil type) spatially weighted upscaling may be another approach that could be used. This would not only signal to the reader that the authors are aware of the assumptions/potential limitations of their approach, but also provide food for thought for colleagues who might be interested in conducting similar types of studies in other regions.

Author's response: Point well taken. We added a summarized topic on extrapolation method in this paragraph: "The most important consideration in bottom-up spatial extrapolation approach is to recognize at the outset that the design of the field quantification must reflect the landscape-scale drivers of the studied process, e.g. land-use types (reflecting management), soil texture (as

a surrogate of parent material) and climate are landscape-scale controllers of soil N, C and GHG fluxes (e.g., Corre et al., 1999; Hassler et al., 2017; Silver et al., 2000; Veldkamp et al., 2008, 2013), whereas topography (reflecting soil types, moisture regimes, fertility) is the main driver within a landscape (e.g., Corre et al., 1996, 2002; Groffman and Tiedje, 1989; Pennock and Corre, 2001). Process-based models and geographic information system database can be combined with field-based measurements for improved extrapolation.

Author's changes in the manuscript: we added this at L 536–545

Comments from Reviewer 2 (Dr. Vincent Gauci)

My main comment on the study is concerned with the position of flux measurement chambers which are mainly at breast height and above. I understand that some of the natural forest trees are buttressed, making it difficult for deployment of a uniform chamber design lower down the tree stem but this does present a potential reason for the lower fluxes they observed relative to the only other tropical forest N₂O fluxes reported. The authors do acknowledge that there are other studies demonstrating larger fluxes from trees at the tree base and they do discuss their own measurements in this context but I feel they could do more to discuss how, given this, their measurements may represent a conservative estimate of total tree stem fluxes and stem fluxes could be even larger. This doesn't diminish the study in any way (we're still in the relatively early stages of tree stem flux measurements with, as yet, no standard approaches emerging) but it would place a lower bound on emissions from these forests and plantations pointing to the need for further study. A simple line that addresses this point in the 'Implications' section or at a relevant point in the discussion would suffice.

Author's response: We appreciate the reviewer's comments highlighting both the novelty of the dataset that we present, and the timeliness of our manuscript. We also agree with the reviewer

that our stem N₂O measurements may be conservative, considering that we could only measure stem fluxes at 1.3 m stem height and above, due to the presence of buttresses on many of our measured trees. We incorporated his suggestion by adding it to our revision for questions #5 and 6 from Reviewer 1.

Author's changes in the manuscript: we incorporated this suggestion in the implication section at L 557-561

1 **Stem and soil nitrous oxide fluxes from rainforest and cacao**
2 **agroforest on highly weathered soils in the Congo Basin**

3 Najeeb A. Iddris¹, Marife D. Corre¹, Martin Yemefack^{2,3}, Oliver van Straaten^{1,4}, Edzo
4 Veldkamp¹

5 ¹Soil Science of Tropical and Subtropical Ecosystems, University of Goettingen, Goettingen,
6 37077, Germany

7 ² International Institute of Tropical Agriculture, Yaoundé, Cameroon

8 ³ Now at: Sustainable Tropical Solutions (STS), Yaoundé, Cameroon

9 ⁴ Now at: Northwest German Forest Research Institute, Goettingen, 37079, Germany

10 *Correspondence to:* N. A. Iddris (niddris@gwdg.de)

11 **Abstract.** Although tree stems act as conduits for greenhouse gases (GHG) produced in the soil,
12 the magnitudes of tree contributions to total (soil + stem) nitrous oxide (N_2O) emissions from
13 tropical rainforests on heavily weathered soils remain unknown. Moreover, soil GHG fluxes are
14 largely understudied in African rainforests, and the effects of land-use change on these gases are
15 identified as an important research gap in the global GHG budget. In this study, we quantified
16 the changes in stem and soil N_2O fluxes with forest conversion to cacao agroforestry. Stem and
17 soil N_2O fluxes were measured monthly for a year (2017–2018) in four replicate plots per land
18 use at three sites across central and southern Cameroon. Tree stems consistently emitted N_2O
19 throughout the measurement period, and were positively correlated with soil N_2O fluxes. ^{15}N -
20 isotope tracing from soil mineral N to stem-emitted $^{15}N_2O$ as well as correlations between
21 temporal patterns of stem N_2O emissions, soil-air N_2O concentration, soil N_2O emissions, and
22 vapor pressure deficit suggest that N_2O emitted by the stems originated predominantly from N_2O
23 produced in the soil. Forest conversion to extensively managed, mature (> 20 years old) cacao
24 agroforestry had no effect on stem and soil N_2O fluxes. The annual total N_2O emissions were
25 $1.55 \pm 0.20 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ from the forest and $1.15 \pm 0.10 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ from cacao agroforestry,
26 with tree N_2O emissions contributing 11 to 38 % for forests and 8 to 15 % for cacao agroforestry.
27 These substantial contributions of tree stems to total N_2O emissions highlight the importance of
28 including tree-mediated fluxes in ecosystem GHG budgets. Taking into account that our study
29 sites' biophysical characteristics represented two-thirds of the humid rainforests in the Congo
30 Basin, we estimated a total N_2O source strength for this region of $0.18 \pm 0.05 \text{ Tg N}_2\text{O yr}^{-1}$.

31 **1. Introduction**

32 The trace gas nitrous oxide (N_2O) has become the main stratospheric ozone depleting substance
33 produced by human activities (Ravishankara et al., 2009), and is after carbon dioxide and methane
34 (CH_4) the most important anthropogenic greenhouse gas (GHG) (Denman et al., 2007). Humid

35 tropical soils are considered one of the most important global N_2O sources (Denman et al., 2007;
36 Werner et al., 2007a), with tropical rainforests alone estimated to contribute between 0.9 to 4.5
37 $\text{Tg N}_2\text{O-N yr}^{-1}$ to the global N_2O source of about 16 $\text{Tg N}_2\text{O-N yr}^{-1}$ (Bouwman et al., 1995;
38 Breuer et al., 2000; Werner et al., 2007a). However, ground-based, bottom-up N_2O emission
39 estimates appear to be in stark contrast to the high emissions estimated from top-down approaches
40 such as modelling and global N_2O atmospheric inversions (Huang et al., 2008; Thompson et al.,
41 2014). Nevertheless, there exists considerable uncertainty in both approaches (Davidson and
42 Kanter, 2014), especially for the tropics (Valentini et al., 2014). Recent studies suggest two
43 possible reasons for large uncertainties in bottom-up approaches: “missing” emission pathways
44 such as trees (Welch et al., 2019), and a strong geographic bias of measured N_2O fluxes from
45 tropical forests.

46 Most of the studies on soil N_2O fluxes from tropical ecosystems were conducted in South
47 and Central America (Davidson and Verchot, 2000; Matson et al., 2017; Neill et al., 2005; Wolf
48 et al., 2011), tropical Asia (Hassler et al., 2017; Purbopuspito et al., 2006; Veldkamp et al., 2008;
49 Verchot et al., 2006; Werner et al., 2006) and Australia (Breuer et al., 2000; Kiese et al., 2003).
50 Africa remains the continent with the least published field studies on soil N_2O fluxes from the
51 tropical forest biome. After the pioneering work by Serca et al. (1994), very few field studies
52 have been conducted, most of which were either not replicated with independent plots or only
53 with short measurement campaigns (Castaldi et al., 2013; Gütlein et al., 2018; Wanyama et al.,
54 2018; Werner et al., 2007b). The remaining studies were based on laboratory incubations, which
55 cannot be translated to actual field conditions. Consequently, field-based studies with sufficient
56 spatial and temporal coverage are critical for improving the highly uncertain N_2O sink and source
57 estimates for Africa (Kim et al., 2016b; Valentini et al., 2014).

58 The Congo Basin is the second largest intact tropical forest in the world and constitutes
59 one of the most important carbon (C) and biodiversity reservoirs globally. Behind the DR Congo,

60 Cameroon is the second highest deforested country in the Congo Basin with about 75 % of its
61 forest being subject to pressure from other land uses including agroforestry (Dkamela, 2010).
62 Conversion of forests to traditional cacao agroforestry (CAF) systems have well been
63 documented in Cameroon (Saj et al., 2013; Sonwa et al., 2007; Zapfack et al., 2002). Presently,
64 an estimated 400,000 hectares is under CAF on small family farms of approximately one to three
65 hectares (Kotto et al., 2002; Saj et al., 2013). These CAF systems are commonly established under
66 the shade of the forests' remnant trees, and are characterised by absence of fertilizer inputs and
67 low yields of up to 1 t cacao beans ha^{-1} (Saj et al., 2013).

68 Changes in land use have been found to affect soil N_2O emissions due to changes in soil
69 N availability ([Corre et al., 2006](#)), vegetation ([Veldkamp et al., 2008](#)) and management practices
70 such as N fertilization ([Hassler et al., 2017](#)) ([Corre et al., 2006](#); [Davidson and Verchot, 2000](#);
71 [Groffman et al., 2000](#); [Hassler et al., 2017](#); [Veldkamp et al., 2020](#)). In particular, unfertilized
72 agroforestry and agricultural systems have been found to have comparable N_2O fluxes as those
73 from the reference forests (Hassler et al., 2017), whereas N-fertilized systems tend to have higher
74 N_2O fluxes than the previous forest due to elevated soil mineral N following fertilization (Verchot
75 et al., 2006). This is in line with postulations of the conceptual hole-in-the-pipe (HIP) model,
76 which suggest that the magnitude of N_2O emissions from the soil are largely controlled first by
77 soil N availability and second by soil water content (Davidson et al., 2000). A systematic
78 comparison between a reference land use and a converted system for quantifying land-use change
79 effects on GHG fluxes is virtually lacking for the Congo Basin, and thus an important knowledge
80 gap in the GHG budget of Africa (Valentini et al., 2014).

81 Tree stems have been found to act as conduits for soil N_2O in wetlands, mangroves and
82 well-drained forests (Kreuzwieser et al., 2003; Rusch and Rennenberg, 1998; Welch et al., 2019),
83 facilitating the transport from the soil, where N_2O are produced or consumed by microbial
84 nitrification and denitrification processes, to the atmosphere. Findings of strong declines in N_2O

85 emissions with increasing stem height (Barba et al., 2019; Díaz-Pinés et al., 2016; Rusch and
86 Rennenberg, 1998; Wen et al., 2017) suggest that N₂O is mainly emitted through the stems and
87 less likely through the leaves. Trees adapted to wetlands and mangroves have aerenchyma
88 systems through which N₂O can be transported from the soil into the tree by both gas diffusion
89 and transpiration stream, with exchange to the atmosphere predominantly through the stem
90 lenticels (Rusch and Rennenberg, 1998; Wen et al., 2017). However, for trees on well-drained
91 soils, a different transport mechanism appears to be dominant: transpiration drives the xylem sap
92 flow in which dissolved N₂O is transported from the soil to the tree and emitted to the atmosphere
93 through the stem surface and stomata (Machacova et al., 2013; Wen et al., 2017). Recent evidence
94 shows that trees can also act as N₂O sinks (Barba et al., 2019; Machacova et al., 2017),
95 highlighting the need for further research of the stem N₂O flux magnitudes and their mechanisms.

96 The most important soil parameters found to influence tree-stem N₂O fluxes include soil
97 water content (Machacova et al., 2016; Rusch and Rennenberg, 1998), soil N₂O fluxes (Díaz-
98 Pinés et al., 2016; Wen et al., 2017), soil temperature (Machacova et al., 2013) and soil-air N₂O
99 concentration within the rooting zone (Machacova et al., 2013; Wen et al., 2017). These studies
100 also reported environmental parameters, such as air temperature and vapour pressure deficit, to
101 drive stem N₂O fluxes due to their influence on transpiration (O'Brien et al., 2004). For temperate
102 forests on a well-drained soil, annual stem N₂O fluxes have been found to contribute up to 10 %
103 of the ecosystem N₂O emissions (Wen et al., 2017). However, until now, there is no ground-
104 based spatial extrapolation of the contribution of stem N₂O emissions from tropical forests on
105 well-drained soils. Hence, there is a need for concurrent quantifications of the contributions of
106 stem and soil N₂O fluxes so as to provide insights on the source strengths of N₂O emissions from
107 tropical African land uses and to improve estimates of N₂O emissions from the region.

108 Our present study addresses these knowledge gaps by providing year-round
109 measurements of stem and soil N₂O fluxes from forests and converted CAF systems with spatially

110 replicated plots in the Congo Basin as well as stem N₂O fluxes of 23 tree species that have not
111 been measured before. Our findings contribute to the much-needed improvement of GHG budget
112 from this region. Our study aimed to (i) assess whether trees in tropical rainforests and CAF are
113 important conduits of N₂O, (ii) quantify changes in soil-atmosphere N₂O fluxes with forest
114 conversion to CAF, and (iii) determine the temporal and spatial controls of stem and soil N₂O
115 fluxes. We hypothesized that (i) stem and soil N₂O fluxes from these extensively managed CAF
116 systems (unfertilized and manual harvest) will be comparable to the natural forests, and (ii) the
117 seasonal pattern of stem emissions will parallel that of soil N₂O emissions and both will have
118 similar soil and climatic controlling factors.

119 **2. Materials and methods**

120 **2.1 Study area and experimental design**

121 Our study was conducted at three study sites located in southern and central Cameroon, where
122 natural forests are predominantly converted to CAF (Sonwa et al., 2007). Sites in the southern
123 region were located around the villages of Aloum (2.813° N, 10.719° E; 651 m above sea level,
124 asl) and Biba Yezoum (3.158° N, 12.292° E; 674 m asl), and the third site was located around the
125 village of Tomba (3.931° N, 12.430° E; 752 m asl) in the central region (Fig. B1). The mean
126 annual air temperature across the three sites is 23.5 °C (Climate-Data.org, 2019), and the soil
127 temperature ranged from 21.6–24.4 °C during our measurement period from May 2017 to April
128 2018. The study sites span an annual precipitation from 1576 mm yr⁻¹ in the central to 2064 mm
129 yr⁻¹ in the south of Cameroon (Table A1; Climate-Data.org, 2019). Precipitation occurs in a
130 bimodal pattern, with two dry seasons (< 120 mm monthly rainfall) occurring from July to August
131 and December to February. All sites are situated on heavily weathered soils classified as
132 Ferralsols (FAO classification; IUSS Working Group WRB, 2015). Geologically, Tomba and
133 Biba Yezoum are underlain by middle to superior Precambrian basement rocks (metamorphic

134 schists, phyllites and quartzites), whereas Aloum site is situated on inferior Precambrian
135 basement rocks (inferior gneiss and undifferentiated gneiss) (Gwanfogbe et al., 1983).

136 At each of the three sites, we studied two land-use systems: the reference forest and the
137 converted CAF system. Additional information on vegetation and site characteristics are reported
138 in Table A1. These CAF sites were established right after clearing the natural forests, where
139 remnant forest trees were retained by farmers to provide shade for understorey cacao trees
140 (*Theobroma cacao*). Cacao planting and localised weeding were all done manually using hand
141 tools. Interviews of farm owners indicated that there had been no mineral fertilization in any of
142 the CAF sites. The ages of the CAF since conversion varied between 22 and ~ 45 years.

143 We selected four replicate plots (50 m x 50 m each with a minimum distance of 100 m
144 between plots) per land-use type within each site (Fig. B1), totalling to 24 plots that were all
145 located on relatively flat topography. Within each plot, all stems including cacao trees with a
146 diameter at breast height (DBH) \geq 10 cm were identified and measured for DBH and height. We
147 conducted N₂O flux measurements, soil and meteorological parameters in the inner 40 m \times 40 m
148 area within each plot to minimize edge effects. To check that soil conditions were comparable
149 between the reference forests and converted CAF, we compared a land-use-independent soil
150 characteristic, i.e. clay content at 30–50 cm depth, between these land uses at each site. Since we
151 did not find significant differences in clay contents between the forest and CAF at each site (Table
152 1), we inferred that land-use types within each site had comparable initial soil characteristics prior
153 to conversion and any differences in N₂O fluxes and soil controlling factors can be attributed to
154 land-use conversion.

155 For measurements of stem N₂O fluxes, we selected six cacao trees per replicate plot in the
156 CAF, and six trees representing the most dominant species within each replicate plot in the forest,
157 based on their importance value index (IVI) (Table A24). The species IVI is a summation of the
158 relative density, relative frequency and relative dominance of the tree species (Curtis and

159 McIntosh, 1951). For a given species, the relative density refers to its total number of individuals
160 in the four forest plots at each site; the relative frequency refers to its occurrence among the four
161 forest plots; and the relative dominance refers to its total basal area in the four forest plots, all
162 expressed as percentages of all species. These 24 trees measured at each site (6 trees x 4 forest
163 plots) included nine species in Aloum site, seven species in Biba Yezoum site, and 10 species in
164 Tomba site (species are specified in Fig. 1; [Table A2](#)). The trees were measured for stem N₂O
165 fluxes at 1.3 m height above the ground at monthly interval from May 2017 to April 2018.
166 Furthermore, we assessed the influence of tree height on stem N₂O fluxes by conducting
167 additional measurements on 16 individual trees per land use in May 2018; these trees were
168 included in the monthly measurements but were additionally measured at three stem heights (1.3
169 m, 2.6 m and 3.9 m from the ground) per tree in the forest, and at two heights (1.3 m and 2.6 m)
170 per tree in the CAF due to the limited height of the cacao trees.

171 For soil N₂O flux measurements, we installed four permanent chamber bases per replicate
172 plot which were randomly distributed within the inner 40 m × 40 m area. We conducted monthly
173 measurements of soil N₂O fluxes from May 2017 to April 2018 as well as meteorological and
174 soil variables known to control N₂O emission (see below).

175 **2.2 Measurement of stem and soil N₂O fluxes**

176 We measured in situ stem N₂O fluxes using stem chambers made from transparent
177 polyethylene-terephthalate foil, as described by Wen et al. (2017). One month prior to
178 measurement, we applied acetic acid-free silicone sealant strips (Otto Seal ® S110, Hermann
179 Otto GmbH, Fridolfing, Germany) of about 1 cm wide at 20 cm apart around the surface of the
180 tree stems (between 1.2 m and 1.4 m heights from the ground) that stayed permanently to ensure
181 that all the stem chambers had air-tight seals (Fig. B2). As many of the measured trees have
182 buttresses (rendering stem chambers impossible to attach at low stem height, e.g. Fig. B2), we
183 chose the measurements at an average of 1.3 m height (or between 1.2–1.4 m), congruent to the

184 standard measurement of DBH. Since chamber installation is quick, chambers were newly
185 installed on each sampling date, using the silicone sealant strips as a mark to ensure that the same
186 0.2 m length stem section was measured. We wrapped a piece of foil (cut approximately 50 cm
187 longer than the measured stem circumference and fitted with a Luer lock sampling port) around
188 each stem. Using a gas-powered heat gun, we “shrank” the top and bottom part of the foil to fit
189 closely onto the silicone strips, leaving 0.2 m length between the top and bottom silicone strips,
190 which served as the chamber for collecting gas samples (Fig. B2). We then wrapped strips of
191 polyethylene foam around the edges of the foil and adjusted the foam tightly using lashing straps
192 equipped with ratchet tensioners (two straps at the top and two at the bottom). The lashing straps
193 adjusted the flexible foam and the foil (on top of the silicone strips) to any irregularities on the
194 bark and ensured an airtight fitting. After installation, we completely evacuated the air inside the
195 stem chamber using a syringe fitted with a Luer lock one-way check valve. Afterwards, we used
196 a manual hand pump to refill the stem chamber with a known volume of ambient outside air for
197 correct calculation of stem N₂O flux. A 25 mL air sample was taken with syringe through the
198 Luer lock sampling port immediately after refilling the stem chamber with ambient air, and then
199 again after 20, 40 and 60 min. Each air sample was immediately stored in pre-evacuated 12 mL
200 Labco exetainers with rubber septa (Labco Limited, Lampeter, UK), maintaining an overpressure.

201 In May 2018, we conducted a ¹⁵N tracing experiment at the Tomba site as a follow-on
202 study to elucidate the source of stem N₂O emissions. The tracing was conducted in three replicate
203 plots per land use, where one tree was selected in each plot. Around each selected tree, 290 mg
204 ¹⁵N (in the form of (¹⁵NH₄)₂SO₄ with 98 % ¹⁵N) dissolved in 8 L distilled water was applied
205 evenly onto the soil surface of 0.8 m² around the tree using a watering can (equivalent to 10 mm
206 of rain). The water-filled pore space (WFPS) in the top 5 cm depth was 49 ± 1 % and 52 ± 2 %
207 for the forest and CAF, respectively, which were within the range of monthly average WFPS of
208 these plots (Fig. 2i). Based on the monthly average soil mineral N concentrations in these plots,

209 the applied ^{15}N was only 20 % of the extant mineral N in the top 10 cm soil (resulting to a starting
210 enrichment of 17 % ^{15}N), such that we only minimally changed the substrate which could
211 influence N_2O flux, similar to that described by Corre et al. (2014). Stem and soil $^{15}\text{N}_2\text{O}$ fluxes
212 were measured one day, seven days and 14 days following ^{15}N application, and on each sampling
213 day gas samples were taken at 0, 30, and 60 min after chamber closure. The gas samples were
214 stored in new pre-evacuated glass containers (100 mL) with rubber septa and transported to the
215 University of Goettingen, Germany for analysis. We also stored $^{15}\text{N}_2\text{O}$ standards in similar 100
216 mL glass containers, which were brought to Cameroon and back to Germany, to have the same
217 storage duration as the gas samples in order to check for leakage; we found no difference in $^{15}\text{N}_2\text{O}$
218 with the original standard at our laboratory.

219 We measured soil N_2O fluxes using vented, static chambers made from polyvinyl chloride
220 that were permanently inserted ~ 0.02 m into the soil at least one month prior to the start of
221 measurements, as described in our earlier studies (e.g., Corre et al., 2014; Koehler et al., 2009;
222 Müller et al., 2015). On each sampling day, we covered the chamber bases with vented, static
223 polyethylene hoods (0.04 m 2 in area and ~ 11 L total volume) equipped with Luer lock sampling
224 ports. Soil N_2O fluxes were then determined by taking four gas samples (25 mL each) at 2, 12,
225 22 and 32 min after chamber closure. The samples were taken with a syringe and immediately
226 injected into pre-evacuated 12 mL exetainers as described above.

227 Concurrent to the stem and soil N_2O flux measurements, we sampled soil-air N_2O
228 concentrations at 50 cm depth from permanently installed stainless steel probes (1 mm internal
229 diameter) located at ~ 1 m from the measured trees. The stainless steel probes were installed one
230 month prior to the start of measurements. Luer locks were attached to the probes, and on each
231 sampling day the probes were first cleared of any previous accumulation of N_2O concentration
232 by removing 5 mL air volume using a syringe and discarding it. We then took 25 mL gas samples
233 and stored them in pre-evacuated 12 mL exetainers as described above.

234 **2.3 N₂O analysis and flux rate calculation**

235 The N₂O concentrations in the gas samples were analysed using a gas chromatograph equipped
236 with an electron capture detector, a make-up gas of 5 % CO₂ – 95 % N₂ (SRI 8610C, SRI
237 Instruments Europe GmbH, Bad Honnef, Germany), and an autosampler (AS-210, SRI
238 Instruments). ¹⁵N₂O was analysed on an isotope ratio mass spectrometer (IRMS) (Finnigan
239 Deltaplus XP, Thermo Electron Corporation, Bremen, Germany). We calculated N₂O fluxes from
240 the linear change in concentrations over time of chamber closure, and adjusted the fluxes with air
241 temperature and atmospheric pressure, measured at each replicate plot on each sampling day. We
242 included zero and negative fluxes in our data analysis.

243 We up-scaled the measured stem N₂O fluxes (considering trees \geq 10 cm DBH) to annual
244 values on a ground area in the following steps: (1) the relationship between stem N₂O fluxes and
245 stem heights was modelled from the 16 individual trees per land use (see above) that were
246 measured at multiple heights, from which we observed decreases in stem N₂O fluxes with
247 increasing stem heights. A linear function was statistically the best fit characterizing these
248 decreases in stem N₂O fluxes with height. (2) Using this linear function and considering the stem
249 surface area as a frustum with 20 cm increment, the tree-level N₂O fluxes on each sampling day
250 was calculated for the regularly measured six trees per plot. (3) The annual tree-level N₂O fluxes
251 from these regularly measured six trees per plot were calculated using a trapezoidal interpolation
252 between the tree-level N₂O fluxes (step 2) and measurement day intervals from May 2017 to
253 April 2018. (4) The annual tree-level N₂O fluxes were then extrapolated on a ground-area basis
254 for each replicate plot as follows (Eq. 1):

255
$$\text{Annual stem N}_2\text{O flux (kg N}_2\text{O-N ha}^{-1} \text{yr}^{-1}) = \frac{\{\sum[(\frac{X_{1-24}/DBH_{1-24}}{24}) * DBH_n]\}}{A} \quad (1)$$

256 where X₁₋₂₄ and DBH₁₋₂₄ are the corresponding annual tree-level N₂O flux (kg N₂O-N yr⁻¹ of
257 each tree; step 3) and DBH (cm) of each of the 24 measured trees (6 trees x 4 plots) per land use

258 at each site, DBH_n is the individual tree DBH (cm) measured for all trees (with ≥ 10 cm DBH)
259 present within the inner $40\text{ m} \times 40\text{ m}$ area of each plot (Table A1), Σ is the sum of the annual
260 N_2O fluxes of all trees within each plot ($\text{kg N}_2O\text{-N yr}^{-1}$) and A is the plot area (0.16 ha).

261 For step 4 of the CAF plots, the annual stem N_2O flux was the sum of the cacao and shade
262 trees (Table A1); as these shade trees were remnants of the original forest, we used the average
263 annual tree-level N_2O flux of the measured trees in the corresponding paired forest plots
264 multiplied by the actual DBH of the shade trees in the CAF plots. This spatial extrapolation based
265 on trees' DBH of each plot was also supported by the fact that there were no significant
266 differences in stem N_2O fluxes among tree species (Fig. 1).

267 Annual soil N_2O fluxes from each plot were calculated using the trapezoidal rule to
268 interpolate the measured fluxes from May 2017 to Apr. 2018, as employed in our earlier studies
269 (e.g., Koehler et al., 2009; Veldkamp et al., 2013). Finally, the annual N_2O fluxes from each
270 replicate plot were represented by the sum of the stem and soil N_2O fluxes.

271 **2.4 Soil and meteorological variables**

272 We measured soil temperature, WFPS, and extractable mineral N in the top 5 cm depth concurrent
273 to stem and soil N_2O flux measurements on each sampling day. The soil temperature was
274 measured ~ 1 m away from the soil chambers using a digital thermometer (GTH 175, Greisinger
275 Electronic GmbH, Regenstauf, Germany). We determined soil WFPS and extractable mineral N
276 by pooling soil samples from four sampling locations within 1 m from each soil chamber in each
277 replicate plot. Gravimetric moisture content was determined by oven-drying the soils at $105\text{ }^{\circ}\text{C}$
278 for 24 h and WFPS was calculated using a particle density of 2.65 g cm^{-3} for mineral soil and our
279 measured soil bulk density (Table 1). Soil mineral N (NO_3^- and NH_4^+) was extracted in the field
280 by putting a subsample of soil into a pre-weighed bottle containing 150 mL 0.5 M K_2SO_4 . The
281 bottles were weighed and then shaken for 1 h, and the solution was filtered through pre-washed
282 (with 0.5 M K_2SO_4) filter papers. The extracts were immediately frozen and later transported to

283 the University of Goettingen, where NH_4^+ and NO_3^- concentrations were analysed using
284 continuous flow injection colorimetry (SEAL Analytical AA3, SEAL Analytical GmbH,
285 Norderstedt, Germany) (described in details by Hassler et al., 2015). The dry mass of soil
286 extracted for mineral N was calculated using the measured gravimetric moisture content.

287 During each measurement day, we set up a portable weather station in each site to record
288 relative humidity and air temperature over the course of each sampling day at 15 min interval.
289 We calculated vapour pressure deficit (VPD) as the difference between saturation vapour
290 pressure (based on its established equation with air temperature) and actual vapour pressure
291 (using saturation vapour pressure and relative humidity; Allen et al., 1998).

292 Soil biochemical characteristics were measured in April 2017 at all 24 plots. We collected
293 soil samples from the top 50 cm depth, where changes in soil biochemical characteristics resulting
294 from land-use changes have been shown to occur (van Straaten et al., 2015; Tchiofo Lontsi et al.,
295 2019). In each plot, we collected ten soil samples from the top 0–10 cm, and five soil samples
296 each from 10–30 and 30–50 cm depths; in total, we collected 480 soil samples from the 24 plots.
297 The soil samples were air dried, sieved (2 mm) and transported to the University of Goettingen,
298 where they were dried again at 40 °C before analysis. Soil pH was analysed from 1:4 soil to
299 distilled water ratio. Soil texture for each plot was determined using the pipette method after iron
300 oxide and organic matter removal (Kroetsch and Wang, 2008). Effective cation exchange
301 capacity (ECEC) and exchangeable cation concentrations (Ca, Mg, K, Na, Al, Fe, Mn) were
302 determined by percolating the soil samples with unbuffered 1 M NH_4Cl , and the extracts analysed
303 using inductively coupled plasma-atomic emission spectrometer (ICP-AES; iCAP 6300 Duo
304 VIEW ICP Spectrometer, Thermo Fischer Scientific GmbH, Dreieich, Germany). Soil
305 subsamples were ground and analysed for total organic C and N using a CN analyser (vario EL
306 cube; Elementar Analysis Systems GmbH, Hanau, Germany), and the soil ^{15}N natural abundance
307 signatures were determined using IRMS (Delta Plus; Finnigan MAT, Bremen, Germany). Soil

308 organic carbon (SOC) and total N stocks were calculated for the top 50 cm in both land uses. We
309 used the bulk density of the reference forest for calculating the SOC and total N stocks of the
310 converted CAF in order to avoid overestimations of element stocks resulting from increases in
311 soil bulk densities following land-use conversion (van Straaten et al., 2015; Veldkamp, 1994).

312 To evaluate the representativeness of our study area with the rest of the Congo Basin
313 rainforest, we estimated the proportion of the Congo rainforest area which have similar
314 biophysical conditions (elevation, precipitation ranges and soil type) as our study sites (Table
315 A1). Using the FAO's Global Ecological Zone map for the humid tropics, we identified the areal
316 coverage of (i) Ferralsols (FAO Harmonized World Soil Database; FAO/IIASA/ISRIC/ISS-
317 CAS/JRC, 2012) with (ii) elevation \leq 1000 m asl (SRTM digital elevation model; Jarvis et al.,
318 2008) and (iii) precipitation range between 1,500 and 2,100 mm yr^{-1} (WorldClim dataset;
319 Hijmans et al., 2005) within the six Congo rainforest countries (Fig. B3). This analysis was
320 conducted using QGIS version 3.6.3.

321 **2.5 Statistical analyses**

322 Statistical comparisons between land uses or among sites for stem and soil N_2O fluxes were
323 performed on the monthly measurements and not on the annual values as the latter are trapezoidal
324 interpolations. As the six trees and four chambers per plot were considered subsamples
325 representing each replicate plot, we conducted the statistical analysis using the means of the six
326 trees and of the four chambers on each sampling day for each replicate plot (congruent to our
327 previous studies, e.g., Hassler et al., 2017; Matson et al., 2017). We tested each parameter for
328 normal distribution (Shapiro–Wilk's test) and homogeneity of variance (Levene's test), and
329 applied a logarithmic or square root transformation when these assumptions were not met. For
330 the repeatedly measured parameters, i.e. stem and soil N_2O fluxes and the accompanying soil
331 variables (temperature, WFPS, NH_4^+ and NO_3^- concentrations), differences between land-use
332 types for each site or differences among sites for each land-use type were tested using linear

333 mixed effect (LME) models with land use or site as fixed effect and replicate plots and sampling
334 days as random effects (Crawley, 2009). We assessed significant differences between land uses
335 or sites using analysis of variance (ANOVA) with Tukey's HSD test.

336 We also analysed if there were differences in stem N₂O fluxes among tree species across
337 four forest plots at each site as well as across the three sites. Similar LME analysis was carried
338 out with tree species as fixed effect, and the random effects were trees belonging to each species
339 and sampling days; only for this test, we used individual trees as random effect because most of
340 the tree species (selected based on their IVI; see Sect. 2.1.) were not present in all plots, which is
341 typical in species-diverse tropical forest. For soil biochemical characteristics that were measured
342 once (Table1), one-way ANOVA followed by a Tukeys's HSD test was used to assess the
343 differences between land uses or sites for the variables with normal distribution and homogenous
344 variance; if otherwise, we applied Kruskal-Wallis ANOVA with multiple comparison extension
345 test.

346 To determine the temporal controls of soil and meteorological variables (temperature,
347 WFPS, NH₄⁺ and NO₃⁻ concentrations, soil-air N₂O concentration, VPD) on stem and soil N₂O
348 fluxes, we conducted Spearman's Rank correlation tests using the means of the four replicate
349 plots for each land use on each sampling day. For each land use, the correlation tests were
350 conducted across sites and sampling days ($n = 33$, from 3 sites \times 11 monthly measurements). To
351 determine the spatial controls of soil biochemical characteristics (which were measured once,
352 Table 1) on stem and soil N₂O fluxes, we used the plots' annual N₂O emissions and tested with
353 Spearman's Rank correlation across land uses and sites ($n = 24$, from 3 sites \times 2 land uses \times 4
354 replicate plots). The statistical significance for all the tests were set at $P \leq 0.05$. All statistical
355 analyses were conducted using the open source software R 3.5.2 (R Core Team, 2018).

356 **3 Results**

357 **3.1 Stem N₂O emissions**

358 Stem N₂O emissions neither differed between forest and CAF at each site ($P = 0.15\text{--}0.76$; Table
359 2) nor among the three sites for each land use ($P = 0.16\text{--}0.78$; Table 2). There were also no
360 differences in stem N₂O emissions among tree species in forest plots at each site as well as across
361 the three sites ($P = 0.06\text{--}0.39$; Fig. 1). For the forests, stem N₂O emissions exhibited seasonal
362 pattern with larger fluxes in the wet season than in the dry season at all sites (all $P < 0.01$; Table
363 A³²; Fig. 2a, b, c). However, for the CAF, we observed seasonal differences only at Aloum site
364 ($P < 0.01$; Table A⁴³; Fig. 2a). Contributions of annual stem N₂O emissions reached up to one-
365 third of the total (stem + soil) N₂O emissions from the forests (Table 2).

366 From the ¹⁵N-tracing experiment, stem ¹⁵N-N₂O emissions mirrored soil ¹⁵N-N₂O
367 emissions from both land uses (Fig. 3). One day after ¹⁵N addition to the soil, substantial ¹⁵N-
368 N₂O were emitted from the stem as well as from the soil. This diminished within two weeks as
369 the added ¹⁵N recycled within the soil N cycling processes, diluting the ¹⁵N signatures;
370 nevertheless, the ¹⁵N signatures of stem- and soil-emitted N₂O remained elevated above the
371 natural abundance level (Fig. 3).

372 Across the study period, stem N₂O emissions from the forests were positively correlated
373 with air temperature, soil-air N₂O concentrations and VPD (Table 3) and negatively correlated
374 with WFPS and NH₄⁺ contents (Table 3). The negative correlation of stem N₂O emissions with
375 WFPS was possibly spurious, as this correlation may have been driven by the autocorrelation
376 between WFPS and air temperature (Spearman's $\rho = -0.59$, $P < 0.01$, $n = 33$). In CAF, stem N₂O
377 emissions were only positively correlated with soil N₂O emissions (Table 3).

378 We detected no difference in WFPS between the forest and CAF ($P = 0.15\text{--}0.28$; Table
379 4) at any of the sites. For the CAF, we detected higher WFPS in the wet season compared to the
380 dry season at two sites ($P < 0.01$; Table A⁴³; Fig. 2g, h) whereas there was no seasonal difference

381 in WFPS for the forests at any sites ($P = 0.31\text{--}0.92$; Table A32; Fig. 2g, h, i). At all the three
382 sites, the dominant form of mineral N was NH_4^+ (Table 4). There was generally no difference in
383 soil NH_4^+ and NO_3^- between the wet and dry seasons ($P = 0.12\text{--}0.93$), except for the forests at
384 two sites with larger values in the dry than wet season ($P < 0.01$; Tables S2, S3).

385 **3.2 Soil N_2O emissions**

386 Soil N_2O emissions did not differ between forest and CAF at any site ($P = 0.06\text{--}0.86$; Table 2).
387 Similarly, no differences in soil N_2O emissions were detected among sites for each land use ($P =$
388 $0.26\text{--}0.44$; Table 2). Soil N_2O emissions exhibited consistent seasonal patterns with larger fluxes
389 in the wet than dry season for both land uses (all $P < 0.01$; Tables S2, S3; Fig. 2d, e, f).

390 Over the measurement period, soil N_2O emissions from the forests were positively
391 correlated with soil-air N_2O concentrations and negatively correlated with NH_4^+ contents (Table
392 3). In the CAF, soil N_2O emissions were positively correlated with WFPS and soil-air N_2O
393 concentrations, and negatively correlated with air temperatures (Table 3). We did not detect any
394 correlation between annual total N_2O fluxes and soil physical and biochemical characteristics.
395 This was not surprising as the ranges of these soil characteristics were relatively small among
396 sites, which reduce the likelihood that significant correlations will be detected.

397 **3.3 Soil biochemical characteristics**

398 Soil physical characteristics (clay content, bulk density) did not differ between forest and CAF
399 at any of the sites (Table 1). Across sites, Biba Yezoum had lower clay content compared to the
400 other sites for each land use ($P < 0.01$). Generally, the forest showed higher SOC and total N
401 compared to the CAF ($P < 0.01\text{--}0.05$; Table 1). Soil ^{15}N natural abundance signatures, as an
402 index of the long-term soil N availability, were generally similar between the forest and CAF
403 except at Aloum site ($P < 0.01$; Table 1). Soil C/N ratio, another proxy for the long-term soil N
404 status, was higher in the forest than in the CAF at all sites ($P < 0.01\text{--}0.05$). Soil pH and

405 exchangeable bases were lower in the forest compared to the CAF at all sites and the converse
406 was true for exchangeable Al ($P < 0.01$ – 0.05 ; Table 1). Soil ECEC did not differ between the
407 land uses at two sites ($P < 0.01$; Table 1) and all were low congruent to Ferralsol soils.

408 **4 Discussion**

409 **4.1 Stem and soil N₂O emissions from the forest**

410 There has been no study on tree stem N₂O emission from Africa, nor has any study been reported
411 for the Congo Basin on soil N₂O emission with year-round measurements and spatial replication.
412 Stems consistently emitted N₂O in both land uses (Table 2; Fig 1, Fig. 2a, b, c), exemplifying that
413 tropical trees on well-drained soils were important contributors of ecosystem N₂O emission. So
414 far, there are only two tree species of tropical lowland forest reported with measurements of stem
415 N₂O emissions (Welch et al., 2019). Our present study included 23 tree species and their
416 comparable stem N₂O emissions, at least from highly weathered Ferralsol soils, across sites over
417 a year of measurements provided support to our spatial extrapolation based on DBH of trees in
418 the sites. Mean stem N₂O fluxes from our study were within the range of those reported for
419 temperate forests (0.01–2.2 $\mu\text{g N m}^{-2} \text{ stem h}^{-1}$; Díaz-Pinés et al., 2016; Machacova et al., 2016;
420 Wen et al., 2017), but substantially lower than the reported stem N₂O emissions of 51–759 $\mu\text{g N}$
421 $\text{m}^{-2} \text{ stem h}^{-1}$ for a humid forest in Panama (Welch et al., 2019). However, Welch et al. (2019)
422 measured stem N₂O emissions at a lower stem height (0.3 m) compared to our study (1.3 m),
423 which may partly explain their much larger N₂O emissions, as another study reported that larger
424 N₂O emissions occur nearer to the stem base of trees (Barba et al., 2019). Moreover, the
425 consistently higher stem than soil N₂O emissions found by Welch et al. (2019), which we did not
426 observe in our study, may point to production of N₂O within the stem (e.g., Lenhart et al., 2019).
427 Nonetheless, such high stem N₂O emissions as reported by Welch et al. (2019) have not been
428 observed anywhere else under field conditions. We did not find an effect of tree diameter sizes
429 on stem N₂O fluxes at our study sites. This was due to the narrow range between the DBH of our

430 measured trees (10–18 cm DBH for cacao trees and 10–30 cm DBH for the forest trees), which
431 reflected the mean stem diameter of trees in our sites (Table A1). Future studies should
432 incorporate trees of wide-ranging diameter size classes, if present at the site, as they may
433 influence N₂O flux estimates at the ecosystem-scale.

434 Our annual soil N₂O emissions from forests (Table 2) were lower than the reported global
435 average for humid tropical forests ($2.81 \text{ kg N ha}^{-1} \text{ yr}^{-1}$; summarised by Castaldi et al., 2013). In
436 contrast, the N₂O emissions from our forest soils were comparable to those reported for lowland
437 forests on Ferralsol soils in Panama ($0.35\text{--}1.07 \text{ kg N ha}^{-1} \text{ yr}^{-1}$; Matson et al., 2017), and lowland
438 forests on Acrisol soils in Indonesia (0.9 and $1.0 \text{ kg N ha}^{-1} \text{ yr}^{-1}$; Hassler et al., 2017). These were
439 possibly due to the generally similar soil N availability in our forest sites as these forest sites in
440 Panama and Indonesia, indicated by their comparable soil mineral N contents and soil ^{15}N natural
441 abundance signatures.

442 In comparison with studies from sub-Saharan Africa, annual soil N₂O emissions from our
443 forests were lower than the annual N₂O emissions reported for the Mayombe forest in Congo (2.9
444 $\text{kg N ha}^{-1} \text{ yr}^{-1}$; Serca et al., 1994), Kakamega mountain rainforest in Kenya ($2.6 \text{ kg N ha}^{-1} \text{ yr}^{-1}$;
445 Werner et al., 2007b), and Ankasa rainforest in Ghana ($2.3 \text{ kg N ha}^{-1} \text{ yr}^{-1}$; Castaldi et al., 2013),
446 but similar in magnitude as those reported for Mau Afromontane forest in Kenya (1.1 kg N ha^{-1}
447 yr^{-1} ; Wanyama et al., 2018). Although these African sites have similar precipitation level and
448 highly weathered acidic soils as our study sites, the Kakamega rainforest in Kenya had higher
449 SOC ($7.9\text{--}20 \text{ %}$) and N contents ($0.5\text{--}1.6 \text{ %}$) in the topsoil layer compared to our forest sites
450 ($2.8\text{--}4.7 \text{ %}$ SOC, $0.2\text{--}0.4 \text{ %}$ total N), which may explain its correspondingly higher soil N₂O
451 emissions. The study in Congo (Serca et al., 1994), however, was conducted only in a short
452 campaign (two rainy months and one dry month) with less sampling frequency and spatial
453 replication, which may not be a good representation of the spatial and temporal dynamics of soil
454 N₂O fluxes to achieve annual and large-scale estimate.

455 **4.2 Source of tree stem N₂O emissions and their contribution to total (stem + soil) N₂O**
456 **emissions**

457 Emitted N₂O from stems were found to originate predominantly from N₂O produced in the soil,
458 as shown by the ¹⁵N tracing experiment (Fig. 3). Additionally, the positive correlations of stem
459 N₂O emissions with soil-air N₂O concentrations and soil N₂O emissions (Table 3) suggest that
460 the seasonal variation in stem N₂O emissions (Table A³²; Fig. 2) was likely driven by the
461 temporal dynamics of produced N₂O in the soil, which partly supported our second hypothesis.
462 While there has been suggestions of within-tree N₂O production (e.g., Lenhart et al., 2019), our
463 finding from the ¹⁵N tracing experiment, combined with the correlations of stem N₂O emissions
464 with VPD and air temperature, pointed to a transport mechanism of dissolved N₂O in soil water
465 by transpiration stream, which has been reported to be important for upland trees that do not have
466 aerenchyma (Machacova et al., 2016; Welch et al., 2019; Wen et al., 2017).

467 The contributions of up-scaled stem N₂O emissions from our studied forests to total (stem
468 + soil) N₂O emissions (Table 2) were higher than those reported for temperate forests (1–18 %;
469 Díaz-Pinés et al., 2016; Machacova et al., 2016; Wen et al., 2017). Given the higher stem N₂O
470 emissions in the wet than dry seasons (Table A³²), coupled with the fact that we consistently
471 measured positive fluxes or net stem N₂O emissions throughout our measurement period (Fig. 2),
472 we conclude that tree stems in these well-drained Ferralsol soils were efficient conduits for
473 releasing N₂O from the soil. This has significant implications especially during the rainy season
474 as this pathway bypasses the chance for complete denitrification (N₂O to N₂ reduction) in the
475 soil.

476 **4.3 Factors controlling temporal variability of stem and soil N₂O fluxes**

477 The positive correlation of stem N₂O emissions with VPD and air temperature in the forest
478 suggests for transport of N₂O via sap flow, for which the latter had been shown to be stimulated

479 with increasing VPD and air temperature (McJannet et al., 2007; O'Brien et al., 2004). Soil water
480 containing dissolved N₂O is transported through the xylem via the transpiration stream and
481 eventually emitted from the stem surface to the atmosphere (Díaz-Pinés et al., 2016; Welch et al.,
482 2019; Wen et al., 2017).

483 Soil moisture has been shown to affect strongly the seasonal variation of soil N₂O
484 emissions from tropical ecosystems, with increases in soil N₂O emissions by predominantly
485 denitrification process at high WFPS (Corre et al., 2014; Koehler et al., 2009; Matson et al., 2017;
486 Werner et al., 2006). The larger stem N₂O emissions from the forest and soil N₂O emissions from
487 both land uses in the wet than the dry seasons (Tables S2, S3) signified the favourable soil N₂O
488 production during the wet season, which suggests that denitrification was the dominant N₂O-
489 producing process. However, the moderate WFPS across the year (Table 4) suggests that
490 nitrification may also have contributed to N₂O emissions, especially at Biba Yezoum (with lower
491 rainfall and clay contents; Tables 1, S1) where the low WFPS (Table 4) likely favoured
492 nitrification (Corre et al., 2014). For the forest, the negative correlation of the stem and soil N₂O
493 emissions with soil NH₄⁺ (Tables 3, S2) may be indicative of a conservative soil N cycle in our
494 forest sites, as supported by the dominance of soil NH₄⁺ over NO₃⁻ (Table 2) and by the lower
495 soil N₂O emissions at our sites compared to NO₃⁻-dominated systems (Davidson et al., 2000).
496 Although the soil mineral N content alone does not indicate the N-supplying capacity of the soil,
497 the relative contents of NH₄⁺ over NO₃⁻ can be a good indicator of whether the soil N cycling is
498 conservative with low N₂O losses or increasingly leaky (Corre et al., 2010, 2014).

499 **4.4 Land-use change effects on soil N₂O emissions**

500 The annual soil N₂O emissions from CAF (Table 2) were comparable with those reported for
501 rubber agroforestry in Indonesia (0.6–1.2 kg N ha⁻¹ yr⁻¹; Hassler et al., 2017) and from multistrata
502 agroforestry systems in Peru (0.6 kg N ha⁻¹ yr⁻¹; Palm et al., 2002). However, our soil N₂O
503 emissions from CAF were higher than those from an extensively managed homegarden in

504 Tanzania ($0.35 \text{ N ha}^{-1} \text{ yr}^{-1}$; Gütlein et al., 2018). In a review, Kim et al. (2016a) reported mean
505 annual N_2O emission from agroforestry systems to be $7.7 \text{ kg N ha}^{-1} \text{ yr}^{-1}$. Most of the data used
506 in their review were from intensively managed agroforestry systems with varied fertilizer inputs,
507 which were absent in our extensively managed CAF systems. In line with this, our measured soil
508 N_2O emissions from the CAF were also lower than the emissions reported for 10–23 year old
509 CAF in Indonesia ($3.1 \text{ kg N ha}^{-1} \text{ yr}^{-1}$; Veldkamp et al., 2008). Our measured N_2O emissions
510 provide the first estimates for traditional CAF systems in Africa, as these production systems
511 were not represented in extrapolation of GHG budgets despite their extensive coverage in Africa.

512 Soil N_2O emissions did not differ between forest and CAF systems, which supported our
513 first hypothesis. This is possibly due to the presence of leguminous trees in both systems (Table
514 A1), which can compensate for N export from harvest and other losses (Erickson et al., 2002;
515 Veldkamp et al., 2008). Although studies have hinted on increased N_2O emissions from managed
516 systems that utilize leguminous trees as cover crops (Veldkamp et al., 2008), the similar
517 abundance of leguminous trees between forest and CAF at our sites may have offset this effect
518 (Table A1). Previous studies have indeed reported similar soil N_2O fluxes between reference
519 forests and unfertilized agroforestry systems (Van Lent et al., 2015). Despite the general absence
520 of heavy soil physical disturbance, cultivation and fertilization in these traditional CAF systems,
521 some soil biochemical characteristics have decreased (Table 1); however, these did not translate
522 into detectable differences in soil N_2O emissions with those from forest.

523 4.5 Implications

524 The biophysical conditions of our forest sites were representative of approximately two-thirds of
525 the rainforest area in the Congo Basin ($1.137 \times 10^6 \text{ km}^2$; Fig. B3), considering the same Ferralsol
526 soils, similar elevation ($\leq 1000 \text{ m asl}$), and annual rainfall between 1,500 and 2,100 mm yr^{-1} .
527 Using the total (soil + stem) N_2O emission from our forest sites ($1.55 \pm 0.20 \text{ N}_2\text{O-N kg ha}^{-1} \text{ yr}^{-1}$;
528 Table 2), our extrapolated emission for the two-thirds of the Congo Basin was $0.18 \pm 0.05 \text{ Tg}$

529 $\text{N}_2\text{O-N yr}^{-1}$ (error estimate is the 95 % confidence interval). This accounted 52 % of the earlier
530 estimate of soil N_2O emissions from tropical rainforests in Africa ($0.34 \text{ Tg N}_2\text{O-N yr}^{-1}$; Werner
531 et al., 2007a), or 25 % based on the more recent estimate ($0.72 \text{ Tg N}_2\text{O-N yr}^{-1}$; Valentini et al.,
532 2014). We acknowledge, however, that there are uncertainties in our extrapolation (as is the case
533 of these cited estimates) because our up-scaling approach from plot to regional level did not
534 account for the spatial variability of large-scale drivers of soil N_2O emissions, such as soil texture,
535 landforms and vegetation characteristics (e.g., Corre et al., 1999). These limitations of our
536 estimate of N_2O source strength for the Congo Basin rainforests call for further investigations in
537 Africa to address the geographic bias of studies in the tropical region (e.g., Powers et al., 2011).

538 The most important consideration in bottom-up spatial extrapolation approach is to recognize at
539 the outset that the design of the field quantification must reflect the landscape-scale drivers of the
540 studied process, e.g. land-use types (reflecting management), soil texture (as a surrogate of parent
541 material) and climate are landscape-scale controllers of soil N, C and GHG fluxes (e.g., Corre et
542 al., 1999; Hassler et al., 2017; Silver et al., 2000; Veldkamp et al., 2008, 2013), whereas
543 topography (reflecting soil types, moisture regimes, fertility) is the main driver within a landscape
544 (e.g., Corre et al., 1996, 2002; Groffman and Tiedje, 1989; Pennock and Corre, 2001). Process-
545 based models and geographic information system database can be combined with field-based
546 measurements for improved extrapolation.

547 Our year-round measurements of stem and soil N_2O fluxes were the first detailed study
548 carried out in the Congo Basin, with key implications on improved estimates of N_2O budget for
549 Africa. Our results revealed that trees on well-drained, highly weathered soils served as an
550 important N_2O emission pathway, with the potential to overlook up to 38 % of N_2O emissions if
551 trees are not considered in the ecosystem N_2O budget. Our measured tree species spanned
552 different life history strategies and functional traits (a mixture of pioneers, non-pioneer light
553 demanders, and shade tolerants; Table A2); the lack of species-specific differences suggest that

554 our findings could be more widely generalisable across communities with different species
555 compositions, at least from highly weathered soils. However, the narrow range of tree DBH
556 classes of our measured trees may have important implications for stands of different successional
557 stages or ages, as stem diameter size, wood density and other physiological characteristics may
558 possibly influence stem N₂O fluxes (Machacova et al., 2019; Welch et al., 2019). Also, the
559 possibility for large N₂O fluxes at the stem base near the ground (Barba et al., 2019; Welch et al.,
560 2019), which we could not measure due to irregular surface of buttresses, warrants further
561 investigation. All these combined may imply that our quantified stem N₂O emissions result in a
562 conservative estimate of the overall stem N₂O budget from this important region. Additionally,
563 ~~f~~Forest conversion to traditional, mature (>20 years old) CAF systems had no effect on stem and
564 soil N₂O emissions, because of similarities in soil moisture and soil texture, absence of fertilizer
565 application, and comparable abundance of leguminous trees in both land uses, which can
566 compensate for N export from harvest or other losses. Further multi-temporal and spatially
567 replicated studies are needed to provide additional insights on the effect of forest conversion to
568 other land uses on GHG fluxes from the African continent in order to improve GHG budget
569 estimations for the region.

570 *Data availability.* Data available from the Göttingen Research Online repository: Iddris, N. A.,
571 Corre, M. D., Yemefack, M., van Straaten, O. and Veldkamp, E.: Stem and soil nitrous oxide
572 fluxes from rainforest and cacao agroforest on highly weathered soils in the Congo Basin, ,
573 <https://doi.org/10.25625/T2CGYM>, 2020.

574 *Author Contributions.* EV and MDC conceived the research project; NAI carried out fieldwork
575 and analyzed data; NAI and OvS performed GIS analysis; NAI and MDC interpreted data and
576 wrote the manuscript; EV, OvS and MY revised the draft manuscript.

577 *Competing interests.* The authors declare that they have no conflict of interest.

578 *Acknowledgements.* This study was funded by the German Research Foundation (DFG, VE
579 219/14-1, STR 1375/1-1). We gratefully acknowledge our counterparts in Cameroon, the
580 International Institute for Tropical Agriculture (IITA) for granting us access and use of their
581 storage facilities. We are especially grateful to our Cameroonian field assistants Leonel Boris
582 Gadjui Youatou, Narcis Lekeng, Yannick Eyenga Alfred, Denis Djiyo and all the field workers
583 for their great support with field measurements, as well as Raphael Manu for helping with the
584 GIS work and Rodine Tchiofo Lontsi for many discussions on soil processes and Cameroonian
585 settings. We also thank the village leaders and local plot owners for granting us access to their
586 forest and cacao farms. We thank Andrea Bauer, Kerstin Langs, Martina Knaust and Lars Szwec
587 for their assistance with laboratory analyses.

588 **References**

589 Allen, R. G., Pereira, L. S., Raes, D. and Smith, M.: Determination of ET_0 , crop
590 evapotranspiration, Guidel. Comput. Crop Water Requir. Irrig. Drain. Pap. 56, 309 [online]
591 Available from: http://www.hidmet.gov.rs/podaci/agro/table of contents_files.pdf, 1998.

592 Barba, J., Poyatos, R. and Vargas, R.: Automated measurements of greenhouse gases fluxes
593 from tree stems and soils: magnitudes, patterns and drivers, Sci. Rep., 9(1), 1–13,
594 doi:10.1038/s41598-019-39663-8, 2019.

595 Bouwman, A. F., Van Der Hoek, K. W. and Olivier, J. G. J.: Uncertainties in the global source
596 distribution of nitrous oxide, J. Geophys. Res., 100(D2), 2785–2800,
597 doi:10.1029/94JD02946, 1995.

598 Breuer, L., Papen, H. and Butterbach-Bahl, K.: N_2O emission from tropical forest soils of
599 Australia, J. Geophys. Res. Atmos., 105(D21), 26353–26367, doi:10.1029/2000JD900424,
600 2000.

601 Brown, S.: Estimating biomass and biomass change of tropical forests: a primer, UN FAO
602 Forestry Paper 134, FAO, Rome, 1997.

603 Castaldi, S., Bertolini, T., Valente, A., Chiti, T. and Valentini, R.: Nitrous oxide emissions from
604 soil of an African rain forest in Ghana, *Biogeosciences*, 10(6), 4179–4187, doi:10.5194/bg-
605 10-4179-2013, 2013.

606 Climate-Data.org: Cameroon climate, [online] Available from: <https://en.climate-data.org/africa/cameroon-142/> (Accessed 21 May 2019), 2019.

608 Corre, M. D., van Kessel, C. and Pennock, D. J.: Landscape and Seasonal Patterns of Nitrous
609 Oxide Emissions in a Semi-arid Region, *Soil Sci. Soc. Am. J.*, 60(6), 1806–1815,
610 doi:10.2136/sssaj1996.03615995006000060028x, 1996.

611 Corre, M. D., Pennock, D. J., Van Kessel, C. and Elliott, D. K.: Estimation of annual nitrous
612 oxide emissions from a transitional grassland-forest region in Saskatchewan, Canada,
613 *Biogeochemistry*, 44(1), 29–49, doi:10.1023/A:1006025907180, 1999.

614 Corre, M. D., Schnabel, R. R. and Stout, W. L.: Spatial and seasonal variation of gross nitrogen
615 transformations and microbial biomass in a Northeastern US grassland, *Soil Biol. Biochem.*,
616 34(3), 445–457, doi:10.1016/S0038-0717(01)00198-5, 2002.

617 Corre, M. D., Veldkamp, E., Arnold, J. and Joseph Wright, S.: Impact of elevated N input on
618 soil N cycling and losses in old-growth lowland and montane forests in Panama, *Ecology*,
619 91(6), 1715–1729, doi:10.1890/09-0274.1, 2010.

620 Corre, M. D., Sueta, J. P. and Veldkamp, E.: Nitrogen-oxide emissions from tropical forest soils
621 exposed to elevated nitrogen input strongly interact with rainfall quantity and seasonality,
622 *Biogeochemistry*, 118(1–3), 103–120, doi:10.1007/s10533-013-9908-3, 2014.

623 Crawley, M. J.: *The R Book*, John Wiley & Sons Ltd, Chichester, UK., 2009.

624 Curtis, J. T. and McIntosh, R. P.: An Upland Forest Continuum in the Prairie-Forest Border
625 Region of Wisconsin, *Ecology*, 32(3), 476–496, doi:10.2307/1931725, 1951.

626 Davidson, E. A. and Kanter, D.: Inventories and scenarios of nitrous oxide emissions, *Environ.*
627 *Res. Lett.*, 9(10), doi:10.1088/1748-9326/9/10/105012, 2014.

628 Davidson, E. A. and Verchot, L. V.: Testing the hole-in-the-pipe model of nitric and nitrous
629 oxide emissions from soils using the TRAGNET database, *Global Biogeochem. Cycles*,
630 14(4), 1035–1043, doi:10.1029/1999GB001223, 2000.

631 Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V. and Veldkamp, E.: Testing a
632 Conceptual Model of Soil Emissions of Nitrous and Nitric Oxides, *Bioscience*, 50(8), 667,
633 doi:10.1641/0006-3568(2000)050[0667:tacmos]2.0.co;2, 2000.

634 Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E.,
635 Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da
636 Silva Dias, P. L., Wofsy, S. C. and Zhang, X.: Couplings Between Changes in the Climate
637 System and Biogeochemistry, in *Climate Change 2007: The Physical Science Basis*.
638 Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental
639 Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and
640 New York, NY, USA. [online] Available from:
641 <https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter7-1.pdf>, 2007.

642 Díaz-Pinés, E., Heras, P., Gasche, R., Rubio, A., Rennenberg, H., Butterbach-Bahl, K. and
643 Kiese, R.: Nitrous oxide emissions from stems of ash (*Fraxinus angustifolia* Vahl) and
644 European beech (*Fagus sylvatica* L.), *Plant Soil*, 398(1–2), 35–45,
645 doi:<https://doi.org/10.1007/s11104-015-2629-8>, 2016.

646 Dkamela, G. P.: The context of REDD+ in Cameroon: Drivers, agents and institutions,
647 Occasional., CIFOR, Bogor, Indonesia., 2010.

648 Erickson, H. E., Davidson, E. A. and Keller, M.: Former land-use and tree species affect
649 nitrogen oxide emissions from a tropical dry forest, *Oecologia*, 130(2), 297–308,
650 doi:10.1007/s004420100801, 2002.

651 FAO/IIASA/ISRIC/ISS-CAS/JRC: Harmonized World Soil Database (version 1.2). FAO,
652 Rome, Italy and IIASA, Laxenburg, Austria., [online] Available from:

653 <http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/> (Accessed
654 13 September 2019), 2012.

655 Groffman, P. M. and Tiedje, J. M.: Denitrification in north temperate forest soils: Spatial and
656 temporal patterns at the landscape and seasonal scales, Soil Biol. Biochem., 21(5),
657 doi:10.1016/0038-0717(89)90053-9, 1989.

658 Groffman, P. M., Brumme, R., Butterbach-Bahl, K., Dobbie, K. E., Mosier, A. R., Ojima, D.,
659 Papen, H., Parton, W. J., Smith, K. A. and Wagner-Riddle, C.: Evaluating annual nitrous
660 oxide fluxes at the ecosystem scale, Global Biogeochem. Cycles, 14(4), 1061–1070,
661 doi:10.1029/1999GB001227, 2000.

662 Gütlein, A., Gerschlauer, F., Kikoti, I. and Kiese, R.: Impacts of climate and land use on N₂O
663 and CH₄ fluxes from tropical ecosystems in the Mt. Kilimanjaro region, Tanzania, Glob.
664 Chang. Biol., 24, 1239–1255, doi:10.1111/gcb.13944, 2018.

665 Gwanfogbe, M., Meligui, A., Moukam, J. and Nguoghia, J.: Geography of Cameroon.,
666 Macmillan Education Ltd, Hong Kong., 1983.

667 Hassler, E., Corre, M. D., Tjoa, A., Damris, M., Utami, S. R. and Veldkamp, E.: Soil fertility
668 controls soil-atmosphere carbon dioxide and methane fluxes in a tropical landscape
669 converted from lowland forest to rubber and oil palm plantations, Biogeosciences Discuss.,
670 12(12), 9163–9207, doi:10.5194/bgd-12-9163-2015, 2015.

671 Hassler, E., Corre, M. D., Kurniawan, S. and Veldkamp, E.: Soil nitrogen oxide fluxes from
672 lowland forests converted to smallholder rubber and oil palm plantations in Sumatra,
673 Indonesia, Biogeosciences, 14(11), 2781–2798, doi:<https://doi.org/10.5194/bg-14-2781-2017>, 2017, 2017.

675 Hawthorne, W. D.: Ecological profiles of Ghanaian forest trees, Tropical forestry papers 29,
676 1995.

677 Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A.: Very high resolution

678 interpolated climate surfaces for global land areas, *Int. J. Climatol.*, 25(15), 1965–1978,
679 doi:10.1002/joc.1276, 2005.

680 Huang, J., Golombeck, A., Prinn, R. G., Weiss, R. F., Fraser, P. J., Simmonds, P.,
681 Dlugokencky, E. J., Hall, B., Elkins, J., Steele, L. P., Langenfelds, R. L., Krummel, P. B.,
682 Dutton, G. and Porter, L.: Estimation of regional emissions of nitrous oxide from 1997 to
683 2005 using multinetwerk measurements, a chemical transport model, and an inverse method,
684 *J. Geophys. Res. Atmos.*, 113(17), 1–19, doi:10.1029/2007JD009381, 2008.

685 IUSS Working Group WRB: World Reference Base for Soil Resources 2014, update 2015
686 International soil classification system for naming soils and creating legends for soil maps.
687 World Soil Resources Reports No. 106., FAO, Rome., 2015.

688 Jarvis, A., Reuter, H. I., Nelson, A. and Guevara, E.: Hole-filled SRTM for the globe, Version
689 4. CGIAR-CSI SRTM 90m Database, *Int. Cent. Trop. Agric. Cali, Columbia.*
690 <http://srtm.csi.cgiar.org>, (September 2017), 2008.

691 Kiese, R., Hewett, B., Graham, A. and Butterbach-Bahl, K.: Seasonal variability of N₂O
692 emissions and CH₄ uptake by tropical rainforest soils of Queensland, Australia, *Global*
693 *Biogeochem. Cycles*, 17(2), 1043, doi:10.1029/2002gb002014, 2003.

694 Kim, D. G., Kirschbaum, M. U. F. and Beedy, T. L.: Carbon sequestration and net emissions of
695 CH₄ and N₂O under agroforestry: Synthesizing available data and suggestions for future
696 studies, *Agric. Ecosyst. Environ.*, 226, 65–78, doi:10.1016/j.agee.2016.04.011, 2016a.

697 Kim, D. G., Thomas, A. D., Pelster, D. E., Rosenstock, T. S. and Sanz-Cobena, A.: Greenhouse
698 gas emissions from natural ecosystems and agricultural lands in sub-Saharan Africa:
699 Synthesis of available data and suggestions for further research, *Biogeosciences*, 13(16),
700 4789–4809, doi:10.5194/bg-13-4789-2016, 2016b.

701 Koehler, B., Corre, M. D., Veldkamp, E., Wullaert, H. and Wright, S. J.: Immediate and long-
702 term nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen input,

703 Glob. Chang. Biol., 15(8), 2049–2066, doi:10.1111/j.1365-2486.2008.01826.x, 2009.

704 Kotto, J. S., Moukam, A., Njomgang, R., Tiki-Manga, T., Tonye, J., Diaw, C., Gockowski, J.,
705 Hauser, S., Weise, S. F., Nwaga, D., Zapfack, L., Palm, C. A., Woomer, P., Gillison, A.,
706 Bignell, D. and Tondoh, J.: Alternatives to slash-and-burn in Indonesia: summary report &
707 synthesis of phase II in Cameroon, Nairobi. Kenya., 2002.

708 Kreuzwieser, J., Buchholz, J. and Rennenberg, H.: Emission of Methane and Nitrous Oxide by
709 Australian Mangrove Ecosystems, *Plant Biol.*, 5(4), 423–431, doi:10.1055/s-2003-42712,
710 2003.

711 Kroetsch, D. and Wang, C.: Particle size distribution, in *Soil Sampling and Methods of*
712 *Analysis*, Second Edition, pp. 713–725., 2008.

713 Lenhart, K., Behrendt, T., Greiner, S., Steinkamp, J., Well, R., Giesemann, A. and Keppler, F.:
714 Nitrous oxide effluxes from plants as a potentially important source to the atmosphere, *New*
715 *Phytol.*, 221(3), 1398–1408, doi:10.1111/nph.15455, 2019.

716 Van Lent, J., Hergoualc'H, K. and Verchot, L. V.: Reviews and syntheses: Soil N₂O and NO
717 emissions from land use and land-use change in the tropics and subtropics: A meta-analysis,
718 *Biogeosciences*, 12(23), 7299–7313, doi:10.5194/bg-12-7299-2015, 2015.

719 Machacova, K., Papen, H., Kreuzwieser, J. and Rennenberg, H.: Inundation strongly stimulates
720 nitrous oxide emissions from stems of the upland tree *Fagus sylvatica* and the riparian tree
721 *Alnus glutinosa*, *Plant Soil*, 364(1–2), 287–301, doi:10.1007/s11104-012-1359-4, 2013.

722 Machacova, K., Bäck, J., Vanhatalo, A., Halmeenmäki, E., Kolari, P., Mammarella, I.,
723 Pumpanen, J., Acosta, M., Urban, O. and Pihlatie, M.: *Pinus sylvestris* as a missing source of
724 nitrous oxide and methane in boreal forest, *Sci. Rep.*, 6(March), 1–8, doi:10.1038/srep23410,
725 2016.

726 Machacova, K., Maier, M., Svobodova, K., Lang, F. and Urban, O.: Cryptogamic stem covers
727 may contribute to nitrous oxide consumption by mature beech trees, *Sci. Rep.*, 7(1), 1–7,

728 doi:10.1038/s41598-017-13781-7, 2017.

729 [Machacova, K., Vainio, E., Urban, O. and Pihlatie, M.: Seasonal dynamics of stem N2O](#)
730 [exchange follow the physiological activity of boreal trees, Nat. Commun., 10\(1\), 1–13,](#)
731 [doi:10.1038/s41467-019-12976-y, 2019.](#)

732 Matson, A. L., Corre, M. D., Langs, K. and Veldkamp, E.: Soil trace gas fluxes along
733 orthogonal precipitation and soil fertility gradients in tropical lowland forests of Panama,
734 Biogeosciences, 14(14), 3509–3524, doi:10.5194/bg-14-3509-2017, 2017.

735 McJannet, D., Fitch, P., Disher, M. and Wallace, J.: Measurements of transpiration in four
736 tropical rainforest types of north Queensland, Australia, Hydrol. Process., 21, 3549–3564,
737 doi:<https://doi.org/10.1002/hyp.6576>, 2007.

738 Müller, A. K., Matson, A. L., Corre, M. D. and Veldkamp, E.: Soil N₂O fluxes along an
739 elevation gradient of tropical montane forests under experimental nitrogen and phosphorus
740 addition, Front. Earth Sci., 3(October), 1–12, doi:10.3389/feart.2015.00066, 2015.

741 Neill, C., Steudler, P. A., Garcia-Montiel, D. C., Melillo, J. M., Feigl, B. J., Piccolo, M. C. and
742 Cerri, C. C.: Rates and controls of nitrous oxide and nitric oxide emissions following
743 conversion of forest to pasture in Rondônia, Nutr. Cycl. Agroecosystems, 71(1), 1–15,
744 doi:10.1007/s10705-004-0378-9, 2005.

745 O'Brien, J. J., Oberbauer, S. F. and Clark, D. B.: Whole tree xylem sap flow responses to
746 multiple environmental variables in a wet tropical forest, Plant, Cell Environ., 27(5), 551–
747 567, doi:10.1111/j.1365-3040.2003.01160.x, 2004.

748 Palm, C. A., Alegre, J. C., Arevalo, L., Mutuo, P. K., Mosier, A. R. and Coe, R.: Nitrous oxide
749 and methane fluxes in six different land use systems in the Peruvian Amazon, Global
750 Biogeochem. Cycles, 16(4), 1073, doi:10.1029/2001gb001855, 2002.

751 Powers, J. S., Corre, M. D., Twine, T. E. and Veldkamp, E.: Geographic bias of field
752 observations of soil carbon stocks with tropical land-use changes precludes spatial

753 extrapolation, Proc. Natl. Acad. Sci. U. S. A., 108(15), 6318–6322,
754 doi:10.1073/pnas.1016774108, 2011.

755 Purbopuspito, J., Veldkamp, E., Brumme, R. and Murdiyarso, D.: Trace gas fluxes and nitrogen
756 cycling along an elevation sequence of tropical montane forests in Central Sulawesi,
757 Indonesia, Global Biogeochem. Cycles, 20(3), 1–11, doi:10.1029/2005GB002516, 2006.

758 Ravishankara, A. R., Daniel, J. S. and Portmann, R. W.: Nitrous oxide (N_2O): The dominant
759 ozone-depleting substance emitted in the 21st century, Science (80-.), 326(5949), 123–125,
760 doi:10.1126/science.1176985, 2009.

761 Rusch, H. and Rennenberg, H.: Black alder (*Alnus glutinosa* (L.) Gaertn.) trees mediate
762 methane and nitrous oxide emission from the soil to the atmosphere, Plant Soil, 201(1), 1–7,
763 doi:10.1023/A:1004331521059, 1998.

764 Saj, S., Jagoret, P. and Todem Ngogue, H.: Carbon storage and density dynamics of associated
765 trees in three contrasting *Theobroma cacao* agroforests of Central Cameroon, Agrofor. Syst.,
766 87(6), 1309–1320, doi:10.1007/s10457-013-9639-4, 2013.

767 Serca, D., Delmas, R., Jambert, C. and Labroue, L.: Emissions of nitrogen oxides from
768 equatorial rain forest in central Africa, Tellus B Chem. Phys. Meteorol., 46(4), 243–254,
769 doi:10.3402/tellusb.v46i4.15795, 1994.

770 Silver, W. L., Neff, J., McGroddy, M., Veldkamp, E., Keller, M. and Cosme, R.: Effects of Soil
771 Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest
772 Ecosystem, Ecosystems, 3(2), 193–209, doi:10.1007/s100210000019, 2000.

773 Sonwa, D. J., Nkongmeneck, B. A., Weise, S. F., Tchatat, M., Adesina, A. A. and Janssens, M.
774 J. J.: Diversity of plants in cocoa agroforests in the humid forest zone of Southern
775 Cameroon, Biodivers. Conserv., 16(8), 2385–2400, doi:10.1007/s10531-007-9187-1, 2007.

776 van Straaten, O., Corre, M. D., Wolf, K., Tchienkoua, M., Cuellar, E., Matthews, R. B. and
777 Veldkamp, E.: Conversion of lowland tropical forests to tree cash crop plantations loses up

778 to one-half of stored soil organic carbon, *Proc. Natl. Acad. Sci.*, 112(32), 9956–9960,
779 doi:10.1073/pnas.1504628112, 2015.

780 Tchiofo Lontsi, R., Corre, M. D., van Straaten, O. and Veldkamp, E.: Changes in soil organic
781 carbon and nutrient stocks in conventional selective logging versus reduced-impact logging
782 in rainforests on highly weathered soils in Southern Cameroon, *For. Ecol. Manage.*,
783 451(August), 117522, doi:10.1016/j.foreco.2019.117522, 2019.

784 Thompson, R. L., Chevallier, F., Crotwell, A. M., Dutton, G., Langenfelds, R. L., Prinn, R. G.,
785 Weiss, R. F., Tohjima, Y., Nakazawa, T., Krummel, P. B., Steele, L. P., Fraser, P. J.,
786 O'doherty, S., Ishijima, K. and Aoki, S.: Nitrous oxide emissions 1999 to 2009 from a global
787 atmospheric inversion, *Atmos. Chem. Phys.*, 14(4), 1801–1817, doi:10.5194/acp-14-1801-
788 2014, 2014.

789 Valentini, R., Arneth, A., Bombelli, A., Castaldi, S., Cazzolla Gatti, R., Chevallier, F., Ciais, P.,
790 Grieco, E., Hartmann, J., Henry, M., Houghton, R. A., Jung, M., Kutsch, W. L., Malhi, Y.,
791 Mayorga, E., Merbold, L., Murray-Tortarolo, G., Papale, D., Peylin, P., Poulter, B.,
792 Raymond, P. A., Santini, M., Sitch, S., Vaglio Laurin, G., Van Der Werf, G. R., Williams, C.
793 A. and Scholes, R. J.: A full greenhouse gases budget of africa: Synthesis, uncertainties, and
794 vulnerabilities, *Biogeosciences*, 11(2), 381–407, doi:10.5194/bg-11-381-2014, 2014.

795 Veldkamp, E.: Organic Carbon Turnover in Three Tropical Soils under Pasture after
796 Deforestation, *Soil Sci. Soc. Am. J.*, 58(1), 175–180,
797 doi:10.2136/sssaj1994.03615995005800010025x, 1994.

798 Veldkamp, E., Purbopuspito, J., Corre, M. D., Brumme, R. and Murdiyarso, D.: Land use
799 change effects on trace gas fluxes in the forest margins of Central Sulawesi, Indonesia, *J.*
800 *Geophys. Res. Biogeosciences*, 113(2), 1–11, doi:10.1029/2007JG000522, 2008.

801 Veldkamp, E., Koehler, B. and Corre, M. D.: Indications of nitrogen-limited methane uptake in
802 tropical forest soils, *Biogeosciences*, 10(8), 5367–5379, doi:10.5194/bg-10-5367-2013,

803 2013.

804 [Veldkamp, E., Schmidt, M., Powers, J. S. and Corre, M. D.: Deforestation and reforestation](#)
805 [impacts on soils in the tropics, Nat. Rev. Earth Environ., 1–16 \[in press\], 2020.](#)

806 Verchot, L. V., Hutaibarat, L., Hairiah, K. and van Noordwijk, M.: Nitrogen availability and soil
807 N₂O emissions following conversion of forests to coffee in southern Sumatra, Global
808 Biogeochem. Cycles, 20(4), 1–12, doi:10.1029/2005GB002469, 2006.

809 Wanyama, I., Pelster, D. E., Arias-Navarro, C., Butterbach-Bahl, K., Verchot, L. V. and Rufino,
810 M. C.: Management intensity controls soil N₂O fluxes in an Afromontane ecosystem, Sci.
811 Total Environ., 624(December), 769–780, doi:10.1016/j.scitotenv.2017.12.081, 2018.

812 Welch, B., Gauci, V. and Sayer, E. J.: Tree stem bases are sources of CH₄ and N₂O in a tropical
813 forest on upland soil during the dry to wet season transition, Glob. Chang. Biol., 25(1), 361–
814 372, doi:10.1111/gcb.14498, 2019.

815 Wen, Y., Corre, M. D., Rachow, C., Chen, L. and Veldkamp, E.: Nitrous oxide emissions from
816 stems of alder, beech and spruce in a temperate forest, Plant Soil, doi:10.1007/s11104-017-
817 3416-5, 2017.

818 Werner, C., Zheng, X., Tang, J., Xie, B., Liu, C., Kiese, R. and Butterbach-Bahl, K.: N₂O, CH₄
819 and CO₂ emissions from seasonal tropical rainforests and a rubber plantation in Southwest
820 China, Plant Soil, 289(1–2), 335–353, doi:10.1007/s11104-006-9143-y, 2006.

821 Werner, C., Butterbach-Bahl, K., Haas, E., Hickler, T. and Kiese, R.: A global inventory of
822 N₂O emissions from tropical rainforest soils using a detailed biogeochemical model, Global
823 Biogeochem. Cycles, 21(3), doi:10.1029/2006GB002909, 2007a.

824 Werner, C., Kiese, R. and Butterbach-Bahl, K.: Soil-atmosphere exchange of N₂O, CH₄, and
825 CO₂ and controlling environmental factors for tropical rain forest sites in western Kenya, J.
826 Geophys. Res., 112(3), D03308, doi:10.1029/2006JD007388, 2007b.

827 Wolf, K., Veldkamp, E., Homeier, J. and Martinson, G. O.: Nitrogen availability links forest

828 productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in
829 southern Ecuador, Global Biogeochem. Cycles, 25(4), GB4009,
830 doi:10.1029/2010GB003876, 2011.

831 Zanne, A. E., Lopez-Gonzalez, G., Coomes, David A., Illic, J., Jansen, S., Lewis, S. L., Miller,
832 R. B., Swenson, N. G., Wiemann, M. C. and Chave, J.: Data from: Towards a worldwide
833 wood economics spectrum, v5, Dryad, Dataset, <https://doi.org/10.5061/dryad.234>, 2009.

834 Zapfack, L., Engwald, S., Sonké, B., Achoundong, G. and Madong, B. A.: The impact of land
835 conversion on plant biodiversity in the forest zone of Cameroon, Biodivers. Conserv.,
836 11(11), 2047–2061, doi:<https://doi.org/10.1023/A:1020861925294>, 2002.

Tables

837 **Table 1.** Mean (\pm SE, $n = 4$) soil biochemical characteristics in the top 50 cm^a depth in forest and
 838 cacao agroforestry (CAF) within each site in the Congo Basin, Cameroon. Means followed by
 839 different lowercase letters indicate significant differences between land-use types within each site
 840 and different capital letters indicate significant differences among the three sites within a land-
 841 use type (Anova with Tukey's HSD test or Kruskal-Wallis ANOVA with multiple comparison
 842 extension test at $P \leq 0.05$).

Soil characteristics	Aloum site		Biba Yezoum site		Tomba site	
	Forest	CAF	Forest	CAF	Forest	CAF
Clay (30-50 cm) (%)	66.0 \pm 2.4 ^{a,A}	59.3 \pm 6.1 ^{a,A}	32.8 \pm 9.4 ^{a,B}	39.5 \pm 0.9 ^{a,B}	55.3 \pm 0.5 ^{a,AB}	51.8 \pm 1.1 ^{a,AB}
Bulk density (g cm ⁻³)	1.2 \pm 0.1 ^{a,A}	1.2 \pm 0.1 ^{a,A}	1.2 \pm 0.1 ^{a,A}	1.2 \pm 0.1 ^{a,A}	1.2 \pm 0.1 ^{a,A}	1.2 \pm 0.1 ^{a,A}
pH (1:4 H ₂ O)	3.7 \pm 0.0 ^{b,A}	4.1 \pm 0.1 ^{a,A}	3.7 \pm 0.1 ^{b,A}	4.6 \pm 0.2 ^{a,A}	3.6 \pm 0.0 ^{b,A}	4.5 \pm 0.2 ^{a,A}
¹⁵ N natural abundance (‰)	8.4 \pm 0.2 ^{b,A}	10.2 \pm 0.1 ^{a,A}	8.6 \pm 0.2 ^{a,A}	9.1 \pm 0.2 ^{a,B}	8.8 \pm 0.1 ^{a,A}	8.8 \pm 0.1 ^{a,B}
Soil organic C (kg C m ⁻²)	12.1 \pm 0.4 ^{a,A}	6.7 \pm 0.2 ^{b,A}	7.2 \pm 0.9 ^{a,B}	5.6 \pm 0.7 ^{a,A}	9.8 \pm 0.2 ^{a,AB}	7.1 \pm 0.4 ^{b,A}
Total N (kg N m ⁻²)	1.1 \pm 0.1 ^{a,A}	0.7 \pm 0.0 ^{b,A}	0.7 \pm 0.1 ^{a,A}	0.5 \pm 0.0 ^{a,B}	0.9 \pm 0.0 ^{a,A}	0.7 \pm 0.0 ^{b,A}
ECEC ^b (mmol _c kg ⁻¹)	57.5 \pm 3.9 ^{a,A}	33.9 \pm 2.8 ^{b,A}	49.1 \pm 11.3 ^{a,A}	41.1 \pm 7.2 ^{a,A}	58.5 \pm 2.0 ^{a,A}	46.8 \pm 4.7 ^{a,A}
Exch. bases ^b (mmol _c kg ⁻¹)	3.5 \pm 0.3 ^{b,B}	8.7 \pm 1.7 ^{a,B}	8.5 \pm 1.1 ^{b,A}	31.0 \pm 8.5 ^{a,A}	9.3 \pm 0.8 ^{b,A}	30.4 \pm 7.6 ^{a,A}
Exchangeable Al (mmol _c kg ⁻¹)	47.3 \pm 3.1 ^{a,A}	20.9 \pm 3.5 ^{b,A}	32.9 \pm 8.9 ^{a,A}	5.4 \pm 1.2 ^{b,B}	39.2 \pm 2.3 ^{a,A}	12.3 \pm 2.7 ^{b,AB}

843 ^a Values are depth-weighted average, except for clay content (30–50 cm) and stocks of soil
 844 organic C and total N, which are sum of the entire 50-cm depth. ^b ECEC: effective cation
 845 exchange capacity; Exch. bases: sum of exchangeable Ca, Mg, K, Na.

846 **Table 2.** Mean (\pm SE, $n = 4$) stem and soil N_2O emission as well as annual stem, soil, and total
 847 (soil + stem) N_2O fluxes from forest and cacao agroforestry (CAF) within each site in the Congo
 848 Basin, Cameroon. Means followed by different lowercase letters indicate significant differences
 849 between land-use types within each site and different capital letters indicate significant
 850 differences among the three sites within a land-use type (linear mixed-effect models with
 851 Tukey's HSD at $P \leq 0.05$).

Site/ Land-use type	Stem N_2O fluxes ($\mu\text{g N}$ $\text{m}^{-2} \text{stem h}^{-1}$)	Annual stem N_2O fluxes ^a (kg N ha^{-1} yr^{-1})	Soil N_2O fluxes ($\mu\text{g N}$ $\text{m}^{-2} \text{soil h}^{-1}$)	Annual soil N_2O fluxes ^a (kg N ha^{-1} yr^{-1})	Total (soil + stem) N_2O flux (kg N $\text{ha}^{-1} \text{yr}^{-1}$)	Contribution of stem to total N_2O flux (%)
Aloum						
Forest	$1.13 \pm 0.22^{\text{a,A}}$	0.13 ± 0.00	$13.7 \pm 2.2^{\text{a,A}}$	0.87 ± 0.14	1.00 ± 0.14	13.7 ± 1.8
CAF	$0.90 \pm 0.16^{\text{a,A}}$	0.09 ± 0.01 (0.02 ± 0.01)	$15.2 \pm 2.8^{\text{a,A}}$	1.06 ± 0.17	1.15 ± 0.17	7.8 ± 1.6
Biba Yezoum						
Forest	$2.38 \pm 0.48^{\text{a,A}}$	0.87 ± 0.05	$17.2 \pm 2.9^{\text{a,A}}$	1.46 ± 0.23	2.33 ± 0.24	38.2 ± 3.5
CAF	$1.11 \pm 0.21^{\text{a,A}}$	0.12 ± 0.01 (0.03 ± 0.01)	$10.6 \pm 2.1^{\text{a,A}}$	0.80 ± 0.20	0.92 ± 0.20	14.8 ± 3.0
Tomba						
Forest	$0.89 \pm 0.10^{\text{a,A}}$	0.14 ± 0.01	$15.0 \pm 1.7^{\text{a,A}}$	1.18 ± 0.18	1.31 ± 0.18	11.4 ± 2.2
CAF	$0.90 \pm 0.12^{\text{a,A}}$	0.12 ± 0.00 (0.05 ± 0.02)	$15.8 \pm 2.0^{\text{a,A}}$	1.25 ± 0.14	1.37 ± 0.14	8.9 ± 0.9

852 ^a Annual stem and soil N_2O fluxes were not statistically tested for differences among sites or
 853 between land-use types since these annual values are trapezoidal extrapolations. Annual stem
 854 N_2O emissions in parentheses are from cacao trees only.

855 **Table 3.** Spearman correlation coefficients of stem N₂O flux (μg N m⁻² stem h⁻¹) and soil N₂O
 856 flux (μg N m⁻² soil h⁻¹) with air temperature (°C), water-filled pore space (WFPS) (%), top 5
 857 cm depth), extractable NH₄⁺ (mg N kg⁻¹, top 5 cm depth), soil-air N₂O concentration (ppm N₂O
 858 at 50 cm depth), and vapour pressure deficit (VPD) (kPa), using the monthly means of the four
 859 replicate plots per land use across the three sites from May 2017 to April 2018 (*n* = 33).

Land use	Variable	Soil N ₂ O flux	Air temp.	WFPS	NH ₄ ⁺	Soil-air N ₂ O concentration	VPD
Forest	Stem N ₂ O flux	0.25	0.39 ^b	-0.41 ^b	-0.57 ^a	0.41 ^b	0.62 ^a
	Soil N ₂ O flux		-0.07	0.15	-0.43 ^b	0.55 ^a	-0.01
CAF	Stem N ₂ O flux	0.60 ^a	-0.29	0.17	-0.26	0.21	0.21
	Soil N ₂ O flux		-0.34 ^b	0.53 ^a	-0.14	0.51 ^a	0.10

^b *P* ≤ 0.05, ^a *P* ≤ 0.01.

860 **Table 4.** Mean (\pm SE, $n = 4$) water-filled pore space (WFPS) and extractable mineral N in the
 861 top 5 cm of soil in forest and cacao agroforestry (CAF) within each site in Congo Basin,
 862 Cameroon, measured monthly from May 2017 to April 2018.

Site/ Land-use type ^a	WFPS (%)	NH_4^+ (mg N kg ⁻¹)	NO_3^- (mg N kg ⁻¹)
Aloum			
Forest	$64.3 \pm 3.6^{\text{a,A}}$	$7.3 \pm 1.0^{\text{a,A}}$	$6.3 \pm 1.2^{\text{a,A}}$
CAF	$56.4 \pm 2.5^{\text{a,A}}$	$5.1 \pm 0.8^{\text{a,B}}$	$2.4 \pm 0.6^{\text{b,A}}$
Biba Yezoum			
Forest	$41.5 \pm 2.7^{\text{a,B}}$	$4.9 \pm 0.4^{\text{b,B}}$	$2.9 \pm 0.5^{\text{a,B}}$
CAF	$32.6 \pm 2.7^{\text{a,B}}$	$7.3 \pm 0.4^{\text{a,A}}$	$2.7 \pm 0.6^{\text{a,A}}$
Tomba			
Forest	$48.3 \pm 3.0^{\text{a,B}}$	$7.6 \pm 0.6^{\text{a,A}}$	$5.8 \pm 1.0^{\text{a,A}}$
CAF	$52.3 \pm 5.1^{\text{a,A}}$	$7.1 \pm 0.6^{\text{a,A}}$	$2.8 \pm 0.6^{\text{b,A}}$

863 ^a Means followed by different lowercase letters indicate significant differences between land-
 864 use types within each site and different capital letters indicate significant differences among the
 865 three sites within a land-use type (linear mixed-effect models with Tukey's HSD at $P \leq 0.05$).

Figures

866 **Figure 1.** Stem N_2O fluxes from 22 tree species at three forest sites (Aloum, Biba Yezoum and
867 Tomba) across central and south Cameroon in the Congo Basin. Boxes (25th, median and 75th
868 percentile) and whiskers ($1.5 \times$ interquartile range) are based on N_2O fluxes measured monthly
869 from May 2017 to April 2018 for each tree species, and the values in parentheses represent the
870 number of trees measured per species. There were no differences in N_2O fluxes among species
871 (linear mixed-effect models with Tukey's HSD at $P \geq 0.27$).

872 **Figure 2.** Mean ($\pm\text{SE}$, $n = 4$) stem N_2O fluxes (top panel), soil N_2O fluxes (middle panel) and
873 water-filled pore space (bottom panel) in Aloum site (a, d and g), Biba Yezoum site (b, e and
874 h) and Tomba site (c, f and i) in the Congo Basin, Cameroon, measured monthly from May
875 2017 to April 2018; grey shadings mark the dry season.

876 **Figure 3.** Mean ($\pm\text{SE}$, $n = 3$) $^{15}\text{N}_2\text{O}$ fluxes from stems (top panel, unit is per m^2 stem area) and
 877 soil (bottom panel, unit is m^{-2} ground area) in the Congo Basin, Cameroon. In May 2018, 290
 878 mg ^{15}N (in the form of $(^{15}\text{NH}_4)_2\text{SO}_4$ with 98 % ^{15}N) was dissolved in 8 L distilled water and
 879 sprayed within 0.8 m^2 area around each tree (equal to 10 mm rain), which was only 20 % of the
 880 extant mineral N in the top 10 cm soil and $49 \pm 1\%$ and $52 \pm 2\%$ water-filled pore space for
 881 the forest and CAF, respectively, comparable to the soil water content of the site (Fig. 2).

Appendices

882 **Table A1.** Vegetation and site characteristics of the study sites on highly weathered soils in the
 883 Congo Basin, Cameroon. All vegetation characteristics were determined from trees with ≥ 10
 884 cm diameter at breast height in both forest and cacao agroforestry.

Site	Aloum		Biba Yezoum		Tomba	
Land use	Forest	Cacao agroforestry ^a	Forest	Cacao agroforestry ^a	Forest	Cacao agroforestry ^a
Tree density (n ha^{-1})	594 \pm 29	403 \pm 60	619 \pm 16	267 \pm 24	453 \pm 34	430 \pm 51
		(140 \pm 37)		(96 \pm 16)		(292 \pm 79)
Total basal area ($\text{m}^2 \text{ ha}^{-1}$)	35 \pm 1.4	27 \pm 2.5	33 \pm 2.9	27 \pm 2.0	34 \pm 2.3	30 \pm 3.2
		(1.5 \pm 0.5)		(0.9 \pm 0.2)		(3.8 \pm 1.3)
Legume abundance (%) of the number of trees)	7.7 \pm 1.7	5.9 \pm 1.4	9.3 \pm 1.9	6.5 \pm 2.3	7.4 \pm 1.6	4.8 \pm 1.4
Tree height (m)	18.6 \pm 0.5	15.1 \pm 0.9	20.6 \pm 0.5	16.1 \pm 0.4	19.5 \pm 0.4	11.7 \pm 1.7
		(6.8 \pm 0.1)		(6.2 \pm 0.3)		(6.1 \pm 0.3)
Diameter at breast height (cm)	23.2 \pm 0.6	23.3 \pm 1.6	22.6 \pm 0.8	27.2 \pm 0.2	24.8 \pm 1.0	23.5 \pm 2.7
		(11.4 \pm 0.2)		(10.8 \pm 0.2)		(12.3 \pm 0.6)
Three most abundant tree species in the forest plots at each site ^b	<i>Cleistopholis patens</i> <i>Coelocaryon preussi</i> <i>Pycnanthus angolensis</i>		<i>Celtis sp.</i> <i>Diospyros sp.</i> <i>Petersianthus macrocarpus</i>		<i>Celtis sp.</i> <i>Carapa procera</i> <i>Funtumia elastica</i>	
Elevation (m above sea level)	651		674		752	
Precipitation ^{be} (mm yr^{-1} ; from 1982 to 2012)	2064		1639		1577	

885 ^a For cacao agroforestry, the first values are for both cacao and remnant shade trees, and the
 886 second values in parentheses are for cacao trees only. ^b Determined using Importance Value
 887 Index (IVI = relative density + relative frequency + relative dominance (Curtis and McIntosh,
 888 1951)). For a given species, the relative density refers to its total number of individuals in the
 889 four forest plots at each site; the relative frequency refers to its occurrence among the four forest
 890 plots; and the relative dominance refers to its total basal area in the four forest plots, all
 891 expressed as percentages of all species. ^{be} Climate-Data.org, 2019.

892 **Table A2.** Ecological and functional traits of the measured trees, selected from the most
 893 dominant tree species at each site, based on their Importance Value Index (IVI = relative density
 894 + relative frequency + relative dominance; Curtis and McIntosh, 1951). For a given species, the
 895 relative density refers to its total number of individuals in the four forest plots at each site; the
 896 relative frequency refers to its occurrence among the four forest plots; and the relative
 897 dominance refers to its total basal area in the four forest plots, all expressed as percentages of
 898 all species.

Site	Guild^a	Phenology	Dispersal	Wood density^b
Aloum				
<i>Allanblackia floribunda</i>	SB	Evergreen	Zoochore	0.69
<i>Anthonotha macrophylla</i>	SB	Evergreen	=	0.83
<i>Cleistopholis patens</i>	Pioneer	Deciduous	Zoochore	0.34
<i>Coelocaryon preussi</i>	NPLD	Evergreen	Zoochore	0.50
<i>Desbordesia insignis</i>	SB	Evergreen	Anemochore	0.92
<i>Parkia bicolor</i>	NPLD	Deciduous	Zoochore	0.45
<i>Plagiostyles africana</i>	SB	Evergreen	Zoochore	0.75
<i>Pycnanthus angolensis</i>	NPLD	Evergreen	Zoochore	0.41
<i>Staudtia kamerunensis</i>	SB	Evergreen	Zoochore	0.79
<i>Theobroma cacao</i>	Sub-canopy	Evergreen		0.42
Biba Yezoum				
<i>Carapa procera</i>	SB	Evergreen	Zoochore	0.60
<i>Celtis sp</i>	NPLD + SB	Deciduous + Evergreen	Zoochore	0.59
<i>Diospyros sp</i>	SB	Deciduous	Zoochore	0.70
<i>Entandrophragma candollei</i>	NPLD	Deciduous	Anemochore	0.57
<i>Eribroma oblongum</i>	SB	Deciduous	Zoochore	0.64
<i>Lovoa trichilioides</i>	NPLD	Evergreen	Anemochore	0.46
<i>Petersianthus macrocarpus</i>	Pioneer	Deciduous + Evergreen	Anemochore	0.68
<i>Theobroma cacao</i>	Sub-canopy	Evergreen		0.42
Tomba				
<i>Annickia chlorantha</i>	SB	Evergreen	Zoochore	0.44
<i>Anonidium manni</i>	SB	Evergreen	Zoochore	0.29
<i>Carapa procera</i>	SB	Evergreen	Zoochore	0.60
<i>Celtis sp.</i>	NPLD + SB	Deciduous + Evergreen	Zoochore	0.59
<i>Funtumia elastica</i>	NPLD	Evergreen	Anemochore	0.42
<i>Leonardoa africana</i>	SB	=	=	=
<i>Lovoa trichilioides</i>	NPLD	Evergreen	Anemochore	0.46
<i>Markhamia lutea</i>	Pioneer	Evergreen	Anemochore	0.50
<i>Mitragyna stipulosa</i>	Pioneer	Evergreen	Anemochore	0.47
<i>Pycnanthus angolensis</i>	NPLD	Evergreen	Zoochore	0.41
<i>Theobroma cacao</i>	Sub-canopy	Evergreen		0.42

899 ^a Each species was assigned to one of the three ecological guilds defined by Hawthorne (1995):
900 SB: shade-bearer, NPLD: non-pioneer light demander, P: pioneer. ^b Global Wood Density
901 Database (Brown et al., 1997; Zanne et al., 2009).

902 **Table A32.** Seasonal mean (\pm SE, $n = 4$) water-filled pore space (WFPS), extractable mineral
 903 N (measured in the top 5 cm of soil) and nitrous oxide (N_2O) fluxes in forests on highly
 904 weathered soils in the Congo Basin, Cameroon. Means followed by different lowercase letters
 905 indicate significant differences between seasons for each site (linear mixed-effect models with
 906 Tukey's HSD at $P \leq 0.05$).

Season/ site	Stem N_2O flux ($\mu\text{g N m}^{-2}$ stem h^{-1})	Soil N_2O flux ($\mu\text{g N m}^{-2}$ soil h^{-1})	WFPS (%)	Soil NH_4^+ (mg N kg^{-1})	Soil NO_3^- (mg N kg^{-1})
Wet season					
Aloum	$1.56 \pm 0.36^{\text{a}}$	$16.7 \pm 3.7^{\text{a}}$	$66.2 \pm 2.2^{\text{a}}$	$6.0 \pm 0.6^{\text{a}}$	$6.0 \pm 0.8^{\text{a}}$
Biba Yezoum	$2.92 \pm 0.73^{\text{a}}$	$22.9 \pm 4.9^{\text{a}}$	$44.8 \pm 2.6^{\text{a}}$	$4.4 \pm 0.3^{\text{a}}$	$2.2 \pm 0.2^{\text{b}}$
Tomba	$1.01 \pm 0.13^{\text{a}}$	$18.6 \pm 2.2^{\text{a}}$	$49.4 \pm 1.8^{\text{a}}$	$6.9 \pm 0.5^{\text{b}}$	$5.4 \pm 0.8^{\text{a}}$
Dry season					
Aloum	$0.61 \pm 0.14^{\text{b}}$	$10.0 \pm 1.8^{\text{b}}$	$62.0 \pm 3.6^{\text{a}}$	$8.7 \pm 1.3^{\text{a}}$	$6.6 \pm 1.0^{\text{a}}$
Biba Yezoum	$1.73 \pm 0.57^{\text{b}}$	$10.3 \pm 1.4^{\text{b}}$	$36.3 \pm 3.2^{\text{a}}$	$5.5 \pm 0.4^{\text{a}}$	$3.6 \pm 0.5^{\text{a}}$
Tomba	$0.69 \pm 0.15^{\text{b}}$	$8.9 \pm 1.9^{\text{b}}$	$46.2 \pm 3.1^{\text{a}}$	$8.7 \pm 0.8^{\text{a}}$	$6.5 \pm 1.1^{\text{a}}$

907 **Table A43.** Seasonal mean (\pm SE, $n = 4$) water-filled pore space (WFPS), extractable mineral
 908 N (measured in the top 5 cm of soil) and nitrous oxide (N_2O) fluxes in cacao agroforestry sites
 909 located on highly weathered soils in the Congo Basin, Cameroon. Means followed by different
 910 lowercase letters indicate significant differences between seasons for each site (linear mixed-
 911 effect models with Tukey's HSD at $P \leq 0.05$).

Site/ season	Stem N_2O flux ($\mu\text{g N m}^{-2}$ stem h^{-1})	Soil N_2O flux ($\mu\text{g N m}^{-2}$ soil h^{-1})	WFPS (%)	Soil NH_4^+ (mg N kg^{-1})	Soil NO_3^- (mg N kg^{-1})
Wet season					
Aloum	$1.21 \pm 0.27^{\text{a}}$	$22.6 \pm 4.7^{\text{a}}$	$60.3 \pm 1.6^{\text{a}}$	$4.3 \pm 0.4^{\text{a}}$	$2.1 \pm 0.4^{\text{a}}$
Biba Yezoum	$1.43 \pm 0.36^{\text{a}}$	$15.0 \pm 3.5^{\text{a}}$	$38.2 \pm 1.7^{\text{a}}$	$7.0 \pm 0.6^{\text{a}}$	$2.2 \pm 0.4^{\text{a}}$
Tomba	$1.05 \pm 0.18^{\text{a}}$	$21.2 \pm 2.6^{\text{a}}$	$53.4 \pm 2.4^{\text{a}}$	$7.3 \pm 0.8^{\text{a}}$	$2.5 \pm 0.3^{\text{a}}$
Dry season					
Aloum	$0.53 \pm 0.07^{\text{b}}$	$6.4 \pm 0.7^{\text{b}}$	$51.7 \pm 1.9^{\text{b}}$	$6.0 \pm 1.0^{\text{a}}$	$2.7 \pm 0.6^{\text{a}}$
Biba Yezoum	$0.74 \pm 0.12^{\text{a}}$	$5.3 \pm 1.3^{\text{b}}$	$25.9 \pm 1.8^{\text{b}}$	$7.5 \pm 0.6^{\text{a}}$	$3.2 \pm 0.7^{\text{a}}$
Tomba	$0.63 \pm 0.06^{\text{a}}$	$6.2 \pm 1.2^{\text{b}}$	$50.4 \pm 6.2^{\text{a}}$	$6.9 \pm 0.9^{\text{a}}$	$3.4 \pm 0.7^{\text{a}}$

912 **Appendix B1.** Location of the study sites in Cameroon, showing the four replicate plots per
913 land use (green for forests and orange for cacao agroforestry) at one site.

914 **Appendix B2.** Sampling set-up for stem nitrous oxide (N_2O)-flux measurement at three stem
915 heights in a rainforest in the Congo Basin, Cameroon.

916 **Appendix B3.** Map of the Congo Basin rainforest (green) spanning across the six major Congo
917 Basin countries. Brown shaded area represents the proportion of the Congo rainforest with
918 similar biophysical conditions as our study sites (Ferralsol soils, ≤ 1000 m elevation, and 1500–
919 2100 mm yr^{-1} precipitation).

