

1 **Stem and soil nitrous oxide fluxes from rainforest and cacao**  
2 **agroforest on highly weathered soils in the Congo Basin**

3 Najeeb A. Iddris<sup>1</sup>, Marife D. Corre<sup>1</sup>, Martin Yemefack<sup>2,3</sup>, Oliver van Straaten<sup>1,4</sup>, Edzo

4 Veldkamp<sup>1</sup>

5 <sup>1</sup>Soil Science of Tropical and Subtropical Ecosystems, University of Goettingen, Goettingen,  
6 37077, Germany

7 <sup>2</sup> International Institute of Tropical Agriculture, Yaoundé, Cameroon

8 <sup>3</sup> Now at: Sustainable Tropical Solutions (STS), Yaoundé, Cameroon

9 <sup>4</sup> Now at: Northwest German Forest Research Institute, Goettingen, 37079, Germany

10 *Correspondence to:* N. A. Iddris (nidris@gwdg.de)

11 **Abstract.** Although tree stems act as conduits for greenhouse gases (GHG) produced in the soil,  
12 the magnitudes of tree contributions to total (soil + stem) nitrous oxide ( $N_2O$ ) emissions from  
13 tropical rainforests on heavily weathered soils remain unknown. Moreover, soil GHG fluxes are  
14 largely understudied in African rainforests, and the effects of land-use change on these gases are  
15 identified as an important research gap in the global GHG budget. In this study, we quantified  
16 the changes in stem and soil  $N_2O$  fluxes with forest conversion to cacao agroforestry. Stem and  
17 soil  $N_2O$  fluxes were measured monthly for a year (2017–2018) in four replicate plots per land  
18 use at three sites across central and southern Cameroon. Tree stems consistently emitted  $N_2O$   
19 throughout the measurement period, and were positively correlated with soil  $N_2O$  fluxes.  $^{15}N$ -  
20 isotope tracing from soil mineral N to stem-emitted  $^{15}N_2O$  as well as correlations between  
21 temporal patterns of stem  $N_2O$  emissions, soil-air  $N_2O$  concentration, soil  $N_2O$  emissions, and  
22 vapor pressure deficit suggest that  $N_2O$  emitted by the stems originated predominantly from  $N_2O$   
23 produced in the soil. Forest conversion to extensively managed, mature (> 20 years old) cacao  
24 agroforestry had no effect on stem and soil  $N_2O$  fluxes. The annual total  $N_2O$  emissions were  
25  $1.55 \pm 0.20 \text{ kg N ha}^{-1} \text{ yr}^{-1}$  from the forest and  $1.15 \pm 0.10 \text{ kg N ha}^{-1} \text{ yr}^{-1}$  from cacao agroforestry,  
26 with tree  $N_2O$  emissions contributing 11 to 38% for forests and 8 to 15% for cacao agroforestry.  
27 These substantial contributions of tree stems to total  $N_2O$  emissions highlight the importance of  
28 including tree-mediated fluxes in ecosystem GHG budgets. Taking into account that our study  
29 sites' biophysical characteristics represented two-thirds of the humid rainforests in the Congo  
30 Basin, we estimated a total  $N_2O$  source strength for this region of  $0.18 \pm 0.05 \text{ Tg N}_2O \text{ yr}^{-1}$ .

31 **1. Introduction**

32 The trace gas nitrous oxide ( $N_2O$ ) has become the main stratospheric ozone depleting substance  
33 produced by human activities (Ravishankara et al., 2009), and is after carbon dioxide and methane  
34 ( $CH_4$ ) the most important anthropogenic greenhouse gas (GHG) (Denman et al., 2007). Humid

35 tropical soils are considered one of the most important global  $\text{N}_2\text{O}$  sources (Denman et al., 2007;  
36 Werner et al., 2007a), with tropical rainforests alone estimated to contribute between 0.9 to 4.5  
37  $\text{Tg N}_2\text{O-N yr}^{-1}$  to the global  $\text{N}_2\text{O}$  source of about 16  $\text{Tg N}_2\text{O-N yr}^{-1}$  (Bouwman et al., 1995;  
38 Breuer et al., 2000; Werner et al., 2007a). However, ground-based, bottom-up  $\text{N}_2\text{O}$  emission  
39 estimates appear to be in stark contrast to the high emissions estimated from top-down approaches  
40 such as modelling and global  $\text{N}_2\text{O}$  atmospheric inversions (Huang et al., 2008; Thompson et al.,  
41 2014). Nevertheless, there exists considerable uncertainty in both approaches (Davidson and  
42 Kanter, 2014), especially for the tropics (Valentini et al., 2014). Recent studies suggest two  
43 possible reasons for large uncertainties in bottom-up approaches: “missing” emission pathways  
44 such as trees (Welch et al., 2019), and a strong geographic bias of measured  $\text{N}_2\text{O}$  fluxes from  
45 tropical forests.

46 Most of the studies on soil  $\text{N}_2\text{O}$  fluxes from tropical ecosystems were conducted in South  
47 and Central America (Davidson and Verchot, 2000; Matson et al., 2017; Neill et al., 2005; Wolf  
48 et al., 2011), tropical Asia (Hassler et al., 2017; Purbopuspito et al., 2006; Veldkamp et al., 2008;  
49 Verchot et al., 2006; Werner et al., 2006) and Australia (Breuer et al., 2000; Kiese et al., 2003).  
50 Africa remains the continent with the least published field studies on soil  $\text{N}_2\text{O}$  fluxes from the  
51 tropical forest biome. After the pioneering work by Serca et al. (1994), very few field studies  
52 have been conducted, most of which were either not replicated with independent plots or only  
53 with short measurement campaigns (Castaldi et al., 2013; Gütlein et al., 2018; Wanyama et al.,  
54 2018; Werner et al., 2007b). The remaining studies were based on laboratory incubations, which  
55 cannot be translated to actual field conditions. Consequently, field-based studies with sufficient  
56 spatial and temporal coverage are critical for improving the highly uncertain  $\text{N}_2\text{O}$  sink and source  
57 estimates for Africa (Kim et al., 2016b; Valentini et al., 2014).

58 The Congo Basin is the second largest intact tropical forest in the world and constitutes  
59 one of the most important carbon (C) and biodiversity reservoirs globally. Behind the DR Congo,

60 Cameroon is the second highest deforested country in the Congo Basin with about 75% of its  
61 forest being subject to pressure from other land uses including agroforestry (Dkamela, 2010).  
62 Conversion of forests to traditional cacao agroforestry (CAF) systems have well been  
63 documented in Cameroon (Saj et al., 2013; Sonwa et al., 2007; Zapfack et al., 2002). Presently,  
64 an estimated 400,000 hectares is under CAF on small family farms of approximately one to three  
65 hectares (Kotto et al., 2002; Saj et al., 2013). These CAF systems are commonly established under  
66 the shade of the forests' remnant trees, and are characterised by absence of fertilizer inputs and  
67 low yields of up to 1 t cacao beans  $\text{ha}^{-1}$  (Saj et al., 2013).

68 Changes in land use have been found to affect soil  $\text{N}_2\text{O}$  emissions due to changes in soil  
69 N availability, vegetation and management practices such as N fertilization (Corre et al., 2006;  
70 Davidson and Verchot, 2000; Groffman et al., 2000; Hassler et al., 2017; Veldkamp et al., 2020).  
71 In particular, unfertilized agroforestry and agricultural systems have been found to have  
72 comparable  $\text{N}_2\text{O}$  fluxes as those from the reference forests (Hassler et al., 2017), whereas N-  
73 fertilized systems tend to have higher  $\text{N}_2\text{O}$  fluxes than the previous forest due to elevated soil  
74 mineral N following fertilization (Verchot et al., 2006). This is in line with postulations of the  
75 conceptual hole-in-the-pipe (HIP) model, which suggest that the magnitude of  $\text{N}_2\text{O}$  emissions  
76 from the soil are largely controlled first by soil N availability and second by soil water content  
77 (Davidson et al., 2000). A systematic comparison between a reference land use and a converted  
78 system for quantifying land-use change effects on GHG fluxes is virtually lacking for the Congo  
79 Basin, and thus an important knowledge gap in the GHG budget of Africa (Valentini et al., 2014).

80 Tree stems have been found to act as conduits for soil  $\text{N}_2\text{O}$  in wetlands, mangroves and  
81 well-drained forests (Kreuzwieser et al., 2003; Rusch and Rennenberg, 1998; Welch et al., 2019),  
82 facilitating the transport from the soil, where  $\text{N}_2\text{O}$  are produced or consumed by microbial  
83 nitrification and denitrification processes, to the atmosphere. Findings of strong declines in  $\text{N}_2\text{O}$   
84 emissions with increasing stem height (Barba et al., 2019; Díaz-Pinés et al., 2016; Rusch and

85 Rennenberg, 1998; Wen et al., 2017) suggest that N<sub>2</sub>O is mainly emitted through the stems and  
86 less likely through the leaves. Trees adapted to wetlands and mangroves have aerenchyma  
87 systems through which N<sub>2</sub>O can be transported from the soil into the tree by both gas diffusion  
88 and transpiration stream, with exchange to the atmosphere predominantly through the stem  
89 lenticels (Rusch and Rennenberg, 1998; Wen et al., 2017). However, for trees on well-drained  
90 soils, a different transport mechanism appears to be dominant: transpiration drives the xylem sap  
91 flow in which dissolved N<sub>2</sub>O is transported from the soil to the tree and emitted to the atmosphere  
92 through the stem surface and stomata (Machacova et al., 2013; Wen et al., 2017). Recent evidence  
93 shows that trees can also act as N<sub>2</sub>O sinks (Barba et al., 2019; Machacova et al., 2017),  
94 highlighting the need for further research of the stem N<sub>2</sub>O flux magnitudes and their mechanisms.

95 The most important soil parameters found to influence tree-stem N<sub>2</sub>O fluxes include soil  
96 water content (Machacova et al., 2016; Rusch and Rennenberg, 1998), soil N<sub>2</sub>O fluxes (Díaz-  
97 Pinés et al., 2016; Wen et al., 2017), soil temperature (Machacova et al., 2013) and soil-air N<sub>2</sub>O  
98 concentration within the rooting zone (Machacova et al., 2013; Wen et al., 2017). These studies  
99 also reported environmental parameters, such as air temperature and vapour pressure deficit, to  
100 drive stem N<sub>2</sub>O fluxes due to their influence on transpiration (O'Brien et al., 2004). For temperate  
101 forests on a well-drained soil, annual stem N<sub>2</sub>O fluxes have been found to contribute up to 10%  
102 of the ecosystem N<sub>2</sub>O emissions (Wen et al., 2017). However, until now, there is no ground-  
103 based spatial extrapolation of the contribution of stem N<sub>2</sub>O emissions from tropical forests on  
104 well-drained soils. Hence, there is a need for concurrent quantifications of the contributions of  
105 stem and soil N<sub>2</sub>O fluxes so as to provide insights on the source strengths of N<sub>2</sub>O emissions from  
106 tropical African land uses and to improve estimates of N<sub>2</sub>O emissions from the region.

107 Our present study addresses these knowledge gaps by providing year-round  
108 measurements of stem and soil N<sub>2</sub>O fluxes from forests and converted CAF systems with spatially  
109 replicated plots in the Congo Basin as well as stem N<sub>2</sub>O fluxes of 23 tree species that have not

110 been measured before. Our findings contribute to the much-needed improvement of GHG budget  
111 from this region. Our study aimed to (i) assess whether trees in tropical rainforests and CAF are  
112 important conduits of  $\text{N}_2\text{O}$ , (ii) quantify changes in soil-atmosphere  $\text{N}_2\text{O}$  fluxes with forest  
113 conversion to CAF, and (iii) determine the temporal and spatial controls of stem and soil  $\text{N}_2\text{O}$   
114 fluxes. We hypothesized that (i) stem and soil  $\text{N}_2\text{O}$  fluxes from these extensively managed CAF  
115 systems (unfertilized and manual harvest) will be comparable to the natural forests, and (ii) the  
116 seasonal pattern of stem emissions will parallel that of soil  $\text{N}_2\text{O}$  emissions and both will have  
117 similar soil and climatic controlling factors.

118 **2. Materials and methods**

119 **2.1 Study area and experimental design**

120 Our study was conducted at three study sites located in southern and central Cameroon, where  
121 natural forests are predominantly converted to CAF (Sonwa et al., 2007). Sites in the southern  
122 region were located around the villages of Aloum ( $2.813^\circ \text{ N}$ ,  $10.719^\circ \text{ E}$ ; 651 m above sea level,  
123 asl) and Biba Yezoum ( $3.158^\circ \text{ N}$ ,  $12.292^\circ \text{ E}$ ; 674 m asl), and the third site was located around the  
124 village of Tomba ( $3.931^\circ \text{ N}$ ,  $12.430^\circ \text{ E}$ ; 752 m asl) in the central region (Fig. B1). The mean  
125 annual air temperature across the three sites is  $23.5^\circ \text{ C}$  (Climate-Data.org, 2019), and the soil  
126 temperature ranged from  $21.6\text{--}24.4^\circ \text{ C}$  during our measurement period from May 2017 to April  
127 2018. The study sites span an annual precipitation from  $1576 \text{ mm yr}^{-1}$  in the central to  $2064 \text{ mm}$   
128  $\text{yr}^{-1}$  in the south of Cameroon (Table A1; Climate-Data.org, 2019). Precipitation occurs in a  
129 bimodal pattern, with two dry seasons (<120 mm monthly rainfall) occurring from July to August  
130 and December to February. All sites are situated on heavily weathered soils classified as  
131 Ferralsols (FAO classification; IUSS Working Group WRB, 2015). Geologically, Tomba and  
132 Biba Yezoum are underlain by middle to superior Precambrian basement rocks (metamorphic  
133 schists, phyllites and quartzites), whereas Aloum site is situated on inferior Precambrian  
134 basement rocks (inferior gneiss and undifferentiated gneiss) (Gwanfogbe et al., 1983).

135 At each of the three sites, we studied two land-use systems: the reference forest and the  
136 converted CAF system. Additional information on vegetation and site characteristics are reported  
137 in Table A1. These CAF sites were established right after clearing the natural forests, where  
138 remnant forest trees were retained by farmers to provide shade for understorey cacao trees  
139 (*Theobroma cacao*). Cacao planting and localised weeding were all done manually using hand  
140 tools. Interviews of farm owners indicated that there had been no mineral fertilization in any of  
141 the CAF sites. The ages of the CAF since conversion varied between 22 and ~ 45 years.

142 We selected four replicate plots (50 m x 50 m each with a minimum distance of 100 m  
143 between plots) per land-use type within each site (Fig. B1), totalling to 24 plots that were all  
144 located on relatively flat topography. Within each plot, all stems including cacao trees with a  
145 diameter at breast height (DBH)  $\geq$  10 cm were identified and measured for DBH and height. We  
146 conducted N<sub>2</sub>O flux measurements, soil and meteorological parameters in the inner 40 m  $\times$  40 m  
147 area within each plot to minimize edge effects. To check that soil conditions were comparable  
148 between the reference forests and converted CAF, we compared a land-use-independent soil  
149 characteristic, i.e. clay content at 30–50 cm depth, between these land uses at each site. Since we  
150 did not find significant differences in clay contents between the forest and CAF at each site  
151 (Table 1), we inferred that land-use types within each site had comparable initial soil  
152 characteristics prior to conversion and any differences in N<sub>2</sub>O fluxes and soil controlling factors  
153 can be attributed to land-use conversion.

154 For measurements of stem N<sub>2</sub>O fluxes, we selected six cacao trees per replicate plot in the  
155 CAF, and six trees representing the most dominant species within each replicate plot in the forest,  
156 based on their importance value index (IVI) (Table A2). The species IVI is a summation of the  
157 relative density, relative frequency and relative dominance of the tree species (Curtis and  
158 McIntosh, 1951). For a given species, the relative density refers to its total number of individuals  
159 in the four forest plots at each site; the relative frequency refers to its occurrence among the four

160 forest plots; and the relative dominance refers to its total basal area in the four forest plots, all  
161 expressed as percentages of all species. These 24 trees measured at each site (6 trees x 4 forest  
162 plots) included nine species in Aloum site, seven species in Biba Yezoum site, and 10 species in  
163 Tomba site (species are specified in Fig. 1; Table A2). The trees were measured for stem N<sub>2</sub>O  
164 fluxes at 1.3 m height above the ground at monthly interval from May 2017 to April 2018.  
165 Furthermore, we assessed the influence of tree height on stem N<sub>2</sub>O fluxes by conducting  
166 additional measurements on 16 individual trees per land use in May 2018; these trees were  
167 included in the monthly measurements but were additionally measured at three stem heights (1.3  
168 m, 2.6 m and 3.9 m from the ground) per tree in the forest, and at two heights (1.3 m and 2.6 m)  
169 per tree in the CAF due to the limited height of the cacao trees.

170 For soil N<sub>2</sub>O flux measurements, we installed four permanent chamber bases per replicate  
171 plot which were randomly distributed within the inner 40 m × 40 m area. We conducted monthly  
172 measurements of soil N<sub>2</sub>O fluxes from May 2017 to April 2018 as well as meteorological and  
173 soil variables known to control N<sub>2</sub>O emission (see below).

## 174 **2.2 Measurement of stem and soil N<sub>2</sub>O fluxes**

175 We measured in situ stem N<sub>2</sub>O fluxes using stem chambers made from transparent  
176 polyethylene-terephthalate foil, as described by Wen et al. (2017). One month prior to  
177 measurement, we applied acetic acid-free silicone sealant strips (Otto Seal ® S110, Hermann  
178 Otto GmbH, Fridolfing, Germany) of about 1 cm wide at 20 cm apart around the surface of the  
179 tree stems (between 1.2 m and 1.4 m heights from the ground) that stayed permanently to ensure  
180 that all the stem chambers had air-tight seals (Fig. B2). As many of the measured trees have  
181 buttresses (rendering stem chambers impossible to attach at low stem height, e.g. Fig. B2), we  
182 chose the measurements at an average of 1.3 m height (or between 1.2–1.4 m), congruent to the  
183 standard measurement of DBH. Since chamber installation is quick, chambers were newly  
184 installed on each sampling date, using the silicone sealant strips as a mark to ensure that the same

185 0.2 m length stem section was measured. We wrapped a piece of foil (cut approximately 50 cm  
186 longer than the measured stem circumference and fitted with a Luer lock sampling port) around  
187 each stem. Using a gas-powered heat gun, we “shrank” the top and bottom part of the foil to fit  
188 closely onto the silicone strips, leaving 0.2 m length between the top and bottom silicone strips,  
189 which served as the chamber for collecting gas samples (Fig. B2). We then wrapped strips of  
190 polyethylene foam around the edges of the foil and adjusted the foam tightly using lashing straps  
191 equipped with ratchet tensioners (two straps at the top and two at the bottom). The lashing straps  
192 adjusted the flexible foam and the foil (on top of the silicone strips) to any irregularities on the  
193 bark and ensured an airtight fitting. After installation, we completely evacuated the air inside the  
194 stem chamber using a syringe fitted with a Luer lock one-way check valve. Afterwards, we used  
195 a manual hand pump to refill the stem chamber with a known volume of ambient outside air for  
196 correct calculation of stem N<sub>2</sub>O flux. A 25 mL air sample was taken with syringe through the  
197 Luer lock sampling port immediately after refilling the stem chamber with ambient air, and then  
198 again after 20, 40 and 60 min. Each air sample was immediately stored in pre-evacuated 12 mL  
199 Labco exetainers with rubber septa (Labco Limited, Lampeter, UK), maintaining an overpressure.

200 In May 2018, we conducted a <sup>15</sup>N tracing experiment at the Tomba site as a follow-on  
201 study to elucidate the source of stem N<sub>2</sub>O emissions. The tracing was conducted in three replicate  
202 plots per land use, where one tree was selected in each plot. Around each selected tree, 290 mg  
203 <sup>15</sup>N (in the form of (<sup>15</sup>NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> with 98% <sup>15</sup>N) dissolved in 8 L distilled water was applied evenly  
204 onto the soil surface of 0.8 m<sup>2</sup> around the tree using a watering can (equivalent to 10 mm of rain).  
205 The water-filled pore space (WFPS) in the top 5 cm depth was 49 ± 1% and 52 ± 2% for the  
206 forest and CAF, respectively, which were within the range of monthly average WFPS of these  
207 plots (Fig. 2i). Based on the monthly average soil mineral N concentrations in these plots, the  
208 applied <sup>15</sup>N was only 20% of the extant mineral N in the top 10 cm soil (resulting to a starting  
209 enrichment of 17% <sup>15</sup>N), such that we only minimally changed the substrate which could

210 influence  $\text{N}_2\text{O}$  flux, similar to that described by Corre et al. (2014). Stem and soil  $^{15}\text{N}_2\text{O}$  fluxes  
211 were measured one day, seven days and 14 days following  $^{15}\text{N}$  application, and on each sampling  
212 day gas samples were taken at 0, 30, and 60 min after chamber closure. The gas samples were  
213 stored in new pre-evacuated glass containers (100 mL) with rubber septa and transported to the  
214 University of Goettingen, Germany for analysis. We also stored  $^{15}\text{N}_2\text{O}$  standards in similar 100  
215 mL glass containers, which were brought to Cameroon and back to Germany, to have the same  
216 storage duration as the gas samples in order to check for leakage; we found no difference in  $^{15}\text{N}_2\text{O}$   
217 with the original standard at our laboratory.

218 We measured soil  $\text{N}_2\text{O}$  fluxes using vented, static chambers made from polyvinyl chloride  
219 that were permanently inserted  $\sim 0.02$  m into the soil at least one month prior to the start of  
220 measurements, as described in our earlier studies (e.g., Corre et al., 2014; Koehler et al., 2009;  
221 Müller et al., 2015). On each sampling day, we covered the chamber bases with vented, static  
222 polyethylene hoods ( $0.04\text{ m}^2$  in area and  $\sim 11\text{ L}$  total volume) equipped with Luer lock sampling  
223 ports. Soil  $\text{N}_2\text{O}$  fluxes were then determined by taking four gas samples (25 mL each) at 2, 12,  
224 22 and 32 min after chamber closure. The samples were taken with a syringe and immediately  
225 injected into pre-evacuated 12 mL exetainers as described above.

226 Concurrent to the stem and soil  $\text{N}_2\text{O}$  flux measurements, we sampled soil-air  $\text{N}_2\text{O}$   
227 concentrations at 50 cm depth from permanently installed stainless steel probes (1 mm internal  
228 diameter) located at  $\sim 1$  m from the measured trees. The stainless steel probes were installed one  
229 month prior to the start of measurements. Luer locks were attached to the probes, and on each  
230 sampling day the probes were first cleared of any previous accumulation of  $\text{N}_2\text{O}$  concentration  
231 by removing 5 mL air volume using a syringe and discarding it. We then took 25 mL gas samples  
232 and stored them in pre-evacuated 12 mL exetainers as described above.

233 **2.3 N<sub>2</sub>O analysis and flux rate calculation**

234 The N<sub>2</sub>O concentrations in the gas samples were analysed using a gas chromatograph equipped  
235 with an electron capture detector, a make-up gas of 5% CO<sub>2</sub> – 95% N<sub>2</sub> (SRI 8610C, SRI  
236 Instruments Europe GmbH, Bad Honnef, Germany), and an autosampler (AS-210, SRI  
237 Instruments). <sup>15</sup>N<sub>2</sub>O was analysed on an isotope ratio mass spectrometer (IRMS) (Finnigan  
238 Deltaplus XP, Thermo Electron Corporation, Bremen, Germany). We calculated N<sub>2</sub>O fluxes from  
239 the linear change in concentrations over time of chamber closure, and adjusted the fluxes with air  
240 temperature and atmospheric pressure, measured at each replicate plot on each sampling day. We  
241 included zero and negative fluxes in our data analysis.

242 We up-scaled the measured stem N<sub>2</sub>O fluxes (considering trees  $\geq$  10 cm DBH) to annual  
243 values on a ground area in the following steps: (1) the relationship between stem N<sub>2</sub>O fluxes and  
244 stem heights was modelled from the 16 individual trees per land use (see above) that were  
245 measured at multiple heights, from which we observed decreases in stem N<sub>2</sub>O fluxes with  
246 increasing stem heights. A linear function was statistically the best fit characterizing these  
247 decreases in stem N<sub>2</sub>O fluxes with height. (2) Using this linear function and considering the stem  
248 surface area as a frustum with 20 cm increment, the tree-level N<sub>2</sub>O fluxes on each sampling day  
249 was calculated for the regularly measured six trees per plot. (3) The annual tree-level N<sub>2</sub>O fluxes  
250 from these regularly measured six trees per plot were calculated using a trapezoidal interpolation  
251 between the tree-level N<sub>2</sub>O fluxes (step 2) and measurement day intervals from May 2017 to  
252 April 2018. (4) The annual tree-level N<sub>2</sub>O fluxes were then extrapolated on a ground-area basis  
253 for each replicate plot as follows (Eq. 1):

254 
$$\text{Annual stem N}_2\text{O flux (kg N}_2\text{O-N ha}^{-1} \text{yr}^{-1}) = \frac{\{\sum[(\frac{X_{1-24}/DBH_{1-24}}{24}) * DBH_n]\}}{A} \quad (1)$$

255 where X<sub>1-24</sub> and DBH<sub>1-24</sub> are the corresponding annual tree-level N<sub>2</sub>O flux (kg N<sub>2</sub>O-N yr<sup>-1</sup> of  
256 each tree; step 3) and DBH (cm) of each of the 24 measured trees (6 trees x 4 plots) per land use

257 at each site,  $DBH_n$  is the individual tree DBH (cm) measured for all trees (with  $\geq 10$  cm DBH)  
258 present within the inner  $40\text{ m} \times 40\text{ m}$  area of each plot (Table A1),  $\Sigma$  is the sum of the annual  
259  $N_2O$  fluxes of all trees within each plot ( $\text{kg N}_2O\text{-N yr}^{-1}$ ) and  $A$  is the plot area (0.16 ha).

260 For step 4 of the CAF plots, the annual stem  $N_2O$  flux was the sum of the cacao and shade  
261 trees (Table A1); as these shade trees were remnants of the original forest, we used the average  
262 annual tree-level  $N_2O$  flux of the measured trees in the corresponding paired forest plots  
263 multiplied by the actual DBH of the shade trees in the CAF plots. This spatial extrapolation based  
264 on trees' DBH of each plot was also supported by the fact that there were no significant  
265 differences in stem  $N_2O$  fluxes among tree species (Fig. 1).

266 Annual soil  $N_2O$  fluxes from each plot were calculated using the trapezoidal rule to  
267 interpolate the measured fluxes from May 2017 to Apr. 2018, as employed in our earlier studies  
268 (e.g., Koehler et al., 2009; Veldkamp et al., 2013). Finally, the annual  $N_2O$  fluxes from each  
269 replicate plot were represented by the sum of the stem and soil  $N_2O$  fluxes.

## 270 **2.4 Soil and meteorological variables**

271 We measured soil temperature, WFPS, and extractable mineral N in the top 5 cm depth concurrent  
272 to stem and soil  $N_2O$  flux measurements on each sampling day. The soil temperature was  
273 measured  $\sim 1$  m away from the soil chambers using a digital thermometer (GTH 175, Greisinger  
274 Electronic GmbH, Regenstauf, Germany). We determined soil WFPS and extractable mineral N  
275 by pooling soil samples from four sampling locations within 1 m from each soil chamber in each  
276 replicate plot. Gravimetric moisture content was determined by oven-drying the soils at  $105\text{ }^{\circ}\text{C}$   
277 for 24 h and WFPS was calculated using a particle density of  $2.65\text{ g cm}^{-3}$  for mineral soil and our  
278 measured soil bulk density (Table 1). Soil mineral N ( $\text{NO}_3^-$  and  $\text{NH}_4^+$ ) was extracted in the field  
279 by putting a subsample of soil into a pre-weighed bottle containing 150 mL 0.5 M  $\text{K}_2\text{SO}_4$ . The  
280 bottles were weighed and then shaken for 1 h, and the solution was filtered through pre-washed  
281 (with 0.5 M  $\text{K}_2\text{SO}_4$ ) filter papers. The extracts were immediately frozen and later transported to

282 the University of Goettingen, where  $\text{NH}_4^+$  and  $\text{NO}_3^-$  concentrations were analysed using  
283 continuous flow injection colorimetry (SEAL Analytical AA3, SEAL Analytical GmbH,  
284 Norderstedt, Germany) (described in details by Hassler et al., 2015). The dry mass of soil  
285 extracted for mineral N was calculated using the measured gravimetric moisture content.

286 During each measurement day, we set up a portable weather station in each site to record  
287 relative humidity and air temperature over the course of each sampling day at 15 min interval.  
288 We calculated vapour pressure deficit (VPD) as the difference between saturation vapour  
289 pressure (based on its established equation with air temperature) and actual vapour pressure  
290 (using saturation vapour pressure and relative humidity; Allen et al., 1998).

291 Soil biochemical characteristics were measured in April 2017 at all 24 plots. We collected  
292 soil samples from the top 50 cm depth, where changes in soil biochemical characteristics resulting  
293 from land-use changes have been shown to occur (van Straaten et al., 2015; Tchiofo Lontsi et al.,  
294 2019). In each plot, we collected ten soil samples from the top 0–10 cm, and five soil samples  
295 each from 10–30 and 30–50 cm depths; in total, we collected 480 soil samples from the 24 plots.  
296 The soil samples were air dried, sieved (2 mm) and transported to the University of Goettingen,  
297 where they were dried again at 40 °C before analysis. Soil pH was analysed from 1:4 soil to  
298 distilled water ratio. Soil texture for each plot was determined using the pipette method after iron  
299 oxide and organic matter removal (Kroetsch and Wang, 2008). Effective cation exchange  
300 capacity (ECEC) and exchangeable cation concentrations (Ca, Mg, K, Na, Al, Fe, Mn) were  
301 determined by percolating the soil samples with unbuffered 1 M  $\text{NH}_4\text{Cl}$ , and the extracts analysed  
302 using inductively coupled plasma-atomic emission spectrometer (ICP-AES; iCAP 6300 Duo  
303 VIEW ICP Spectrometer, Thermo Fischer Scientific GmbH, Dreieich, Germany). Soil  
304 subsamples were ground and analysed for total organic C and N using a CN analyser (vario EL  
305 cube; Elementar Analysis Systems GmbH, Hanau, Germany), and the soil  $^{15}\text{N}$  natural abundance  
306 signatures were determined using IRMS (Delta Plus; Finnigan MAT, Bremen, Germany). Soil

307 organic carbon (SOC) and total N stocks were calculated for the top 50 cm in both land uses. We  
308 used the bulk density of the reference forest for calculating the SOC and total N stocks of the  
309 converted CAF in order to avoid overestimations of element stocks resulting from increases in  
310 soil bulk densities following land-use conversion (van Straaten et al., 2015; Veldkamp, 1994).

311 To evaluate the representativeness of our study area with the rest of the Congo Basin  
312 rainforest, we estimated the proportion of the Congo rainforest area which have similar  
313 biophysical conditions (elevation, precipitation ranges and soil type) as our study sites (Table  
314 A1). Using the FAO's Global Ecological Zone map for the humid tropics, we identified the areal  
315 coverage of (i) Ferralsols (FAO Harmonized World Soil Database; FAO/IIASA/ISRIC/ISS-  
316 CAS/JRC, 2012) with (ii) elevation  $\leq$  1000 m asl (SRTM digital elevation model; Jarvis et al.,  
317 2008) and (iii) precipitation range between 1,500 and 2,100 mm  $\text{yr}^{-1}$  (WorldClim dataset;  
318 Hijmans et al., 2005) within the six Congo rainforest countries (Fig. B3). This analysis was  
319 conducted using QGIS version 3.6.3.

## 320 **2.5 Statistical analyses**

321 Statistical comparisons between land uses or among sites for stem and soil  $\text{N}_2\text{O}$  fluxes were  
322 performed on the monthly measurements and not on the annual values as the latter are trapezoidal  
323 interpolations. As the six trees and four chambers per plot were considered subsamples  
324 representing each replicate plot, we conducted the statistical analysis using the means of the six  
325 trees and of the four chambers on each sampling day for each replicate plot (congruent to our  
326 previous studies, e.g., Hassler et al., 2017; Matson et al., 2017). We tested each parameter for  
327 normal distribution (Shapiro–Wilk's test) and homogeneity of variance (Levene's test), and  
328 applied a logarithmic or square root transformation when these assumptions were not met. For  
329 the repeatedly measured parameters, i.e. stem and soil  $\text{N}_2\text{O}$  fluxes and the accompanying soil  
330 variables (temperature, WFPS,  $\text{NH}_4^+$  and  $\text{NO}_3^-$  concentrations), differences between land-use  
331 types for each site or differences among sites for each land-use type were tested using linear

332 mixed effect (LME) models with land use or site as fixed effect and replicate plots and sampling  
333 days as random effects (Crawley, 2009). We assessed significant differences between land uses  
334 or sites using analysis of variance (ANOVA) with Tukey's HSD test.

335 We also analysed if there were differences in stem N<sub>2</sub>O fluxes among tree species across  
336 four forest plots at each site as well as across the three sites. Similar LME analysis was carried  
337 out with tree species as fixed effect, and the random effects were trees belonging to each species  
338 and sampling days; only for this test, we used individual trees as random effect because most of  
339 the tree species (selected based on their IVI; see Sect. 2.1.) were not present in all plots, which is  
340 typical in species-diverse tropical forest. For soil biochemical characteristics that were measured  
341 once (Table1), one-way ANOVA followed by a Tukeys's HSD test was used to assess the  
342 differences between land uses or sites for the variables with normal distribution and homogenous  
343 variance; if otherwise, we applied Kruskal-Wallis ANOVA with multiple comparison extension  
344 test.

345 To determine the temporal controls of soil and meteorological variables (temperature,  
346 WFPS, NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>-</sup> concentrations, soil-air N<sub>2</sub>O concentration, VPD) on stem and soil N<sub>2</sub>O  
347 fluxes, we conducted Spearman's Rank correlation tests using the means of the four replicate  
348 plots for each land use on each sampling day. For each land use, the correlation tests were  
349 conducted across sites and sampling days ( $n = 33$ , from 3 sites  $\times$  11 monthly measurements). To  
350 determine the spatial controls of soil biochemical characteristics (which were measured once,  
351 Table 1) on stem and soil N<sub>2</sub>O fluxes, we used the plots' annual N<sub>2</sub>O emissions and tested with  
352 Spearman's Rank correlation across land uses and sites ( $n = 24$ , from 3 sites  $\times$  2 land uses  $\times$  4  
353 replicate plots). The statistical significance for all the tests were set at  $P \leq 0.05$ . All statistical  
354 analyses were conducted using the open source software R 3.5.2 (R Core Team, 2018).

355 **3 Results**

356 **3.1 Stem N<sub>2</sub>O emissions**

357 Stem N<sub>2</sub>O emissions neither differed between forest and CAF at each site ( $P = 0.15\text{--}0.76$ ; Table  
358 2) nor among the three sites for each land use ( $P = 0.16\text{--}0.78$ ; Table 2). There were also no  
359 differences in stem N<sub>2</sub>O emissions among tree species in forest plots at each site as well as across  
360 the three sites ( $P = 0.06\text{--}0.39$ ; Fig. 1). For the forests, stem N<sub>2</sub>O emissions exhibited seasonal  
361 pattern with larger fluxes in the wet season than in the dry season at all sites (all  $P < 0.01$ ; Table  
362 A3; Fig. 2a, b, c). However, for the CAF, we observed seasonal differences only at Aloum site  
363 ( $P < 0.01$ ; Table A4; Fig. 2a). Contributions of annual stem N<sub>2</sub>O emissions reached up to one-  
364 third of the total (stem + soil) N<sub>2</sub>O emissions from the forests (Table 2).

365 From the <sup>15</sup>N-tracing experiment, stem <sup>15</sup>N-N<sub>2</sub>O emissions mirrored soil <sup>15</sup>N-N<sub>2</sub>O  
366 emissions from both land uses (Fig. 3). One day after <sup>15</sup>N addition to the soil, substantial <sup>15</sup>N-  
367 N<sub>2</sub>O were emitted from the stem as well as from the soil. This diminished within two weeks as  
368 the added <sup>15</sup>N recycled within the soil N cycling processes, diluting the <sup>15</sup>N signatures;  
369 nevertheless, the <sup>15</sup>N signatures of stem- and soil-emitted N<sub>2</sub>O remained elevated above the  
370 natural abundance level (Fig. 3).

371 Across the study period, stem N<sub>2</sub>O emissions from the forests were positively correlated  
372 with air temperature, soil-air N<sub>2</sub>O concentrations and VPD (Table 3) and negatively correlated  
373 with WFPS and NH<sub>4</sub><sup>+</sup> contents (Table 3). The negative correlation of stem N<sub>2</sub>O emissions with  
374 WFPS was possibly spurious, as this correlation may have been driven by the autocorrelation  
375 between WFPS and air temperature (Spearman's  $\rho = -0.59$ ,  $P < 0.01$ ,  $n = 33$ ). In CAF, stem N<sub>2</sub>O  
376 emissions were only positively correlated with soil N<sub>2</sub>O emissions (Table 3).

377 We detected no difference in WFPS between the forest and CAF ( $P = 0.15\text{--}0.28$ ; Table  
378 4) at any of the sites. For the CAF, we detected higher WFPS in the wet season compared to the  
379 dry season at two sites ( $P < 0.01$ ; Table A4; Fig. 2g, h) whereas there was no seasonal difference

380 in WFPS for the forests at any sites ( $P = 0.31\text{--}0.92$ ; Table A3; Fig. 2g, h, i). At all the three sites,  
381 the dominant form of mineral N was  $\text{NH}_4^+$  (Table 4). There was generally no difference in soil  
382  $\text{NH}_4^+$  and  $\text{NO}_3^-$  between the wet and dry seasons ( $P = 0.12\text{--}0.93$ ), except for the forests at two  
383 sites with larger values in the dry than wet season ( $P < 0.01$ ; Tables S2, S3).

### 384 **3.2 Soil $\text{N}_2\text{O}$ emissions**

385 Soil  $\text{N}_2\text{O}$  emissions did not differ between forest and CAF at any site ( $P = 0.06\text{--}0.86$ ; Table 2).  
386 Similarly, no differences in soil  $\text{N}_2\text{O}$  emissions were detected among sites for each land use ( $P =$   
387  $0.26\text{--}0.44$ ; Table 2). Soil  $\text{N}_2\text{O}$  emissions exhibited consistent seasonal patterns with larger fluxes  
388 in the wet than dry season for both land uses (all  $P < 0.01$ ; Tables S2, S3; Fig. 2d, e, f).

389 Over the measurement period, soil  $\text{N}_2\text{O}$  emissions from the forests were positively  
390 correlated with soil-air  $\text{N}_2\text{O}$  concentrations and negatively correlated with  $\text{NH}_4^+$  contents (Table  
391 3). In the CAF, soil  $\text{N}_2\text{O}$  emissions were positively correlated with WFPS and soil-air  $\text{N}_2\text{O}$   
392 concentrations, and negatively correlated with air temperatures (Table 3). We did not detect any  
393 correlation between annual total  $\text{N}_2\text{O}$  fluxes and soil physical and biochemical characteristics.  
394 This was not surprising as the ranges of these soil characteristics were relatively small among  
395 sites, which reduce the likelihood that significant correlations will be detected.

### 396 **3.3 Soil biochemical characteristics**

397 Soil physical characteristics (clay content, bulk density) did not differ between forest and CAF  
398 at any of the sites (Table 1). Across sites, Biba Yezoum had lower clay content compared to the  
399 other sites for each land use ( $P < 0.01$ ). Generally, the forest showed higher SOC and total N  
400 compared to the CAF ( $P < 0.01\text{--}0.05$ ; Table 1). Soil  $^{15}\text{N}$  natural abundance signatures, as an  
401 index of the long-term soil N availability, were generally similar between the forest and CAF  
402 except at Aloum site ( $P < 0.01$ ; Table 1). Soil C/N ratio, another proxy for the long-term soil N  
403 status, was higher in the forest than in the CAF at all sites ( $P < 0.01\text{--}0.05$ ). Soil pH and

404 exchangeable bases were lower in the forest compared to the CAF at all sites and the converse  
405 was true for exchangeable Al ( $P < 0.01$ – $0.05$ ; Table 1). Soil ECEC did not differ between the  
406 land uses at two sites ( $P < 0.01$ ; Table 1) and all were low congruent to Ferralsol soils.

## 407 **4 Discussion**

### 408 **4.1 Stem and soil N<sub>2</sub>O emissions from the forest**

409 There has been no study on tree stem N<sub>2</sub>O emission from Africa, nor has any study been reported  
410 for the Congo Basin on soil N<sub>2</sub>O emission with year-round measurements and spatial replication.  
411 Stems consistently emitted N<sub>2</sub>O in both land uses (Table 2; Fig 1, Fig. 2a, b, c), exemplifying that  
412 tropical trees on well-drained soils were important contributors of ecosystem N<sub>2</sub>O emission. So  
413 far, there are only two tree species of tropical lowland forest reported with measurements of stem  
414 N<sub>2</sub>O emissions (Welch et al., 2019). Our present study included 23 tree species and their  
415 comparable stem N<sub>2</sub>O emissions, at least from highly weathered Ferralsol soils, across sites over  
416 a year of measurements provided support to our spatial extrapolation based on DBH of trees in  
417 the sites. Mean stem N<sub>2</sub>O fluxes from our study were within the range of those reported for  
418 temperate forests (0.01–2.2  $\mu\text{g N m}^{-2} \text{ stem h}^{-1}$ ; Díaz-Pinés et al., 2016; Machacova et al., 2016;  
419 Wen et al., 2017), but substantially lower than the reported stem N<sub>2</sub>O emissions of 51–759  $\mu\text{g N}$   
420  $\text{m}^{-2} \text{ stem h}^{-1}$  for a humid forest in Panama (Welch et al., 2019). However, Welch et al. (2019)  
421 measured stem N<sub>2</sub>O emissions at a lower stem height (0.3 m) compared to our study (1.3 m),  
422 which may partly explain their much larger N<sub>2</sub>O emissions, as other studies reported that larger  
423 N<sub>2</sub>O emissions occur nearer to the stem base of trees (Barba et al., 2019; Díaz-Pinés et al., 2016).  
424 Moreover, the consistently higher stem than soil N<sub>2</sub>O emissions found by Welch et al. (2019),  
425 which we did not observe in our study, may point to production of N<sub>2</sub>O within the stem (e.g.,  
426 Lenhart et al., 2019). Nonetheless, such high stem N<sub>2</sub>O emissions as reported by Welch et al.  
427 (2019) have not been observed anywhere else under field conditions. We did not find an effect of  
428 tree diameter sizes on stem N<sub>2</sub>O fluxes at our study sites. This was due to the narrow range

429 between the DBH of our measured trees (10–18 cm DBH for cacao trees and 10–30 cm DBH for  
430 the forest trees), which reflected the mean stem diameter of trees in our sites (Table A1). Future  
431 studies should incorporate trees of wide-ranging diameter size classes, if present at the site, as  
432 they may influence  $\text{N}_2\text{O}$  flux estimates at the ecosystem-scale.

433 Our annual soil  $\text{N}_2\text{O}$  emissions from forests (Table 2) were lower than the reported global  
434 average for humid tropical forests ( $2.81 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ ; summarised by Castaldi et al., 2013). In  
435 contrast, the  $\text{N}_2\text{O}$  emissions from our forest soils were comparable to those reported for lowland  
436 forests on Ferralsol soils in Panama ( $0.35\text{--}1.07 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ ; Matson et al., 2017), and lowland  
437 forests on Acrisol soils in Indonesia ( $0.9$  and  $1.0 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ ; Hassler et al., 2017). These were  
438 possibly due to the generally similar soil N availability in our forest sites as these forest sites in  
439 Panama and Indonesia, indicated by their comparable soil mineral N contents and soil  $^{15}\text{N}$  natural  
440 abundance signatures.

441 In comparison with studies from sub-Saharan Africa, annual soil  $\text{N}_2\text{O}$  emissions from our  
442 forests were lower than the annual  $\text{N}_2\text{O}$  emissions reported for the Mayombe forest in Congo ( $2.9$   
443  $\text{kg N ha}^{-1} \text{ yr}^{-1}$ ; Serca et al., 1994), Kakamega mountain rainforest in Kenya ( $2.6 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ ;  
444 Werner et al., 2007b), and Ankasa rainforest in Ghana ( $2.3 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ ; Castaldi et al., 2013),  
445 but similar in magnitude as those reported for Mau Afromontane forest in Kenya ( $1.1 \text{ kg N ha}^{-1}$   
446  $\text{yr}^{-1}$ ; Wanyama et al., 2018). Although these African sites have similar precipitation level and  
447 highly weathered acidic soils as our study sites, the Kakamega rainforest in Kenya had higher  
448 SOC ( $7.9\text{--}20\%$ ) and N contents ( $0.5\text{--}1.6\%$ ) in the topsoil layer compared to our forest sites ( $2.8\text{--}$   
449  $4.7\%$  SOC,  $0.2\text{--}0.4\%$  total N), which may explain its correspondingly higher soil  $\text{N}_2\text{O}$  emissions.  
450 The study in Congo (Serca et al., 1994), however, was conducted only in a short campaign (two  
451 rainy months and one dry month) with less sampling frequency and spatial replication, which  
452 may not be a good representation of the spatial and temporal dynamics of soil  $\text{N}_2\text{O}$  fluxes to  
453 achieve annual and large-scale estimate.

454 **4.2 Source of tree stem N<sub>2</sub>O emissions and their contribution to total (stem + soil) N<sub>2</sub>O**  
455 **emissions**

456 Emitted N<sub>2</sub>O from stems were found to originate predominantly from N<sub>2</sub>O produced in the soil,  
457 as shown by the <sup>15</sup>N tracing experiment (Fig. 3). Additionally, the positive correlations of stem  
458 N<sub>2</sub>O emissions with soil-air N<sub>2</sub>O concentrations and soil N<sub>2</sub>O emissions (Table 3) suggest that  
459 the seasonal variation in stem N<sub>2</sub>O emissions (Table A3; Fig. 2) was likely driven by the temporal  
460 dynamics of produced N<sub>2</sub>O in the soil, which partly supported our second hypothesis. While there  
461 has been suggestions of within-tree N<sub>2</sub>O production (e.g., Lenhart et al., 2019), our finding from  
462 the <sup>15</sup>N tracing experiment, combined with the correlations of stem N<sub>2</sub>O emissions with VPD and  
463 air temperature, pointed to a transport mechanism of dissolved N<sub>2</sub>O in soil water by transpiration  
464 stream, which has been reported to be important for upland trees that do not have aerenchyma  
465 (Machacova et al., 2016; Welch et al., 2019; Wen et al., 2017).

466 The contributions of up-scaled stem N<sub>2</sub>O emissions from our studied forests to total (stem  
467 + soil) N<sub>2</sub>O emissions (Table 2) were higher than those reported for temperate forests (1–18%;  
468 Díaz-Pinés et al., 2016; Machacova et al., 2016; Wen et al., 2017). Given the higher stem N<sub>2</sub>O  
469 emissions in the wet than dry seasons (Table A3), coupled with the fact that we consistently  
470 measured positive fluxes or net stem N<sub>2</sub>O emissions throughout our measurement period (Fig. 2),  
471 we conclude that tree stems in these well-drained Ferralsol soils were efficient conduits for  
472 releasing N<sub>2</sub>O from the soil. This has significant implications especially during the rainy season  
473 as this pathway bypasses the chance for complete denitrification (N<sub>2</sub>O to N<sub>2</sub> reduction) in the  
474 soil.

475 **4.3 Factors controlling temporal variability of stem and soil N<sub>2</sub>O fluxes**

476 The positive correlation of stem N<sub>2</sub>O emissions with VPD and air temperature in the forest  
477 suggests for transport of N<sub>2</sub>O via sap flow, for which the latter had been shown to be stimulated

478 with increasing VPD and air temperature (McJannet et al., 2007; O'Brien et al., 2004). Soil water  
479 containing dissolved N<sub>2</sub>O is transported through the xylem via the transpiration stream and  
480 eventually emitted from the stem surface to the atmosphere (Díaz-Pinés et al., 2016; Welch et al.,  
481 2019; Wen et al., 2017).

482 Soil moisture has been shown to affect strongly the seasonal variation of soil N<sub>2</sub>O  
483 emissions from tropical ecosystems, with increases in soil N<sub>2</sub>O emissions by predominantly  
484 denitrification process at high WFPS (Corre et al., 2014; Koehler et al., 2009; Matson et al., 2017;  
485 Werner et al., 2006). The larger stem N<sub>2</sub>O emissions from the forest and soil N<sub>2</sub>O emissions from  
486 both land uses in the wet than the dry seasons (Tables S2, S3) signified the favourable soil N<sub>2</sub>O  
487 production during the wet season, which suggests that denitrification was the dominant N<sub>2</sub>O-  
488 producing process. However, the moderate WFPS across the year (Table 4) suggests that  
489 nitrification may also have contributed to N<sub>2</sub>O emissions, especially at Biba Yezoum (with lower  
490 rainfall and clay contents; Tables 1, S1) where the low WFPS (Table 4) likely favoured  
491 nitrification (Corre et al., 2014). For the forest, the negative correlation of the stem and soil N<sub>2</sub>O  
492 emissions with soil NH<sub>4</sub><sup>+</sup> (Tables 3, S2) may be indicative of a conservative soil N cycle in our  
493 forest sites, as supported by the dominance of soil NH<sub>4</sub><sup>+</sup> over NO<sub>3</sub><sup>-</sup> (Table 2) and by the lower  
494 soil N<sub>2</sub>O emissions at our sites compared to NO<sub>3</sub><sup>-</sup>-dominated systems (Davidson et al., 2000).  
495 Although the soil mineral N content alone does not indicate the N-supplying capacity of the soil,  
496 the relative contents of NH<sub>4</sub><sup>+</sup> over NO<sub>3</sub><sup>-</sup> can be a good indicator of whether the soil N cycling is  
497 conservative with low N<sub>2</sub>O losses or increasingly leaky (Corre et al., 2010, 2014).

#### 498 4.4 Land-use change effects on soil N<sub>2</sub>O emissions

499 The annual soil N<sub>2</sub>O emissions from CAF (Table 2) were comparable with those reported for  
500 rubber agroforestry in Indonesia (0.6–1.2 kg N ha<sup>-1</sup> yr<sup>-1</sup>; Hassler et al., 2017) and from multistrata  
501 agroforestry systems in Peru (0.6 kg N ha<sup>-1</sup> yr<sup>-1</sup>; Palm et al., 2002). However, our soil N<sub>2</sub>O  
502 emissions from CAF were higher than those from an extensively managed homegarden in

503 Tanzania ( $0.35 \text{ N ha}^{-1} \text{ yr}^{-1}$ ; Gütlein et al., 2018). In a review, Kim et al. (2016a) reported mean  
504 annual  $\text{N}_2\text{O}$  emission from agroforestry systems to be  $7.7 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ . Most of the data used  
505 in their review were from intensively managed agroforestry systems with varied fertilizer inputs,  
506 which were absent in our extensively managed CAF systems. In line with this, our measured soil  
507  $\text{N}_2\text{O}$  emissions from the CAF were also lower than the emissions reported for 10–23 year old  
508 CAF in Indonesia ( $3.1 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ ; Veldkamp et al., 2008). Our measured  $\text{N}_2\text{O}$  emissions  
509 provide the first estimates for traditional CAF systems in Africa, as these production systems  
510 were not represented in extrapolation of GHG budgets despite their extensive coverage in Africa.

511 Soil  $\text{N}_2\text{O}$  emissions did not differ between forest and CAF systems, which supported our  
512 first hypothesis. This is possibly due to the presence of leguminous trees in both systems (Table  
513 A1), which can compensate for N export from harvest and other losses (Erickson et al., 2002;  
514 Veldkamp et al., 2008). Although studies have hinted on increased  $\text{N}_2\text{O}$  emissions from managed  
515 systems that utilize leguminous trees as cover crops (Veldkamp et al., 2008), the similar  
516 abundance of leguminous trees between forest and CAF at our sites may have offset this effect  
517 (Table A1). Previous studies have indeed reported similar soil  $\text{N}_2\text{O}$  fluxes between reference  
518 forests and unfertilized agroforestry systems (Van Lent et al., 2015). Despite the general absence  
519 of heavy soil physical disturbance, cultivation and fertilization in these traditional CAF systems,  
520 some soil biochemical characteristics have decreased (Table 1); however, these did not translate  
521 into detectable differences in soil  $\text{N}_2\text{O}$  emissions with those from forest.

## 522 **4.5 Implications**

523 The biophysical conditions of our forest sites were representative of approximately two-thirds of  
524 the rainforest area in the Congo Basin ( $1.137 \times 10^6 \text{ km}^2$ ; Fig. B3), considering the same Ferralsol  
525 soils, similar elevation ( $\leq 1000 \text{ m asl}$ ), and annual rainfall between 1,500 and 2,100  $\text{mm yr}^{-1}$ .  
526 Using the total (soil + stem)  $\text{N}_2\text{O}$  emission from our forest sites ( $1.55 \pm 0.20 \text{ N}_2\text{O-N kg ha}^{-1} \text{ yr}^{-1}$ ;  
527 Table 2), our extrapolated emission for the two-thirds of the Congo Basin was  $0.18 \pm 0.05 \text{ Tg}$

528  $\text{N}_2\text{O-N yr}^{-1}$  (error estimate is the 95% confidence interval). This accounted 52% of the earlier  
529 estimate of soil  $\text{N}_2\text{O}$  emissions from tropical rainforests in Africa ( $0.34 \text{ Tg N}_2\text{O-N yr}^{-1}$ ; Werner  
530 et al., 2007a), or 25% based on the more recent estimate ( $0.72 \text{ Tg N}_2\text{O-N yr}^{-1}$ ; Valentini et al.,  
531 2014). We acknowledge, however, that there are uncertainties in our extrapolation (as is the case  
532 of these cited estimates) because our up-scaling approach from plot to regional level did not  
533 account for the spatial variability of large-scale drivers of soil  $\text{N}_2\text{O}$  emissions, such as soil texture,  
534 landforms and vegetation characteristics. These limitations of our estimate of  $\text{N}_2\text{O}$  source strength  
535 for the Congo Basin rainforests call for further investigations in Africa to address the geographic  
536 bias of studies in the tropical region (e.g., Powers et al., 2011). The most important consideration  
537 in bottom-up spatial extrapolation approach is to recognize at the outset that the design of the  
538 field quantification must reflect the landscape-scale drivers of the studied process, e.g. land-use  
539 types (reflecting management), soil texture (as a surrogate of parent material) and climate are  
540 landscape-scale controllers of soil N, C and GHG fluxes (e.g., Corre et al., 1999; Hassler et al.,  
541 2017; Silver et al., 2000; Veldkamp et al., 2008, 2013), whereas topography (reflecting soil types,  
542 moisture regimes, fertility) is the main driver within a landscape (e.g., Corre et al., 1996, 2002;  
543 Groffman and Tiedje, 1989; Pennock and Corre, 2001). Process-based models and geographic  
544 information system database can be combined with field-based measurements for improved  
545 extrapolation.

546 Our year-round measurements of stem and soil  $\text{N}_2\text{O}$  fluxes were the first detailed study  
547 carried out in the Congo Basin, with key implications on improved estimates of  $\text{N}_2\text{O}$  budget for  
548 Africa. Our results revealed that trees on well-drained, highly weathered soils served as an  
549 important  $\text{N}_2\text{O}$  emission pathway, with the potential to overlook up to 38% of  $\text{N}_2\text{O}$  emissions if  
550 trees are not considered in the ecosystem  $\text{N}_2\text{O}$  budget. Our measured tree species spanned  
551 different life history strategies and functional traits (a mixture of pioneers, non-pioneer light  
552 demanders, and shade tolerants; Table A2); the lack of species-specific differences suggest that

553 our findings could be more widely generalisable across communities with different species  
554 compositions, at least from highly weathered soils. However, the narrow range of tree DBH  
555 classes of our measured trees may have important implications for stands of different successional  
556 stages or ages, as stem diameter size, wood density and other physiological characteristics may  
557 possibly influence stem N<sub>2</sub>O fluxes (Machacova et al., 2019; Welch et al., 2019). Also, the  
558 possibility for large N<sub>2</sub>O fluxes at the stem base near the ground (Barba et al., 2019; Welch et al.,  
559 2019), which we could not measure due to irregular surface of buttresses, warrants further  
560 investigation. All these combined may imply that our quantified stem N<sub>2</sub>O emissions result in a  
561 conservative estimate of the overall stem N<sub>2</sub>O budget from this important region. Forest  
562 conversion to traditional, mature (>20 years old) CAF systems had no effect on stem and soil  
563 N<sub>2</sub>O emissions, because of similarities in soil moisture and soil texture, absence of fertilizer  
564 application, and comparable abundance of leguminous trees in both land uses, which can  
565 compensate for N export from harvest or other losses. Further multi-temporal and spatially  
566 replicated studies are needed to provide additional insights on the effect of forest conversion to  
567 other land uses on GHG fluxes from the African continent in order to improve GHG budget  
568 estimations for the region.

569 *Data availability.* Data available from the Göttingen Research Online repository: Iddris, N. A.,  
570 Corre, M. D., Yemefack, M., van Straaten, O. and Veldkamp, E.: Stem and soil nitrous oxide  
571 fluxes from rainforest and cacao agroforest on highly weathered soils in the Congo Basin, ,  
572 <https://doi.org/10.25625/T2CGYM>, 2020.

573 *Author Contributions.* EV and MDC conceived the research project; NAI carried out fieldwork  
574 and analyzed data; NAI and OvS performed GIS analysis; NAI and MDC interpreted data and  
575 wrote the manuscript; EV, OvS and MY revised the draft manuscript.

576 *Competing interests.* The authors declare that they have no conflict of interest.

577 *Acknowledgements.* This study was funded by the German Research Foundation (DFG, VE  
578 219/14-1, STR 1375/1-1). We gratefully acknowledge our counterparts in Cameroon, the  
579 International Institute for Tropical Agriculture (IITA) for granting us access and use of their  
580 storage facilities. We are especially grateful to our Cameroonian field assistants Leonel Boris  
581 Gadjui Youatou, Narcis Lekeng, Yannick Eyenga Alfred, Denis Djiyo and all the field workers  
582 for their great support with field measurements, as well as Raphael Manu for helping with the  
583 GIS work and Rodine Tchiofo Lontsi for many discussions on soil processes and Cameroonian  
584 settings. We also thank the village leaders and local plot owners for granting us access to their  
585 forest and cacao farms. We thank Andrea Bauer, Kerstin Langs, Martina Knaust and Lars Szwec  
586 for their assistance with laboratory analyses.

587 **References**

588 Allen, R. G., Pereira, L. S., Raes, D. and Smith, M.: Determination of  $ET_0$ , crop  
589 evapotranspiration, Guidel. Comput. Crop Water Requir. Irrig. Drain. Pap. 56, 309 [online]  
590 Available from: [http://www.hidmet.gov.rs/podaci/agro/table of contents\\_files.pdf](http://www.hidmet.gov.rs/podaci/agro/table of contents_files.pdf), 1998.

591 Barba, J., Poyatos, R. and Vargas, R.: Automated measurements of greenhouse gases fluxes  
592 from tree stems and soils: magnitudes, patterns and drivers, Sci. Rep., 9(1), 1–13,  
593 doi:10.1038/s41598-019-39663-8, 2019.

594 Bouwman, A. F., Van Der Hoek, K. W. and Olivier, J. G. J.: Uncertainties in the global source  
595 distribution of nitrous oxide, J. Geophys. Res., 100(D2), 2785–2800, doi:10.1029/94JD02946,  
596 1995.

597 Breuer, L., Papen, H. and Butterbach-Bahl, K.:  $N_2O$  emission from tropical forest soils of  
598 Australia, J. Geophys. Res. Atmos., 105(D21), 26353–26367, doi:10.1029/2000JD900424,  
599 2000.

600 Brown, S.: Estimating biomass and biomass change of tropical forests: a primer, UN FAO  
601 Forestry Paper 134, FAO, Rome, 1997.

602 Castaldi, S., Bertolini, T., Valente, A., Chiti, T. and Valentini, R.: Nitrous oxide emissions from  
603 soil of an African rain forest in Ghana, *Biogeosciences*, 10(6), 4179–4187, doi:10.5194/bg-10-  
604 4179-2013, 2013.

605 Climate-Data.org: Cameroon climate, [online] Available from: <https://en.climate-data.org/africa/cameroon-142/> (Accessed 21 May 2019), 2019.

607 Corre, M. D., van Kessel, C. and Pennock, D. J.: Landscape and Seasonal Patterns of Nitrous  
608 Oxide Emissions in a Semiarid Region, *Soil Sci. Soc. Am. J.*, 60(6), 1806–1815,  
609 doi:10.2136/sssaj1996.03615995006000060028x, 1996.

610 Corre, M. D., Pennock, D. J., Van Kessel, C. and Elliott, D. K.: Estimation of annual nitrous  
611 oxide emissions from a transitional grassland-forest region in Saskatchewan, Canada,  
612 *Biogeochemistry*, 44(1), 29–49, doi:10.1023/A:1006025907180, 1999.

613 Corre, M. D., Schnabel, R. R. and Stout, W. L.: Spatial and seasonal variation of gross nitrogen  
614 transformations and microbial biomass in a Northeastern US grassland, *Soil Biol. Biochem.*,  
615 34(3), 445–457, doi:10.1016/S0038-0717(01)00198-5, 2002.

616 Corre, M. D., Dechert, G. and Veldkamp, E.: Soil nitrogen cycling following montane forest  
617 conversion in Central Sulawesi, Indonesia, *Soil Sci. Soc. Am. J.*, 70(2), 359–366,  
618 doi:10.2136/sssaj2005.0061, 2006.

619 Corre, M. D., Veldkamp, E., Arnold, J. and Joseph Wright, S.: Impact of elevated N input on  
620 soil N cycling and losses in old-growth lowland and montane forests in Panama, *Ecology*,  
621 91(6), 1715–1729, doi:10.1890/09-0274.1, 2010.

622 Corre, M. D., Sueta, J. P. and Veldkamp, E.: Nitrogen-oxide emissions from tropical forest soils  
623 exposed to elevated nitrogen input strongly interact with rainfall quantity and seasonality,  
624 *Biogeochemistry*, 118(1–3), 103–120, doi:10.1007/s10533-013-9908-3, 2014.

625 Crawley, M. J.: *The R Book*, John Wiley & Sons Ltd, Chichester, UK., 2009.

626 Curtis, J. T. and McIntosh, R. P.: An Upland Forest Continuum in the Prairie-Forest Border

627 Region of Wisconsin, *Ecology*, 32(3), 476–496, doi:10.2307/1931725, 1951.

628 Davidson, E. A. and Kanter, D.: Inventories and scenarios of nitrous oxide emissions, *Environ.*  
629 *Res. Lett.*, 9(10), doi:10.1088/1748-9326/9/10/105012, 2014.

630 Davidson, E. A. and Verchot, L. V.: Testing the hole-in-the-pipe model of nitric and nitrous  
631 oxide emissions from soils using the TRAGNET database, *Global Biogeochem. Cycles*, 14(4),  
632 1035–1043, doi:10.1029/1999GB001223, 2000.

633 Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V. and Veldkamp, E.: Testing a  
634 Conceptual Model of Soil Emissions of Nitrous and Nitric Oxides, *Bioscience*, 50(8), 667,  
635 doi:10.1641/0006-3568(2000)050[0667:tacmos]2.0.co;2, 2000.

636 Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E.,  
637 Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da  
638 Silva Dias, P. L., Wofsy, S. C. and Zhang, X.: Couplings Between Changes in the Climate  
639 System and Biogeochemistry, in *Climate Change 2007: The Physical Science Basis*.  
640 Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental  
641 Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and  
642 New York, NY, USA. [online] Available from:  
643 <https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter7-1.pdf>, 2007.

644 Díaz-Pinés, E., Heras, P., Gasche, R., Rubio, A., Rennenberg, H., Butterbach-Bahl, K. and  
645 Kiese, R.: Nitrous oxide emissions from stems of ash (*Fraxinus angustifolia* Vahl) and  
646 European beech (*Fagus sylvatica* L.), *Plant Soil*, 398(1–2), 35–45,  
647 doi:<https://doi.org/10.1007/s11104-015-2629-8>, 2016.

648 Dkamela, G. P.: The context of REDD+ in Cameroon: Drivers, agents and institutions,  
649 Occasional., CIFOR, Bogor, Indonesia., 2010.

650 Erickson, H. E., Davidson, E. A. and Keller, M.: Former land-use and tree species affect  
651 nitrogen oxide emissions from a tropical dry forest, *Oecologia*, 130(2), 297–308,

652 doi:10.1007/s004420100801, 2002.

653 FAO/IIASA/ISRIC/ISS-CAS/JRC: Harmonized World Soil Database (version 1.2). FAO,  
654 Rome, Italy and IIASA, Laxenburg, Austria., [online] Available from:  
655 <http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/> (Accessed  
656 13 September 2019), 2012.

657 Groffman, P. M. and Tiedje, J. M.: Denitrification in north temperate forest soils: Spatial and  
658 temporal patterns at the landscape and seasonal scales, *Soil Biol. Biochem.*, 21(5),  
659 doi:10.1016/0038-0717(89)90053-9, 1989.

660 Groffman, P. M., Brumme, R., Butterbach-Bahl, K., Dobbie, K. E., Mosier, A. R., Ojima, D.,  
661 Papen, H., Parton, W. J., Smith, K. A. and Wagner-Riddle, C.: Evaluating annual nitrous  
662 oxide fluxes at the ecosystem scale, *Global Biogeochem. Cycles*, 14(4), 1061–1070,  
663 doi:10.1029/1999GB001227, 2000.

664 Gütlein, A., Gerschlauer, F., Kikoti, I. and Kiese, R.: Impacts of climate and land use on N<sub>2</sub>O  
665 and CH<sub>4</sub> fluxes from tropical ecosystems in the Mt. Kilimanjaro region, Tanzania, *Glob.*  
666 *Chang. Biol.*, 24, 1239–1255, doi:10.1111/gcb.13944, 2018.

667 Gwanfogbe, M., Meligui, A., Moukam, J. and Nguoghia, J.: *Geography of Cameroon.*,  
668 Macmillan Education Ltd, Hong Kong., 1983.

669 Hassler, E., Corre, M. D., Tjoa, A., Damris, M., Utami, S. R. and Veldkamp, E.: Soil fertility  
670 controls soil-atmosphere carbon dioxide and methane fluxes in a tropical landscape converted  
671 from lowland forest to rubber and oil palm plantations, *Biogeosciences Discuss.*, 12(12),  
672 9163–9207, doi:10.5194/bgd-12-9163-2015, 2015.

673 Hassler, E., Corre, M. D., Kurniawan, S. and Veldkamp, E.: Soil nitrogen oxide fluxes from  
674 lowland forests converted to smallholder rubber and oil palm plantations in Sumatra,  
675 Indonesia, *Biogeosciences*, 14(11), 2781–2798, doi:<https://doi.org/10.5194/bg-14-2781-2017>,  
676 2017.

677 Hawthorne, W. D.: Ecological profiles of Ghanaian forest trees, Tropical forestry papers 29,  
678 1995.

679 Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A.: Very high resolution  
680 interpolated climate surfaces for global land areas, *Int. J. Climatol.*, 25(15), 1965–1978,  
681 doi:10.1002/joc.1276, 2005.

682 Huang, J., Golombeck, A., Prinn, R. G., Weiss, R. F., Fraser, P. J., Simmonds, P.,  
683 Dlugokencky, E. J., Hall, B., Elkins, J., Steele, L. P., Langenfelds, R. L., Krummel, P. B.,  
684 Dutton, G. and Porter, L.: Estimation of regional emissions of nitrous oxide from 1997 to  
685 2005 using multinetwerk measurements, a chemical transport model, and an inverse method,  
686 *J. Geophys. Res. Atmos.*, 113(17), 1–19, doi:10.1029/2007JD009381, 2008.

687 IUSS Working Group WRB: World Reference Base for Soil Resources 2014, update 2015  
688 International soil classification system for naming soils and creating legends for soil maps.  
689 World Soil Resources Reports No. 106., FAO, Rome., 2015.

690 Jarvis, A., Reuter, H. I., Nelson, A. and Guevara, E.: Hole-filled SRTM for the globe, Version  
691 4. CGIAR-CSI SRTM 90m Database, Int. Cent. Trop. Agric. Cali, Columbia.  
692 <http://srtm.csi.cgiar.org>, (September 2017), 2008.

693 Kiese, R., Hewett, B., Graham, A. and Butterbach-Bahl, K.: Seasonal variability of N<sub>2</sub>O  
694 emissions and CH<sub>4</sub> uptake by tropical rainforest soils of Queensland, Australia, *Global*  
695 *Biogeochem. Cycles*, 17(2), 1043, doi:10.1029/2002gb002014, 2003.

696 Kim, D. G., Kirschbaum, M. U. F. and Beedy, T. L.: Carbon sequestration and net emissions of  
697 CH<sub>4</sub> and N<sub>2</sub>O under agroforestry: Synthesizing available data and suggestions for future  
698 studies, *Agric. Ecosyst. Environ.*, 226, 65–78, doi:10.1016/j.agee.2016.04.011, 2016a.

699 Kim, D. G., Thomas, A. D., Pelster, D. E., Rosenstock, T. S. and Sanz-Cobena, A.: Greenhouse  
700 gas emissions from natural ecosystems and agricultural lands in sub-Saharan Africa: Synthesis  
701 of available data and suggestions for further research, *Biogeosciences*, 13(16), 4789–4809,

702 doi:10.5194/bg-13-4789-2016, 2016b.

703 Koehler, B., Corre, M. D., Veldkamp, E., Wullaert, H. and Wright, S. J.: Immediate and long-  
704 term nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen input,  
705 *Glob. Chang. Biol.*, 15(8), 2049–2066, doi:10.1111/j.1365-2486.2008.01826.x, 2009.

706 Kotto, J. S., Moukam, A., Njomgang, R., Tiki-Manga, T., Tonye, J., Diaw, C., Gockowski, J.,  
707 Hauser, S., Weise, S. F., Nwaga, D., Zapfack, L., Palm, C. A., Woomer, P., Gillison, A.,  
708 Bignell, D. and Tondoh, J.: Alternatives to slash-and-burn in Indonesia: summary report &  
709 synthesis of phase II in Cameroon, Nairobi. Kenya., 2002.

710 Kreuzwieser, J., Buchholz, J. and Rennenberg, H.: Emission of Methane and Nitrous Oxide by  
711 Australian Mangrove Ecosystems, *Plant Biol.*, 5(4), 423–431, doi:10.1055/s-2003-42712,  
712 2003.

713 Kroetsch, D. and Wang, C.: Particle size distribution, in *Soil Sampling and Methods of*  
714 *Analysis*, Second Edition, pp. 713–725., 2008.

715 Lenhart, K., Behrendt, T., Greiner, S., Steinkamp, J., Well, R., Giesemann, A. and Keppler, F.:  
716 Nitrous oxide effluxes from plants as a potentially important source to the atmosphere, *New*  
717 *Phytol.*, 221(3), 1398–1408, doi:10.1111/nph.15455, 2019.

718 Van Lent, J., Hergoualc'H, K. and Verchot, L. V.: Reviews and syntheses: Soil N<sub>2</sub>O and NO  
719 emissions from land use and land-use change in the tropics and subtropics: A meta-analysis,  
720 *Biogeosciences*, 12(23), 7299–7313, doi:10.5194/bg-12-7299-2015, 2015.

721 Machacova, K., Papen, H., Kreuzwieser, J. and Rennenberg, H.: Inundation strongly stimulates  
722 nitrous oxide emissions from stems of the upland tree *Fagus sylvatica* and the riparian tree  
723 *Alnus glutinosa*, *Plant Soil*, 364(1–2), 287–301, doi:10.1007/s11104-012-1359-4, 2013.

724 Machacova, K., Bäck, J., Vanhatalo, A., Halmeenmäki, E., Kolari, P., Mammarella, I.,  
725 Pumpanen, J., Acosta, M., Urban, O. and Pihlatie, M.: *Pinus sylvestris* as a missing source of  
726 nitrous oxide and methane in boreal forest, *Sci. Rep.*, 6(March), 1–8, doi:10.1038/srep23410,

727 2016.

728 Machacova, K., Maier, M., Svobodova, K., Lang, F. and Urban, O.: Cryptogamic stem covers  
729 may contribute to nitrous oxide consumption by mature beech trees, *Sci. Rep.*, 7(1), 1–7,  
730 doi:10.1038/s41598-017-13781-7, 2017.

731 Machacova, K., Vainio, E., Urban, O. and Pihlatie, M.: Seasonal dynamics of stem N<sub>2</sub>O  
732 exchange follow the physiological activity of boreal trees, *Nat. Commun.*, 10(1), 1–13,  
733 doi:10.1038/s41467-019-12976-y, 2019.

734 Matson, A. L., Corre, M. D., Langs, K. and Veldkamp, E.: Soil trace gas fluxes along  
735 orthogonal precipitation and soil fertility gradients in tropical lowland forests of Panama,  
736 *Biogeosciences*, 14(14), 3509–3524, doi:10.5194/bg-14-3509-2017, 2017.

737 McJannet, D., Fitch, P., Fisher, M. and Wallace, J.: Measurements of transpiration in four  
738 tropical rainforest types of north Queensland, Australia, *Hydrol. Process.*, 21, 3549–3564,  
739 doi:<https://doi.org/10.1002/hyp.6576>, 2007.

740 Müller, A. K., Matson, A. L., Corre, M. D. and Veldkamp, E.: Soil N<sub>2</sub>O fluxes along an  
741 elevation gradient of tropical montane forests under experimental nitrogen and phosphorus  
742 addition, *Front. Earth Sci.*, 3(October), 1–12, doi:10.3389/feart.2015.00066, 2015.

743 Neill, C., Steudler, P. A., Garcia-Montiel, D. C., Melillo, J. M., Feigl, B. J., Piccolo, M. C. and  
744 Cerri, C. C.: Rates and controls of nitrous oxide and nitric oxide emissions following  
745 conversion of forest to pasture in Rondônia, *Nutr. Cycl. Agroecosystems*, 71(1), 1–15,  
746 doi:10.1007/s10705-004-0378-9, 2005.

747 O'Brien, J. J., Oberbauer, S. F. and Clark, D. B.: Whole tree xylem sap flow responses to  
748 multiple environmental variables in a wet tropical forest, *Plant, Cell Environ.*, 27(5), 551–567,  
749 doi:10.1111/j.1365-3040.2003.01160.x, 2004.

750 Palm, C. A., Alegre, J. C., Arevalo, L., Mutuo, P. K., Mosier, A. R. and Coe, R.: Nitrous oxide  
751 and methane fluxes in six different land use systems in the Peruvian Amazon, *Global*

752 Biogeochem. Cycles, 16(4), 1073, doi:10.1029/2001gb001855, 2002.

753 Pennock, D. J. and Corre, M. D.: Development and application of landform segmentation  
754 procedures, Soil Tillage Res., 58(3–4), 151–162, doi:10.1016/S0167-1987(00)00165-3, 2001.

755 Powers, J. S., Corre, M. D., Twine, T. E. and Veldkamp, E.: Geographic bias of field  
756 observations of soil carbon stocks with tropical land-use changes precludes spatial  
757 extrapolation, Proc. Natl. Acad. Sci. U. S. A., 108(15), 6318–6322,  
758 doi:10.1073/pnas.1016774108, 2011.

759 Purbopuspito, J., Veldkamp, E., Brumme, R. and Murdiyarso, D.: Trace gas fluxes and nitrogen  
760 cycling along an elevation sequence of tropical montane forests in Central Sulawesi,  
761 Indonesia, Global Biogeochem. Cycles, 20(3), 1–11, doi:10.1029/2005GB002516, 2006.

762 Ravishankara, A. R., Daniel, J. S. and Portmann, R. W.: Nitrous oxide (N<sub>2</sub>O): The dominant  
763 ozone-depleting substance emitted in the 21st century, Science (80-. ), 326(5949), 123–125,  
764 doi:10.1126/science.1176985, 2009.

765 Rusch, H. and Rennenberg, H.: Black alder (*Alnus glutinosa* (L.) Gaertn.) trees mediate  
766 methane and nitrous oxide emission from the soil to the atmosphere, Plant Soil, 201(1), 1–7,  
767 doi:10.1023/A:1004331521059, 1998.

768 Saj, S., Jagoret, P. and Todem Ngogue, H.: Carbon storage and density dynamics of associated  
769 trees in three contrasting *Theobroma cacao* agroforests of Central Cameroon, Agrofor. Syst.,  
770 87(6), 1309–1320, doi:10.1007/s10457-013-9639-4, 2013.

771 Serca, D., Delmas, R., Jambert, C. and Labroue, L.: Emissions of nitrogen oxides from  
772 equatorial rain forest in central Africa:, Tellus B Chem. Phys. Meteorol., 46(4), 243–254,  
773 doi:10.3402/tellusb.v46i4.15795, 1994.

774 Silver, W. L., Neff, J., McGroddy, M., Veldkamp, E., Keller, M. and Cosme, R.: Effects of Soil  
775 Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest  
776 Ecosystem, Ecosystems, 3(2), 193–209, doi:10.1007/s100210000019, 2000.

777 Sonwa, D. J., Nkongmeneck, B. A., Weise, S. F., Tchatat, M., Adesina, A. A. and Janssens, M.  
778 J. J.: Diversity of plants in cocoa agroforests in the humid forest zone of Southern Cameroon,  
779 Biodivers. Conserv., 16(8), 2385–2400, doi:10.1007/s10531-007-9187-1, 2007.

780 van Straaten, O., Corre, M. D., Wolf, K., Tchienkoua, M., Cuellar, E., Matthews, R. B. and  
781 Veldkamp, E.: Conversion of lowland tropical forests to tree cash crop plantations loses up to  
782 one-half of stored soil organic carbon, Proc. Natl. Acad. Sci., 112(32), 9956–9960,  
783 doi:10.1073/pnas.1504628112, 2015.

784 Tchiofo Lontsi, R., Corre, M. D., van Straaten, O. and Veldkamp, E.: Changes in soil organic  
785 carbon and nutrient stocks in conventional selective logging versus reduced-impact logging in  
786 rainforests on highly weathered soils in Southern Cameroon, For. Ecol. Manage.,  
787 451(August), 117522, doi:10.1016/j.foreco.2019.117522, 2019.

788 Thompson, R. L., Chevallier, F., Crotwell, A. M., Dutton, G., Langenfelds, R. L., Prinn, R. G.,  
789 Weiss, R. F., Tohjima, Y., Nakazawa, T., Krummel, P. B., Steele, L. P., Fraser, P. J.,  
790 O'doherty, S., Ishijima, K. and Aoki, S.: Nitrous oxide emissions 1999 to 2009 from a global  
791 atmospheric inversion, Atmos. Chem. Phys., 14(4), 1801–1817, doi:10.5194/acp-14-1801-  
792 2014, 2014.

793 Valentini, R., Arneth, A., Bombelli, A., Castaldi, S., Cazzolla Gatti, R., Chevallier, F., Ciais, P.,  
794 Grieco, E., Hartmann, J., Henry, M., Houghton, R. A., Jung, M., Kutsch, W. L., Malhi, Y.,  
795 Mayorga, E., Merbold, L., Murray-Tortarolo, G., Papale, D., Peylin, P., Poulter, B., Raymond,  
796 P. A., Santini, M., Sitch, S., Vaglio Laurin, G., Van Der Werf, G. R., Williams, C. A. and  
797 Scholes, R. J.: A full greenhouse gases budget of africa: Synthesis, uncertainties, and  
798 vulnerabilities, Biogeosciences, 11(2), 381–407, doi:10.5194/bg-11-381-2014, 2014.

799 Veldkamp, E.: Organic Carbon Turnover in Three Tropical Soils under Pasture after  
800 Deforestation, Soil Sci. Soc. Am. J., 58(1), 175–180,  
801 doi:10.2136/sssaj1994.03615995005800010025x, 1994.

802 Veldkamp, E., Purbopuspito, J., Corre, M. D., Brumme, R. and Murdiyarso, D.: Land use  
803 change effects on trace gas fluxes in the forest margins of Central Sulawesi, Indonesia, *J.*  
804 *Geophys. Res. Biogeosciences*, 113(2), 1–11, doi:10.1029/2007JG000522, 2008.

805 Veldkamp, E., Koehler, B. and Corre, M. D.: Indications of nitrogen-limited methane uptake in  
806 tropical forest soils, *Biogeosciences*, 10(8), 5367–5379, doi:10.5194/bg-10-5367-2013, 2013.

807 Veldkamp, E., Schmidt, M., Powers, J. S. and Corre, M. D.: Deforestation and reforestation  
808 impacts on soils in the tropics, *Nat. Rev. Earth Environ.*, 1–16, doi.org/10.1038/s43017-020-  
809 0091-5, 2020.

810 Verchot, L. V., Hutaibarat, L., Hairiah, K. and van Noordwijk, M.: Nitrogen availability and soil  
811  $\text{N}_2\text{O}$  emissions following conversion of forests to coffee in southern Sumatra, *Global*  
812 *Biogeochem. Cycles*, 20(4), 1–12, doi:10.1029/2005GB002469, 2006.

813 Wanyama, I., Pelster, D. E., Arias-Navarro, C., Butterbach-Bahl, K., Verchot, L. V. and Rufino,  
814 M. C.: Management intensity controls soil  $\text{N}_2\text{O}$  fluxes in an Afromontane ecosystem, *Sci.*  
815 *Total Environ.*, 624(December), 769–780, doi:10.1016/j.scitotenv.2017.12.081, 2018.

816 Welch, B., Gauci, V. and Sayer, E. J.: Tree stem bases are sources of  $\text{CH}_4$  and  $\text{N}_2\text{O}$  in a tropical  
817 forest on upland soil during the dry to wet season transition, *Glob. Chang. Biol.*, 25(1), 361–  
818 372, doi:10.1111/gcb.14498, 2019.

819 Wen, Y., Corre, M. D., Rachow, C., Chen, L. and Veldkamp, E.: Nitrous oxide emissions from  
820 stems of alder, beech and spruce in a temperate forest, *Plant Soil*, doi:10.1007/s11104-017-  
821 3416-5, 2017.

822 Werner, C., Zheng, X., Tang, J., Xie, B., Liu, C., Kiese, R. and Butterbach-Bahl, K.:  $\text{N}_2\text{O}$ ,  $\text{CH}_4$   
823 and  $\text{CO}_2$  emissions from seasonal tropical rainforests and a rubber plantation in Southwest  
824 China, *Plant Soil*, 289(1–2), 335–353, doi:10.1007/s11104-006-9143-y, 2006.

825 Werner, C., Butterbach-Bahl, K., Haas, E., Hickler, T. and Kiese, R.: A global inventory of  
826  $\text{N}_2\text{O}$  emissions from tropical rainforest soils using a detailed biogeochemical model, *Global*

827 Biogeochem. Cycles, 21(3), doi:10.1029/2006GB002909, 2007a.

828 Werner, C., Kiese, R. and Butterbach-Bahl, K.: Soil-atmosphere exchange of N<sub>2</sub>O, CH<sub>4</sub>, and  
829 CO<sub>2</sub> and controlling environmental factors for tropical rain forest sites in western Kenya, J.  
830 Geophys. Res., 112(3), D03308, doi:10.1029/2006JD007388, 2007b.

831 Wolf, K., Veldkamp, E., Homeier, J. and Martinson, G. O.: Nitrogen availability links forest  
832 productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern  
833 Ecuador, Global Biogeochem. Cycles, 25(4), GB4009, doi:10.1029/2010GB003876, 2011.

834 Zanne, A. E., Lopez-Gonzalez, G., Coomes, David A., Ilic, J., Jansen, S., Lewis, S. L., Miller,  
835 R. B., Swenson, N. G., Wiemann, M. C. and Chave, J.: Data from: Towards a worldwide  
836 wood economics spectrum, v5, Dryad, Dataset, <https://doi.org/10.5061/dryad.234>, 2009.

837 Zapfack, L., Engwald, S., Sonké, B., Achoundong, G. and Madong, B. A.: The impact of land  
838 conversion on plant biodiversity in the forest zone of Cameroon, Biodivers. Conserv., 11(11),  
839 2047–2061, doi:<https://doi.org/10.1023/A:1020861925294>, 2002.

## Tables

840 **Table 1.** Mean ( $\pm$ SE,  $n = 4$ ) soil biochemical characteristics in the top 50 cm<sup>a</sup> depth in forest and  
 841 cacao agroforestry (CAF) within each site in the Congo Basin, Cameroon. Means followed by  
 842 different lowercase letters indicate significant differences between land-use types within each site  
 843 and different capital letters indicate significant differences among the three sites within a land-  
 844 use type (Anova with Tukey's HSD test or Kruskal-Wallis ANOVA with multiple comparison  
 845 extension test at  $P \leq 0.05$ ).

| Soil<br>characteristics                                           | Aloum site                    |                               | Biba Yezoum site               |                               | Tomba site                     |                                |
|-------------------------------------------------------------------|-------------------------------|-------------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------|
|                                                                   | Forest                        | CAF                           | Forest                         | CAF                           | Forest                         | CAF                            |
| Clay (30-50 cm)<br>(%)                                            | 66.0 $\pm$ 2.4 <sup>a,A</sup> | 59.3 $\pm$ 6.1 <sup>a,A</sup> | 32.8 $\pm$ 9.4 <sup>a,B</sup>  | 39.5 $\pm$ 0.9 <sup>a,B</sup> | 55.3 $\pm$ 0.5 <sup>a,AB</sup> | 51.8 $\pm$ 1.1 <sup>a,AB</sup> |
| Bulk density (g<br>cm <sup>-3</sup> )                             | 1.2 $\pm$ 0.1 <sup>a,A</sup>  | 1.2 $\pm$ 0.1 <sup>a,A</sup>  | 1.2 $\pm$ 0.1 <sup>a,A</sup>   | 1.2 $\pm$ 0.1 <sup>a,A</sup>  | 1.2 $\pm$ 0.1 <sup>a,A</sup>   | 1.2 $\pm$ 0.1 <sup>a,A</sup>   |
| pH (1:4 H <sub>2</sub> O)                                         | 3.7 $\pm$ 0.0 <sup>b,A</sup>  | 4.1 $\pm$ 0.1 <sup>a,A</sup>  | 3.7 $\pm$ 0.1 <sup>b,A</sup>   | 4.6 $\pm$ 0.2 <sup>a,A</sup>  | 3.6 $\pm$ 0.0 <sup>b,A</sup>   | 4.5 $\pm$ 0.2 <sup>a,A</sup>   |
| <sup>15</sup> N natural<br>abundance (‰)                          | 8.4 $\pm$ 0.2 <sup>b,A</sup>  | 10.2 $\pm$ 0.1 <sup>a,A</sup> | 8.6 $\pm$ 0.2 <sup>a,A</sup>   | 9.1 $\pm$ 0.2 <sup>a,B</sup>  | 8.8 $\pm$ 0.1 <sup>a,A</sup>   | 8.8 $\pm$ 0.1 <sup>a,B</sup>   |
| Soil organic C<br>(kg C m <sup>-2</sup> )                         | 12.1 $\pm$ 0.4 <sup>a,A</sup> | 6.7 $\pm$ 0.2 <sup>b,A</sup>  | 7.2 $\pm$ 0.9 <sup>a,B</sup>   | 5.6 $\pm$ 0.7 <sup>a,A</sup>  | 9.8 $\pm$ 0.2 <sup>a,AB</sup>  | 7.1 $\pm$ 0.4 <sup>b,A</sup>   |
| Total N (kg N<br>m <sup>-2</sup> )                                | 1.1 $\pm$ 0.1 <sup>a,A</sup>  | 0.7 $\pm$ 0.0 <sup>b,A</sup>  | 0.7 $\pm$ 0.1 <sup>a,A</sup>   | 0.5 $\pm$ 0.0 <sup>a,B</sup>  | 0.9 $\pm$ 0.0 <sup>a,A</sup>   | 0.7 $\pm$ 0.0 <sup>b,A</sup>   |
| ECEC <sup>b</sup> (mmol <sub>c</sub><br>kg <sup>-1</sup> )        | 57.5 $\pm$ 3.9 <sup>a,A</sup> | 33.9 $\pm$ 2.8 <sup>b,A</sup> | 49.1 $\pm$ 11.3 <sup>a,A</sup> | 41.1 $\pm$ 7.2 <sup>a,A</sup> | 58.5 $\pm$ 2.0 <sup>a,A</sup>  | 46.8 $\pm$ 4.7 <sup>a,A</sup>  |
| Exch. bases <sup>b</sup><br>(mmol <sub>c</sub> kg <sup>-1</sup> ) | 3.5 $\pm$ 0.3 <sup>b,B</sup>  | 8.7 $\pm$ 1.7 <sup>a,B</sup>  | 8.5 $\pm$ 1.1 <sup>b,A</sup>   | 31.0 $\pm$ 8.5 <sup>a,A</sup> | 9.3 $\pm$ 0.8 <sup>b,A</sup>   | 30.4 $\pm$ 7.6 <sup>a,A</sup>  |
| Exchangeable<br>Al (mmol <sub>c</sub> kg <sup>-1</sup> )          | 47.3 $\pm$ 3.1 <sup>a,A</sup> | 20.9 $\pm$ 3.5 <sup>b,A</sup> | 32.9 $\pm$ 8.9 <sup>a,A</sup>  | 5.4 $\pm$ 1.2 <sup>b,B</sup>  | 39.2 $\pm$ 2.3 <sup>a,A</sup>  | 12.3 $\pm$ 2.7 <sup>b,AB</sup> |

846 <sup>a</sup> Values are depth-weighted average, except for clay content (30–50 cm) and stocks of soil  
847 organic C and total N, which are sum of the entire 50-cm depth. <sup>b</sup> ECEC: effective cation  
848 exchange capacity; Exch. bases: sum of exchangeable Ca, Mg, K, Na.

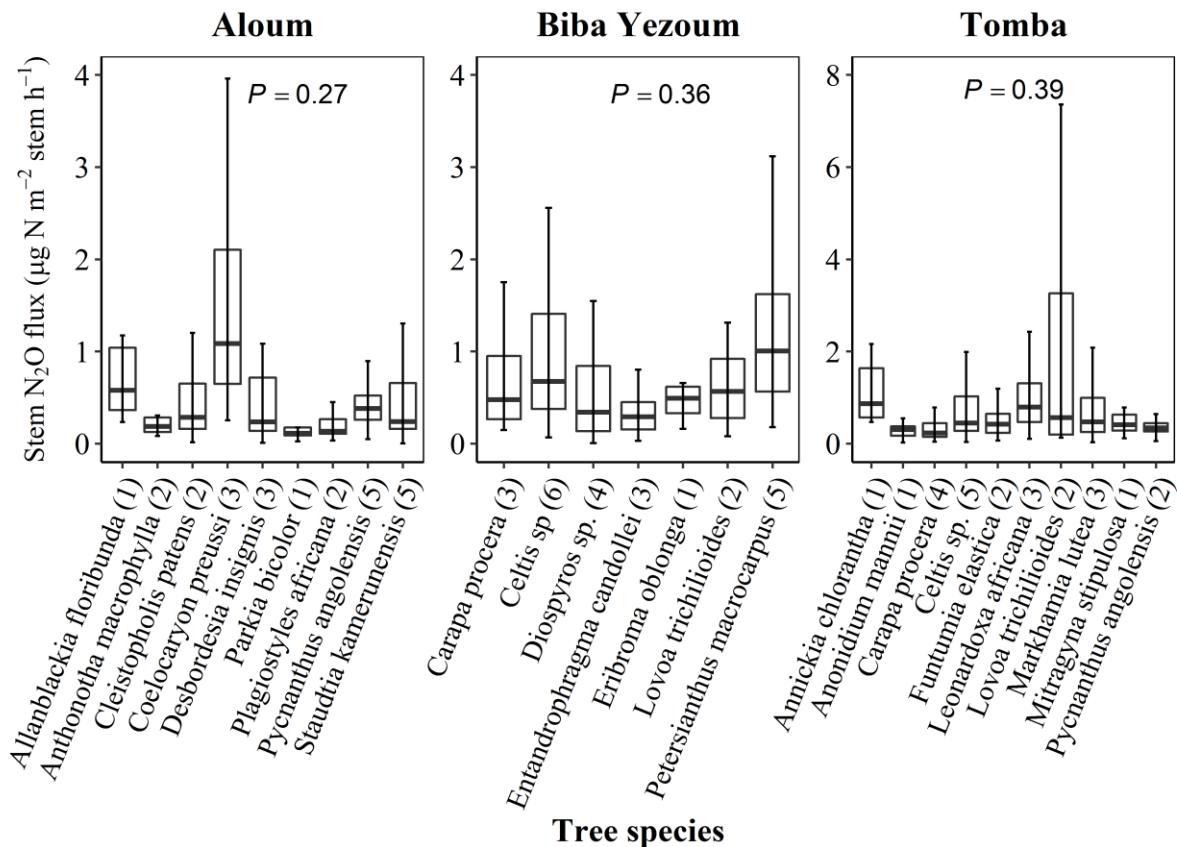
849 **Table 2.** Mean ( $\pm$ SE,  $n = 4$ ) stem and soil  $\text{N}_2\text{O}$  emission as well as annual stem, soil, and total  
 850 (soil + stem)  $\text{N}_2\text{O}$  fluxes from forest and cacao agroforestry (CAF) within each site in the Congo  
 851 Basin, Cameroon. Means followed by different lowercase letters indicate significant differences  
 852 between land-use types within each site and different capital letters indicate significant  
 853 differences among the three sites within a land-use type (linear mixed-effect models with  
 854 Tukey's HSD at  $P \leq 0.05$ ).

| Site/<br>Land-use<br>type | Stem $\text{N}_2\text{O}$<br>fluxes ( $\mu\text{g N}$<br>$\text{m}^{-2} \text{stem h}^{-1}$ ) | Annual stem<br>$\text{N}_2\text{O}$ fluxes <sup>a</sup><br>( $\text{kg N ha}^{-1}$<br>$\text{yr}^{-1}$ ) | Soil $\text{N}_2\text{O}$<br>fluxes ( $\mu\text{g N}$<br>$\text{m}^{-2} \text{soil h}^{-1}$ ) | Annual soil<br>$\text{N}_2\text{O}$ fluxes <sup>a</sup><br>( $\text{kg N ha}^{-1}$<br>$\text{yr}^{-1}$ ) | Total (soil +<br>stem) $\text{N}_2\text{O}$<br>flux ( $\text{kg N}$<br>$\text{ha}^{-1} \text{yr}^{-1}$ ) | Contribution<br>of stem to total<br>$\text{N}_2\text{O}$ flux (%) |
|---------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| <b>Aloum</b>              |                                                                                               |                                                                                                          |                                                                                               |                                                                                                          |                                                                                                          |                                                                   |
| Forest                    | $1.13 \pm 0.22^{\text{a,A}}$                                                                  | $0.13 \pm 0.00$                                                                                          | $13.7 \pm 2.2^{\text{a,A}}$                                                                   | $0.87 \pm 0.14$                                                                                          | $1.00 \pm 0.14$                                                                                          | $13.7 \pm 1.8$                                                    |
| CAF                       | $0.90 \pm 0.16^{\text{a,A}}$                                                                  | $0.09 \pm 0.01$<br>( $0.02 \pm 0.01$ )                                                                   | $15.2 \pm 2.8^{\text{a,A}}$                                                                   | $1.06 \pm 0.17$                                                                                          | $1.15 \pm 0.17$                                                                                          | $7.8 \pm 1.6$                                                     |
| <b>Biba Yezoum</b>        |                                                                                               |                                                                                                          |                                                                                               |                                                                                                          |                                                                                                          |                                                                   |
| Forest                    | $2.38 \pm 0.48^{\text{a,A}}$                                                                  | $0.87 \pm 0.05$                                                                                          | $17.2 \pm 2.9^{\text{a,A}}$                                                                   | $1.46 \pm 0.23$                                                                                          | $2.33 \pm 0.24$                                                                                          | $38.2 \pm 3.5$                                                    |
| CAF                       | $1.11 \pm 0.21^{\text{a,A}}$                                                                  | $0.12 \pm 0.01$<br>( $0.03 \pm 0.01$ )                                                                   | $10.6 \pm 2.1^{\text{a,A}}$                                                                   | $0.80 \pm 0.20$                                                                                          | $0.92 \pm 0.20$                                                                                          | $14.8 \pm 3.0$                                                    |
| <b>Tomba</b>              |                                                                                               |                                                                                                          |                                                                                               |                                                                                                          |                                                                                                          |                                                                   |
| Forest                    | $0.89 \pm 0.10^{\text{a,A}}$                                                                  | $0.14 \pm 0.01$                                                                                          | $15.0 \pm 1.7^{\text{a,A}}$                                                                   | $1.18 \pm 0.18$                                                                                          | $1.31 \pm 0.18$                                                                                          | $11.4 \pm 2.2$                                                    |
| CAF                       | $0.90 \pm 0.12^{\text{a,A}}$                                                                  | $0.12 \pm 0.00$<br>( $0.05 \pm 0.02$ )                                                                   | $15.8 \pm 2.0^{\text{a,A}}$                                                                   | $1.25 \pm 0.14$                                                                                          | $1.37 \pm 0.14$                                                                                          | $8.9 \pm 0.9$                                                     |

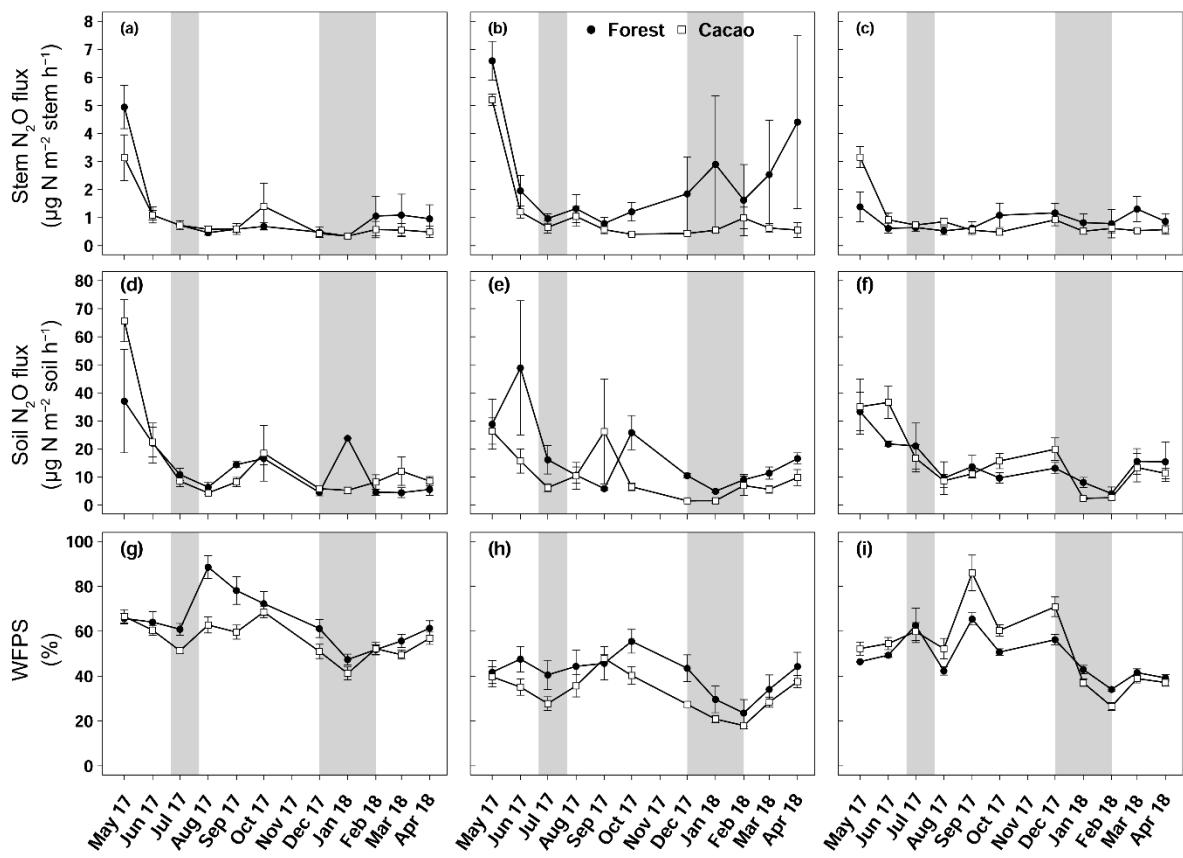
855 <sup>a</sup> Annual stem and soil  $\text{N}_2\text{O}$  fluxes were not statistically tested for differences among sites or  
 856 between land-use types since these annual values are trapezoidal extrapolations. Annual stem  
 857  $\text{N}_2\text{O}$  emissions in parentheses are from cacao trees only.

858 **Table 3.** Spearman correlation coefficients of stem N<sub>2</sub>O flux (μg N m<sup>-2</sup> stem h<sup>-1</sup>) and soil N<sub>2</sub>O  
 859 flux (μg N m<sup>-2</sup> soil h<sup>-1</sup>) with air temperature (°C), water-filled pore space (WFPS) (%), top 5  
 860 cm depth), extractable NH<sub>4</sub><sup>+</sup> (mg N kg<sup>-1</sup>, top 5 cm depth), soil-air N<sub>2</sub>O concentration (ppm N<sub>2</sub>O  
 861 at 50 cm depth), and vapour pressure deficit (VPD) (kPa), using the monthly means of the four  
 862 replicate plots per land use across the three sites from May 2017 to April 2018 (*n* = 33).

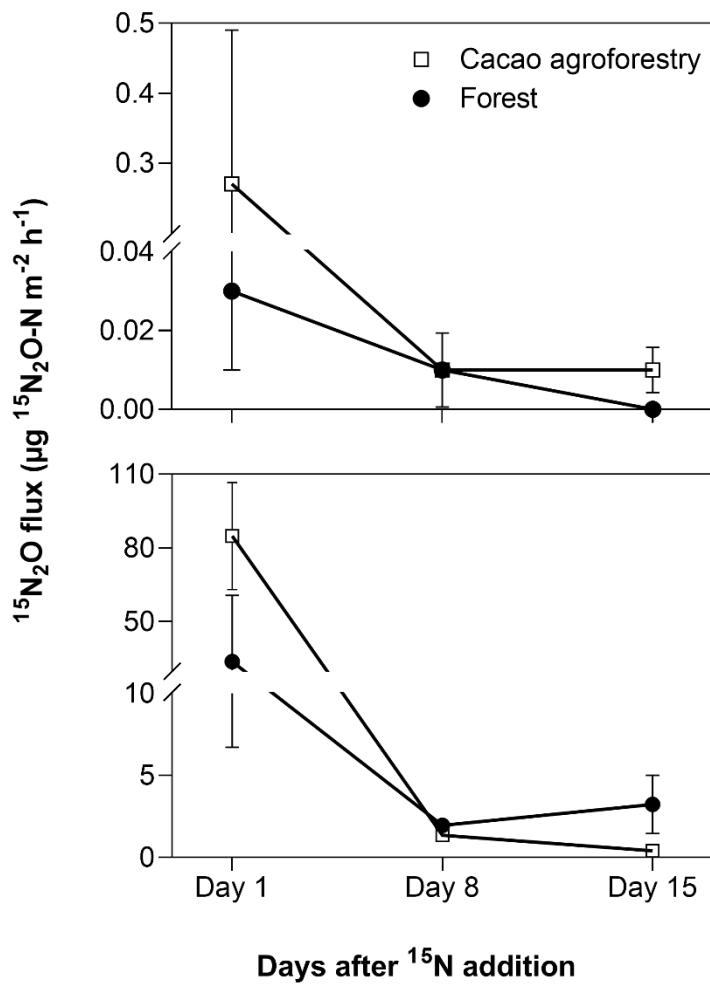
| Land use      | Variable                   | Soil N <sub>2</sub> O<br>flux | Air temp.          | WFPS               | NH <sub>4</sub> <sup>+</sup> | Soil-air N <sub>2</sub> O<br>concentration | VPD               |
|---------------|----------------------------|-------------------------------|--------------------|--------------------|------------------------------|--------------------------------------------|-------------------|
| <b>Forest</b> | Stem N <sub>2</sub> O flux | 0.25                          | 0.39 <sup>b</sup>  | -0.41 <sup>b</sup> | -0.57 <sup>a</sup>           | 0.41 <sup>b</sup>                          | 0.62 <sup>a</sup> |
|               | Soil N <sub>2</sub> O flux |                               | -0.07              | 0.15               | -0.43 <sup>b</sup>           | 0.55 <sup>a</sup>                          | -0.01             |
| <b>CAF</b>    | Stem N <sub>2</sub> O flux | 0.60 <sup>a</sup>             | -0.29              | 0.17               | -0.26                        | 0.21                                       | 0.21              |
|               | Soil N <sub>2</sub> O flux |                               | -0.34 <sup>b</sup> | 0.53 <sup>a</sup>  | -0.14                        | 0.51 <sup>a</sup>                          | 0.10              |


<sup>b</sup> *P* ≤ 0.05, <sup>a</sup> *P* ≤ 0.01.

863 **Table 4.** Mean ( $\pm$ SE,  $n = 4$ ) water-filled pore space (WFPS) and extractable mineral N in the  
 864 top 5 cm of soil in forest and cacao agroforestry (CAF) within each site in Congo Basin,  
 865 Cameroon, measured monthly from May 2017 to April 2018.


| Site/<br>Land-use type <sup>a</sup> | WFPS (%)                    | $\text{NH}_4^+$<br>(mg N kg <sup>-1</sup> ) | $\text{NO}_3^-$<br>(mg N kg <sup>-1</sup> ) |
|-------------------------------------|-----------------------------|---------------------------------------------|---------------------------------------------|
| <b>Aloum</b>                        |                             |                                             |                                             |
| Forest                              | $64.3 \pm 3.6^{\text{a,A}}$ | $7.3 \pm 1.0^{\text{a,A}}$                  | $6.3 \pm 1.2^{\text{a,A}}$                  |
| CAF                                 | $56.4 \pm 2.5^{\text{a,A}}$ | $5.1 \pm 0.8^{\text{a,B}}$                  | $2.4 \pm 0.6^{\text{b,A}}$                  |
| <b>Biba Yezoum</b>                  |                             |                                             |                                             |
| Forest                              | $41.5 \pm 2.7^{\text{a,B}}$ | $4.9 \pm 0.4^{\text{b,B}}$                  | $2.9 \pm 0.5^{\text{a,B}}$                  |
| CAF                                 | $32.6 \pm 2.7^{\text{a,B}}$ | $7.3 \pm 0.4^{\text{a,A}}$                  | $2.7 \pm 0.6^{\text{a,A}}$                  |
| <b>Tomba</b>                        |                             |                                             |                                             |
| Forest                              | $48.3 \pm 3.0^{\text{a,B}}$ | $7.6 \pm 0.6^{\text{a,A}}$                  | $5.8 \pm 1.0^{\text{a,A}}$                  |
| CAF                                 | $52.3 \pm 5.1^{\text{a,A}}$ | $7.1 \pm 0.6^{\text{a,A}}$                  | $2.8 \pm 0.6^{\text{b,A}}$                  |

866 <sup>a</sup> Means followed by different lowercase letters indicate significant differences between land-  
 867 use types within each site and different capital letters indicate significant differences among the  
 868 three sites within a land-use type (linear mixed-effect models with Tukey's HSD at  $P \leq 0.05$ ).


## Figures



869 **Figure 1.** Stem N<sub>2</sub>O fluxes from 22 tree species at three forest sites (Aloum, Biba Yezoum and  
870 Tomba) across central and south Cameroon in the Congo Basin. Boxes (25<sup>th</sup>, median and 75<sup>th</sup>  
871 percentile) and whiskers (1.5 × interquartile range) are based on N<sub>2</sub>O fluxes measured monthly  
872 from May 2017 to April 2018 for each tree species, and the values in parentheses represent the  
873 number of trees measured per species. There were no differences in N<sub>2</sub>O fluxes among species  
874 (linear mixed-effect models with Tukey's HSD at  $P \geq 0.27$ ).



875 **Figure 2.** Mean ( $\pm\text{SE}$ ,  $n = 4$ ) stem  $\text{N}_2\text{O}$  fluxes (top panel), soil  $\text{N}_2\text{O}$  fluxes (middle panel) and  
876 water-filled pore space (bottom panel) in Aloum site (a, d and g), Biba Yezoum site (b, e and  
877 h) and Tomba site (c, f and i) in the Congo Basin, Cameroon, measured monthly from May  
878 2017 to April 2018; grey shadings mark the dry season.



879 **Figure 3.** Mean ( $\pm\text{SE}$ ,  $n = 3$ )  $^{15}\text{N}_2\text{O}$  fluxes from stems (top panel, unit is per  $\text{m}^2$  stem area) and  
 880 soil (bottom panel, unit is  $\text{m}^{-2}$  ground area) in the Congo Basin, Cameroon. In May 2018, 290  
 881 mg  $^{15}\text{N}$  (in the form of  $(^{15}\text{NH}_4)_2\text{SO}_4$  with 98%  $^{15}\text{N}$ ) was dissolved in 8 L distilled water and  
 882 sprayed within  $0.8 \text{ m}^2$  area around each tree (equal to 10 mm rain), which was only 20 % of the  
 883 extant mineral N in the top 10 cm soil and  $49 \pm 1\%$  and  $52 \pm 2\%$  water-filled pore space for the  
 884 forest and CAF, respectively, comparable to the soil water content of the site (Fig. 2).

## Appendices

885 **Table A1.** Vegetation and site characteristics of the study sites on highly weathered soils in the  
 886 Congo Basin, Cameroon. All vegetation characteristics were determined from trees with  $\geq 10$   
 887 cm diameter at breast height in both forest and cacao agroforestry.

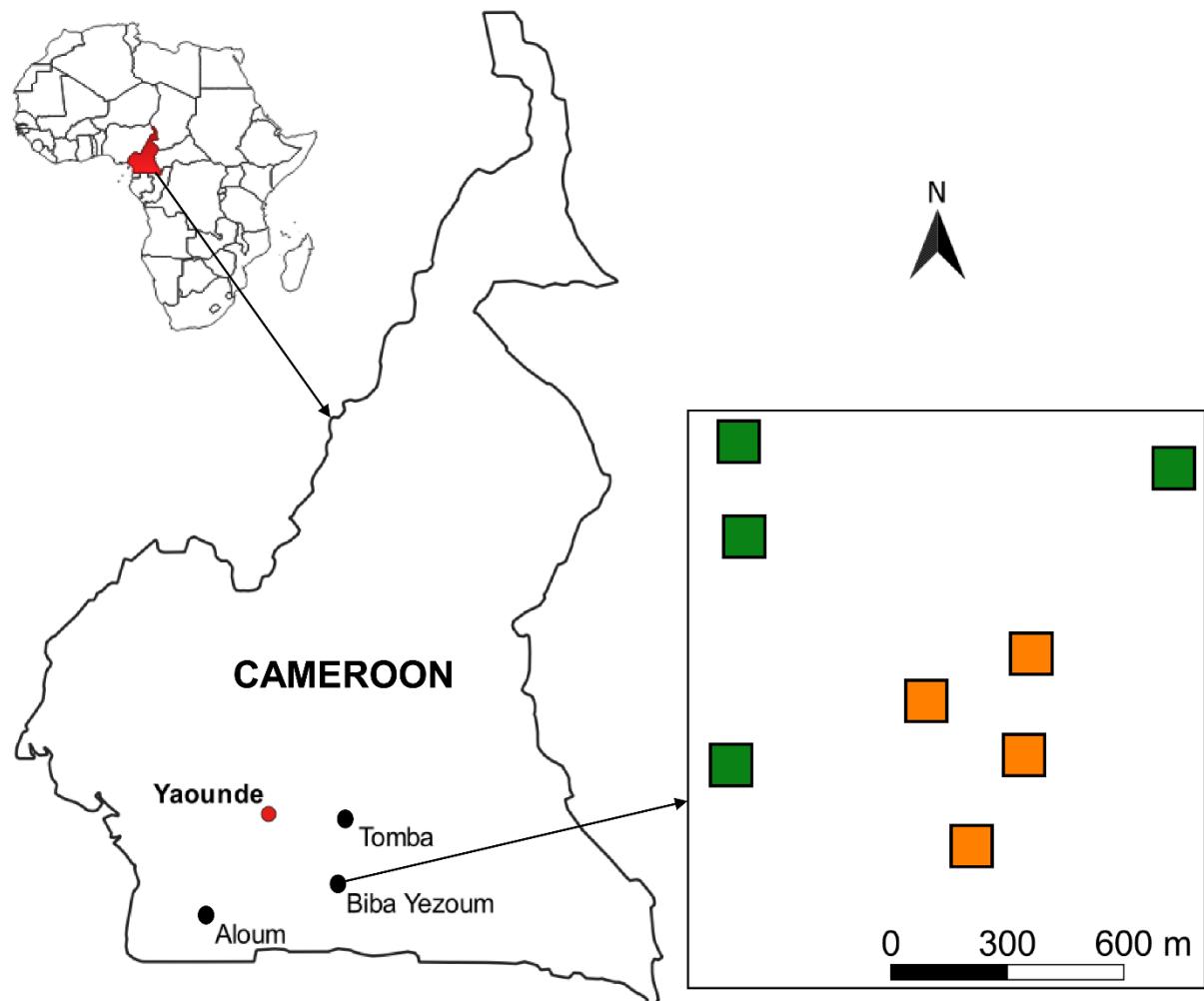
| Site                                                                 | Aloum          |                                 | Biba Yezoum    |                                 | Tomba          |                                 |
|----------------------------------------------------------------------|----------------|---------------------------------|----------------|---------------------------------|----------------|---------------------------------|
| Land use                                                             | Forest         | Cacao agroforestry <sup>a</sup> | Forest         | Cacao agroforestry <sup>a</sup> | Forest         | Cacao agroforestry <sup>a</sup> |
| Tree density (n $\text{ha}^{-1}$ )                                   | 594 $\pm$ 29   | 403 $\pm$ 60                    | 619 $\pm$ 16   | 267 $\pm$ 24                    | 453 $\pm$ 34   | 430 $\pm$ 51                    |
|                                                                      |                | (140 $\pm$ 37)                  |                | (96 $\pm$ 16)                   |                | (292 $\pm$ 79)                  |
| Total basal area ( $\text{m}^2 \text{ ha}^{-1}$ )                    | 35 $\pm$ 1.4   | 27 $\pm$ 2.5                    | 33 $\pm$ 2.9   | 27 $\pm$ 2.0                    | 34 $\pm$ 2.3   | 30 $\pm$ 3.2                    |
|                                                                      |                | (1.5 $\pm$ 0.5)                 |                | (0.9 $\pm$ 0.2)                 |                | (3.8 $\pm$ 1.3)                 |
| Legume abundance (%)<br>of the number of trees)                      | 7.7 $\pm$ 1.7  | 5.9 $\pm$ 1.4                   | 9.3 $\pm$ 1.9  | 6.5 $\pm$ 2.3                   | 7.4 $\pm$ 1.6  | 4.8 $\pm$ 1.4                   |
| Tree height (m)                                                      | 18.6 $\pm$ 0.5 | 15.1 $\pm$ 0.9                  | 20.6 $\pm$ 0.5 | 16.1 $\pm$ 0.4                  | 19.5 $\pm$ 0.4 | 11.7 $\pm$ 1.7                  |
|                                                                      |                | (6.8 $\pm$ 0.1)                 |                | (6.2 $\pm$ 0.3)                 |                | (6.1 $\pm$ 0.3)                 |
| Diameter at breast height (cm)                                       | 23.2 $\pm$ 0.6 | 23.3 $\pm$ 1.6                  | 22.6 $\pm$ 0.8 | 27.2 $\pm$ 0.2                  | 24.8 $\pm$ 1.0 | 23.5 $\pm$ 2.7                  |
|                                                                      |                | (11.4 $\pm$ 0.2)                |                | (10.8 $\pm$ 0.2)                |                | (12.3 $\pm$ 0.6)                |
| Elevation (m above sea level)                                        |                | 651                             |                | 674                             |                | 752                             |
| Precipitation <sup>b</sup> (mm $\text{yr}^{-1}$ ; from 1982 to 2012) |                | 2064                            |                | 1639                            |                | 1577                            |

888 <sup>a</sup>For cacao agroforestry, the first values are for both cacao and remnant shade trees, and the  
 889 second values in parentheses are for cacao trees only. <sup>b</sup> Climate-Data.org, 2019.

890 **Table A2.** Ecological and functional traits of the measured trees, selected from the most  
 891 dominant tree species at each site, based on their Importance Value Index (IVI = relative density  
 892 + relative frequency + relative dominance; Curtis and McIntosh, 1951). For a given species, the  
 893 relative density refers to its total number of individuals in the four forest plots at each site; the  
 894 relative frequency refers to its occurrence among the four forest plots; and the relative  
 895 dominance refers to its total basal area in the four forest plots, all expressed as percentages of  
 896 all species.

| Site                             | Guild <sup>a</sup> | Phenology             | Dispersal  | Wood density <sup>b</sup> |
|----------------------------------|--------------------|-----------------------|------------|---------------------------|
| <b>Aloum</b>                     |                    |                       |            |                           |
| <i>Allanblackia floribunda</i>   | SB                 | Evergreen             | Zoochore   | 0.69                      |
| <i>Anthonotha macrophylla</i>    | SB                 | Evergreen             | —          | 0.83                      |
| <i>Cleistopholis patens</i>      | Pioneer            | Deciduous             | Zoochore   | 0.34                      |
| <i>Coelocaryon preussi</i>       | NPLD               | Evergreen             | Zoochore   | 0.50                      |
| <i>Desbordesia insignis</i>      | SB                 | Evergreen             | Anemochore | 0.92                      |
| <i>Parkia bicolor</i>            | NPLD               | Deciduous             | Zoochore   | 0.45                      |
| <i>Plagiostyles africana</i>     | SB                 | Evergreen             | Zoochore   | 0.75                      |
| <i>Pycnanthus angolensis</i>     | NPLD               | Evergreen             | Zoochore   | 0.41                      |
| <i>Staudtia kamerunensis</i>     | SB                 | Evergreen             | Zoochore   | 0.79                      |
| <i>Theobroma cacao</i>           | Sub-canopy         | Evergreen             |            | 0.42                      |
| <b>Biba Yezoum</b>               |                    |                       |            |                           |
| <i>Carapa procera</i>            | SB                 | Evergreen             | Zoochore   | 0.60                      |
| <i>Celtis sp</i>                 | NPLD + SB          | Deciduous + Evergreen | Zoochore   | 0.59                      |
| <i>Diospyros sp</i>              | SB                 | Deciduous             | Zoochore   | 0.70                      |
| <i>Entandrophragma candollei</i> | NPLD               | Deciduous             | Anemochore | 0.57                      |
| <i>Eribroma oblongum</i>         | SB                 | Deciduous             | Zoochore   | 0.64                      |
| <i>Lovoa trichilioides</i>       | NPLD               | Evergreen             | Anemochore | 0.46                      |
| <i>Petersianthus macrocarpus</i> | Pioneer            | Deciduous + Evergreen | Anemochore | 0.68                      |
| <i>Theobroma cacao</i>           | Sub-canopy         | Evergreen             |            | 0.42                      |
| <b>Tomba</b>                     |                    |                       |            |                           |
| <i>Annickia chlorantha</i>       | SB                 | Evergreen             | Zoochore   | 0.44                      |
| <i>Anomidium manii</i>           | SB                 | Evergreen             | Zoochore   | 0.29                      |
| <i>Carapa procera</i>            | SB                 | Evergreen             | Zoochore   | 0.60                      |
| <i>Celtis sp.</i>                | NPLD + SB          | Deciduous + Evergreen | Zoochore   | 0.59                      |
| <i>Funtumia elastica</i>         | NPLD               | Evergreen             | Anemochore | 0.42                      |
| <i>Leonardoxa africana</i>       | SB                 | —                     | —          | —                         |
| <i>Lovoa trichilioides</i>       | NPLD               | Evergreen             | Anemochore | 0.46                      |
| <i>Markhamia lutea</i>           | Pioneer            | Evergreen             | Anemochore | 0.50                      |
| <i>Mitragyna stipulosa</i>       | Pioneer            | Evergreen             | Anemochore | 0.47                      |
| <i>Pycnanthus angolensis</i>     | NPLD               | Evergreen             | Zoochore   | 0.41                      |
| <i>Theobroma cacao</i>           | Sub-canopy         | Evergreen             |            | 0.42                      |

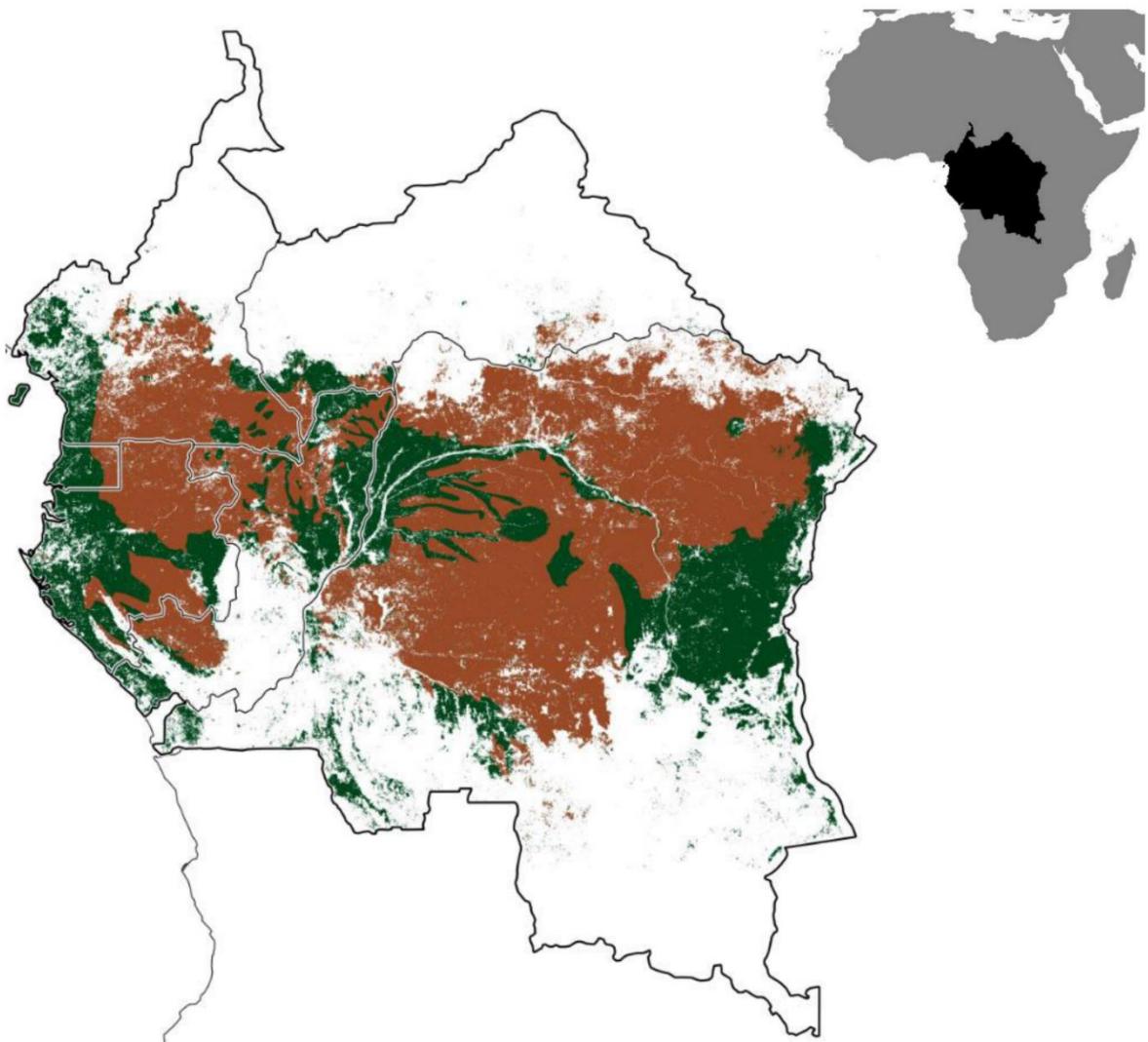
897 <sup>a</sup> Each species was assigned to one of the three regeneration guilds defined by Hawthorne  
898 (1995): SB: shade-bearer, NPLD: non-pioneer light demander, P: pioneer. <sup>b</sup> Global Wood  
899 Density Database (Brown et al., 1997; Zanne et al., 2009).


900 **Table A3.** Seasonal mean ( $\pm$ SE,  $n = 4$ ) water-filled pore space (WFPS), extractable mineral N  
 901 (measured in the top 5 cm of soil) and nitrous oxide ( $\text{N}_2\text{O}$ ) fluxes in forests on highly weathered  
 902 soils in the Congo Basin, Cameroon. Means followed by different lowercase letters indicate  
 903 significant differences between seasons for each site (linear mixed-effect models with Tukey's  
 904 HSD at  $P \leq 0.05$ ).

| Season/<br>site   | Stem $\text{N}_2\text{O}$ flux<br>( $\mu\text{g N m}^{-2}$<br>stem $\text{h}^{-1}$ ) | Soil $\text{N}_2\text{O}$ flux<br>( $\mu\text{g N m}^{-2}$<br>soil $\text{h}^{-1}$ ) | WFPS<br>(%)               | Soil $\text{NH}_4^+$<br>( $\text{mg N kg}^{-1}$ ) | Soil $\text{NO}_3^-$<br>( $\text{mg N kg}^{-1}$ ) |
|-------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------|---------------------------------------------------|
| <b>Wet season</b> |                                                                                      |                                                                                      |                           |                                                   |                                                   |
| Aloum             | $1.56 \pm 0.36^{\text{a}}$                                                           | $16.7 \pm 3.7^{\text{a}}$                                                            | $66.2 \pm 2.2^{\text{a}}$ | $6.0 \pm 0.6^{\text{a}}$                          | $6.0 \pm 0.8^{\text{a}}$                          |
| Biba Yezoum       | $2.92 \pm 0.73^{\text{a}}$                                                           | $22.9 \pm 4.9^{\text{a}}$                                                            | $44.8 \pm 2.6^{\text{a}}$ | $4.4 \pm 0.3^{\text{a}}$                          | $2.2 \pm 0.2^{\text{b}}$                          |
| Tomba             | $1.01 \pm 0.13^{\text{a}}$                                                           | $18.6 \pm 2.2^{\text{a}}$                                                            | $49.4 \pm 1.8^{\text{a}}$ | $6.9 \pm 0.5^{\text{b}}$                          | $5.4 \pm 0.8^{\text{a}}$                          |
| <b>Dry season</b> |                                                                                      |                                                                                      |                           |                                                   |                                                   |
| Aloum             | $0.61 \pm 0.14^{\text{b}}$                                                           | $10.0 \pm 1.8^{\text{b}}$                                                            | $62.0 \pm 3.6^{\text{a}}$ | $8.7 \pm 1.3^{\text{a}}$                          | $6.6 \pm 1.0^{\text{a}}$                          |
| Biba Yezoum       | $1.73 \pm 0.57^{\text{b}}$                                                           | $10.3 \pm 1.4^{\text{b}}$                                                            | $36.3 \pm 3.2^{\text{a}}$ | $5.5 \pm 0.4^{\text{a}}$                          | $3.6 \pm 0.5^{\text{a}}$                          |
| Tomba             | $0.69 \pm 0.15^{\text{b}}$                                                           | $8.9 \pm 1.9^{\text{b}}$                                                             | $46.2 \pm 3.1^{\text{a}}$ | $8.7 \pm 0.8^{\text{a}}$                          | $6.5 \pm 1.1^{\text{a}}$                          |

905 **Table A4.** Seasonal mean ( $\pm$ SE,  $n = 4$ ) water-filled pore space (WFPS), extractable mineral N  
 906 (measured in the top 5 cm of soil) and nitrous oxide ( $\text{N}_2\text{O}$ ) fluxes in cacao agroforestry sites  
 907 located on highly weathered soils in the Congo Basin, Cameroon. Means followed by different  
 908 lowercase letters indicate significant differences between seasons for each site (linear mixed-  
 909 effect models with Tukey's HSD at  $P \leq 0.05$ ).

| Site/<br>season   | Stem $\text{N}_2\text{O}$ flux<br>( $\mu\text{g N m}^{-2}$<br>stem $\text{h}^{-1}$ ) | Soil $\text{N}_2\text{O}$ flux<br>( $\mu\text{g N m}^{-2}$<br>soil $\text{h}^{-1}$ ) | WFPS<br>(%)               | Soil $\text{NH}_4^+$<br>( $\text{mg N kg}^{-1}$ ) | Soil $\text{NO}_3^-$<br>( $\text{mg N kg}^{-1}$ ) |
|-------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------|---------------------------------------------------|
| <b>Wet season</b> |                                                                                      |                                                                                      |                           |                                                   |                                                   |
| Aloum             | $1.21 \pm 0.27^{\text{a}}$                                                           | $22.6 \pm 4.7^{\text{a}}$                                                            | $60.3 \pm 1.6^{\text{a}}$ | $4.3 \pm 0.4^{\text{a}}$                          | $2.1 \pm 0.4^{\text{a}}$                          |
| Biba Yezoum       | $1.43 \pm 0.36^{\text{a}}$                                                           | $15.0 \pm 3.5^{\text{a}}$                                                            | $38.2 \pm 1.7^{\text{a}}$ | $7.0 \pm 0.6^{\text{a}}$                          | $2.2 \pm 0.4^{\text{a}}$                          |
| Tomba             | $1.05 \pm 0.18^{\text{a}}$                                                           | $21.2 \pm 2.6^{\text{a}}$                                                            | $53.4 \pm 2.4^{\text{a}}$ | $7.3 \pm 0.8^{\text{a}}$                          | $2.5 \pm 0.3^{\text{a}}$                          |
| <b>Dry season</b> |                                                                                      |                                                                                      |                           |                                                   |                                                   |
| Aloum             | $0.53 \pm 0.07^{\text{b}}$                                                           | $6.4 \pm 0.7^{\text{b}}$                                                             | $51.7 \pm 1.9^{\text{b}}$ | $6.0 \pm 1.0^{\text{a}}$                          | $2.7 \pm 0.6^{\text{a}}$                          |
| Biba Yezoum       | $0.74 \pm 0.12^{\text{a}}$                                                           | $5.3 \pm 1.3^{\text{b}}$                                                             | $25.9 \pm 1.8^{\text{b}}$ | $7.5 \pm 0.6^{\text{a}}$                          | $3.2 \pm 0.7^{\text{a}}$                          |
| Tomba             | $0.63 \pm 0.06^{\text{a}}$                                                           | $6.2 \pm 1.2^{\text{b}}$                                                             | $50.4 \pm 6.2^{\text{a}}$ | $6.9 \pm 0.9^{\text{a}}$                          | $3.4 \pm 0.7^{\text{a}}$                          |


910 **Appendix B1.** Location of the study sites in Cameroon, showing the four replicate plots per  
911 land use (green for forests and orange for cacao agroforestry) at one site.



912 **Appendix B2.** Sampling set-up for stem nitrous oxide ( $N_2O$ )-flux measurement at three stem  
913 heights in a rainforest in the Congo Basin, Cameroon.



914 **Appendix B3.** Map of the Congo Basin rainforest (green) spanning across the six major Congo  
915 Basin countries. Brown shaded area represents the proportion of the Congo rainforest with  
916 similar biophysical conditions as our study sites (Ferralsol soils,  $\leq$  1000 m elevation, and 1500–  
917 2100 mm  $\text{yr}^{-1}$  precipitation).

