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Abstract. The shallower poorly-oxygenated water masses of the ocean confine a majority of the microbial communities that 8 
can produce up to 90% of oceanic N2. This effective N2-yielding section encloses a suspended small-particle layer, inferred 9 
from particle backscattering (bbp) measurements. It is thus hypothesized that this layer (hereafter, the bbp-layer) is linked to 10 
microbial communities involved in N2-yielding such as nitrate-reducing SAR11 as well as sulphur-oxidizing, anammox and 11 
denitrifyng bacteria — a hypothesis yet to be evaluated. Here, data collected by three BGC-Argo floats deployed in the Black 12 
Sea are used to investigate the origin of this bbp-layer. To this end, we evaluate how the key drivers of N2-yielding bacteria 13 
dynamics impact on the vertical distribution of bbp and the thickness of the bbp-layer. In conjunction with published data on N2 14 
excess, our results suggest that the bbp-layer is at least partially composed of the bacteria driving N2 yielding for three main 15 
reasons: (1) strong correlations are recorded between bbp and nitrate; (2) the top location of the bbp-layer is driven by the 16 
ventilation of oxygen-rich subsurface waters, while its thickness is modulated by the amount of nitrate available to produce 17 
N2; (3) the maxima of  both bbp and N2 excess coincide at the same isopycnals where bacteria involved in N2 yielding coexist. 18 
We thus advance that bbp and O2 can be exploited as a combined proxy to delineate the N2-yielding section of the Black Sea. 19 
This proxy can potentially contribute to refining delineation of the effective N2-yielding section of oxygen-deficient zones via 20 
data from the growing BGC-Argo float network.  21 

1 Introduction 22 

Poorly-oxygenated water masses (O2 < 3 µM) host the microbial communities that produce between 20-40% of oceanic N2 23 
mainly via heterotrophic denitrification and anaerobic oxidation of ammonium (Gruber and Sarmiento, 1997; Devries et al. 24 
2013; Ward 2013). The shallower poorly-oxygenated water masses (~50-200 m) are the most effective N2-producing section 25 
because this is where the microbial communities that condition the process mainly develop and generate up to 90% of the N2 26 
(Ward et al., 2009; Dalsgaard et al., 2012; Babin et al., 2014). These microbial communities include nitrate-reducing SAR11, 27 
and anammox, denitrifying, and sulphur-oxidizing bacteria (e.g. Canfield et al., 2010; Ulloa et al. 2012; Ward 2013; Callbeck 28 
et al., 2018). It is thus important to unravel the biogeochemical parameters that trigger the accumulation of such bacteria in 29 
the ocean's poorly-oxygenated water masses. This information is crucial for understanding and quantifying how bacterial 30 
biomass and related N2 yielding can respond to the ongoing expansion of  oceanic regions with low oxygen (Keeling and 31 
Garcia, 2002; Stramma et al., 2008; Helm et al., 2011; Schmidtko et al., 2017). Ultimately, greater accuracy in this domain 32 
can contribute to improving mechanistic predictions on how such expansion affects the oceans’ role in driving the Earth’s 33 
climate by sequestering atmospheric carbon dioxide (e.g. Oschlies et al., 2018).   34 

In poorly-oxygenated water masses, the biogeochemical factors that can affect the abundance of denitrifying and anammox 35 
bacteria are the levels of O2, organic matter (OM), nitrate (NO3

-), ammonium (NH4
+), and hydrogen sulfide (H2S) (Murray et 36 
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al., 1995; Ward et al., 2008; Dalsgaard et al., 2014; Bristow et al., 2016). Therefore, to elucidate what triggers the confinement 37 
of such bacteria, we need to investigate how the above biogeochemical factors drive their vertical distribution, with high 38 
temporal and vertical resolution. To this end, we should develop multidisciplinary approaches that allow us to permanently 39 
monitor the full range of biogeochemical variables of interest in poorly-oxygenated water masses.  40 

Optical proxies of tiny particles can be applied as an alternative approach to assess the vertical distribution of N2-yielding 41 
microbial communities in poorly-oxygenated water masses (Naqvi et al., 1993). For instance, nitrate-reducing SAR11, and 42 
anammox, denitrifying, and sulphur-oxidizing bacteria are found as free-living bacteria (0.2-2 µm), and can be associated with 43 
small suspended (> 2-30 µm), and large sinking (> 30 µm) particles (Fuchsman et al., 2011, 2012a, 2017; Ganesh et al., 2014, 44 
2015). Therefore, particle backscattering (bbp), a proxy for particles in the ~0.2-20 μm size range (Stramski et al., 1999, 2004; 45 
Organelli et al., 2018), can serve to detect the presence of these free-living bacteria and those associated with small suspended 46 
particles.   47 

Time series of bbp acquired by biogeochemical Argo (BGC-Argo) floats highlight the presence of a permanent layer of 48 
suspended small particles in shallower poorly-oxygenated water masses (bbp-layer) (Whitmire et al., 2009; Wojtasiewicz et 49 
al., 2018). It has been hypothesized that this bbp-layer is linked to N2-yielding microbial communities such as nitrate-reducing 50 
SAR11, and denitrifying, anammox, and sulphur-oxidizing bacteria. However, this hypothesis has not yet been clearly 51 
demonstrated. To address this, the first step is to evaluate: (1) potential correlations between the biogeochemical factors that 52 
control the presence of the bbp-layer and such arrays of bacteria (O2, NO3

-, OM, H2S;, Murray et al., 1995; Ward et al., 2008; 53 
Fuchsman et al., 2011; Ulloa et al., 2012; Dalsgaard et al., 2014; Bristow et al., 2016), and (2) the possible relationship between 54 
the bbp-layer and N2 produced by microbial communities. 55 

This first step is thus essential for identifying the origin of the bbp-layer and, ultimately, determining if BGC-Argo observations 56 
of bbp can be implemented to delineate the poorly-oxygenated water masses where such bacteria are confined. The Black Sea 57 
appears as a suitable area for probing into the origin of the bbp-layer in low-oxygen waters in this way. It is indeed a semi-58 
enclosed basin with permanently low O2 levels where N2 production and related nitrate-reducing SAR11, and denitrifying and 59 
anammox bacteria are mainly confined within a well-defined poorly-oxygenated zone (Kuypers et al., 2003; Konovalov et al., 60 
2005; Kirkpatrick et al., 2012). In addition, a permanent bbp-layer is a typical characteristic of this region, which is linked to 61 
such microbial communities and inorganic particles (Stanev et al., 2017, 2018, see details in section 2.0). 62 

The goal of our study is therefore to investigate the origin of the bbp-layer in the poorly-oxygenated waters of the Black Sea 63 
using data collected by BGC-Argo floats. More specifically, we aim to evaluate, within the poorly-oxygenated zone, how: (1) 64 
two of the main factors (O2 and NO3

-) that drive the dynamics of denitrifying and anammox bacteria, impact on the location 65 
and thickness of the bbp-layer, (2) NO3

-
 controls the vertical distribution of bbp within this layer, (3) temperature drives the 66 

formation of the bbp-layer and consumption rates of NO3
-, and (4) particle content inferred from bbp and N2 produced by 67 

microbial communities can be at least qualitatively correlated. Ultimately, our findings allow us to infer that bbp can potentially 68 
be used to detect the presence of the microbial communities that drive N2 production in poorly-oxygenated water masses – 69 
including nitrate-reducing SAR11, and sulphur- oxidizing,  denitrifying and anammox bacteria. 70 

2.0. Background-nature of the small particles contributing to the bbp-layer and their links with N2 yielding 71 

The poorly-oxygenated water masses of the Black Sea are characterized by a permanent layer of suspended small particles 72 
constituted of organic and inorganic particles (Murray et al., 1995; Kuypers et al., 2003; Konovalov et al., 2005; Kirkpatrick 73 
et al., 2012). Organic particles are mainly linked to microbial communities involved in the production of N2, and these include 74 
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nitrate-reducing SAR11, and anammox, denitrifying, and sulphur-oxidizing bacteria (Kuypers et al., 2003; Lam et al., 2007; 75 
Yakushev et al., 2007; Fuchsman et al. 2011; Kirkpatrick et al., 2012). The first group listed, SAR11, provides NO2

- for N2 76 
yielding, and make the largest contribution (20-60%) to microbial biomass (Fuchsman et al., 2011, 2017; Tsementzi et al., 77 
2016). Meanwhile, the second and third groups of bacteria make a smaller contribution to microbial biomass (~10%; e.g. 78 
Fuchsman et al., 2011, 2017) but dominate N2 yielding via anammox (NO2

- + NH4
+ → N2) and heterotrophic denitrification 79 

(NO3
-→ NO2

-→ N2O → N2) (Murray et al., 2005; Kirkpatrick et al., 2012; Devries et al., 2013;Ward, 2013). Finally, the last 80 
group can potentially produce N2 via autotrophic denitrification (e.g. 3H2S + 4NO3

- → 3SO4
2- + 2N2 + 6H2O; Sorokin, 2002; 81 

Konovalov et al., 2003; Yakushev et al., 2007).  82 

The inorganic component is mainly due to sinking particles of manganese oxides (Mn, III, IV) that are formed due to the 83 
oxidation of dissolved Mn (II, III) pumped from the sulfidic zone (e.g. 2Mn2+(l) + O2 + H2O → 2MnO2 (s) + 4H+; Konovalov 84 
et al., 2003; Clement et al, 2009; Dellwig et al., 2010). Ultimately, sinking particles of manganese oxides are dissolved back 85 
to Mn (II, III), mainly via chemosynthetic bacteria that drive sulphur reduction (e.g. HS- + MnO2(s) + 3H+ → S0 + Mn2+(l) + 86 
2H2O; Jorgensen et al., 1991; Konovalov et al., 2003; Johnson, 2006;Yakushev et al., 2007; Fuschman et al., 2011; Stanev et 87 
al., 2018). Overall, these arrays of bacteria mediate the reactions described above by using electron acceptors according to the 88 
theoretical “electron tower” (e.g., O2 → NO3

- → Mn(IV) → Fe(III) → SO4
2-; Stumm and Morgan, 1970; Murray et al., 1995; 89 

Canfield and Thamdrup, 2009). Therefore, the vertical distributions of NO3
- , N2 excess, and content of small particles are 90 

driven by the reactions that occur in the chemical zones of poorly-oxygenated water masses (e.g. nitrogenous and manganous 91 
zones, which correspond to the sections where NO3

- and Mn(IV), respectively, are predominantly used as electron acceptors; 92 
Murray et al., 1995; Konovalov et al., 2003; Yakushev et al., 2007; Canfield and Thamdrup, 2009; see also sections 4.2 and 93 
4.3).  94 

3 Methods  95 

3.1 Bio-optical and physicochemical data measured by BGC-Argo floats  96 

We used data collected by three BGC-Argo floats that profiled at a temporal resolution of 5-10 days in the first 1000 m depth 97 
of the Black Sea from December 2013 to July 2019 (Figure 1). These floats — allocated the World Meteorological 98 
Organization (WMO) numbers 6900807, 6901866, and 7900591 — collected 239, 301, and 518 vertical profiles, respectively. 99 
BGC-Argo float 6901866 was equipped with four sensors: (1) a SBE-41 CP conductivity-T-depth sensor (Sea-Bird Scientific), 100 
(2) an Aanderaa 4330 optode (serial number:1411), (3) a WETLabs ECO Triplet Puck, and (4) a Satlantic Submersible 101 
Ultraviolet Nitrate Analyzer (SUNA). These sensors measured upward profiles of: (1) temperature (T), conductivity, and 102 
depth, (2) dissolved oxygen (O2), (3) chlorophyll fluorescence, total optical backscattering (particles + pure seawater) at 700 103 
nm and fluorescence by Colored Dissolved Organic Matter, and (4) nitrate (NO3

-; detection limit of 0.5 µM with T/salinity 104 
correction processing) and bisulfide (HS-, detection limit of 0.5 µM; Stanev et al., 2018). Floats 6900807 and 7900591 were 105 
equipped with only the first three sensors.  106 

Raw data of fluorescence and total backscattering were converted into Chlorophyll concentration (chl) and particle 107 
backscattering (bbp) following standard protocols, respectively (Schmechtig et al., 2014, 2015). Spike signals in vertical 108 
profiles of chl and bbp and due to particle aggregates were removed by using a median filter with a window size of three data 109 
points (Briggs et al., 2011). NO3

-, HS- and O2 data were processed following BGC-Argo protocols (Johnson et al., 2018; 110 
Thierry et al., 2018; Bittig and Körtzinger, 2015).  Sampling regions covered by the three floats encompassed most of the 111 
Black Sea area (Figure 1, and Appendix A). However, we only used data collected during periods without a clear injection of 112 
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small particles derived from the productive layer and Bosporus plume (e.g. advection of water masses, Stanev et al., 2017). 113 
This restriction allowed us to focus on the in-situ 1D processes driving local formation of the bbp-layer, with minimal 114 
interference from any possible external sources of small particles.  115 

We only describe the time series of data collected by float 6901866 because this was the only float carrying a NO3
-/HS-  sensor. 116 

Data acquired by floats 6900807 and 7900591 are described in Appendix A, and nevertheless used as complementary data to 117 
those of float 6901866 to corroborate: (1) qualitative correlations between O2 levels and the location of the bbp-layer, and (2) 118 
consistency in the location of the bbp maximum within the bbp-layer.  119 

3.2 Defining the poorly-oxygenated zone, mixed layer depth, and productive layer  120 

We used O2 and NO3
- to respectively define the top and bottom isopycnals of the poorly-oxygenated zone where denitrifying 121 

and anammox bacteria are expected to be found. To set the top isopycnal, we applied an O2 threshold of ~3 µM because 122 
denitrifying and anammox bacteria seem to tolerate O2 concentrations beneath this threshold (Jensen et al., 2008; Dalsgaard 123 
et al., 2014; Babbin et al., 2014). The bottom isopycnal was defined as the deepest isopycnal at which NO3

- was detected by 124 
the SUNA sensor (0.23 ± 0.32 µM). NO3

- was used to set this isopycnal because heterotrophic denitrification and subsequent 125 
reactions cannot occur without NO3

- (Lam et al., 2009; Bristow et al., 2017). HS- was not used to delimit the bottom of this 126 
zone because the maximum concentration of HS- that denitrifying and anammox bacteria tolerate is not well established 127 
(Murray et al., 1995; Kirkpatrick et al., 2012; see also section 4.1).  128 

Mixed layer depth (MLD) was computed as the depth at which density differed from 0.03 kg m -3 with respect to the density 129 
recorded at 1m depth (de Boyer Montégut et al., 2004). We used chl to define the productive layer where living phytoplankton 130 
were present and producing particulate organic carbon. The base of this layer was set as the depth at which chl decreased 131 
below 0.25 mg m−3. This depth was used only as a reference to highlight the periods when surface-derived small particles were 132 
clearly injected into the poorly-oxygenated zone.  133 

3.3  Complementary cruise data on N2 excess and NO3
- 134 

Published data on N2:Ar ratios and NO3
- collected at the southwest of the Black Sea in March 2005 (Fuchsman et al., 2008, 135 

2019) were exploited to complement discussion of our results. N2 produced by anaerobic microbial communities (N2 excess, 136 
µM) was estimated from N2:Ar ratios and argon concentrations at atmospheric saturation (Hamme and Emerson, 2004). N2 137 
excess data were used to: (1) describe the poorly-oxygenated  zone where N2 is expected to be predominantly produced, and 138 
(2) highlight qualitative correlations between N2 excess, the location of the bbp-layer, and vertical distribution of small particles 139 
within the bbp-layer. 140 
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 141 

Figure 1: (a) Sampling locations of float 6901866 between May 2015 and July 2019. Colored circles indicate the date 142 
(color bar) for a given profile. The white star in (a) marks the sampling site of the cruise (March 2005). The white x in 143 
(a) highlights the float location on 6th April 2016. Float profiles of (b) log(O2), (c) NO3-, (d) log(bbp), and (e) HS- collected 144 
on 24th November 2018.  145 

4 Results and discussion 146 

4.1 Description of the poorly-oxygenated zone 147 

The top and bottom of the poorly-oxygenated zone are located around the isopycnals (mean ± standard deviation) 15.79 ± 0.23 148 
kg m-3 and 16.30 ± 0.09 kg m-3, respectively. The two isopycnals therefore delimit the poorly-oxygenated water masses where 149 
nitrate-reducing SAR11, and denitrifying, anammox, and sulphur-oxidizing bacteria are expected to be found (zone hereafter 150 
called the POD-A, Figure 2; Kuypers et al., 2003; Lam et al., 2007; Yakushev et al., 2007; Fuschman et al., 2011; Kirkpatrick 151 
et al., 2012). The top location of the POD-A shows large spatial-temporal variability ranging between 80-180 m (or sq between 152 
15.5-15.9 kg m-3, Figure 2). Similarly, the POD-A thickness varies between 30-80 m, which corresponds to a sq separation of 153 
~ 0.50 kg m-3. The bottom of the POD-A is slightly sulfidic (HS- = 11.4 ± 3.53 µM, n = 86) and deeper than suggested (e.g. sq = 154 
16.20 kg m-3, and H2S ≤ 10 nM, Murray et al., 1995). However, our results coincide with the slightly sulfidic conditions of the 155 
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deepest isopycnal at which anammox bacteria can be still recorded (sq = 16.30  kg m-3, and H2S ≥10 µM; Kirkpatrick et al., 156 
2012).  157 

 158 

Figure 2: Time series of: (a) Salinity (S), (b) O2, (c) NO3-, (d) log(bbp), and (e) HS-. The blue lines in (a) and (b) indicate 159 
the mixed layer depth. The red lines in (a), (b) and (d) show the base of the productive region. The isopycnals 15.79 kg 160 
m-3 and 16.30 kg m-3 describe the top and bottom of the poorly-oxygenated zone (POD-A), respectively. SU, A, W, and 161 
SP stand for summer, autumn, winter, and spring, respectively. The colored horizontal line in (b) indicates the sampling 162 
site for a given date (Figure 1). The horizontal white lines in (d) are the profiles used to: (1) delimit the POD-A, and (2) 163 
compute correlations between bbp, NO3-, and T within the POD-A. 164 

4.2 NO3
-, O2, and MnO2 as key drivers of the thickness and location of the suspended small-particle layer 165 

The permanent bbp-layer is always confined within the two isopycnals that delimit the POD-A (Figure 2). It follows that the 166 
thickness and top location of this layer demonstrate the same spatial and temporal variability as the one described for the POD-167 
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A (Figure 2 and Appendix A). This correlation indicates that variations in the thickness and top location of the bbp-layer are 168 
partially driven, respectively, by: (1) the amount of NO3

- available to produce N2 inside the POD-A via the set of bacteria 169 
communities involved, and (2) downward ventilation of oxygen-rich subsurface waters (Figure 2 and Appendix A). 170 

NO3
- and O2 are two of the key factors that modulate the presence of: (1) denitrifying and anammox bacteria working in 171 

conjunction with nitrate-reducing SAR11 (Fuschman et al., 2011; Ulloa et al., 2012; Tsementezi et al., 2016; Bristow et al., 172 
2017), and probably with chemoautotrophic ammonia-oxidizing bacteria (in this case, only with anammox, e.g. γAOB; Ward 173 
and Kilpatrick, 1991; Lam et al., 2007), and (2) sulphur-oxidizing bacteria (e.g. SUP05; Canfield et al., 2010; Fuschman et al., 174 
2011; Ulloa et al., 2012). Therefore, the results described above highlight that at least a fraction of the bbp-layer should be due 175 
to this array of bacteria. This notion is supported by three main observations. Firstly, the top location of the bbp-layer is driven 176 
by the intrusion of subsurface water masses (S ≤ 20.36 ± 0.18 psu) with O2 concentrations above the levels tolerated by 177 
denitrifying and anammox bacteria (O2 ≥ 3 µM, Jensen et al., 2008; Babbin et al., 2014; Figure 2). As a result, in regions where 178 
O2 is ventilated to deeper water masses, the top location of the bbp-layer is also deeper. The contrary is observed when O2 179 
ventilation is shallower (Figure 2 and Appendix A). Secondly, nitrate-reducing SAR11, and denitrifying, anammox, and 180 
sulphur-oxidizing bacteria reside between the isopycnals 15.60-16.30 kg m-3 (Fuchsman et al., 2011; 2012a; Kirkpatrick et al., 181 
2012), while the bbp-layer is formed between isopycnals ~15.79-16.30 kg m-3. We can thus infer coexistence of such bacteria 182 
between the coincident isopycnals where the bbp-layer is generated. Thirdly, NO3

- declines from around isopycnal 15.79 kg m-183 
3 to the isopycnal 16.30 kg m-3 due to the expected N2 production via the microbial communities involved  (Figures 2-3, and 184 
Kirkpatrick et al., 2012).  185 

The ventilation of subsurface O2 is also key in driving the depth at which MnO2 is formed (O2 ≤ 3-5 µM;, Clement et al., 2009), 186 
and can thus contribute to setting the characteristics of the bbp-layer via its subsequent accumulation and dissolution 187 
(Konovalov et al., 2003; Clement et al., 2009; Dellwig et al., 2010). Thus, in regions where subsurface O2 (e.g. O2 ≥ 3-5 µM, 188 
and S ≤ 20.36 ± 0.18 psu) is ventilated to deeper water masses, both the formation of MnO2 and top location of the bbp-layer 189 
can be expected to be deeper, and vice versa (Figure 2). Finally, the dissolution of MnO2 should also influence the thickness 190 
of the bbp-layer because it occurs just beneath the maxima of the optical particles inside this layer (Konovalov et al., 2006; see 191 
the explanation in section 4.3).    192 

Overall, the qualitative evidence presented above points out that particles of MnO2 as well as nitrate-reducing SAR11, and 193 
denitrifying, anammox, and sulphur-oxidizing bacteria, appear to define the characteristics of the bbp-layer (Johnson, 2006; 194 
Konovalov et al., 2003; Fuchsman et al., 2011, 2012b; Stanev et al., 2018). This observation leads us to argue, in the next 195 
section, that the bbp-layer is partially composed of the main group of microbial communities involved in N2 yielding, as well 196 
as of MnO2.  197 

4.3 Role of the removal rate of NO3
-, MnO2, and temperature in the vertical distribution of small particles  198 

We propose that the removal rate of NO3
- is a key driver of the vertical distribution of small particles and N2 excess within the 199 

POD-A. This is because the vertical profiles of small particles and of N2 excess are qualitatively similar, and both profiles are 200 
clearly related to the rate at which NO3

- is removed from the POD-A (Figures 3-4). For instance, maxima of N2 excess and bbp 201 
coincide around the isopycnal 16.11 ± 0.11 kg m-3 (Figure 3; Konovalov et al., 2005; Fuchsman et al., 2008, 2019). At this 202 
isopycnal, the mean concentration of NO3

- is 1.19 ± 0.53 µM. We thus propose that this NO3
- threshold value splits the POD-A 203 

in two sub-zones with distinctive biogeochemical conditions (e.g. nitrogenous and manganous zones; Canfield and Thamdrup, 204 
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2009). Ultimately, these two different sets of conditions drive the rates at which NO3
- and small particles are removed and 205 

formed within the POD-A, respectively (Figure 3, and explanation below).  206 

The first sub-zone is thus located between the top of the POD-A (sq = 15. 79 kg m-3) and around the isopycnal 16.11 kg m-3. 207 
Here, removal rates of NO3

- (-0.16 ± 0.10 µM m-1, Figure 4) are likely to be boosted by: (1) high content of organic matter 208 
(dissolved organic carbon = 122 ± 9 µM, Margolin et al., 2016) and NO3

- (≥ 1.19 ± 0.53 µM), and (2) O2 levels staying between 209 
a range that maintain the yielding of N2 (0.24 ± 0.04 µM ≥ O2 ≤ 2.8± 0.14 µM, n = 100, the means of the minima and maxima 210 
of O2, respectively, in the first sub-zone) and promote the formation of MnO2 (e.g. maximum of Mn(II) oxidation is at O2 levels 211 
~0.2 µM; Clement et al., 2009). Consequently, the formation of biogenic and inorganic small particles (and related N2 excess) 212 
increases from the top of the POD-A to around the isopycnal 16.11 kg m-3 (Figure 3). This hypothesis is: (1) in part confirmed 213 
by significant and negative power-law correlations between the suspended small-particle content and NO3

- in this sub-zone 214 
(Figure 3), and (2) in agreement with the progressive accumulation of MnO2 from around isopycnal 15.8 kg m-3 to the isopycnal 215 
16.10 kg m-3 (e.g. Konovalov et al., 2006).     216 

The second sub-zone is located between isopycnal 16.11 kg m-3 and the bottom of the POD-A (sq = 16.30 kg m-3, Figure 3). 217 
Here, NO3

- is low (≤ 1.19 ± 0.53 µM) and O2 is relatively constant (0.23 ± 0.02 µM, n= 2284, mean of O2 calculated in the 218 
second sub-zone for all profiles), or lower than the minimum of O2 recorded by this sensor (0.22 ± 0.02 µM, n = 89). These 219 
constant (or lower) levels of O2 roughly correspond to those at which anammox and heterotrophic denitrification are inhibited 220 
by ~50% (0.21 µM, and 0.81 µM, respectively; Dalsgaard et al., 2014). In addition, low levels of NO3

- necessarily promotes 221 
the microbial use of Mn(IV) as an electron acceptor, ultimately dissolving the particles of MnO2 into Mn(II) (e.g. manganous 222 
zone; Konovalov et al., 2006; Yakushev et al., 2007; Canfield and Thamdrup, 2009). As a result, this sub-zone exhibits a 223 
decline in removal rates of NO3

- (-0.04 ± 0.01 µM m-1, Figure 4) along with inhibited formation of biogenic small particles and 224 
dissolution of MnO2. Ultimately, both the content of small particles and related N2 excess decrease from around isopycnal 225 
16.11 kg m-3 to the bottom of the POD-A (Figure 3). These results are in agreement with: (1) significant and positive exponential 226 
correlations computed between the small-particle content inferred from bbp and NO3

- within this sub-zone (Figure 3), and (2) 227 
the overlap of nitrogenous and manganous zones in this sub-zone because the content of MnO2 particles and dissolved Mn(II) 228 
concurrently declines and increases just beneath the isopycnal 16.11 kg m-3, respectively (e.g. Murray et al., 1995; Konovalov 229 
et al., 2003, 2005, 2006; Yakushev et al., 2007; Canfield and Thamdrup, 2009). 230 

Strong-positive linear correlations are also recorded between bbp and T in the first sub-zone of the POD-A (Figure 4). This  is 231 
likely to indicate that the formation of small particles is sensitive to very tiny increments in T (0.003 ± 0.001 °C m-1, n = 133). 232 
We thus infer a tendency for the decline rates of NO3

- and related production of N2 to increase with T. This hypothesis is at 233 
least partially supported by the significant correlation between NO3

- decline rates and T increase rates in this sub-zone (Figure 234 
4). Within the second sub-zone, T continues increasing while bbp decreases, likely due to inhibition of the formation of small 235 
particles for the reasons described above (Figure 4). These observations suggest that the production of small particles is likely 236 
to have first- and second-order covariations, with NO3

- and T, respectively — a likelihood backed up by a lack of correlation 237 
between NO3

- decline rates and T increase rates in this sub-zone (Figure 4). Finally, more information is needed to investigate 238 
the physical and/or biogeochemical processes driving the correlation between the increase rates of T, and declines rates of 239 
NO3

- in the first sub-zone. This is however out of the scope of our study.  240 
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 241 

Figure 3: (a) Cruise profiles of NO3
-, and N2 excess, collected in March 2005 (Fuchsman et al., 2019). (b) Float profiles 242 

of NO3
-, bbp, and log(O2) measured on 6th April 2016. Profiles in (a) and (b) were conducted at the northwest of the basin 243 

(see Figure 1). The top and bottom of the POD-A are described in (a) and (b) as horizontal blue and red lines, respectively. 244 
The bbp maximum is the horizontal black line in (b). The first and second sub-zone of the POD-A are respectively 245 
highlighted in (b) as blue and red squares. NO3

- vs bbp in (c) the first, and (d) the second sub-zone, of the float profile in 246 
(b). The number of data points visualized in (c) is lower than in (b) for the first sub-zone because bbp and NO3

- are not 247 
always recorded at the same depths. (e) Frequency distributions of correlation coefficients (R, blue bars), and root 248 
mean square errors (RMSE, white bars) for NO3

- vs bbp in the first sub-zone. (f) Same as (e) but for the second sub-zone. 249 
(g) Frequency distributions of the isopycnals at which bbp maxima are found within the POD-A. Dotted, dashed, and solid 250 
black lines in (g) are data collected by floats 7900591, 6901866, and 6900807, respectively. Gray bars include all data.  251 
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252 
Figure 4: Float profiles of (a) NO3-, and bbp, and (b) T and log(O2) collected on 10th September 2017. Horizontal blue 253 
and red lines in (a) and (b) are the top and bottom of the POD-A. The bbp maximum is indicated in (a) and (b) as horizontal 254 
black lines. The first and second sub-zones of the POD-A are respectively highlighted in (a) and (b) as blue and red 255 
squares. (c) bbp vs T for the first sub-zone of the profile in (b). (d) Frequency distributions of correlation coefficients (R, 256 
blue bars), and root mean square errors (RMSE, white bars), for bbp vs T in the first sub-zone, including data collected 257 
by the three floats. Decrease rates of NO3- vs increase rates of T in (e) the first and (f) the second sub-zone.  258 

To summarize, BGC-Argo float data combined with a proxy of N2 production suggest that in regions without the Bosporus 259 
plume influence, the bbp-layer systematically tracks and delineates the effective N2-yielding section independently of: (1) the 260 
biogeochemical mechanisms driving N2 yielding, and (2) the contribution that MnO2 and other microorganisms can be 261 
expected to make to the formation of the bbp-layer (e.g. Lam et al., 2007; Fuchsman et al., 2011; 2012a; Kirkpatrick et al., 262 
2018). It is thus finally inferred that this bbp-layer is at least partially composed of the predominant anaerobic microbial 263 
communities involved in the production of N2, such as nitrate-reducing SAR11, and anammox, denitrifying, and sulphur-264 
oxidizing bacteria. These results also suggest that N2 production rates can be highly variable in the Black Sea because the 265 
characteristics of the bbp-layer show large spatial-temporal variations driven by changes in NO3

- and O2 (Figures 2 and 4). 266 
Finally, we propose that bbp and O2 can be exploited as a combined proxy for defining the N2-producing section of the poorly-267 
oxygenated Black Sea. We consider that this combined proxy can delineate the top and base of this section, by applying an O2 268 
threshold of 3.0 µM, and the bottom isopycnal of the bbp-layer, respectively. This section should thus be linked to free-living 269 
bacteria (0.2-2 µm), and those associated with small suspended particles (> 2-20 µm), as well as to small inorganic particles 270 
(0.2-20 µm).  271 

4.4 New perspectives for studying N2 losses in ODZs  272 

The conclusions and inferences of this study, especially those related to the origin and drivers of the bbp-layer, primarily apply 273 
to the Black Sea. However, these findings may also have a wider application. In particular, the shallower water masses of 274 
oxygen-deficient zones (ODZs) are similarly characterized by the formation of a layer of suspended small particles that can 275 
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be optically detected by bbp and the attenuation coefficients of particles (Spinrad et al., 1989; Naqvi et al., 1993; Whitmire et 276 
al., 2009). This layer is mainly linked to N2-yielding microbial communities because: (1) its location coincides with the maxima 277 
of N2 excess, microbial metabolic activity, and nitrite (NO2

-, the intermediate product of denitrification-anammox that is mainly 278 
accumulated in the N2-yielding section, Spinrad et al., 1989; Naqvi et al., 1991, 1993; Devon et al., 2006; Chang et al., 2010, 279 
2012; Ulloa et al., 2012; Wojtasiewicz et al., 2018), and (2) MnO2 is not accumulated as in the Black Sea (Martin and Knauer, 280 
1984; Johnson et al., 1996; Lewis and Luther, 2000). Therefore, our findings suggest that highly resolved vertical profiles of 281 
bbp and O2 can potentially be used as a combined proxy to define the effective N2-production section of ODZs. Such definition 282 
can be key to better-constrained global estimates of N2 loss rates because it can allow us to: (1) accurately predict the poorly-283 
oxygenated water volume where around 90% of N2 is produced in the ODZ core (Babin et al., 2014), and (2) evaluate how the 284 
location and thickness of the N2-yielding section vary due to changes in the biogeochemical factors that modulate anammox 285 
and heterotrophy denitrification.  286 

Global estimates of N2 losses differ by 2-3 fold between studies (e.g. 50-150 Tg N yr-1, Codispoti et al., 2001; Bianchi et al., 287 
2012, 2018; DeVries et al., 2012; Wang et al., 2019). These discrepancies are caused in part by inaccurate estimations of the 288 
poorly-oxygenated volume of the N2-production section. Other sources of uncertainties arise from the methods applied to 289 
estimate the amount of POC that fuels N2 production. For instance, POC fluxes and their subsequent attenuation rates are not 290 
well resolved because they are computed respectively from satellite-based primary-production algorithms and generic power-291 
law functions (Bianchi et al., 2012, 2018; DeVries et al., 2012). POC-flux estimates based on these algorithms visibly exclude: 292 
(1) POC supplied by zooplankton migration (Kiko et al., 2017; Tutasi and Escribano, 2020), (2) substantial events of POC 293 
export decoupled from primary production (Karl et al., 2012), and (3) the role of small particles derived from the physical and 294 
biological  fragmentation of larger ones (Karl et al., 1988; Briggs et al., 2020), which are more efficiently remineralized by 295 
bacteria in ODZs (Cavan et al., 2017). In addition, these estimates do not take into consideration the inhibition effect that O2 296 
intrusions may have on N2-yield rates (Whitmire et al., 2009; Ulloa et al., 2012; Dalsgaard et al., 2014; Peters et al., 2016; 297 
Margolskee et al., 2019). 298 

Overall, mechanistic predictions of N2 losses misrepresent the strong dynamics of the biogeochemical and physical processes 299 
that regulate them. Consequently, it is still debated whether the oceanic nitrogen cycle is in balance or not (Codispoti, 2007; 300 
Gruber and Galloway, 2008; DeVries et al., 2012; Jayakumar et al., 2017; Bianchi et al., 2018; Wang et al., 2019). The 301 
subsiding uncertainty points to a compelling need for alternative methods that allow accurate refinement of oceanic estimations 302 
of N2 losses.    303 

Our study supports the proposition that robotic observations of bbp and O2 can be used to better delineate the N2-yielding section 304 
at the appropriate spatial (e.g. vertical and regional) and temporal (e.g. event, seasonal, interannual) resolutions. In addition, 305 
POC fluxes and N2 can be simultaneously quantified using the same float technology (BGC-Argo, Bishop et al., 2009; 306 
Dall’Olmo and Mork, 2014; Reed et al., 2018; Boyd et al., 2019; Estapa et al., 2019; Rasse and Dall’Olmo, 2019). These 307 
robotic measurements can contribute to refining global estimates of N2 losses by better constraining both the poorly-308 
oxygenated section where N2 is produced, and POC fluxes that fuel its loss. Ultimately, O2 intrusions into the N2-yielding 309 
section can potentially be quantified by BGC-Argo floats to assess their regulatory effect on N2 losses.  310 

Conclusions 311 

Our results suggest that the bbp-layer of the poorly-oxygenated Black Sea is at least partially composed of nitrate-reducing 312 
SAR11, and anammox, denitrifying, and sulphur-oxidizing bacteria. The location and thickness of this layer show strong 313 
spatial-temporal variability, mainly driven by the ventilation of oxygen-rich subsurface waters, and nitrate available to generate 314 
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N2, respectively. Such variations in the characteristics of the bbp-layer highlight that N2-production rates can be highly variable  315 
in the Black Sea. We therefore propose that high resolution measurements of O2 and bbp can potentially be exploited as a 316 
combined proxy to delineate the effective N2-yielding section of ODZs. This proposition is in part supported by evidence that 317 
the bbp-layer and a majority of N2-yielding microbial communities are both confined in the shallower poorly-oxygenated water 318 
masses of ODZs. We however recommend investigation into the key biogeochemical drivers of the bbp-layer for each ODZ. 319 
This information will be critical for validating the applicability of the bbp-layer in assessing spatial-temporal changes in N2 320 
production.  321 

Finally, it is evident that BGC-Argo float observations can acquire essential proxies of N2 production and associated drivers 322 
at appropriate spatial and temporal resolutions. The development of observation-modeling synergies therefore holds the 323 
potential to deliver an unprecedented view of N2-yielding drivers if robotic observations become an integrated part of model 324 
validation. Ultimately, this approach could prove essential for reducing present uncertainties in the oceanic N2 budget. 325 

Appendix A: Supplementary Figures 326 

 327 
Figure A1: Sampling locations of floats (a) 7900591 and (b) 6900807 between December 2013 and July 2019. Colored 328 
squares and hexagons indicate the date (colorbar) for a given profile of floats 6900807 and 7900591, respectively.  329 
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 330 
Figure A2: Time series of (a) S, (b) O2, (c) log(chl), and (d) log(bbp) for float 7900591. The blue line in (c) indicates the 331 
mixed layer depth. The red lines in (c) and (d) show the base of the productive region. The isopycnals 15.79 kg m-3 and 332 
16.30 kg m-3 describe the top and bottom of the poorly-oxygenated zone (POD-A), respectively. SU, A, W, and SP stand 333 
for summer, autumn, winter, and spring, respectively. The colored horizontal line at the bottom indicates the sampling 334 
site for a given date (Figure S1). The horizontal white lines in (d) are the profiles used to: (1) delimit the SOD-A, and (2) 335 
find the isopycnals at which bbp is maximum in the SOD-A. chl is set to zero in the SOD-A due to fluorescence contamination 336 
(Stanev et al., 2017). 337 
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338 
Figure A3: Same as Figure A2 but for float 6900807 339 
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