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The suspended small-particles layer in the oxygen-poor Black Sea: a
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Abstract. The shallower oxygen-poor water masses of the ocean confine a majority of the microbial communities that can
produce up to 90% of oceanic N,. This effective N»-yielding section encloses a suspended small-particle layer, inferred from
particle backscattering (b;,) measurements. It is thus hypothesized that this layer (hereafter, the by,-layer) is linked to microbial
communities involved in N»-yielding such as nitrate-reducing SAR11 as well as sulphur-oxidizing, anammox and denitrifyng
bacteria — a hypothesis yet to be evaluated. Here, data collected by three BGC-Argo floats deployed in the Black Sea are used
to investigate the origin of this by,-layer. To this end, we evaluate how the key drivers of N»-yielding bacteria dynamics impact
on the vertical distribution of by, and the thickness of the by,-layer. In conjunction with published data on N, excess, our results
suggest that the by,-layer is at least partially composed of the bacteria driving N, yielding for three main reasons: (1) strong
correlations are recorded between by, and nitrate; (2) the top location of the by,-layer is driven by the ventilation of oxygen-
rich subsurface waters, while its thickness is modulated by the amount of nitrate available to produce N»; (3) the maxima of
both b, and N, excess coincide at the same isopycnals where bacteria involved in N, yielding coexist. We thus advance that
by, and O, can be exploited as a combined proxy to delineate the N-yielding section of the Black Sea. This proxy can
potentially contribute to refining delineation of the effective N»-yielding section of oxygen-deficient zones via data from the

growing BGC-Argo float network.

1 Introduction

Oxygen-poor water masses (O, < 3 uM) host the microbial communities that produce between 20-40% of oceanic N, mainly
via heterotrophic denitrification and anaerobic oxidation of ammonium (Gruber and Sarmiento, 1997; Devries et al. 2013;
Ward 2013). The shallower oxygen-poor water masses (~50-200 m) are the most effective N,-producing section because this
is where the microbial communities that condition the process mainly develop and generate up to 90% of the N, (Ward et al.,
2009; Dalsgaard et al.,2012; Babin et al., 2014). These microbial communities include nitrate-reducing SAR11, and anammox,
denitrifying, and sulphur-oxidizing bacteria (e.g. Canfield et al., 2010; Ulloa et al., 2012; Ward 2013; Tsementzi et al., 2016;
Callbeck et al., 2018). It is thus important to unravel the biogeochemical parameters that trigger the accumulation of such
bacteria in the ocean's oxygen-poor water masses. This information is crucial for understanding and quantifying how bacterial
biomass and related N, yielding bacteria can respond to the ongoing expansion of oceanic regions with low oxygen (Keeling
and Garcia, 2002; Stramma et al., 2008; Helm et al., 2011; Schmidtko et al., 2017). Ultimately, greater accuracy in this domain
can contribute to improving mechanistic predictions on how such expansion affects the oceans’ role in driving the Earth’s

climate by sequestering atmospheric carbon dioxide (e.g. Oschlies et al., 2018).

In oxygen-poor water masses, the biogeochemical factors that can affect the abundance of denitrifying and anammox bacteria

are the levels of O, organic matter (OM), nitrate (NO5’), ammonium (NH4*), and hydrogen sulfide (H,S) (Murray et al., 1995;
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Ward et al., 2008; Dalsgaard et al., 2014; Bristow et al., 2016). Therefore, to elucidate what triggers the confinement of such
bacteria, we need to investigate how the above biogeochemical factors drive their vertical distribution, with high temporal and
vertical resolution. To this end, we should develop multidisciplinary approaches that allow us to permanently monitor the full

range of biogeochemical variables of interest in oxygen-poor water masses.

Optical proxies of tiny particles can be applied as an alternative approach to assess the vertical distribution of N,-yielding
microbial communities in oxygen-poor water masses (Naqvi et al., 1993). For instance, nitrate-reducing SAR11, and
anammox, denitrifying, and sulphur-oxidizing bacteria are found as free-living bacteria (0.2-2 um), and can be associated with
small suspended (> 2-30 um), and large sinking (> 30 um) particles (Fuchsman et al., 2011, 2012a, 2017; Ganesh et al., 2014,
2015). Therefore, particle backscattering (b)), a proxy for particles in the ~0.2-20 um size range (Stramski et al., 1999, 2004;
Organelli et al., 2018), can serve to detect the presence of these free-living bacteria and those associated with small suspended

particles.

Time series of by, acquired by biogeochemical Argo (BGC-Argo) floats highlight the presence of a permanent layer of
suspended small particles in shallower oxygen-poor water masses (by,-layer) (Whitmire et al., 2009; Wojtasiewicz et al., 2018).
It has been hypothesized that this b,,-layer is linked to N,-yielding microbial communities such as nitrate-reducing SAR11,
and denitrifying, anammox, and sulphur-oxidizing bacteria. However, this hypothesis has not yet been clearly demonstrated.
To address this, the first step is to evaluate: (1) potential correlations between the biogeochemical factors that control the
presence of the b,,-layer and such arrays of bacteria (O,, NOs, OM, H,S; Murray et al., 1995; Ward et al., 2008; Fuchsman et
al., 2011; Ulloa et al., 2012; Dalsgaard et al., 2014; Bristow et al., 2016), and (2) the possible relationship between the by,-

layer and N, produced by microbial communities.

This first step is thus essential for identifying the origin of the by,-layer and, ultimately, determining if BGC-Argo observations
of b;, can be implemented to delineate the oxygen-poor water masses where such bacteria are confined. The Black Sea appears
as a suitable area for probing into the origin of the b,,-layer in low-oxygen waters in this way. It is indeed a semi-enclosed
basin with permanently low O, levels where N, production and related nitrate-reducing SAR11, and denitrifying and anammox
bacteria are mainly confined within a well-defined oxygen-poor zone (Kuypers et al., 2003; Konovalov et al., 2005; Kirkpatrick
et al., 2012). In addition, a permanent by,-layer is a typical characteristic of this region, which is linked to such microbial

communities and inorganic particles (Stanev et al., 2017, 2018, see details in section 2.0).

The goal of our study is therefore to investigate the origin of the by,-layer in the oxygen-poor waters of the Black Sea using
data collected by BGC-Argo floats. More specifically, we aim to evaluate, within the oxygen-poor zone, how: (1) two of the
main factors (O, and NOs’) that drive the dynamics of denitrifying and anammox bacteria, impact on the location and thickness
of the by,-layer, (2) NOs controls the vertical distribution of by, within this layer, (3) temperature drives the formation of the
byy-layer and consumption rates of NOs, and (4) particle content inferred from by, and N, produced by microbial communities
can be at least qualitatively correlated. Ultimately, our findings allow us to infer that b, can potentially be used to detect the
presence of the microbial communities that drive N, production in oxygen-poor water masses — including nitrate-reducing

SARI1, and sulphur- oxidizing, denitrifying and anammox bacteria.

2.0. Background-nature of the small particles contributing to the by,-layer and their links with N, yielding

The oxygen-poor water masses of the Black Sea are characterized by a permanent layer of suspended small particles constituted
of organic and inorganic particles (Murray et al., 1995; Kuypers et al., 2003; Konovalov et al., 2005; Kirkpatrick et al., 2012).

In the oxygen-poor (O, < 3 uM) section with detectable NOs-, and undetectable H,S levels, organic particles are mainly linked
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to microbial communities involved in the production of N,, and these include nitrate-reducing SAR11, and anammox,
denitrifying, and sulphur-oxidizing bacteria (Kuypers et al., 2003; Lam et al., 2007; Yakushev et al., 2007; Fuchsman et al.,
2011; Kirkpatrick et al., 2012). The first group listed, SAR11, provides NO»™ for N, yielding, and makes the largest contribution
(20-60%) to N, yielding bacteria biomass (Fuchsman et al., 2011, 2017; Tsementzi et al., 2016). Meanwhile, the second and
third groups of bacteria make a smaller contribution to microbial biomass (~10%; e.g. Fuchsman et al., 2011, 2017) but
dominate N, yielding via anammox (NO> + NH4* — N, + 2H,0) and heterotrophic denitrification (NO;— NO>— N>O — N,)
(Murray et al., 2005; Kirkpatrick et al., 2012; Devries et al., 2013;Ward, 2013). The last group can potentially produce N, via
autotrophic denitrification (e.g. 3H,S + 4NOs; + 60H- — 3SO.* + 2N, + 6H,0; Sorokin, 2002; Konovalov et al., 2003;
Yakushev et al., 2007). Finally, Epsilonproteobacteria are the major chemoautotrophic bacteria that form organic particles in
the sulfidic zone (e.g. oxygen-poor section with detectable sulphide levels (> 0.3 uM) but undetectable NOs; Coban-Yildiz et
al., 2006; Yilmaz et al., 2006; Grote et al., 2008; Canfield and Thamdrup, 2009; Glaubitz et al., 2010; Ediger et al., 2019).
However, they can also be involved in the production of N, and linked formation of organic particles in the oxygen-poor
section with detectable levels of sulphide and NO;s (see Figure 1, e.g. Epsilonproteobacteria Sulfurimonas acting as an

autotrophic denitrifier; Glaubitz et al., 2010; Fuchsman et al., 2012b; Kirkpatrick et al., 2018).

The inorganic component is mainly due to sinking particles of manganese oxides (Mn, III, IV) that are formed due to the
oxidation of dissolved Mn (II, III) pumped from the sulfidic zone (e.g. 2Mn?*(/) + O, + 2H,0 — 2MnO:; (s) + 4H*; Konovalov
et al., 2003; Clement et al., 2009; Dellwig et al., 2010). Ultimately, sinking particles of manganese oxides are dissolved back
to Mn (II, III), mainly via chemosynthetic bacteria that drive sulphur reduction (e.g. HS- + MnOx(s) + 3H* — S°+ Mn?*(/) +
2H,0; Jorgensen et al., 1991; Konovalov et al., 2003; Johnson, 2006;Y akushev et al., 2007; Fuschman et al., 2011; Stanev et
al., 2018). Overall, these arrays of bacteria mediate the reactions described above by using electron acceptors according to the
theoretical “electron tower” (e.g., O, — NO3; — Mn(IV) — Fe(Ill) — SO,*; Stumm and Morgan, 1970; Murray et al., 1995;
Canfield and Thamdrup, 2009). Therefore, the vertical distributions of NO; , N, excess, and content of small particles are
driven by the reactions that occur in the chemical zones of oxygen-poor water masses (e.g. nitrogenous and manganous zones,
which correspond to the sections where NOs- and Mn(IV), respectively, are predominantly used as electron acceptors; Murray

et al., 1995; Konovalov et al., 2003; Yakushev et al., 2007; Canfield and Thamdrup, 2009; see also sections 4.2 and 4.3).
3 Methods
3.1 Bio-optical and physicochemical data measured by BGC-Argo floats

We used data collected by three BGC-Argo floats that profiled at a temporal resolution of 5-10 days in the first 1000 m depth
of the Black Sea from December 2013 to July 2019 (Figure 1). These floats — allocated the World Meteorological
Organization (WMO) numbers 6900807, 6901866, and 7900591 — collected 239,301, and 518 vertical profiles, respectively.
BGC-Argo float 6901866 was equipped with four sensors: (1) a SBE-41 CP conductivity-T-depth sensor (Sea-Bird Scientific),
(2) an Aanderaa 4330 optode (serial number:1411; O, range: 0-1000 xM, with an accuracy of 1.5%), (3) a WETLabs ECO
Triplet Puck, and (4) a Satlantic Submersible Ultraviolet Nitrate Analyzer (SUNA). These sensors measured upward profiles
of: (1) temperature (T), conductivity, and depth, (2) dissolved oxygen (O,), (3) chlorophyll fluorescence, total optical
backscattering (particles + pure seawater) at 700 nm and fluorescence by Colored Dissolved Organic Matter, and (4) nitrate
(NOs7; detection limit of ~0.5 pM with T/salinity correction processing) and bisulfide (HS-, detection limit of ~0.5 yM; Stanev
et al., 2018). Floats 6900807 and 7900591 were equipped with only the first three sensors.
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Raw data of fluorescence and total backscattering were converted into Chlorophyll concentration (chl) and particle
backscattering (by,) following standard protocols, respectively (Schmechtig et al., 2014, 2015). Spike signals in vertical
profiles of chl and b,, and due to particle aggregates were removed by using a median filter with a window size of three data
points (Briggs et al., 2011). NOs', HS- and O, data were processed following BGC-Argo protocols (Bittig and Kortzinger,
2015; Johnson et al., 2018; Thierry et al., 2018). Sampling regions covered by the three floats encompassed most of the Black
Sea area (Figure 1, and Appendix A). However, we only used data collected during periods without a clear injection of small
particles derived from the productive layer and Bosporus plume (e.g. advection of water masses, Stanev et al., 2017). This
restriction allowed us to focus on the in-situ 1D processes driving local formation of the b,-layer, with minimal interference

from any possible external sources of small particles.

We only describe the time series of data collected by float 6901866 because this was the only float carrying a NO3;/HS sensor.
Data acquired by floats 6900807 and 7900591 are described in Appendix A, and nevertheless used as complementary data to
those of float 6901866 to corroborate: (1) qualitative correlations between O, levels and the location of the by,-layer, and (2)

consistency in the location of the by, maximum within the by,-layer.

3.2 Defining the oxygen-poor zone, mixed layer depth, and productive layer

We used O, and NOj' to respectively define the top and bottom isopycnals of the oxygen-poor zone where denitrifying and
anammox bacteria are expected to be found. To set the top isopycnal, we applied an O, threshold of ~3 uM because denitrifying
and anammox bacteria seem to tolerate O, concentrations beneath this threshold (Jensen et al., 2008; Dalsgaard et al., 2014;
Babbin et al., 2014). The bottom isopycnal was defined as the deepest isopycnal at which NOs was detected by the SUNA
sensor (0.23 + 0.32 uM). NOs was used to set this isopycnal because heterotrophic denitrification and subsequent reactions
cannot occur without NO; (Lam et al., 2009; Bristow et al., 2017). HS- was not used to delimit the bottom of this zone because
the maximum concentration of HS- that denitrifying and anammox bacteria tolerate is not well established (Murray et al., 1995;

Kirkpatrick et al., 2012; see also section 4.1).

Mixed layer depth (MLD) was computed as the depth at which density differed from 0.03 kg m -* with respect to the density
recorded at 1m depth (de Boyer Montégut et al., 2004). We used chl to define the productive layer where living phytoplankton
were present and producing particulate organic carbon. The base of this layer was set as the depth at which chl decreased
below 0.25 mg m~3. This depth was used only as a reference to highlight the periods when surface-derived small particles were

clearly injected into the oxygen-poor zone.

3.3 Complementary cruise data on N, excess and NO5-

Published data on N,:Ar ratios and NOj;™ collected at the southwest of the Black Sea in March 2005 (Fuchsman et al., 2008,
2019) were exploited to complement discussion of our results. N, produced by anaerobic microbial communities (N, excess,
puM) was estimated from N:Ar ratios and argon concentrations at atmospheric saturation (Hamme and Emerson, 2004). N,
excess data were used to: (1) describe the oxygen-poor zone where N is expected to be predominantly produced, and (2)
highlight qualitative correlations between N excess, the location of the b,,-layer, and vertical distribution of small particles

within the by,-layer.
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Figure 1: (a) Sampling locations of float 6901866 between May 2015 and July 2019. Colored circles indicate the date
(color bar) for a given profile. The white star in (a) marks the sampling site of the cruise (March 2005). The white x in
(a) highlights the float location on 6™ April 2016. Float profiles of (b) log(O2), (¢) NOs", (d) log(bsy), and (¢) HS™ collected
on 24™ November 2018.

4 Results and discussion

4.1 Description of the oxygen-poor zone

The top and bottom of the oxygen-poor zone are located around the isopycnals (mean + standard deviation) 15.79 + 0.23 kg
m™ and 16.30 + 0.09 kg m?, respectively. The two isopycnals therefore delimit the oxygen-poor water masses where nitrate-
reducing SAR11, and denitrifying, anammox, and sulphur-oxidizing bacteria are expected to be found (zone hereafter called
the OPp.a, Figure 2; Kuypers et al., 2003; Lam et al., 2007; Yakushev et al., 2007; Fuschman et al., 2011; Kirkpatrick et al.,
2012). The top location of the OPp.4 shows large spatial-temporal variability ranging between 80-180 m (or oo between 15.5-
15.9 kg m?, Figure 2). Similarly, the OPp.4 thickness varies between 30-80 m, which corresponds to a oo separation of ~0.50

kg m3. The bottom of the OPp.4is slightly sulfidic (HS"= 11.4 +3.53 uM, n = 86) and deeper than suggested (e.g. co= 16.20
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kg m, and H>S < 10 nM, Murray et al., 1995). However, our results coincide with the slightly sulfidic conditions of the deepest

isopycnal at which anammox bacteria can be still recorded (co= 16.30 kg m, and H,S =10 uM; Kirkpatrick et al., 2012).

BGC-float 6901866

Depth [m]

Depth [m]

Depth [m]

| L loglbpp]
[m~?]
2.2
-2.6
-3.0

-3.4

Depth [m]

—_ uM]
S

‘=100 60
45_ 40
(O]

Q 200 20

o — < —
— o o

2016 2017 2018
Figure 2: Time series of: (a) Salinity (S), (b) O2, (¢c) NOs", (d) log(bsy), and (e) HS". The blue lines in (a) and (b) indicate
the mixed layer depth. The red lines in (a), (b) and (d) show the base of the productive region. The isopycnals 15.79 kg
m and 16.30 kg m™ describe the top and bottom of the oxygen-poor zone (OPp..), respectively. SU, A, W, and SP stand
for summer, autumn, winter, and spring, respectively. The colored horizontal line in (b) indicates the sampling site for
a given date (Figure 1). The horizontal white lines in (d) are the profiles used to: (1) delimit the OPp.4, and (2) compute
correlations between b, NOs™, and T within the OPp.4.

4.2 NOy, O;, and MnO; as key drivers of the thickness and location of the suspended small-particle layer

The permanent by,-layer is always confined within the two isopycnals that delimit the OPp.4 (Figure 2). It follows that the

thickness and top location of this layer demonstrate the same spatial and temporal variability as the one described for the OP).
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4 (Figure 2 and Appendix A). This correlation indicates that variations in the thickness and top location of the b,-layer are
partially driven, respectively, by: (1) the amount of NOj;  available to produce N inside the OPp.4 via the set of bacteria

communities involved, and (2) downward ventilation of oxygen-rich subsurface waters (Figure 2 and Appendix A).

NOs and O, are two of the key factors that modulate the presence of: (1) denitrifying and anammox bacteria working in
conjunction with nitrate-reducing SAR11 (Fuschman et al., 2011; Ulloa et al., 2012; Tsementezi et al., 2016; Bristow et al.,
2017), and probably with chemoautotrophic ammonia-oxidizing bacteria (in this case, only with anammox, e.g. YAOB; Ward
and Kilpatrick, 1991; Lam et al., 2007), and (2) sulphur-oxidizing bacteria (e.g. SUPO5 and potentially Epsilonproteobacteria
Sulfurimonas; Canfield et al., 2010; Glaubitz et al., 2010; Fuschman et al., 2011, 2012b; Ulloa et al., 2012;Kirkpatrick et al.,
2018). Therefore, the results described above highlight that at least a fraction of the by,-layer should be due to this array of
bacteria. This notion is supported by three main observations. Firstly, the top location of the b,,-layer is driven by the intrusion
of subsurface water masses (S < 20.36 + 0.18 psu) with O, concentrations above the levels tolerated by denitrifying and
anammox bacteria (O,= 3 uM, Jensen et al., 2008; Babbin et al., 2014; Figure 2). As a result, in regions where O, is ventilated
to deeper water masses, the top location of the by,-layer is also deeper. The contrary is observed when O, ventilation is
shallower (Figure 2 and Appendix A). Secondly, nitrate-reducing SAR11, and denitrifying, anammox, and sulphur-oxidizing
bacteria reside between the isopycnals 15.60-16.30 kg m (Fuchsman et al., 2011; 2012a; Kirkpatrick et al., 2012), while the
byy-layer is formed between isopycnals ~15.79-16.30 kg m3. We can thus infer coexistence of such bacteria between the
coincident isopycnals where the by,-layer is generated. Thirdly, NOs declines from around isopycnal 15.79 kg m? to the
isopycnal 16.30 kg m™ due to the expected N, production via the microbial communities involved (Figures 2-3, and Kirkpatrick

etal., 2012).

The ventilation of subsurface O is also key in driving the depth at which MnQ; is formed (O, < 3-5 uM; Clement et al., 2009),
and can thus contribute to setting the characteristics of the by,-layer via its subsequent accumulation and dissolution
(Konovalov et al., 2003; Clement et al., 2009; Dellwig et al., 2010). Thus, in regions where subsurface O, (e.g. O,= 3-5 uM,
and S <20.36 = 0.18 psu) is ventilated to deeper water masses, both the formation of MnO, and top location of the b,,-layer
can be expected to be deeper, and vice versa (Figure 2). Finally, the dissolution of MnO, should also influence the thickness
of the by,-layer because it occurs just beneath the maxima of the optical particles inside this layer (Konovalov et al., 2006; see

the explanation in section 4.3).

Overall, the qualitative evidence presented above points out that particles of MnO» as well as nitrate-reducing SAR11, and
denitrifying, anammox, and sulphur-oxidizing bacteria, appear to define the characteristics of the b,,-layer (Johnson, 2006;
Konovalov et al., 2003; Fuchsman et al., 2011, 2012b; Stanev et al., 2018). This observation leads us to argue, in the next
section, that the by,-layer is partially composed of the main group of microbial communities involved in N yielding, as well

as of MnO..

4.3 Role of the removal rate of NOs, MnO;, and temperature in the vertical distribution of small particles

We propose that the removal rate of NOs is a key driver of the vertical distribution of small particles and N, excess within the
OPp.4. This is because the vertical profiles of small particles and of N, excess are qualitatively similar, and both profiles are
clearly related to the rate at which NOs™ is removed from the OPp.4 (Figures 3-4). For instance, maxima of N, excess and by,
coincide around the isopycnal 16.11 + 0.11 kg m (Figure 3; Konovalov et al., 2005; Fuchsman et al., 2008, 2019). At this
isopycnal, the mean concentration of NOs is 1.19 + 0.53 uM. We thus propose that this NO;" threshold value splits the OPp.4

in two sub-zones with distinctive biogeochemical conditions (e.g. nitrogenous and manganous zones; Canfield and Thamdrup,
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2009). Ultimately, these two different sets of conditions drive the rates at which NOs™ and small particles are removed and

formed within the OPp.4, respectively (Figure 3, and explanation below).

The first sub-zone is thus located between the top of the OPp.4 (ce= 15. 79 kg m3) and around the isopycnal 16.11 kg m.
Here, removal rates of NO5 (-0.16 = 0.10 uM m', Figure 4) are likely to be boosted by: (1) high content of organic matter
(dissolved organic carbon = 122 + 9 uM, Margolin et al., 2016) and NO3 (= 1.19 £ 0.53 uM), and (2) O, levels staying between
a range that maintain the yielding of N, (0.24 £ 0.04 uM = O, < 2.8+ 0.14 uM, n = 100, the means of the minima and maxima
of O,, respectively, in the first sub-zone) and promote the formation of MnO, (e.g. maximum of Mn(II) oxidation is at O, levels
~0.2 uM; Clement et al., 2009). Consequently, the formation of biogenic and inorganic small particles (and related N, excess)
increases from the top of the OPp.4 to around the isopycnal 16.11 kg m™ (Figure 3). This hypothesis is: (1) in part confirmed
by significant and negative power-law correlations between the suspended small-particle content and NOs in this sub-zone
(Figure 3), and (2) in agreement with the progressive accumulation of MnO, from around isopycnal 15.8 kg mto the isopycnal

16.10 kg m™ (e.g. Konovalov et al., 2006).

The second sub-zone is located between isopycnal 16.11 kg m and the bottom of the OPp.4 (co= 16.30 kg m?3, Figure 3).
Here, NO; is low (< 1.19 £ 0.53 uM) and O, is relatively constant (0.23 + 0.02 uM, n= 2284, mean of O, calculated in the
second sub-zone for all profiles), or lower than the minimum of O, recorded by this sensor (0.22 + 0.02 uM, n = 89). These
constant (or lower) levels of O, roughly correspond to those at which anammox and heterotrophic denitrification are inhibited
by ~50% (0.21 pM, and 0.81 puM, respectively; Dalsgaard et al., 2014). In addition, low levels of NOs necessarily promotes
the microbial use of Mn(IV) as an electron acceptor, ultimately dissolving the particles of MnO, into Mn(II) (e.g. manganous
zone; Konovalov et al., 2006; Yakushev et al., 2007; Canfield and Thamdrup, 2009). As a result, this sub-zone exhibits a
decline in removal rates of NO5 (-0.04 + 0.01 uM m!, Figure 4) along with inhibited formation of biogenic small particles and
dissolution of MnQO,. Ultimately, both the content of small particles and related N, excess decrease from around isopycnal
16.11 kg m? to the bottom of the OPp.4 (Figure 3). These results are in agreement with: (1) significant and positive exponential
correlations computed between the small-particle content inferred from b, and NO; within this sub-zone (Figure 3), and (2)
the overlap of nitrogenous and manganous zones in this sub-zone because the content of MnO particles and dissolved Mn(II)
concurrently declines and increases just beneath the isopycnal 16.11 kg m™, respectively (e.g. Murray et al., 1995; Konovalov

et al., 2003, 2005, 2006; Yakushev et al., 2007; Canfield and Thamdrup, 2009).

Strong-positive linear correlations are also recorded between b, and T in the first sub-zone of the OPp.4 (Figure 4). This is
likely to indicate that the formation of small particles is sensitive to very tiny increments in T (0.003 +0.001 °C m!, n = 133).
We thus infer a tendency for the decline rates of NOs and related production of N, to increase with T. This hypothesis is at
least partially supported by the significant correlation between NOs™ decline rates and T increase rates in this sub-zone (Figure
4). Within the second sub-zone, T continues increasing while b, decreases, likely due to inhibition of the formation of small
particles for the reasons described above (Figure 4). These observations suggest that the production of small particles is likely
to have first- and second-order covariations, with NOs™ and T, respectively — a likelihood backed up by a lack of correlation
between NOs™ decline rates and T increase rates in this sub-zone (Figure 4). Finally, more information is needed to investigate
the physical and/or biogeochemical processes driving the correlation between the increase rates of T, and declines rates of

NOs™ in the first sub-zone. This is however out of the scope of our study.
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Figure 3: (a) Cruise profiles of NOs, and N, excess, collected in March 2005 (Fuchsman et al., 2019). (b) Float profiles
of NOy', by, and log(O;) measured on 6" April 2016. Profiles in (a) and (b) were conducted at the northwest of the basin
(see Figure 1). The top and bottom of the OPy., are described in (a) and (b) as horizontal blue and red lines, respectively.
The by, maximum is the horizontal black line in (b). The first and second sub-zone of the OPp.. are respectively
highlighted in (b) as blue and red squares. NOs™ vs b;, in (c) the first, and (d) the second sub-zone, of the float profile in
(b). The number of data points visualized in (c) is lower than in (b) for the first sub-zone because b;, and NOs are not
always recorded at the same depths. (e) Frequency distributions of correlation coefficients (R, blue bars), and root
mean square errors (RMSE, white bars) for NOs- vs by, in the first sub-zone. (f) Same as (e) but for the second sub-zone.
(g) Frequency distributions of the isopycnals at which b;, maxima are found within the OP,_4. Dotted, dashed, and solid

black lines in (g) are data collected by floats 7900591, 6901866, and 6900807, respectively. Gray bars include all data.
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Figure 4: Float profiles of (a) NO3", and bz, and (b) T and log(O:2) collected on 10" September 2017. Horizontal blue
and red lines in (a) and (b) are the top and bottom of the OPp._4. The by, maximum is indicated in (a) and (b) as horizontal
black lines. The first and second sub-zones of the OPp.4 are respectively highlighted in (a) and (b) as blue and red
squares. (¢) by vs T for the first sub-zone of the profile in (b). (d) Frequency distributions of correlation coefficients (R,
blue bars), and root mean square errors (RMSE, white bars), for bs, vs T in the first sub-zone, including data collected

by the three floats. Decrease rates of NOs™ vs increase rates of T in (e) the first and (f) the second sub-zone.

To summarize, BGC-Argo float data combined with a proxy of N, production suggest that in regions without the Bosporus
plume influence, the by,-layer systematically tracks and delineates the effective N»-yielding section independently of: (1) the
biogeochemical mechanisms driving N, yielding, and (2) the contribution that MnO, and other microorganisms can be
expected to make to the formation of the by,-layer (e.g. Lam et al., 2007; Fuchsman et al., 2011; 2012a; Kirkpatrick et al.,
2018). It is thus finally inferred that this by,-layer is at least partially composed of the predominant anaerobic microbial
communities involved in the production of N», such as nitrate-reducing SARI1, and anammox, denitrifying, and sulphur-
oxidizing bacteria. These results also suggest that N, production rates can be highly variable in the Black Sea because the
characteristics of the by,-layer show large spatial-temporal variations driven by changes in NO; and O, (Figures 2 and 4).
Finally, we propose that b, and O, can be exploited as a combined proxy for defining the N,-producing section of the oxygen-
poor Black Sea. We consider that this combined proxy can delineate the top and base of this section, by applying an O,
threshold of 3.0 uM, and the bottom isopycnal of the b,,-layer, respectively. This section should thus be linked to free-living
bacteria (0.2-2 um), and those associated with small suspended particles (> 2-20 um), as well as to small inorganic particles

(0.2-20 um).
4.4 New perspectives for studying N, losses in ODZs

The conclusions and inferences of this study, especially those related to the origin and drivers of the by,-layer, primarily apply
to the Black Sea. However, these findings may also have a wider application. In particular, the shallower water masses of

oxygen-deficient zones (ODZs) are similarly characterized by the formation of a layer of suspended small particles that can
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be optically detected by by, and the attenuation coefficients of particles (Spinrad et al., 1989; Naqvi et al., 1993; Whitmire et
al.,2009). This layer is mainly linked to N,-yielding microbial communities because: (1) its location coincides with the maxima
of N, excess, microbial metabolic activity, and nitrite (NO,, the intermediate product of denitrification-anammox that is mainly
accumulated in the N,-yielding section, Spinrad et al., 1989; Naqvi et al., 1991, 1993; Devon et al., 2006; Chang et al., 2010,
2012; Ulloa et al., 2012; Wojtasiewicz et al., 2018), and (2) MnO: is not accumulated as in the Black Sea (Martin and Knauer,
1984; Johnson et al., 1996; Lewis and Luther, 2000). Therefore, our findings suggest that highly resolved vertical profiles of
by, and O, can potentially be used as a combined proxy to define the effective N,-production section of ODZs. Such definition
can be key to better-constrained global estimates of N, loss rates because it can allow us to: (1) accurately predict the oxygen-
poor water volume where around 90% of N, is produced in the ODZ core (Babin et al.,2014), and (2) evaluate how the location
and thickness of the N-yielding section vary due to changes in the biogeochemical factors that modulate anammox and

heterotrophy denitrification.

Global estimates of N, losses differ by 2-3 fold between studies (e.g. 50-150 Tg N yr!, Codispoti et al., 2001; Bianchi et al.,
2012,2018; DeVries et al., 2012; Wang et al., 2019). These discrepancies are caused in part by inaccurate estimations of the
oxygen-poor volume of the N,-production section. Other sources of uncertainties arise from the methods applied to estimate
the amount of POC that fuels N, production. For instance, POC fluxes and their subsequent attenuation rates are not well
resolved because they are computed respectively from satellite-based primary-production algorithms and generic power-law
functions (Bianchi et al., 2012, 2018; DeVries et al., 2012). POC-flux estimates based on these algorithms visibly exclude: (1)
POC supplied by zooplankton migration (Kiko et al., 2017; Tutasi and Escribano, 2020), (2) substantial events of POC export
decoupled from primary production (Karl et al., 2012), and (3) the role of small particles derived from the physical and
biological fragmentation of larger ones (Karl et al., 1988; Briggs et al., 2020), which are more efficiently remineralized by
bacteria in ODZs (Cavan et al., 2017). In addition, these estimates do not take into consideration the inhibition effect that O,
intrusions may have on N»-yield rates (Whitmire et al., 2009; Ulloa et al., 2012; Dalsgaard et al., 2014; Peters et al., 2016;
Margolskee et al., 2019).

Overall, mechanistic predictions of N, losses misrepresent the strong dynamics of the biogeochemical and physical processes
that regulate them. Consequently, it is still debated whether the oceanic nitrogen cycle is in balance or not (Codispoti, 2007,
Gruber and Galloway, 2008; DeVries et al., 2012; Jayakumar et al., 2017; Bianchi et al., 2018; Wang et al., 2019). The
subsiding uncertainty points to a compelling need for alternative methods that allow accurate refinement of oceanic estimations

of N, losses.

Our study supports the proposition that robotic observations of by, and O can be used to better delineate the N»-yielding section
at the appropriate spatial (e.g. vertical and regional) and temporal (e.g. event, seasonal, interannual) resolutions. In addition,
POC fluxes and N, can be simultaneously quantified using the same float technology (BGC-Argo, Bishop et al., 2009;
Dall’Olmo and Mork, 2014; Reed et al., 2018; Boyd et al., 2019; Estapa et al., 2019; Rasse and Dall’Olmo, 2019). These
robotic measurements can contribute to refining global estimates of N, losses by better constraining both the oxygen-poor
section where N, is produced, and POC fluxes that fuel its loss. Ultimately, O, intrusions into the N»-yielding section can

potentially be quantified by BGC-Argo floats to assess their regulatory effect on N, losses.

Conclusions

Our results along with those from previous studies suggest that the b;,-layer of the oxygen-poor Black Sea is at least partially
composed of nitrate-reducing SAR11, and anammox, denitrifying, and sulphur-oxidizing bacteria. The location and thickness

of this layer show strong spatial-temporal variability, mainly driven by the ventilation of oxygen-rich subsurface waters, and
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nitrate available to generate N, respectively. Such variations in the characteristics of the by,-layer highlight that N»-production
rates can be highly variable in the Black Sea. We therefore propose that high resolution measurements of O, and b;, can
potentially be exploited as a combined proxy to delineate the effective N»-yielding section of ODZs. This proposition is in part
supported by evidence that the by,-layer and a majority of N,-yielding microbial communities are both confined in the
shallower oxygen-poor water masses of ODZs. We however recommend investigation into the key biogeochemical drivers of
the by,-layer for each ODZ. This information will be critical for validating the applicability of the b;,-layer in assessing spatial-

temporal changes in N, production.

Finally, it is evident that BGC-Argo float observations can acquire essential proxies of N, production and associated drivers
at appropriate spatial and temporal resolutions. The development of observation-modeling synergies therefore holds the
potential to deliver an unprecedented view of N,-yielding drivers if robotic observations become an integrated part of model

validation. Ultimately, this approach could prove essential for reducing present uncertainties in the oceanic N, budget.

Appendix A: Supplementary Figures

BGC-float 7900591
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Figure Al: Sampling locations of floats (a) 7900591 and (b) 6900807 between December 2013 and July 2019. Colored
squares and hexagons indicate the date (colorbar) for a given profile of floats 6900807 and 7900591, respectively.
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Figure A2: Time series of (a) S, (b) O2, (c) log(chl), and (d) log(bsy) for float 7900591. The blue line in (c) indicates the
mixed layer depth. The red lines in (c) and (d) show the base of the productive region. The isopycnals 15.79 kg m~ and
16.30 kg m? describe the top and bottom of the oxygen-poor zone (OPp.4), respectively. SU, A, W, and SP stand for
summer, autumn, winter, and spring, respectively. The colored horizontal line at the bottom indicates the sampling site
for a given date (Figure S1). The horizontal white lines in (d) are the profiles used to: (1) delimit the OPp.4, and (2) find
the isopycnals at which by, is maximum in the OPp._4. chl is set to zero in the OPp.4 due to fluorescence contamination

(Stanev et al., 2017).

13



343
344

345
346
347
348

349
350
351
352

353
354
355

BGC-float 6900807

Salinity

— [psul

S

—100 21.5
S

o 20.5
O]

a 19.5

18.5

oo [N | TN o
.W"II“I | AR S | 1 ‘. ‘”  YT ‘H\Hf[‘

TR 02
[uM]
250
200
150
100
50

Depth [m]

* “'m"l"""""" 4y A Wl [m-ll

15.79
—o 2
-0.4

T AR TR L KPR logtchl]
L Iﬂl l VY i

Depth [m]

-0.6
-0.8
-1.0

Depth [m]

Figure A3: Same as Figure A2 but for float 6900807

Data availability. Data from Biogeochemical-Argo floats used in this study are freely available at ftp.ifremer.fr/ifremer/argo.
These data were collected and made freely available by the International Argo Program and the national programs that
contribute to it (http://www.argo.ucsd.edu; the Argo Program is part of the Global Ocean Observing System). Data on N»:Ar
ratios are freely available at https://agupubs.onlinelibrary .wiley.com/doi/abs/10.1029/2018GB006032.
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