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Abstract.

South Asian vegetation provides essential ecosystem services to the 1.7 billion inhabitants living in the region. However,

biodiversity and ecosystem services are threatened by climate and land-use change. Understanding and assessing how ecosys-

tems respond to simultaneous increases in atmospheric CO2 and future climate change is of vital importance to avoid undesired

ecosystem change. Failed reaction to increasing CO2 and climate change will likely have severe consequences for biodiversity5

and humankind. Here, we used the aDGVM2 to simulate vegetation dynamics in South Asia under RCP4.5 and RCP8.5, and

we explored how the presence or absence of CO2 fertilization influences vegetation responses to climate change. Simulated

vegetation under both RCPs without CO2 fertilization effects showed decrease in tree dominance and biomass, whereas sim-

ulations with CO2 fertilization showed an increase in biomass, canopy cover, and tree height and a decrease in biome-specific

evapotranspiration by the end of the 21st century. The predicted changes in above ground biomass and canopy cover triggered10

transition towards tree-dominated biomes. We found that savanna regions are at high risk of woody encroachment and transi-

tioning into forest. We also found transitions of deciduous forest to evergreen forest in the mountain regions. Vegetation types

using C3 photosynthetic pathway were not saturated at current CO2 concentrations and the model simulated a strong CO2

fertilization effect with the rising CO2. Hence, vegetation in the region has the potential to remain a carbon sink. Projections

showed that the bioclimatic envelopes of biomes need adjustments to account for shifts caused by climate change and elevated15

CO2. The results of our study help to understand the regional climate-vegetation interactions and can support the development

of regional strategies to preserve ecosystem services and biodiversity under elevated CO2 and climate change.

Copyright statement. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

1 Introduction

Global climate has been identified as the primary determinant of large-scale natural vegetation patterns (Overpeck et al., 1990).20

Climate change has affected global vegetation pattern in the past and caused numerous shifts in plant species distribution over

the last few decades (Chen et al., 2011; Thuiller et al., 2008). It is expected to have even more pronounced effects in the future
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and may lead to drastically increasing species extinction rates in various ecosystems (Brodie et al., 2014). Natural ecosystems

have been and continue to be exposed to increased climate variability and abrupt changes caused by increased intensity and

frequency of extreme events such as heat waves, drought and flooding (Herring et al., 2018). At the same time, they are under25

severe pressure due to anthropogenic disturbance and land conversion. Rising levels of atmospheric CO2 are a strong driver

of climate-induced vegetation changes (Allen et al., 2014). Anthropogenic CO2 emissions account for approximately 66% of

the total anthropogenic greenhouse forcing (Forster et al., 2007) and are thus largely responsible for contemporary and future

global climate change Parry et al. (2007). Rising CO2 is expected to alter distributions of plant species and ecosystems (Parry

et al., 2007) both indirectly through its influence on global temperatures and precipitation patterns (Cao et al., 2010), two main30

drivers of vegetation dynamics, and directly via its physiological effects on plants (Nolan et al., 2018). It is therefore of vital

importance to understand how ecosystems respond to simultaneous increases in atmospheric CO2 and temperature, changes in

precipitation regime, and to altered ecosystem water balance in order to avoid critical ecosystem disruptions and the resulting

consequences for biodiversity and humankind.

Increases in temperatures, decreases in precipitation as well as changes in precipitation seasonality can cause loss of vege-35

tation biomass. Plant using C3 photosynthetic pathways are often not saturated at the current atmospheric CO2, whereas plants

using the C4 photosynthetic pathways are already at their physical optimum at current atmospheric CO2 levels (Ehleringer and

Cerling, 2002). The physiology of C3 plants implies that elevated atmospheric CO2 improves their ability for carbon uptake due

to the CO2 fertilization (Woodrow and Berry, 1988) and enhances carbon sequestration (Leakey et al., 2009; Norby and Zak,

2011) as well as plant water use efficiency (Soh et al., 2019). This has also been observed in Long-term Long-term Free-Air40

Carbon dioxide Enrichment (FACE) experiments (Norby and Zak, 2011). Thus, elevated CO2 influences photosynthesis and

thereby affects other physiological processes such as respiration, decomposition (Doherty et al., 2010), evapotranspiration (ET)

and biomass accumulation (Frank et al., 2015). Increasing CO2 concentration has been associated with woody cover increase

in structurally open tropical biomes such as grasslands and savannas (Stevens et al., 2017). This widespread proliferation of

woody plants into arid and semiarid ecosystems has been attributed to increased water use efficiency in C3 plants that facilitates45

woody sapling establishment and growth due to higher drought tolerance (Kgope et al., 2010; Stevens et al., 2017). These CO2

effects on plant growth and competition can alter community structure (height distribution), ecosystem productivity, climatic

niches of ecosystems and biome boundaries (Nolan et al., 2018; Wingfield, 2013).Change in vegetation distribution and al-

tered vegetation structure feed back on climate by altering fluxes of energy, moisture and CO2 between land and atmosphere

(Friedlingstein et al., 2006). Feedback mechanisms also involve vegetation-mediated changes in albedo, surface roughness,50

land-atmosphere fluxes and evapotranspiration, (Field et al., 2007; Richardson et al., 2013).

Enhanced plant growth due rising CO2 implies rapid leaf area development and more total leaf area could translate into

higher transpiration (Leakey et al., 2009). However, elevated CO2 concentrations may decrease leaf stomatal conductance to

water vapor which could reduce transpiration. Evapotranspiration (ET) is a key ecophysiological process in the soil-vegetation-

atmosphere continuum (Feng et al., 2017). Annually, 64% of the total global land-based precipitation is returned to the atmo-55

sphere through ET (Zhang et al., 2016). Environmental change and concurrent vegetation changes alter ET and affect water
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availability (Mao et al., 2015), especially in arid and semiarid regions. In these regions, ET affects surface and subsurface

processes such as cloud development, land surface temperature, and groundwater recharge (Fisher et al., 2011).

South Asia is home to approx. 1.7 billion people and is one of the regions most vulnerable to climate change (Eckstein

et al., 2018). It hosts four of the world’s biodiversity hotspots (Myers et al., 2000) and harbours different biome types ranging60

from tropical in the south to temperate in the north at the fringe of the Himalayas. These hotspots are characterized by high

levels of diversity and endemism, and they are threatened by climate change and anthropogenic land-use (Deb et al., 2017). For

instance, woody encroachment due to rising CO2 threatens South Asian savannas (Kumar et al., 2020) and sifting cultivation

in the north eastern part of South Asia threatens biodiversity (Bera et al., 2006).

Due to the absence of long-term field experiments such as FACE experiments, in the dominant biomes of the region, mod-65

eling studies are valuable tools to close existing knowledge gaps. Dynamic global vegetation models (DGVMs, Prentice

et al., 2007) are particularly well-suited to address questions that focus on vegetation response to changing environmental

drivers, e.g., climate and CO2. While most DGVM studies in South Asia focused on vulnerability of forests to climate change

(Chaturvedi et al., 2011; Ravindranath et al., 2006, 1997) they often overlooked the severely threatened savanna biome. These

studies were further limited by the utilization of models with fixed eco-physiological parameters and traits e.g., fixed carbon al-70

location values to assign carbon to plant biomass pools, fixed specific leaf area (SLA), as well as pre-defined bioclimatic limits

that were derived from contemporary climatology in order to constrain the spatial distribution of plant functional types (PFTs).

Moreover, many DGVMs used in these studies do not account for life history, eco-evolutionary processes and trait variability

among individual plants (Kumar and Scheiter, 2019). While some global-scale studies have investigated the potential effect

of increasing CO2 on natural vegetation, carbon sequestration and biome boundaries (e.g., Hickler et al.; Sato et al., 2007;75

Smith et al.), detailed modeling studies focusing explicitly on different biomes in South Asia have not been conducted. The

physiological effects of increased CO2 and climate change on South Asian vegetation is uncertain and needs to be addressed

in order to improve understanding of regional ecosystem functioning as well as implications for biodiversity conservation.

To address the knowledge gaps in existing studies, we used the aDGVM2 (adaptive dynamic global vegetation model version

2), an individual- and trait-based vegetation model that combines elements of traditional DGVMs (Prentice et al., 2007) with80

newly implemented approaches for selection and trait filtering. In aDGVM2, environmental conditions select for the plants

with trait value combination that make them successful under these conditions. Therefore, plant communities that are adapted

to site-specific environmental conditions dynamically assembles and emerge as a reaction the environmental forcing (Langan

et al., 2017; Scheiter et al., 2013). Originally, aDGVM2 had been tested for Amazonia Langan et al. (2017) and Africa (Gaillard

et al., 2018; Pfeiffer et al., 2019). In order to adapt it to South Asian ecosystems and their diversity, we included C3 grasses,85

improved ecophysiological processes such as the leaf energy budget in order to estimate leaf temperature, implemented separate

temperature sensitivities for C3 and C4 photosynthetic capacity (Vcmax and included snow in the water balance model.

In this study we used the updated version of aDGVM2 and addressed the following questions:

1. How do projected changes in climate and CO2 following two Representative Concentration Pathways (RCP8.5 and

RCP4.5, Meinshausen et al., 2011) change the distribution, boundaries and climatic niches of biomes in South Asia?90
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2. How does the relationship between projected biomass, ET, temperature and precipitation change in response to CO2

fertilization?

3. What is the sensitivity of predicted changes in relation to presence and absence of CO2 fertilization?

Based on our results we analyzed climate-vegetation interactions to improve our understanding of how to manage and mitigate

impacts on biomes under climate change and increasing CO2.95

2 Methods

2.1 Description of the study region

Approx. 1.7 billion people populate South Asia, i.e., the Indian subcontinent, Afghanistan and Myanmar. South Asia incorpo-

rates a wide range of bio-climatic zones with distinctive biomes, ecosystem types and species (Rodgers and Panwar, 1988).

Climatic conditions are controlled by interactions between the South Asian summer monsoon system and the region’s complex100

topography. The climatic envelope ranges from tropical arid and semi-arid regions in the west, to humid tropical regions sup-

porting rainforests in the northeast and temperate vegetation at the fringe of the Himalaya. Excluding the Himalayan regions,

South Asia has a mean annual temperature of approximately 24°C with very low spatial variability. Mean annual precipitation

(MAP) is 1190 mm, ranging from less than 500 mm in the warm desert zone in the west to more than 3500 mm in the north-

east. The steep elevation gradients ranging from sea level to 8800 m result in a rich diversity of ecosystems that can alternate105

in areas of a few hundred square-kilometres. Topography is recognized as a strong driver of ecological patterns, for example

those related to forest structure and composition, floristic diversity, and soil fertility (Gallardo-Cruz et al., 2009; Jucker et al.,

2018; Sinha et al., 2018). South Asia hosts four major global biodiversity hotspots, namely the Western Ghats, Himalayas,

Indo-Myanmar and Sri Lanka (www.conservation.org, Conservation International, 2013, Myers et al., 2000). These hotspots

include a wide diversity of ecosystems such as mixed wet evergreen, dry evergreen, deciduous, and montane forests. Fur-110

ther vegetation types are alluvial grasslands and subtropical broadleaf forests along the foothills of the Himalayas, temperate

broadleaf forests in the mid hills, mixed conifer and conifer forests in the higher hills, savanna in the Deccan region and

southern part of Malaysia, and alpine meadows above the tree line (Conservation International, 2013).

2.2 Model Description

For this study we used aDGVM2 (Scheiter et al., 2013; Langan et al., 2017; Gaillard et al., 2018), a DGVM with a dynamic trait115

approach. In the supplementary material we summarize main features of aDGVM2 and explain how the physiological effect

of changing CO2 concentration and rising temperature are simulated in a process based way in the aDGVM2 by implemented

photosynthesis routine. To adapt the aDGVM2 to the requirements of the study region, we incorporated new sub-routines into

the model. We improved the representation of (a) the water balance by including snow, (b) the carboxylation rate, (c) leaf

temperature, and (d) we included C3 grasses (previous model versions only simulated C4 grasses).120
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(a) Water balance. In aDGVM2, the soil water module is based on the tipping-bucket concept. As the model was originally

developed with strong focus on tropical and subtropical forest and savanna regions, the original model version only considered

water input in form of rain (see Langan et al., 2017). In the updated model version, precipitation is assigned as snow when daily

mean air temperature drops below 0°C. Snow accumulates on the soil surface or is added to the top of an existing snowpack.

The snowpack persists as long as air temperature remains below 0°C. Once temperature rises above 0°C, water from snowmelt125

is added to the soil water pool and becomes available to plants. This process may improve the water availability for plants at

the beginning of spring, for example in the Himalayan region. Snowmelt (Smelt, mm/day) is calculated following (Choudhury

et al., 1998) as

Smelt = 1.5+KmPprecip(Ta −Tsnow)Spack, (1)

where Km is the coefficient of snowmelt (0.007 mm/day/ °C), Spack is the depth of the snowpack (m) and is equialent to the130

accumulated soilid portion of precipitation, Ta is daily mean air temperature (°C), Pprecip is precipitation (mm/day) and Tsnow

is the maximum temperature where precipitation falls as snow (0°C). We do not consider insulation effects of the snowpack in

the model.

(b) Carboxylation rate.135

In earlier versions of aDGVM2, leaf-level photosynthesis was calculated at population level, i.e., it was assumed that all

plants of a simulated vegetation stand have the same leaf-level photosynthetic rate. Only C3- and C4-type photosynthesis were

distinguished. We therefore implemented new routines to calculate photosynthesis at a daily time step for each individual plant.

We further incorporated an empirical relation between specific leaf area (ASLA, mm2/mg) and leaf nitrogen content per unit

area (Na, g/m2) following Sakschewski et al. (2015),140

Na = 6.89A−0.571
SLA , (2)

The standard maximum carboxylation rate of rubisco per leaf area (Vcmax,25, µmol/m2/s) was derived from the TRY database

Kattge and Knorr (2007) by Sakschewski et al. (2015) and is calculated as

Vcmax,25 = 31.62N0.501
a , (3)

where Vcmax,25 is Vcmax at 25◦C.145

In the model, ASLA is linked to the matric potential at 50% loss of xylem conductance (P50, see Langan et al., 2017). The

trade-off between ASLA and Vcmax mediated by leaf traits (Na) introduces variability in the spectrum of tree growth strategies

in aDGVM2. In addition to the ASLA is linked to leaf longevity (LL) in aDGVM2, such that it affects the leaf turnover rates

(represented by Equation 72, in Appendix, Langan et al (2017)). Leaves with high ASLA have shorter LL and higher turnover

rates than leaves with low ASLA (and vice-versa). The correlation between ASLA, P50 and LL represent the trade-off between150

two opposing resource strategies, i.e., conservation vs. rapid acquisition of soil water and nutrients (Wright et al., 2005). Trees

that invest more carbon into their (low ASLA) enhances their structural stability, but have lower leaf turnover to mitigate the

higher initial carbon investment.
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The effect of temperature on photosynthesis is well-described (Kirschbaum, 2004), and temperature may influence pho-

tosynthesis both directly, via temperature-dependency of enzyme-mediated metabolic rates of carboxylation and the Calvin155

cycle (Sharkey et al., 2007), and indirectly via its effect on transpiration and plant water uptake and transport (Urban et al.,

2017). The maximum carboxylation rate (Vcmax) increases with temperature until it reaches an optimum, and decreases again

at temperatures above the optimum (Kattge and Knorr, 2007) due to reductions in enzyme activity. Above 30°C the electron

transport chain is gradually inhibited, and at temperatures above 40°C the denaturation of Rubisco and associated proteins

becomes relevant (Lloyd et al., 2008). The temperature dependency of the carboxylation rate (Vcmax) is expressed as160

Vcmax =
Vcmax,252

0.1(Tleaf−25)

(1+ e0.3(Tlow−Tleaf ))(1+ e0.3(Tleaf−Tupp))
, (4)

where Tleaf is the leaf temperature in °C (see next paragraph for calculation). The photosynthetic model of Collatz et al.

(1992) and Collatz et al. (1992) assumes specific values of Tupp and Tlow for C3 and C4 plants, respectively (Table S1 and Table

S2). These temperature ranges from -10◦C to 36◦C and 13◦C to 45◦C for C3 and C4 photosynthetic pathways respectively,

allow plants to grow most efficiently in their plant-specific climatic niches.165

(c) Leaf temperature. We calculate leaf temperature following the leaf-level energy budget concept (Gates, 1968). Leaf-level

photosynthesis, activity of leaf enzymes and transpiration depend on leaf temperature (Tleaf,°C), calculated as

Tleaf = Tair +(
Rn −λErgb

ρCP
), (5)

where Tair is air temperature (°C), Rn is net radiation absorbed by the leaf (MJ/m2/day), λ is latent heat of vaporization170

(MJ/kg), E is evapotranspiration (m/day), rgb is the boundary layer resistance (m/s), ρ is the air density (kg/m3) and derived

from atmospheric pressure (101.325 kPa at sea level) that is scaled according to the elevation and Tair, and CP is the specific

heat of dry air (MJ/kg/°C). Leaf temperature is used to calculate the temperature dependence of Vcmax used in the photosyn-

thesis model routines in equation (4). Absorbed net radiation (Rn), rgb and E are model state variables calculated from climate

input used in aDGVM2 (Tair, long-wave and short-wave radiation) and ρ is derived from atmospheric pressure (101.325 kPa at175

sea level) that is scaled according to the elevation and Tair. The value of latent heat of vaporization (λ), and CP are 2.45 MJ/kg

and 2.71 MJ/kg/°C respectively, and are assumed as constant parameters in this model version.

(d) C3 grasses. C3 grasses were not included in previous aDGVM2 versions (Gaillard et al., 2018; Langan et al., 2017;

Pfeiffer et al., 2019; Scheiter et al., 2013). We therefore implemented C3 grasses, following the approach used for C4 grasses in180

previous model versions but adjusted the photosynthetic pathway (see Appendix S2 in Langan et al., 2017).C3 and C4 grasses

use a different leaf-level photosynthesis model (Farquhar et al., 1980) following the implementations of Collatz et al. (1991,

1992). The optimum temperature ranges for carboxylation for C3 and C4 grasses are also different (Table S1). As C3 grasses

have higher cold tolerance than C4 grasses (Liu and Osborne, 2008), we implemented frost intolerance for C4 grasses but not

for C3 grasses. Frost is assumed to damage the tissue of C4 grasses, and in aDGVM2 we kill 10% of the living leaf biomass of185

C4 grasses per frost day independent of frost severity.
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2.3 Model forcing data

2.3.1 Climate data

We used GFDL-ESM2M climate data for the period 1950 to 2099 from the Inter-Sectoral Impact Model Inter-comparison

Project (ISIMIP2), as historical climate simulated by GFDL-ESM2M showed satisfactory performance for South Asia (Mc-190

Sweeney and Jones, 2016). The general circulation model (GCM) output was bias-corrected in ISIMIP and downscaled to a

spatial resolution of 0.5° × 0.5° (Warszawski et al., 2014). We used average, maximum and minimum air temperatures, precip-

itation, surface downwelling shortwave radiation and long-wave radiation, near-surface wind speed, and relative humidity at

a daily temporal resolution. We used two representative concentration pathways, namely RCP4.5 and RCP8.5 (Meinshausen

et al., 2011). These scenarios assume increases in radiative forcing of 4.5 and 8.5 Wm2 by 2100 (Van Vuuren et al., 2011) and195

increases of atmospheric CO2 concentrations to 560 ppm and 970 ppm by 2100, respectively (Van Vuuren et al., 2011).

2.3.2 Projected changes in temperature and precipitation

Mean annual precipitation (MAP) from GFDL-ESM2M does not show a clear trend when averaged for South Asia under

RCP4.5 and RCP8.5, due to high inter-annual variability of precipitation (Fig. S1). Yet, there are region-specific differences

in precipitation change. The Western Ghats which located between 73°- 77’ E and 8°N - 21°N and eastern Himalayan region200

are projected to become wetter under both RCP4.5 and RCP8.5, whereas the western part of the region is projected to become

drier by the end of the century under both RCPs (Fig. S2). MAP is projected to increase by more than 600 mm in the Eastern

Himalayas and Western Ghats, but predicted to decrease by 400-600mm in the western and central area of the region (Fig. S2).

By the end of the 21st century, mean annual temperature (MAT) of South Asia is expected to increase between ca. 1°C and

3.5°C under RCP4.5 and between 1°C and 6°C under RCP8.5, relative to the average temperature in the baseline period of205

2000–2009 (Fig. S1 and Fig. S2). The western parts of the region and the Himalayan mountains are projected to experience

higher increases in temperature than the rest of the region (Fig. S2).

2.3.3 Soil and elevation data

Soil data was obtained from FAO (http://www.fao.org/soils-portal, Nachtergaele et al., 2009) and includes information on soil

properties and types. The soil properties include parameters required by aDGVM2: volumetric water-holding capacity, soil210

hydraulic conductivity, soil bulk density, soil depth, soil texture, soil carbon content, soil wilting point and field capacity (for

details see Fig. S3b and Langan et al., 2017). A digital elevation model (DEM) at 90m spatial resolution was obtained from the

Shuttle Radar Topography Mission (SRTM, Fig. S3a http://srtm.csi.cgiar.org, Jarvis et al., 2008). It was resampled to a spatial

resolution of 0.5° × 0.5°, to match the spatial resolution of climate data. In the model, elevation is used to calculate the surface

pressure at a given altitude, which is used to scale up air density and partial pressure of oxygen. The partial pressure of oxygen215

is used to estimate the CO2 compensation point of photosynthesis (Eq. 2 of Appendix S2 in Langan et al., 2017). We did not

use slope and aspect in the model.
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2.4 Model simulation protocol

To understand how climate and CO2 fertilization interact to influence the future vegetation state in South Asia, we simulated

all combination of two climate scenarios (RCP4.5 and RCP8.5) and two CO2 scenarios (CO2 fertilization enabled or disabled,220

four scenarios in total). We simulated potential natural vegetation between 1950 and 2099 using daily climate data for RCP4.5

and RCP8.5 (see section 2.3.1). For both scenarios, simulations were run with CO2 increase in line with RCP4.5 (hereafter

RCP4.5+eCO2) and RCP8.5 (hereafter RCP8.5+eCO2) and with the same climate data but fixed CO2 after 2005 at 375 ppm

for RCP4.5 (hereafter RCP4.5+fCO2) and RCP8.5 (hereafter RCP8.5+fCO2). Fixing the CO2 concentration after 2005 mimics

a situation where CO2 fertilization would not occur and vegetation only responds to the climate signal. All simulations were225

conducted with natural fire as implemented in aDGVM2 and at 0.5°× 0.5°spatial resolution. The aDGVM2 simulates 1 hectare

stands that are assumed to be representative for the vegetation at larger scale, i.e., we assume that the stand-level vegetation

homogeneously covers all hectares within a simulated grid cell. The "representative hectare approach" is a concession to

computational limitation, as photosynthesis and physiological processes are simulated individually for all individual plants of

a stand ( upto 36000 individuals). It balances adequate representation of trait diversity among individual against computational230

constraint. Also due to computation time constraints, we did not conduct replicate simulations.

To ensure that simulated vegetation had sufficient time to adapt to prevailing environmental conditions, we conducted sim-

ulations for 650 years, split into a 500 year spin-up phase and a 150 year transient phase. For the spin-up phase, we randomly

sampled years of the first 30 years of daily climate data (1950 to 1979). For the transient phase, we used the sequence of

daily climate data between 1950 and 2099. Trial simulations showed that a 500 year spin-up period is sufficient to ensure that235

vegetation is in a dynamic equilibrium state with environmental drivers.

2.5 Model benchmarking and evaluation

For benchmarking of aDGVM2 simulation results, we used five different remote sensing products: aboveground biomass

(Saatchi et al., 2011), tree height (Simard et al., 2011), tree cover (Friedl et al., 2010), MODIS evapotranspiration (Zhang et al.,

2010) and natural vegetation type (Ramankutty et al., 2010). All remote sensing data sets were aggregated to a 0.5° × 0.5°240

spatial resolution, to match the spatial resolution of model simulations by calculating the mean of all values within each 0.5°

grid cell, or using nearest neighbour aggregation in the case of vegetation type ("raster" package in R, Hijmans and van Etten,

2012). We first compared model results and observations assuming that the entire study region is covered by natural vegetation

(Figs.1). Then we repeated the comparisons only for areas with predominantly natural cover, i.e., we masked out areas with

more than 50% managed land (Figs. S4, land cover classes 7 ‘Cultivated and Managed Vegetation’ and 9 ‘Urban and Built-up’245

in, Tuanmu and Jetz, 2014). We calculated Normalized Mean Squared Error (NMSE) and coefficient of determination (R2 to

quantify agreement between data and simulated variables.
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2.6 Biome classification

The aDGVM2 simulates state variables such as biomass and canopy cover of individual plants in simulated vegetation stands

(1 hectare which is a representative of grid cell). We used woody canopy area, abundance of shrubs and trees, and grass250

biomass to classify the simulated vegetation into biome types (Fig. S5). We used 10-year averages of state variables for the

periods 2000-2009, 2050-2059 and 2090-2099 to represent the 2000s, 2050s and 2090s, respectively. We classified areas

with woody canopy cover below 5% as barren if grass biomass was below 100 kg/ha, and as grassland if grass biomass

exceeded 100kg/ha. Grassland was classified as C3 grassland or C4 grassland based on predominance of C3 or C4 grass biomass.

Simulated woody individuals were classified as trees if they had three or less stems and as shrubs if they had four or more255

stems (see supplementary material). The canopy cover of woody plants and grass biomass were used to separate woodland and

savanna biomes. Grid cells with tree canopy cover greater than shrub canopy cover, tree canopy cover between 5% and 45%,

and grass biomass below 100 kg/ha, were classified as woodland. Grid cells with the same woody cover characteristics but

grass biomass higher than 100kg/ha were classified as savanna. Savanna was further separated into C4 savanna or C3 savanna

based on the predominance of C3 or C4 grass biomass. Areas with canopy cover greater than 45% were classified as forest if260

tree cover exceeded shrub cover, or shrubland if shrub cover exceeded tree cover, irrespective of grass biomass. Forests were

subdivided into evergreen and deciduous forest based on the dominance of canopy area of both tree phenology types. Biomes

considered in this study were hence C3 grassland, C4 grassland, shrubland, woodland, deciduous forest, evergreen forest, C3

savanna and C4 savanna.

Biomes differ in the amount of precipitation they receive and their temperatures. Whittaker plots describe the boundaries265

of observed biomes with respect to temperature and precipitation. We used the "plotbiomes" R-package (https://github.com/

valentinitnelav/plotbiomes by Valentin S, tefan) to create Whittaker plots based on Ricklefs (2008) and (Whittaker, 1978). We

overlaid the simulated biomes on Whittaker plots to assess at climatic niches of biomes under current climate to determine

shifts in climatic niches by the end of this century as a result of climate change and elevated CO2 under both RCPs (see section

3.6).270

2.7 Calculation of biome-level evapotranspiration

For analyzing evapotranspiration change we calculated the amount of water transpired per unit leaf biomass. Simulated ET and

leaf biomass for woody plants, C3 grass and C4 grass were summed and scaled to the grid level, taking latitudinal variation

of grid cell area into account. Absolute change in evapotranspiration quantity can either result from the change in biome area

or from a change in total amount of leaf-biomass over time or from changes in water use efficiency. In order to eliminate275

the effects caused by change in biome area and leaf biomass, we calculated biome level evapotranspiration by normalizing

evapotranspiration with biome-level leaf biomass (Equation 6). Due to the normalization differences in evapotranspiration at

biome level, are comparable between different biomes and independent from biome attributes such as its spatial extent and

biome-level biomass. The biome-level evapotranspiration is calculated as the ratio of total annual ET over total leaf biomass
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for all respective biomes:280

Ebiome =

∑G
i=1(Egrid,iAgrid,i)∑G
i=1(Bgrid,iAgrid,i)

(6)

where Ebiome is biome-level ET (mm/kg/year), 1, 2, . . . , G represent the grid cells of the biome, Agrid,i is the area of grid cell i

(m2, Egrid,i is total evapotranspiration of grid cell i (mm/year), Bgrid,i is leaf biomass of grid cell i (kg/m2. Choosing to normalize

evapotranspiration to leaf biomass integrates over both increased water use efficiency and soil water availability constraints. It

is therefore suitable to characterize overall change in the water balance over time at biome level, as it not only indicates water285

used to produce new biomass (as GPP over transpiration would express), but also includes water required to sustain existing

biomass. We calculated the percentage change in Ebiome for respective scenarios between the 2010s and 2050s, and between

the 2010s and the 2090s.

3 Results

3.1 Model performance and contemporary vegetation patterns290

The aDGVM2 captured contemporary large-scale patterns of biomass, canopy cover, tree height and evapotranspiration. Model

results agreed well with remote sensing products used for benchmarking (Fig.1). R2 was 0.61, 0.45, 0.6 and 0.71, and NMSE

was 0.48, 0.78, 0.4 and 1.07 for biomass (Saatchi et al., 2011), tree height (Simard et al., 2011), tree cover (Friedl et al.,

2010) and evapotranspiration (Zhang et al., 2010), respectively (Figs.1 and 2). Data-model agreement improved when masking

out managed land (Tuanmu and Jetz, 2014). R2 increased to 0.66, 0.71, 0.67 and 0.80, while NMSE decreased to 0.43, 0.30,295

0.61 and 1.03 for biomass, tree height, tree cover and evapotranspiration, respectively (Fig.S4). The model performed well in

areas with higher fractional cover of natural vegetation, such as the Himalayas, Western Ghats and the northeast of the region,

although the model overestimated biomass and canopy area in the Brahmaputra basin which lies between 28°N - 34°N and

90°E - 96.5°E in the northeast of the study region (Fig.1a,c, Kumar et al., 2020).

The model simulated evergreen forests along the Himalayan mountains, southern part of the Western Ghats and Sri Lanka,300

whereas deciduous forest was simulated in the northern Western Ghats, central India and southern parts of Myanmar (Fig.2a).

Savanna was simulated in southern, northern and western parts of India and some regions of central Myanmar. Shrublands

were simulated in the arid regions of Pakistan, the western parts of India and Afghanistan. The aDGVM2 simulated woodland

in the west of central India, and grassland in the drier regions (Fig.2a). A large proportion of simulated deciduous forest area is

in good agreement with that in maps of potential natural vegetation (PNV, Figs.2b,c). However a large proportion of simulated305

savanna area is represented as deciduous forest in the map of PNV (Fig.2b).

3.2 Projected changes in biome distribution pattern

The aDGVM2 projected increasing trends for canopy cover and above ground biomass in response to climate change and

CO2, and hence, changes in biome type, predominantly from savanna and grassland to deciduous forest (Fig.3a,b). Simulations
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showed an increase in the area covered by evergreen and deciduous forests under both scenarios with eCO2, in contrast to310

simulations under both scenarios with fCO2 where CO2 was fixed after 2005 (Table.1). Under RCP4.5+eCO2, evergreen and

deciduous forest cover increased by 3.1% and 21.2% until the 2050s, and 38.0% and 59.1% until the 2090s, respectively. Under

RCP8.5+eCO2, evergreen and deciduous forest increased by 24.8% and 45.4% until the 2050s, and 46.5% and 60.2% until the

2090s, respectively. The model simulated a small increase in forest area for RCP4.5+fCO2, where the area increased by 7.9%

and 14.4% for evergreen and deciduous forest until the 2090s, respectively. Evergreen forests were mainly simulated along the315

Himalayas, Western Ghats and eastern parts of the study region under current conditions (2000s, (Fig.3a), but expanded into

the south of peninsular India in future periods (2050s and 2090s) under RCP4.5+eCO2. Deciduous forest cover also increased

in future periods in central India and along the Himalayas (Figs.3 and S6).

The extent of C4 savanna showed a significant decrease under scenarios with eCO2, although in RCP4.5+eCO2, it showed

a increase by 12.1% between the 2010s and the 2050s (Table. 1, Fig.3). Simulated C4 savanna area decreased by 14.1%320

relative to the 2000s until the 2090s under RCP4.5+eCO2. Under RCP8.5+eCO2 the model projected a decrease in C4 savanna

area of 21.6% and 32.2% until the 2050s and the 2090s, respectively. The area covered by C4 savanna increased under both

RCPs with fCO2 (Table.1). C4 savannas were mainly located in the northern plain and peninsular India in the baseline period.

However, these areas were replaced by deciduous forests in the northern plain and central India, and by evergreen forests in

peninsular India and in the southeast of the region by the 2090s under eCO2 scenarios (Figs.3a and S6a). The model simulated325

a decrease of area covered by woodland, shrubland, grasslands and C3 savanna by the 2090s under all scenarios (Table. 1, Fig.

3). Simulations showed an increase in barren areas in the western part of the region under all scenarios (Figs. 3 and S6, Table.

1).

3.3 Projected changes in biomass at biome level

The aDGVM2 predicted an increase in mean biomass for evergreen and deciduous forest in the eCO2 scenarios for both RCPs330

(Table. 2). Under RCP4.5+eCO2, mean above ground biomass in evergreen and deciduous forest increased by 8.1% and 14.4%

by the 2050s and 3.8% and 15.7% by the 2090s, relative to the baseline period. The increase is even higher under RCP8.5+eCO2

(Table. 2). The mean biomass of woodland decreased under both RCPs except for the 2050s with eCO2 scenarios. The mean

biomass of grassland increased under RCP4.5, but decreased for C4 grassland under RCP8.5 for both fCO2 and eCO2 scenarios.

Shrublands in the western part of the study region showed an increase in mean biomass under eCO2 scenarios except for the335

2050s under both RCPs, and a decrease under fCO2 for both RCPs (Table. 2). Our results showed that under RCP4.5 and

RCP8.5 biomass decreased in the areas along the Himalayas, as well as in the central, north-eastern and western parts of the

study region by the end of the century. Modelled biomass decrease is higher under RCP8.5 in these regions (Figs. 4 and S7).

Biomass in the central and south-eastern part of the region is projected to increase under both RCPs with eCO2 until the 2050s

and 2090s, and to decrease in southern India and in parts of western South Asia (Figs. 4 and S7). We found increased biomass340

in Afghanistan, western Pakistan, Nepal and the southern part of Myanmar, and decreased biomass in the western arid part of

the study region under both RCPs for both eCO2 and fCO2 (Fig.5), though the magnitude of change is different (Figs.4 and

S7). There were few areas in the western part of the study region where the model predicted increased biomass only under

11



fCO2 for both RCPs (Figs.5). In large parts of the study region, biomass increased under eCO2 for both RCPs but decreased

under fCO2, that is, CO2 fertilization compensates climate change induced biomass die-backs in these regions (Figs.5).345

3.4 Projected changes in evapotranspiration at biome level

The response of simulated Ebiome varies in different biomes under both RCP4.5 and RCP8.5 (Table. 3). Under the RCP4.5+fCO2

scenario the model predicted a decrease in ET in all biomes except for deciduous forest and shrubland where it increased by

1% and 2.1% until the 2050s, and by 0.3% and 11.9% by the 2090s, respectively. Simulated Ebiome under RCP8.5+fCO2

for deciduous forest and shrubland increased by 4.2% and 5.2% until the 2050s, and by 5.2% and 16.4% until the 2090s,350

respectively. The model also predicted increased Ebiome for C4 grassland, evergreen forest and C4 savanna until the 2090s

under RCP8.5+fCO2 (Table.3). Comparisons of the RCP4.5+fCO2 and RCP8.5+fCO2 scenarios indicated that the former had

a higher Ebiome than the latter scenario across all biomes because precipitation decrease is higher in the RCP8.5 scenario than

in the RCP4.5 scenario. Under both RCPs with eCO2, the model predicted a decrease in Ebiome across all biomes, except for a

marginal increase in shrubland under RCP4.5 and deciduous forest under RCP8.5 until the 2050s and the 2090s (Table. 3). In355

general, scenarios with eCO2 showed lower biome-specific evapotranspiration across (Ebiome) most of the biomes compared to

simulations with fCO2.

3.5 Response of mean ET and mean above ground biomass to climate change

The model predicted a larger increase in absolute annual mean ET (mm/year) under eCO2 than fCO2 for both RCP scenarios

due to the corresponding increase in biomass (Figs. 4 and S7). We compared the spatially averaged annual values over entire360

South Asia of simulated absolute ET with MAP over the period from 1951 to 2099 and found a statically significant relation

(p-value <0.005). We found that absolute ET was positively correlated with MAP under all four scenarios (Figs.6a and S8a),

but weakly correlated with MAT (Figs. 6b and S8b). For a given MAP, the spatially averaged annual value of above ground

biomass (AGBM) was lower in scenarios with fCO2 than scenarios with eCO2 under both RCPs (Figs. 6c and S8c). The

spatially averaged annual value of AGBM decreased beyond a MAT of 23.5°C for both RCPs with fCO2, whereas it increased365

beyond 23.5°C under both RCP scenarios with eCO2 (Figs.6d and S8d).

3.6 Impact of climate change on climatic niches of biomes

The climate niches of simulated biomes broadly overlapped with the biome niches in the Whittaker scheme (Figs. 7 and S9,

Ricklefs, 2008; based on Whittaker, 1975). Under RCP4.5+eCO2 and RCP8.5+eCO2, the aDGVM2 simulated shifts of climatic

niches of biomes. Evergreen and deciduous forest biomes were predicted to invade the niche space of savannas under eCO2370

scenarios (Figs.7 and S9). Savannas in turn were predicted to expand their climatic niche to MAT > 30°C by 2099, a climatic

space that was essentially not occupied by current biomes. Under RCP8.5+eCO2 in the 2090s, forests completely occupied the

climate space by 2090s which currently occupied by savanna (Fig. S9).
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In both scenarios with fCO2, savanna occupied the climate space delineated by MAT >25°C and MAP between 500mm and

1500mm and did not experience major replacement by forest. The model predicted that savanna expansion in climate space was375

higher under RCP8.5+fCO2 than under RCP4.5+fCO2 (Figs.7 and S9). Other biomes also experienced shifts in their climate

space (Fig. 7). However, the results showed that for both current and future period grasslands and shrublands occupied the

region with low MAP (<500mm), and woodland occupied low MAP (<800mm) regions, which corresponds to the western arid

and semi-arid region of the study region under scenario with eCO2 (Fig. 7).

4 Discussion380

4.1 Impact of climate change and elevated CO2 on biomes and biomass

Our simulations for RCP4.5+eCO2 and RCP8.5+eCO2 showed a strong positive response of vegetation growth, i.e., increases

of biomass, canopy cover and canopy height. Mean biomass in most biomes was projected to increase, but the magnitude of

increase differed considerably between different scenarios (Table.2). Projected change in canopy cover resulted in biome tran-

sitions. Under future conditions, the spatial distribution, extent and biomass of evergreen forests mostly remained at the current385

state, and evergreen forests were more resistant to climate change than deciduous forests. Expansion of deciduous forest into

open biomes due to increasing woody cover resulted in significant loss of savanna area in the Deccan region under both RCPs

with eCO2 by the end of the century. Transition from deciduous forests to evergreen forest was simulated for the mountain

regions of South Asia (Scheiter et al., 2020) i.e., the Himalayas and the Western Ghats, where precipitation was predicted to

increase. The trade-offs between specific leaf area ASLA –leaf longevity (LL) results in emergence of evergreen behavior in390

wet regions South Asia. In the wet tropics, higher LL allows achieving a constant positive carbon balance from photosynthesis

throughout the year and increases the residence time of nutrients and carbon in the plant and therefore enhances the photo-

synthetic gain per unit carbon and nutrient investment in leaves Kikuzawa and Lechowicz (2011).The deciduous behavior is

advantageous in dry regions, as in Deccan region, because trees that do not invest much carbon into their leaves per unit dry

mass (higher ASLA and lower LL) lose less investment when shedding them during the dry season. Phenology change as a re-395

sult of climate change have already been observed (Buitenwerf et al., 2015; Cleland et al., 2007). In Scheiter et al. (2020),

we showed that climate change supports transitions to tall evergreen vegetation in tropical Asia and found increases in

the abundance evergreen plants and decreases in the abundance deciduous plants in mainland Southeast Asia, central

India and Pakistan. This relative advantage of evergreen plants over deciduous plants under elevated CO2 in aDGVM2

can be explained fact that increased intrinsic water use efficiency under eCO2 in evergreen plants are higher than in400

deciduous plants as demonstrated by Soh et al. (2019). Previous modeling studies also support aDGVM2 result showing

transitions from deciduous to evergreen vegetation . With the BIOME4 model, Ravindranath et al. (2006) simulated the

response of forest to SRES A2 and B2 scenarios and reported similar changes toward evergreen phenology. A study by

Chaturvedi et al. (2011) using the IBIS model also predicted transitions toward evergreen forest.

405
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Woody encroachment in many ecosystems is attributed to rising CO2 and this is supported by studies based on both

field observations (e.g., FACE experiments) and satellite data (Brienen et al., 2015; Fischlin et al., 2007; Piao et al.,

2006; Schimel et al., 2015; Archer et al., 2017; Stevens et al., 2017). The aDGVM2 also supports these findings i.e.,

increasing canopy cover and woody biomass under the eCO2 condition and agrees with the reported greening trend in

South Asia during the last three decades (Wang et al., 2017). Elevated CO2 affects plants by increasing their photosynthetic410

rate, growth rate and water use efficiency, leading to an increase in biomass (Leakey et al., 2009; Norby and Zak, 2011). In-

creased photosynthetic rates under elevated CO2 are due to an increase in the rate of rubisco carboxylation for C3 plants, with

a concurrent decrease of photorespiratory losses of carbon (Long et al., 2004). Due to the improved carboxylation efficiency,

C3 plants can respond by reducing stomatal conductance, thereby reducing transpirational losses, improving leaf water status,

water use efficiency, and favoring leaf area growth (Long et al., 2004; Norby and Zak, 2011). Evidence from both observation415

and modelling of forest dynamic suggests that combined effects of eCO2 and increased water use efficiency include increases

in forest growth, canopy greening, wide spread increases in woody plant biomass and potential forest carbon sink. However, it

is still unclear how the CO2 responses scale to the ecosystem level (Hickler et al., 2015), and how nutrient limitation from the

soil may influence ecosystem responses to eCO2. Körner (2015) argued that carbon from atmosphere can only be converted

into biomass if other factors such as nutrients, temperature and water are not limiting. In addition, benefit of eCO2 can be420

down-regulated by broad scale forest die-off due to frequent drought and warmer temperature (Choat et al., 2018; Mcdowell

et al., 2016), tree mortality due negative tree physiological responses and negative carbon balance and accelerated pest attacks.

Rising background mortality rates combined with projected increases in intensity, frequency and duration of drought (Huang

et al., 2016) increases the uncertainty regarding positive effect of eCO2.

425

In the long run, whether ecosystems act as carbon source or sink can be estimated using models that consider all factors that

are relevant in the carbon cycle and its associated factors (Fatichi et al., 2014; Körner, 2015). However, (Terrer et al., 2019),

showed that the global-scale response to eCO2 from experiments is similar to past changes in greenness (Piao et al., 2019) and

biomass (Sitch et al., 2015) in response to eCO2. This suggests that CO2 will likely continue to stimulate plant biomass in the

future despite the constraining effect of soil nutrients, however also argued that the empirical relationships with soil nutrients430

can be powerful for explaining large-scale patterns of eCO2 responses, despite ecosystem-level uncertainties. According to our

simulations we can conclude that natural vegetation of South Asia likely will remain a carbon sink in the future (Fig.5).

4.2 Impact of climate change and fixed CO2 on biomes and biomass

Under both fCO2 scenarios, the spatial distribution of savanna areas remained in its contemporary state. Central India and

the Deccan Plateau showed a transition of deciduous forest to savanna, because forest canopy opened up due to tree mortality435

caused by increasing temperature and reduced MAP. This indicates that plants experience temperature and drought stress under

fixed CO2. These stresses were compensated by CO2 fertilization in eCO2 scenarios where the aDGVM2 simulated increased

biomass and woody encroachment in areas affected by climate-induced die-back in fCO2 simulations. This aDGVM2 behavior

agrees with results presented by Lapola et al. (2009) who modelled biome shifts from forest to savanna in absence of CO2
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fertilization for the Amazon region. Changes in precipitation regimes are likely to have a strong influence particularly in arid440

and semi-arid regions, such as grasslands (Verstraete et al., 2009). The complex interactions of inter-annual precipitation vari-

ability and precipitation seasonality can result in rapid ecosystem transitions (e.g., between alternative stable states with high

and low vegetation biomass; Holmgren and Scheffer, 2001). The decrease in simulated AGBM after MAT increases beyond

23.5°C under fCO2 scenarios can be explained by the longer exposure of vegetation to temperatures beyond the optimum

temperature range of C3 photosynthesis during the main growing season. This effect was further enhanced by decreasing MAP445

and the absence of CO2 fertilization. This implies that the increase in MAT above 23.5°C together with weak CO2 fertilization

would have negative consequences for carbon sequestration. The sensitivity of biomass to temperature and CO2 change

has been investigated in many studies (Norby and Luo, 2004; Song et al., 2019; Sperry et al., 2019). A meta-analysis

by Lin et al. (2010) showed that warming significantly increased biomass by 12.3% (with a 95% confidence interval

of 8.4–16.3%) across all the terrestrial plants included. This observation is consistent with our model results. Biomass450

showed a positive relation with MAT which did not change with mean annual precipitation or experimental duration or

CO2 enrichment (Lin et al., 2010). These findings are also supported by previous studies by Rustad et al. (2001), Walker

et al. (2006), and Dormann and Woodin (2002) which have revealed that warming generally increases terrestrial plant

biomass, indicating enhanced terrestrial carbon uptake via plant growth. Previous modeling studies using Biome-BGC

(Running and Hunt Jr, 1993), Century (Parton et al., 1993), and TEM Tian et al. (1999) have shown an increase in455

productivity when both climate change and CO2 effects were considered. However, the increase was smaller when only

climate change effects were considered and both Biome-BGC and TEM suggest that without CO2 fertilization, average

productivity would decline relative to current annual average as shown by our result (Fig. 6d). This suggests complex-

ity and challenges in seeking general patterns of terrestrial plant growth in a future warmer climate condition. It also

implies that we need a better understanding of impacts of heat stress on vegetation and how it interacts with drought and CO2460

fertilization. It is also unclear to what degree thermal acclimation may counteract some of the negative effects on plant growth

caused by higher temperatures (Lombardozzi et al., 2015).

4.3 Impact of climate change and CO2 change on climatic niches of biomes

Elevated CO2 has a major impact on the climatic niche space of biomes. Our simulations showed forest invasion into the

niche space currently occupied by savanna by the end of the century. The expansion of forests to drier areas corresponds to a465

widening of their climate niche space under eCO2. This expansion is mainly driven by eCO2 is corroborated by the fact that in

absence of CO2 fertilization the climatic niche of biomes is stable, i.e., biomes occupy the same niche space under current and

future conditions. These findings imply that the bioclimatic boundaries used to define biome niche space are not static, but are

specific for given CO2 levels. Therefore, the thresholds of the Whittaker’s biomes need to be redefined for a high-CO2 world

such that they encompass the altered climatic envelopes of biomes under elevated CO2 in future (Fig. 7). The shift in niche470

space can be attributed to the shift in plant communities caused by the combined effect of climate change and elevated CO2,

which increases plant water use efficiency allowing them to grow under drier conditions. These community shifts can also lead

to change the characteristics of biomes by altering community structure and ecosystem functions (Chapin et al., 1997).
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4.4 Effect of CO2 on ET and its interaction with climate change

Climate change has direct effects on hydrological processes (Liu et al., 2008). ET and water deficit influence plant productivity475

and distribution (Stephenson, 1998). Higher biomass coincided with increased absolute amounts of ET for eCO2 scenarios

in some parts of the study region under both RCPs by the end 21st century (Figs. 5 and S7). This change can be attributed

to higher leaf biomass accumulated in plants ebaled by increased photosynthetic efficiency under eCO2. The higher amount

of leaf biomass offsets the water-saving effect caused by reduced stomatal conductance due to improved water use efficiency

under eCO2 scenarios and resulted in reduced ET per unit leaf biomass (Warren et al., 2011). Our results showed that the480

strength of the CO2 fertilization effect is relevant when attempting to determine Ebiome at biome level during the 21st century.

Biome-specific ET decrease was less pronounced under RCP4.5 due to a lower concentration of atmospheric CO2 compared

to RCP8.5. Our simulated decrease in ET in response to climate change and increasing CO2 concentration agrees with Kergoat

et al. (2002) who have reported decreased ET under elevated CO2 concentration in a chamber experiment. However, reduced ET

under eCO2 can reduce regional-scale atmospheric humidity and thereby enhance the vapor pressure deficit (VPD), between485

leaves and atmosphere, a driving force for water loss, which may partially counteract CO2-induced reduction of ET due to

decreased stomatal conductance. Due to stomatal closure, photosynthetic rates under soil water stress conditions decline in

aDGVM2 when atmospheric VPD increases. Projected increase in air temperature also increases the saturated water vapor

pressure. As a result VPD will increase, given that increase in actual vapor pressure is limited by soil water availability whereas

the increase in saturated vapor pressure is not (Yuan et al., 2019) and potential evapotranspiration will increase with temperature490

(Warren et al., 2011). As future climate projections vary spatially and temporally, there was high model uncertainty on how ET

will respond to changes in precipitation and temperature.

4.5 Implication of the projected change for conservation

Changes in biome types imply changes in biodiversity, ecosystem function and productivity. Each biome is characterized by a

range of distinctive ecological processes and functions. For instance distribution of forest ecosystem in the mountains is largely495

regulated by the altitude and climatic factor (Saikia et al., 2017). They have high species richness and needed to be protected

from the ever-increasing anthropogenic pressure and climate change. Open biomes such as grassland and savanna support high

biodiversity (Parr et al., 2014). Pronounced increases in tree density in grasslands and savannas will alter vegetation structure

and reduce grassland biodiversity. Such changes will negatively affect savanna-specific ecosystem services such as grazing

potential, tourism and wildlife habitat availability (Parr et al., 2012). The threat posed to the biodiversity of Asian savannas500

by climate change is aggravated by inadequate management policies that misinterpret them as degraded forest (Ratnam et al.,

2016). In this context, management policies aim to afforest open biomes, although paleo-ecological evidence indicates that

these open biomes are not degraded forest but ancient ecosystems (Kumar et al., 2020; Ratnam et al., 2016). Moreover, in-

creased woody cover can negatively affect water resources in the semi-arid regions of the study area. Acharya et al. (2018)

have shown that increased woody cover hinders the downward movement of water causing increased water inception which505

have negative effects on ground water recharge. It is therefore necessary to control the abundance of woody plants in semi-arid
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regions to control stream flow and enhance groundwater recharge (Bednarz et al., 2001).

In South Asia, biodiversity hotspots have a very unique topography, where climate varies strongly over short distances. As

global biodiversity hotspots, mountain forest ecosystems in the Western Ghats, the Himalayas and northeastern part of the510

study area (Indo-Myanmar) are particularly vulnerable to climate change (Myers et al., 2000) and need targeted management

action to mitigate adverse effects. Conservation of these hotspots requires consideration of many different attributes of plant

communities, ecosystems, landscapes, and plant diversity, how they will change, and how their ecosystem services are valued.

Conservation methods and policies that can accommodate minimal losses of ecosystem services and provide robust strategies515

to mitigate climate change impacts should be developed and implemented. In this context, DGVMs facilitate the exploration

of vegetation-climate interactions by providing detailed results for different management and climate scenarios. Such an ex-

ploration of different possible scenarios is necessary to develop optimized mitigation and conservation strategies for protected

areas in biodiversity hotspots. The value of DGVM modelling results lies in their potential to provide insights into multiple

future trajectories. Based on the most likely trajectories, the results can be used to tailor best-practice strategies for decision520

makers that need to manage conservation areas or protected areas Boulangeat et al. (2012).

4.6 Limitations of this modelling study

Our simulation results are constrained by the model formulation and the assumptions underlying aDGVM2. Disagreement

between model results and data used for benchmarking can be attributed to the fact that the aDGVM2 simulates potential

natural vegetation whereas remote sensing products integrate land use. This implies that enhancing the model to simulate525

observed land cover patterns would require additional information on anthropogenic impacts. Anthropogenic activities such as

deforestation, habitat conversion and urbanization can modify the interactions between climate, plant communities and biomes

(Hansen et al., 2001).

In addition data-model disagreement can be explained by model uncertainties and processes currently not considered in

aDGVM2. For instance, aDGVM2 uses carbon allocation parameters that are not easily measurable in the field, which lim-530

its the evaluation of simulated mechanisms. The model currently does not account for carbon that plants invest into nutrient

acquisition (e.g. mycorrhiza) or into defences against predation and pathogens (Zemunik et al., 2015). There is insufficient

ecophysiological data from the study region, required for parameterization of trait ranges used to simulate rgional plant com-

munities (Kumar and Scheiter, 2019). The complexity of the interactions between global change and biomes as well as bio-

diversity is difficult to model in absence of such data. While the model currently capture the more optimistic effects related535

to CO2 fertilization and temperature, associated mortality reasons such as pests attack, heat damage to plant tissues, etc are

insufficiently represented in the models. The low resolution of input data both soil and climate data also limits the model’s

capability to capture high resolution regional heterogeneity in vegetation distribution. Further, the strength of CO2 fertilization

modelled in aDGVM2 may be overestimated because the effect of nutrient limitation on productivity is not included in this
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version of aDGVM2 (Körner et al., 2005; Terrer et al., 2018). Despite these caveats, we are nonetheless confident to capture540

general patterns of future global change and its consequences for biomes and their boundaries in South Asia.

5 Conclusions

The model reproduced the contemporary distribution of biomes, biomass, evapotranspiraton and tree height. We investigated

the impact of eCO2 and climate change on South Asian biomes and found that climate change and CO2 fertilization in combi-

nation are substantial drivers of biome change, and that elevated CO2 concentrations altered the climatic envelope of biomes in545

addition to causing increases in biomass, tree height and canopy cover. Continued biomass increase indicates that South Asia’s

natural vegetation will likely remain a carbon sink in the 21st century. Our results also imply that woody encroachment poses

threat to open biomes and causes transition of savanna biomes to deciduous forest in the future. The savanna biome is impor-

tant in the context of biodiversity conservation. We showed that bioclimatic niches of biomes are not static, but are specific for

given CO2 concentrations. We therefore argue that Whittaker plots used top illustrate niches of biomes need to be adjusted for550

future climate condition. We also found that simulated decrease in biomass-specific ET is more pronounced in scenarios with

eCO2 than in scenarios with fCO2 which indicates that water use efficiency will likely increase due to CO2 fertilization.

The biome transitions simulated under eCO2 and changing climate indicate the need to adjust ecosystem management,

mitigation strategies, and conservation policies for protected areas to allow targeted long-term management. To understand the

significance of ecological responses to climate change, it is essential to improve and expand biological monitoring activities555

(Loreau et al., 2001). To achieve this, the most vulnerable biomes that we identified in this study could be proposed as high-

priority targets for programs that monitor vegetation-climate interactions, productivity and biodiversity Proença et al. (2017).
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Table 1. Biome cover (in %) for the 2000s, 2050s and 2090s, and percent (%) change in biome cover from the 2000s to the 2050s and the

2000s to the 2090s under RCP4.5 and RCP8.5 with fixed and elevated CO2. ∆ indicates percent change in biome cover between time periods.
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RCP4.5 + fCO2

2010s 5.6 15.4 4.6 18.2 11.7 17.6 6.9 17.7 2.4

2050s 6.3 14.8 3.2 15.7 11.2 18.6 6.7 22.1 1.4

2090s 10.4 12.3 2.3 10.0 12.7 20.1 6.0 24.7 1.4

∆ 2050s-2010s 13.0 -3.7 -32.2 -13.6 -4.0 5.6 -3.0 25.4 -39.1

∆ 2090s-2010s 87.0 -20.1 -50.0 -45.2 7.9 14.4 -12.7 40.1 -41.3

RCP4.5+ eCO2

2010s 5.7 15.2 4.8 18.6 11.5 17.5 6.8 17.5 2.4

2050s 6.5 13.9 3.5 15.0 11.9 21.2 7.0 19.6 1.3

2090s 10.4 10.4 2.5 10.7 15.9 27.9 6.2 15.1 0.9

∆ 2050s-2010s 13.5 -8.2 -26.9 -19.7 3.1 21.2 3.8 12.1 -44.7

∆ 2090s-2010s 82.0 -31.6 -48.4 -42.4 38.0 59.1 -8.4 -14.1 -63.8

RCP8.5 + fCO2

2010s 6.3 14.7 4.5 18.8 11.7 17.3 6.3 18.0 2.4

2050s 8.8 12.3 2.5 14.7 12.9 21.7 6.6 19.0 1.5

2090s 9.4 15.0 2.5 11.0 10.8 14.2 6.7 29.0 1.4

∆ 2050s-2010s 39.0 -16.5 -43.7 -21.9 10.1 25.0 4.1 5.4 -39.1

∆ 2090s-2010s 48.8 1.8 -43.7 -41.6 -7.9 -17.9 5.7 61.0 -41.3

RCP8.5 + eCO2

2010s 5.9 14.8 4.7 18.0 11.6 17.5 7.1 17.9 2.5

2050s 9.7 10.5 3.2 13.9 14.5 25.4 7.1 14.1 1.6

2090s 6.3 11.5 4.2 12.6 17.0 28.0 7.0 12.2 1.3

∆ 2050s-2010s 64.9 -29.5 -32.6 -22.9 24.8 45.4 0.7 -21.6 -35.4

∆ 2090s-2010s 7.0 -22.2 -10.9 -30.3 46.5 60.2 -1.5 -32.2 -47.9
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Table 2. Mean biomass (in t/ha) within biomes for the 2000s, 2050s and 2090s, and percent (%) change in biomass from the 2000s to the

2050s and the 2000s to the 2090s under RCP4.5 and RCP8.5 with fixed and elevated CO2. ∆ indicates percentual biomass changes between

time periods.
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RCP4.5 + fCO2

2010s 0.9 1.5 30.4 189.7 142.1 4.0 35.5 36.8

2050s 0.9 1.8 29.2 191.0 144.0 3.6 38.0 44.7

2090s 0.9 2.1 24.5 188.1 148.4 3.3 32.6 31.8

∆ 2050s-2010s -1.1 19.5 -4.0 0.7 1.3 -10.9 6.8 21.4

∆ 2090s-2010s 4.4 35.1 -19.4 -0.9 4.4 -17.8 -8.2 -13.7

RCP4.5 + eCO2

2010s 0.9 1.4 30.7 189.2 142.5 4.0 35.9 37.3

2050s 1.0 1.5 34.7 204.6 162.9 4.3 48.1 53.2

2090s 1.0 1.6 29.3 196.4 164.9 4.1 43.2 51.8

∆ 2050s-2010s 17.2 5.6 13.0 8.1 14.4 6.0 34.0 42.7

∆ 2090s-2010s 12.6 8.3 -4.6 3.8 15.7 2.5 20.4 39.1

RCP8.5 + fCO2

2010s 0.9 1.5 30.7 191.1 146.3 3.9 35.8 34.9

2050s 0.7 1.6 23.5 182.1 134.7 3.3 31.2 28.0

2090s 0.8 1.6 18.7 175.7 136.4 3.1 28.5 33.2

∆ 2050s-2010s -19.1 4.7 -23.4 -4.7 -7.9 -15.3 -12.8 -19.7

∆ 2090s-2010s -14.6 4.7 -39.0 -8.0 -6.8 -20.0 -20.5 -4.9

RCP8.5 + eCO2

2010s 0.9 1.3 31.2 188.3 146.1 4.1 36.5 32.0

2050s 1.0 1.4 32.1 206.3 162.7 4.0 45.1 47.2

2090s 0.7 1.1 30.8 206.0 183.4 4.7 49.8 50.7

∆ 2050s-2010s 9.9 8.7 2.8 9.6 11.3 -1.5 23.6 47.4

∆ 2090s-2010s -22.0 -12.7 -1.6 9.4 25.6 15.5 36.6 58.2
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Table 3. Biome-level ET normalized to biomass (Ebiomes, mm/kg/year) for the 2000s, 2050s and 2090s, and percent (%) change in Ebiomes

from the 2000s to the 2050s and the 2000s to the 2090s under RCP4.5 and RCP8.5 with fixed and elevated CO2. ∆ indicates percentual ET

changes between time periods.

RCP Scenarios
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RCP4.5 + fCO2

2010s 186.7 95.5 257 159.7 288.5 183.3 252.5 194.2

2050s 170.9 80.5 217 157.4 291.3 187.2 244.6 151.9

2090s 185 72.3 209.6 140.7 289.3 205.2 247.1 179.1

∆ 2050s-2010s -8.5 -15.7 -15.6 -1.4 1 2.1 -3.1 -21.8

∆ 2090s-2010s -0.9 -24.3 -18.5 -11.9 0.3 11.9 -2.1 -7.8

RCP4.5 + eCO2

2010s 185.4 93.4 259.7 159.7 288.1 190.9 251.6 188.4

2050s 161.2 79.7 217 147.8 283 183.2 238.2 153.4

2090s 164.1 73.4 210.2 138.7 280.4 197.2 236.6 157.1

∆ 2050s-2010s -13.1 -14.6 -16.5 -7.4 -1.8 -4.1 -5.3 -18.6

∆ 2090s-2010s -11.5 -21.4 -19.1 -13.2 -2.7 3.3 -6 -16.6

RCP8.5 + fCO2

2010s 172.8 87.4 257.5 160.9 286.5 185.5 244.7 188.1

2050s 153.7 72.7 243.2 158.3 298.5 195.1 241 162.7

2090s 195.6 67.6 231.1 162.7 301.3 216 267.5 150.2

∆ 2050s-2010s -11.1 -16.8 -5.5 -1.6 4.2 5.2 -1.5 -13.5

∆ 2090s-2010s 13.2 -22.6 -10.2 1.1 5.2 16.4 9.3 -20.1

RCP8.5 + eCO2

2010s 177.5 91.1 256.4 162.7 284.5 192.5 243.7 191.7

2050s 143.9 76.9 235.6 149.4 285.4 184.6 228.8 153.1

2090s 141.4 59.2 218.3 143.9 284.9 186 242.3 143.2

∆ 2050s-2010s -18.9 -15.6 -8.1 -8.1 0.3 -4.1 -6.1 -20.1

∆ 2090s-2010s -20.3 -35.1 -14.9 -11.6 0.1 -3.4 -0.6 -25.3

30



Figure 1. : Comparison between aDGVM2 results and data for (a) simulated biomass and Saatchi et al. (2011) biomass, (b) simulated tree

height and Simard et al. (2011), (c) simulated tree cover and Friedl et al. (2011) tree cover and (d) simulated evapotranspiration and Zang et

al. (2010) evapotranspiration. In the figure the first column shows the remote sensing products, the second column shows aDGVM2 results,

and the third column shows the difference between simulation and data and the fourth column shows the scatter plot between simulated state

variables against benchmarking data. NMSE and RMSE are normalized mean square error and root mean square error, respectively. In the

fourth column, each point represents one grid cell in the study region. For results with masked land use cover see supplementary Figure S4.

31



Figure 2. Comparison between simulated and observed biome patterns. (a) Simulated dominant biome type, (b) Sankey diagram showing

overlap between simulated biomes and potential natural vegetation cover (ISLSCP-II, Ramankutty et al., 2010) and (c) potential natural

vegetation. The Sankey graph shows how aDGVM2 biomes and PNV classes overlap.
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Figure 3. Simulated biome distribution for the 2000s, 2050s and 2090s under (a) RCP4.5+eCO2 and (c) RCP4.5+fCO2.The Sankey diagrams

showing the fractional cover of biomes and transitions between biomes from the 2000s to the 2050s and the 2050s to the 2090s under (b)

RCP4.5+eCO2 and (d) RCP4.5+fCO2. See Figure S6 for simulated biome distribution under RCP8.5.
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Figure 4. Projected change in biomass (t/ha), canopy area (%) and evapotranspiration (ET, mm/year) between the 2000s and 2050s, and

between the 2000s and the 2090s under (a) RCP4.5+eCO2 and (b) RCP4.5+fCO2. See Figure S7 for projected change of these variables

under RCP8.5.
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Figure 5. Maps showing areas where CO2-fertilization compensates biomass dieback caused by climate change between the 2000s and the

2090s under (a) RCP4.5 and (b) RCP8.5. and (c) aboveground biomass between 1950 and 2099 for South Asia in different scenarios.
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Figure 6. Relationship between (a) evapotranspiration (ET) and mean annual precipitation (MAP), (b) ET and mean annual temperature

(MAT), (c) mean above ground biomass and MAP and (d) mean above ground biomass and MAT under RCP4.5. The lines (both solid and

dotted) in all figures represent the best-fit regression line. Data points represent spatially averaged ET (a, b) and biomass (c, d) over entire

South Asia for each year from 1950 to 2099. See Figure S8 for results under RCP8.5.
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Figure 7. Simulated climate niches of biomes for the (a) 2000s, (b) 2050s and (c) 2090s under RCP4.5+eCO2 and (d) 2000s, (e) 2050s and

(f) 2090s under RCP4.5+fCO2. The simulated biomes are overlaid on the climate envelopes of Whittaker’s biomes and are plotted following

Ricklefs (2008) and Whittaker (1975). See Figure S9 for projected change in climatic niches of biomes under RCP8.5.
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