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Abstract. Earth System Models (ESMs) participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) showed 

large uncertainties in simulating atmospheric CO2 concentrations. We utilize the Earth System Model Evaluation Tool 

(ESMValTool) to evaluate emission driven CMIP5 and CMIP6 simulations with satellite data of column-average CO2 mole 

fractions (XCO2). XCO2 time series show a large spread among the model ensembles both in CMIP5 and CMIP6. Compared 

to the satellite observations, the models have a bias of +25 to -20 ppmv in CMIP5 and +20 ppmv to -15 ppmv in CMIP6, with 15 

the multi-model mean biases at +10 ppmv and +2 ppmv respectively. The derived mean atmospheric XCO2 growth rate (GR) 

of 2.0 ppmv yr-1 is overestimated by 0.4 ppmv yr-1 in CMIP5 and 0.3 ppmv yr-1 in CMIP6 for the multi-model mean, with a 

good reproduction of the interannual variability. All models capture the expected increase of the seasonal cycle amplitude 

(SCA) with increasing latitude, but most models underestimate the SCA. Any SCA derived from data with missing values can 

only be considered an “effective” SCA, as the missing values could occur at the peaks or troughs. The satellite data are a 20 

combined data product covering the period 2003–2014 based on the SCIAMACHY/ENVISAT (2003–2012) and TANSO-

FTS/GOSAT (2009–2014) instruments. While the combined satellite product shows a strong negative trend of decreasing 

effective SCA with increasing XCO2 in the northern midlatitudes, both CMIP ensembles instead show a non-significant 

positive trend in the multi-model mean. The negative trend is reproduced by the models when sampling them as the 

observations, attributing it to sampling characteristics. Applying a mask of the mean data coverage of each satellite to the 25 

models, the effective SCA is higher for the SCIAMACHY/ENVISAT mask than when using the TANSO-FTS/GOSAT mask. 

This induces an artificial negative trend when using observational sampling over the full period, as SCIAMACHY/ENVISAT 

covers the early period until 2012, with TANSO-FTS/GOSAT measurements starting in 2009. Overall, the CMIP6 ensemble 

shows better agreement with the satellite data than the CMIP5 ensemble in all considered quantities (XCO2, GR, SCA and 

trend in SCA). This study shows that the availability of column-integral CO2 from satellite provides a promising new way to 30 

evaluate the performance of Earth System Models on a global scale, complementing existing studies that are based on in situ 

measurements from single ground-based stations. 
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1 Introduction 

The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) concluded that since 1950 many of 

the observed changes in the climate system are unprecedented in the instrument record, confirming an unequivocal warming 35 

of the climate system (IPCC, 2013). Increasing emissions of greenhouse gases (GHGs) are the key drivers of anthropogenic 

climate change. The most important anthropogenic greenhouse gas is carbon dioxide (CO2), with CO2 emissions contributing 

more than half of the total global radiative forcing in 2011 relative to 1750 (IPCC, 2013). It is therefore important to monitor 

the long-term changes in atmospheric CO2 concentrations, to understand the sources and sinks of carbon, and to provide 

reliable projections of future CO2 concentrations under various scenarios. 40 

Photosynthesis causes a net uptake of atmospheric CO2 and thus declining atmospheric CO2 concentrations in the growing 

season. Conversely, atmospheric CO2 concentrations rise throughout the dormant season when there is a net release of CO2 

from the land due to decomposition of organic matter in soils. This uptake and release of carbon by the terrestrial biosphere 

throughout the year causes a seasonal cycle of atmospheric CO2 (Keeling et al., 1989). The seasonal cycle amplitude (SCA) 

has been increasing over the last 50 years, with higher increases in higher latitudes (Barnes et al., 2016; Graven et al., 2013; 45 

Yin et al., 2018; Keeling et al., 1995; Keeling et al., 1996; Myneni et al., 1997; Piao et al., 2018). A number of studies have 

explored the effects of CO2 fertilization, land-use change and climate warming on the SCA (Bastos et al., 2019; Zhao et al., 

2016; Fernández-Martínez et al., 2019). Although models do not agree unanimously, the dominant effects are a positive trend 

in SCA due to the CO2 fertilization combined with a negative trend due to climate warming. Some models however show a 

large positive trend due to climate warming (Zhao et al., 2016). Land-use is found to be a weaker effect in comparison to CO2 50 

fertilization and climate warming (Bastos et al., 2019; Fernández-Martínez et al., 2019). 

Most long-term measurements of CO2 are from ground-based stations. In situ ground-based measurements at Mauna Loa 

(Hawaii, USA) started in 1958, providing the first evidence that fossil fuel combustion leads to a measurable increase in 

atmospheric CO2 concentrations (Keeling et al., 1976). Other observatories around the globe now also measure atmospheric 

CO2, reporting an increase of about 45% since pre-industrial times (Ciais et al., 2013; Friedlingstein et al., 2019). 55 

Satellite measurements of CO2, with first near-infrared/short-wave-infrared (NIR/SWIR) nadir (downward-looking) based 

satellite retrievals starting in 2002, can complement the ground-based measurement network and provide regional and spatial 

distributions of CO2. The quantity obtained from measurements with NIR/SWIR satellite instruments is the column-average 

dry-air mole fraction of atmospheric CO2, denoted as XCO2. XCO2 is a dimensionless quantity defined as the vertical column 

of CO2 divided by the vertical column of dry air (i.e., all air molecules except water vapor) often given in ppmv (parts per 60 

million per volume). An analysis of growth rates (GR) and seasonal cycle amplitude (SCA) from satellite data and their 

sensitivity to growing season temperature anomaly presented in Schneising et al. (2014) shows a negative correlation between 

SCA and growing season temperature anomaly for the period 2003–2011, which was confirmed by Yin et al. (2018) for SCA 

anomaly in this timeframe. Satellite XCO2 products are often used in combination with atmospheric transport inverse 

modelling approaches to obtain information on surface fluxes by using a global or regional transport model with free fit 65 
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parameters (Basu et al., 2013; Houweling et al., 2015; Reuter et al., 2014; Chevallier et al., 2014). The satellite data can also 

be used to constrain process parameters of a terrestrial biosphere model, e.g., as part of a Carbon Cycle Data Assimilation 

System (CCDAS, e.g. Kaminski et al. (2013)), and have been used for the evaluation of chemistry-climate models (Hayman 

et al., 2014; Shindell et al., 2013). In the last few years, satellite data have also been used in direct comparison to output from 

climate models (e.g. Calle et al., 2019) characterizing rise and fall segments in seasonal cycles from GOSAT and comparing 70 

them to model output. 

A large ensemble of climate model simulations for different type of experiments under common forcings is provided by the 

Coupled Model Intercomparison Project (CMIP), with output available for CMIP5 (Taylor et al., 2012) and more recently 

Phase 6 (CMIP6, Eyring et al. (2016a)). ESMs produce a large range in projected atmospheric CO2, as a result of uncertainties 

in the future evolution of natural fluxes (Arora et al., 2013; Friedlingstein et al., 2006). Overall CMIP5 models overestimate 75 

the carbon content of the atmosphere (Friedlingstein et al., 2014; Hoffman et al., 2014). The largest uncertainties are associated 

with the response of the land carbon cycle to changes in climate and atmospheric CO2 (Friedlingstein et al., 2014; Hajima et 

al., 2014). The ability of ESMs to simulate the land and ocean contemporary carbon cycle has previously been investigated by 

Anav et al. (2013). They showed that most models were able to correctly reproduce the main climatic variables and their 

seasonal evolution, but found weaknesses in reproducing specific biogeochemical fields, such as a general overestimation leaf 80 

area index and photosynthesis. However, the magnitude of the global photosynthesis is not well constrained by observations, 

with estimates ranging between 112 and 169 PgC yr-1 (Ryu et al., 2019), and the dataset used by Anav et al. (2013) is on the 

lower end of this range. For CMIP6, (Arora et al., 2020) analyzed simulations with a CO2 increase of 1 % per year to quantify 

the carbon-climate feedbacks. They found no significant change in behavior from CMIP5 to CMIP6, but lower absolute values 

for models which included a nitrogen cycle. 85 

In this paper we focus on evaluating the growth rate and the seasonal cycle amplitude of simulated CO2, converted to XCO2, 

from CMIP ESMs which performed emission driven simulations with satellite observations in CMIP5 and CMIP6. The paper 

is structured as follows: the data products used in this study are introduced in Section 2. Section 3 describes the methods used, 

including the calculation of all derived quantities. A comparison between CO2 flask measurements and XCO2 measurements 

at different locations is given in Section 4. The evaluation of CMIP simulations with satellite data is presented in Section 5, 90 

divided into sections focusing on the models’ ability to simulate XCO2 time series, growth rate and seasonal cycle amplitude. 

A summary and conclusion is given in Section 6. 
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2 Data 

2.1 Observational datasets 

2.1.1 Satellite XCO2 95 

We use the Observations for Model Intercomparisons Project (obs4MIPs) version 3 (O4Mv3) XCO2 satellite data (Buchwitz 

et al., 2017a; Buchwitz et al., 2018). Obs4MIPs hosts observationally based datasets which have been formatted according to 

the CMIP model output requirements (e.g. variable definitions, coordinates, frequencies) in order to facilitate an easier 

comparison between observations and models (Ferraro et al., 2015; Teixeira et al., 2014; Waliser et al., 2020). The satellite 

product used here is a gridded (Level 3) monthly data product with a 5° x 5° spatial resolution following the obs4MIPs format, 100 

produced as part of the Copernicus Climate Change Service (C3S). The O4Mv3 product is retrieved from the two satellite 

instruments SCIAMACHY/ENVISAT (Bovensmann et al., 1999; Burrows et al., 1995) and TANSO-FTS/GOSAT (Kuze et 

al., 2009).  

This monthly mean XCO2 satellite dataset covers a 14-year timespan (2003–2016). It is obtained by gridding the level 2 product 

(individual soundings) generated with the Ensemble Median Algorithm (EMMA¸ Reuter et al. (2013)), in this case EMMA 105 

version 3.0 (EMMAv3, Reuter et al. (2017)). EMMA combines several different XCO2 level 2 satellite data products from 

SCIAMACHY/ENVISAT (2003–2012) and TANSO-FTS/GOSAT (2009–2016) and includes a bias correction to all products 

during overlap phases, resulting in a good agreement during the overlap period. This product was validated against Total 

Carbon Column Observing Network (TCCON, Wunch et al. (2011)) ground-based observations of XCO2, revealing a +0.23 

ppmv global bias, a relative accuracy (defined as standard deviation of the station-to-station biases) of 0.3 ppmv, and a very 110 

good stability in terms of a linear bias trend (-0.02 ± 0.04 ppmv yr-1) (Buchwitz et al., 2017b). While the dataset ends in 2016, 

our evaluation only goes up to the year 2014 because the historical simulations for CMIP6 end in 2014 and scenarios from the 

emission-driven simulations that could be used to extend the runs are not yet available for all considered models.  

The number of observations depends significantly on the location with most points over locations with low cloud cover, high 

surface reflectivity and (at least) moderate to high sun elevation. Coverage over ocean is sparse as ocean retrievals are only 115 

included from GOSAT sun-glint mode observations - outside of glint conditions the reflectivity of water is very low in the 

NIR/SWIR spectral region. Figure 1 shows the mean monthly coverage of the dataset for 2003–2014. In Section 5 we will 

show that taking into account this sampling in the evaluation of ESMs is essential for a proper comparison. 

The dataset also contains uncertainty estimates for each grid cell, with a mean value of 0.92 ppmv, accounting for both 

statistical uncertainties from the individual soundings and uncertainties from potential regional and temporal biases (Buchwitz 120 

et al., 2017a). However, the overall uncertainties are small compared to inter-model differences (see Section 3.1), and are 

therefore neglected in our analysis. 
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2.1.2 Surface CO2 measurements 

For the comparison of satellite XCO2 and surface CO2 data in Section 4 we have obtained surface flask measurements from 

the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network (Dlugokencky et al., 2020). Measurement sites at 125 

locations with no available satellite data were excluded from the analysis, which ruled out the four baseline observatories in 

Mauna Loa, Samoa, as well as the South Pole and Point Barrow sites. Furthermore, sites which did not collect data during the 

period from 2003–2014 were discarded. From the remaining sites, a sample of five sites was chosen which had the best 

coverage of different latitudes, and when latitudes were similar, different longitudes were selected for increased spatial 

coverage. The selected sites are listed in Table 1. 130 

2.2 Model simulations 

We use monthly mean output data from ten CMIP5 and ten CMIP6 models which performed emission driven simulations, 

with three of the CMIP5 and five of the CMIP6 models including a nitrogen cycle. Tables 2 and 3 list all the CMIP5 and 

CMIP6 models used in this paper along with their atmosphere, land and ocean model component, respectively. Only models 

with interactive carbon cycle are able to perform the emission driven simulations, in which the emissions rather than the 135 

concentrations of the greenhouse gases are prescribed (Taylor et al., 2012; Eyring et al., 2016a). This allows the carbon cycle 

in the models to react to changes in climate and atmospheric CO2, by adjusting their carbon fluxes to the new climate conditions 

and providing the atmospheric CO2 concentration as an output (Friedlingstein et al., 2014). In order to facilitate the comparison 

between the satellite data and the CMIP5 emission driven simulations, the historical simulations (1850–2005) were extended 

beyond 2005 with simulations from the Representative Concentration Pathway (RCP) 8.5 (2006–2100), for which most ESM 140 

simulations are available. Since the period of observations only extends a decade beyond the historical runs, the choice of 

emissions scenario has a negligible impact on the results that we present below. For CMIP6 only the historical simulations are 

used, which end in 2014. For CMIP5, only one model had more than one ensemble member performing the emission driven 

RCP 8.5 simulation and thus only one ensemble member for each model has been used. In CMIP6, several models have three 

or more ensemble members. We consider all of them in Figure 3 for the timeseries to show the models’ intrinsic variability, 145 

but then proceed the analysis with only the first ensemble member for each model. The different initial value ensemble 

members similarly to each other for the analysis presented in this paper, and using an ensemble mean would reduce the 

interannual variability found in each individual member.  

3 Methods 

3.1 Sampling of observations and models 150 

For comparison of model and satellite data, first the CO2 data of the models were converted to XCO2 data. The model data 

was interpolated to the grid of the satellite dataset using a bilinear interpolation scheme and grid cells with missing values in 
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the satellite data were also set to missing values in the model fields. Further sampling considerations are discussed in more 

detail in Section 5.3.2 and in Appendix A. 

Most analysis is carried out with regional averages covering several grid cells. Unless specifically stated otherwise, these are 155 

calculated by taking the arithmetic averages over all grid cells weighted by their area for each month. 

3.2. Calculation of growth rate, seasonal cycle amplitude and growing season temperature anomaly 

We compute the growth rate (GR) following the method described in Buchwitz et al. (2018). Monthly resolved annual growth 

rates are calculated by subtracting the XCO2 value 6 months in the future from the one 6 months in the past. Then these monthly 

resolved growth rates are averaged to a yearly GR for a calendar year, and any years with less than 7 months of data are flagged 160 

as missing. The addition of the 7–month data availability was introduced to be consistent with the constraint on SCA as 

explained below.  

We define the SCA as the peak-to-trough amplitude in a calendar year of the detrended time series. The time series is detrended 

with the cumulative sum of monthly growth rates, using the annual mean growth rates as substitution for missing values where 

necessary. The SCA is calculated by subtracting the minimum from the maximum value for each year with a minimum data 165 

availability of 7 months. When investigating the seasonal cycle of observationally sampled simulations at higher latitudes, the 

maximum value of the time series was generally only accounted for if more than 7 months of data were available. We therefore 

introduce the cutoff of 7–month data availability to preserve as many peaks as possible without restricting the data too much. 

However, as peak preservation cannot be guaranteed when any missing values are present, we can only speak of an effective 

SCA. The absolute SCA is not as important in our comparison, because we use the same sampling for both the model and 170 

observations.  

The growing season temperature anomaly ΔT is calculated from the GIStemp (Hansen et al., 2010) temperature anomaly map 

following Schneising et al. (2014). The data is masked to include only vegetated areas, using the MODIS Land Cover 

Classification (Friedl et al., 2010; Channan et al., 2014). Surface temperature anomalies are calculated with respect to their 

monthly climatologies. The data is averaged over the growing season if it covers only one hemisphere (AprilSeptember for the 175 

Northern Hemisphere, December to May for the Southern Hemisphere). Additionally, if the data covers both hemispheres, the 

whole year is taken into account. The growing season averages are taken because the temperature has a large influence on the 

plant growth and the resulting biospheric CO2 fluxes, which in turn drive both the SCA and interannual variability of the GR 

(Schneising et al., 2014). 

3.3 Earth System Model Evaluation Tool (ESMValTool) 180 

All figures in this paper were produced with the Earth System Model Evalution Tool (ESMValTool) version 2.0 (v2.0) (Righi 

et al., 2020; Eyring et al., 2020; Lauer et al., 2020). Since its first release in 2016 (Eyring et al., 2016b) the ESMValTool has 

been further advanced facilitating analysis of many different ESM components, providing well-documented source code and 

scientific background of implemented diagnostics and metrics and allowing for traceability and reproducibility of results 
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(provenance). ESMValTool v2.0 has been developed as a large community effort to specifically target the increased data 185 

volume of CMIP6 and the related challenges posed by analysis and evaluation of output from multiple high-resolution and 

complex ESMs. For this, the core functionalities have been completely rewritten in order to take advantage of state-of-the-art 

computational libraries and methods to allow for efficient and user-friendly data processing (Righi et al., 2020). Common 

operations on the input data such as regridding or computation of multi-model statistics are now centralized in a highly 

optimized preprocessor written in Python. The ESMValTool v2.0 includes an extended set of large-scale diagnostics for quasi-190 

operational and comprehensive evaluation of ESMs (Eyring et al., 2020), new diagnostics for extreme events, regional model 

and impact evaluation and analysis of ESMs (Weigel et al., 2020, submitted), as well as diagnostics for emergent constraints 

and analysis of future projections from ESMs (Lauer et al., 2020). For the study here, a new ESMValTool recipe has been 

developed that can be used to reproduce all plots of this paper. 

4. Comparison of XCO2 and surface CO2 195 

Until recent years, most model-observation comparisons have been carried-out using in situ surface CO2 data (e.g. Wenzel et 

al., 2016). As such, it is interesting to compare the differences between XCO2 and surface CO2 at different locations. Figure 2 

shows a comparison of time series between both kinds of observations and the multi-model mean for both XCO2 and surface 

CO2 for CMIP6 (top) and CMIP5 (bottom) models. The multi-model mean for both XCO2 and surface CO2 is offset to have 

the same mean value as the satellite data, and this offset is noted above each time series panel. It is interesting to note that the 200 

offset appears to be larger at higher latitudes thus showing a different latitudinal gradient between the models and the satellite 

data, indicating potential issues with surface fluxes or transport in the models. The multi-model mean and satellite data are 

averaged between all grid cells covering a 5° x 5° radius around the stations, which results in a maximum of four grid cells to 

be considered. The mean and growth rate of XCO2 and surface CO2 are in very good agreement, while the multi-model mean 

overestimates both variables at all sites, with the overestimated mean XCO2 arising from the effect of higher growth rates over 205 

time. Furthermore, the offset from the modelled surface CO2 is higher than that of XCO2, while this difference is smaller for 

CMIP5. This might be due to the fact that the CMIP5 offset for multi-model mean XCO2 was larger overall with approximately 

10 ppmv compared to the CMIP6 offset of approximately 2 ppmv. 

SCA is higher at higher latitudes, and also generally higher at the surface compared to the column average. This is to be 

expected as the processes dominating the seasonal cycle, respiration and photosynthesis, take place at the surface leading to 210 

the higher SCA for station data and surface CO2 from models compared to the XCO2 values. Mixing of air coming from lower 

latitudes with lower SCA dampens the SCA in the column compared to surface SCA. This is evident in the increasing SCA 

difference between XCO2 and surface CO2 going from low latitude to high latitude stations, with no discernible seasonal cycle 

in the southern hemisphere due to the lack of land and vegetation. The multi-model mean follows this trend in the observations, 

although it underestimates the higher latitude SCA, with a larger underestimation at the surface while capturing the XCO2 215 
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SCA relatively well. As this study aims at evaluating model simulations with satellite data, further analysis is restricted to 

XCO2. 

5. Evaluation of CMIP simulations with satellite data 

5.1. XCO2 time series 

The globally averaged time series of XCO2 is shown in Figure 3 on the top panel, with CMIP6 (a) and CMIP5 (b) models 220 

sampled as the satellite observations (see Section 3.1). The observational uncertainty is too small to be seen in this plot and is 

therefore neglected. The middle panel shows the monthly resolved annual growth rate and the bottom panel the detrended 

seasonal cycle. All available ensemble members for CMIP6 models are used to show their internal variability. All ensemble 

members perform similar to one another. The multi-model mean is computed using the first ensemble member, which is also 

used in the further analysis. As in Figure 2, an increase of XCO2 with time and a pronounced seasonal cycle for all models can 225 

be seen. The focus here is on the absolute values, as the trend (GR) and SCA are discussed in dedicated sections below. The 

CMIP6 models display a large range of absolute XCO2 values, ranging from an underestimation by 15 ppmv (MRI-ESM2.0 

and MIROC-ES2L) to an overestimation by 20 ppmv (GFDL-ESM4). The models closest to the observations is CNRM-ESM2-

1 which reproduces the mean value well, with the next closest models being NorESM2-LM and MPI-ESM1.2-LR both 

overestimating XCO2 by about 5 ppmv. The multi-model mean shows an overestimation by approximately 2 ppmv or 230 

equivalently a time-shift of 1 year. While the spread in the models has not decreased much since CMIP5, the overestimation 

of the multi-model mean has decreased from 10 ppmv to 2 ppmv. Furthermore, CMIP6 models which have predecessors in 

CMIP5 show similar biases as their predecessors, besides the MIROC models, which overestimated the mean by 15ppmv in 

CMIP5 and underestimates it by that much in CMIP6. Both MRI models underestimate XCO2 significantly, while GFDL-

ESM4 overestimates the atmospheric content even more. The MRI-ESM1 model was the only model in CMIP5 to 235 

underestimate XCO2 with respect to the observations, and this by about 20 ppmv. This model underestimates the historical 

warming, causing plant and soil respiration to be too low, which leads to a larger land sink and a reduced atmospheric CO2 

concentration (Adachi et al., 2013). This underestimation has been reduced by about 5 ppmv in CMIP6. The GFDL models 

show an overestimation of about 15 ppmv in both ensembles, and both CanESM models are 10 ppmv too high. A minor 

improvement can be seen for NorESM-LM over NorESM1-ME, with a decrease of the overestimation from 15 to 10 ppmv. 240 

5.2 Growth Rate 

The middle panel of Figure 3 shows that while models capture the interannual variability of the growth rate quite well, they 

overestimate the mean growth rate compared to the observations. The correlation coefficient for the multi-model mean is at 

0.48 in CMIP6 and 0.07 in CMIP5 which shows a large improvement in this area. The pronounced feature in 2009 is due to 

the introduction of the GOSAT data which changed the shape of the seasonal cycle and thus due to its calculation the monthly 245 

resolved annual growth rate. Fortunately, this feature gets averaged out when computing the annual growth rate and does not 
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tangibly affect our conclusions. Figure 4 shows the global mean GR of XCO2 for 2003–2014 and its standard deviation over 

all years depicted as error bars, with the observations shown in black and the multi-model mean in red. The annual mean GR 

of the satellite data is 1.9 ± 0.4 ppmv yr-1, while the CMIP5 models (right) range from 1.5 ± 0.4 ppmv yr-1 (MRI-ESM1) to 3.0 

± 0.9 ppmv yr-1 (CanESM2) with a multi-model mean of 2.4 ± 0.4 ppmv yr-1. In CMIP6 (left), the multi-model mean is slightly 250 

lower at 2.3 ± 0.3 ppmv yr-1 and the spread has decreased by 0.6 ppmv yr-1, with a range from 1.7 ± 0.4 ppmv yr-1 (MRI-

ESM2.0) to 2.6 ± 0.7 ppmv yr-1 (GFDL-ESM4). As expected from Figure 3, the models - with the exception of MRI-ESM1, 

MRI-ESM2.0 and MIROC-ES2L - overestimate the growth rate, leading to an increased XCO2 level in the present-day 

atmosphere compared to observations. The interannual variability of the growth rate for the models is generally higher than 

that of the observations, but well reproduced in the multi-model mean.  255 

Emergent Constraints are relationships defined using an ensemble of models, between a measurable aspect of current or past 

climate and an aspect of Earth system feedback in the future, which can be constrained using observational data (Eyring et al., 

2019). In Appendix C we have tried to reproduce the trend in interannual variability (IAV) of CO2 growth rate to IAV of 

tropical temperature used by Cox et al. (2013) to develop an emergent constraint on the sensitivity of tropical land carbon to 

climate change, but were unable to find a significant trend for this much shorter satellite-derived time series. 260 

The spatial variability of the GR is small, as CO2 is long-lived and well mixed in the atmosphere with a one year mean 

interhemispheric crossing time. Thus there should be no significant regional changes on an annual level. Buchwitz et al. (2018) 

found the growth rate of the satellite dataset to be in agreement with those quoted by NOAA ESRLs global and Mauna Loa 

time series, as well as robust over several latitude bands. Our own analysis also shows only very small regional differences in 

the growth rate (not shown). No significant changes to the annual growth rates due to the satellite spatial coverage were found. 265 

5.3 Seasonal Cycle Amplitude 

This section about the seasonal cycle amplitude (SCA) is divided into two subsections, with the first one taking a closer look 

at inter-model differences, while the second subsection is devoted to the impact of observational sampling. 

5.3.1 Model differences 

The lower panel in Figure 3 shows the detrended global seasonal cycle for all models. Models in CMIP6 (a) show a strong 270 

improvement in their ability to capture both the seasonal cycle amplitude, as well as its phase compared to CMIP5 (b), but still 

underestimate the SCA. The correlation coefficient to the observed seasonal cycle is 0.93 in CMIP5 and 0.98 in CMIP6 for 

the multi-model mean. The only model in CMIP6 to significantly underestimate the seasonal cycle amplitude is CNRM-ESM2-

1. Two errors have been identified causing this dampened seasonal cycle: Ocean carbon fluxes are lagged in time, and in the 

emission driven simulations, CO2 is considered as an active tracer and coupled with atmospheric chemistry. These chemical 275 

fields are restored to global mean climatological concentrations at the model surface, acting as a damping component to the 

CO2 concentrations (Séférian et al., 2019). Figure 5 shows maps of the climatological mean SCA (2003–2014) for all models, 

with the global mean given in the top right and the zonal averages shown in the panel attached to the right of the maps. All 
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CMIP6 models (Figure 5a) underestimate the SCA compared to satellite observations (Figure 6 middle) in the global mean, 

with the closest mean SCA being MIROC-ES2L. This underestimation was already present in CMIP5 (Figure 5b), with several 280 

studies discussing it for surface CO2 SCA (Wenzel et al., 2016; Graven et al., 2013). In CMIP6 the multi-model mean has a 

globally averaged mean SCA of 3.25 ppmv, compared to 2.92 ppmv for CMIP5, while the observations show an effective 

SCA of 5.89 ppmv (Figure 6). 

Both models and observations show the well-known increasing SCA with increasing latitude, due to the more pronounced 

seasonal cycle of the climate at higher latitudes. Most models show a decreased growth from 0-30°N, with higher SCA 285 

increases in the lower tropics and northern midlatitudes. Overall the zonal distribution is quite similar throughout the models, 

with UK-ESM1-0-LL showing increased SCA at 30-90°S. Tropical land regions in northern South America, Africa and south 

east Asia show increased SCA values compared to the ocean SCA at this latitude for the same model. While in the GFDL 

CMIP5 models this was so pronounced that these regions showed a higher SCA than the higher latitudes (Dunne et al., 2013), 

this is no longer the case for GFDL-ESM4 in CMIP6. Dunne et al. (2013) attributed the GFDL problem in CMIP5 to the 290 

seasonality of respiration in the northern latitudes and an Amazonian low-precipitation bias which reversed the seasonal cycle 

synchronizing it with the African and Oceanian rain forests. The improvement in CMIP6 is due to a reduced ocean-atmosphere 

CO2 flux in the Southern Hemisphere, as well as the reduction of the high tropical land-atmosphere fluxes expressed over the 

ocean (Dunne et al., 2020). 

The SCA in the CMIP5 MPI-ESM-LR model is on average twice as large as the observed one. The high SCA has been 295 

discussed in Giorgetta et al. (2013) where it was attributed to a combination of an overestimation of net primary productivity 

in ocean and land biology and uncertainties in atmospheric tracer transport. A particularly severe overestimation was seen in 

the Southern Hemisphere when comparing to station data. As shown in Figure 6, we additionally find a large overestimation 

in XCO2 SCA in the Northern Hemisphere, in particular in the extra-tropics. For the CMIP6 successor model, MPI-ESM1.2-

LR, the SCA is still the highest of the model ensemble, but is no longer twice as high as the other models. However, it now 300 

shows a more pronounced SCA over the tropical land regions mentioned above, which was not as dominant in CMIP5. 

It is known that nitrogen limitations tend to suppress CO2 fertilization (Reich et al., 2006). Of the four models with the lowest 

overall SCA in CMIP5 (CESM1-BGC, FIO-ESM, NorESM1-ME and BNU-ESM), three of them – BNU-ESM, CESM1-BGC, 

NorESM1-ME - include a nitrogen cycle. The SCA of NorESM1-ME and CESM1-BGC are very similar, which can be 

attributed to sharing the same land model (CLM4). FIO-ESM uses the predecessor CLM3.5 and is also comparable to the other 305 

two models. It was found that CLM4 had an unrealistically strong nitrogen limitation, which has been reduced in CLM5 

(Wieder et al., 2019). In CMIP6, ACCESS-ESM1.5, MPI-ESM1.2-LR, MIROC-ES2L, NorESM2-LM and UKESM1.0-LL 

include a nitrogen model but none of them share the same land model. While ACCESS-ESM1.5 has the second lowest overall 

SCA, MPI-ESM1.2-LR and MIROC-ES2L have the highest, and thus the observation from CMIP5 models that N-cycle models 

feature a lower SCA no longer stands for CMIP6. 310 
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5.3.2 Influence of Sampling 

There are a number of ways to compare model SCA to observational SCA, beginning with a grid box comparison. Figure 6 

shows a comparison of the multi-model mean of CMIP6 (Figure 6a) and CMIP5 (Figure 6b) to observations. The top right 

shows the unsampled SCA. The top left panel shows the effective SCA when using observational sampling and the middle 

panel the satellite data’s effective SCA. All numbers are given in ppmv. For an easier comparison the bottom panels show the 315 

absolute difference plots, with the left panel depicting the difference between sampled model and observations, and the right 

panel the difference between the sampled and unsampled model. Observational sampling slightly lowers the SCA, which is to 

be expected, as it could lead to masking out the peaks or troughs. While this effect was minimized by imposing the restriction 

of only computing the SCA of a year when at least 7 months of data are available, it is still a possibility. We therefore classify 

this SCA as an “effective SCA”. However, the SCA does not seem to decrease significantly through sampling and the 320 

difference does not follow a trend in latitude, so a grid box comparison seems feasible. This paves the way for more 

comprehensive spatial investigations, which previously relied on data from ground-based stations with sparse spatial coverage. 

While the stations provide data in higher latitudes that the satellite dataset does not cover, in the tropics and mid-latitudes the 

spatial coverage of the satellite is superior to the ground-based stations. A downside with this approach is the sparsity of the 

data when using observational sampling. Furthermore, this becomes a computationally expensive operation, as the SCA will 325 

need to be calculated for each grid box. 

Another approach often used in model analysis is area averaging, e.g. over different latitude bands like the tropics or the 

northern mid-latitudes. Using surface flask measurements Wenzel et al. (2016) found an increased SCA with rising CO2 

concentration for CMIP5 using model data from the full historical simulation 1850 to 2005 – CO2 fertilization -, and used this 

to establish an emergent constraint on the fertilization of terrestrial gross primary productivity (GPP). Figure 7 shows the SCA 330 

trend of CMIP6 models versus XCO2 for 2003–2014 in the northern mid-latitudes (30–60° N), including a linear regression 

including slope, mean SCA, Pearson correlation coefficient and p-value. The left panel shows the trend in the unsampled 

models, while the right one shows the trend when following the sampling of the satellite data. The SCA was computed after a 

weighted area-average on the XCO2 time series. While some of the unsampled models show an increasing SCA trend with 

increasing XCO2, which is in agreement with the findings from Wenzel et al. (2016), others don’t show a statistically 335 

significant trend and the multi-model mean shows an insignificant positive trend. The sampled model data (right) show a 

significant negative trend. Calculating the average with a zonal average before summing up the latitude bands does not change 

this result. 

To investigate this change in trend due to observational sampling, Figure 8 shows the data coverage for different time periods, 

2003–2008 for SCIAMACHY only measurements (top), the overlap between the two satellites in 2009–2012 (middle), and 340 

2013–2014 for the GOSAT satellite only (bottom), with the pattern marking areas with a coverage of 50 % or above. Above 

50° N SCIAMACHY measurements include more areas with 50 % or more coverage compared to GOSAT measurements. 

With a larger SCA in higher latitudes, it implies that SCIAMACHY would have a larger average SCA over this region 
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compared to GOSAT, hence artificially generating a decreasing trend in the observed SCA, when moving from SCIAMACHY 

to GOSAT. Figure 9 shows the CMIP6 effective SCA trend with XCO2 using SCIAMACHY and GOSAT masks obtained 345 

from masking out points with less than 50 % coverage. While the slopes remain largely the same, the mean effective SCA is 

higher in the models using the SCIAMACHY mask than when using the GOSAT mask. This mean SCA difference is larger 

than the total SCA difference within a model using the same sampling for the whole time period. Thus when considering the 

observational time series and its full sampling, the trend intrinsic to the model is dominated by the negative SCA difference 

going from the SCIAMACHY to the GOSAT data coverage and thus changed to the negative trend seen in the observations. 350 

We can therefore attribute at least part of the negative trend in the satellite data to the different data coverage of the two 

satellites. We are able to reproduce this negative trend with the models, when these are sampled consistently with the satellite 

data. This study on sampling also holds true for CMIP5 models, with the equivalent figures shown in Appendix B (Figures B1 

and B2). 

Further impacts on CO2 concentrations could come through temporal sampling, such as the fact that the satellites data only 355 

includes measurements with low cloud cover and is limited to 13:00 local time. While cloud cover can impact photosynthesis, 

the response can be fundamentally different for various ecosystems (Still et al., 2009), we expect a larger effect from the 

diurnal cycle in CO2 which is included in the model means but not the satellite data. Due to a lack of CO2 data from models 

with a higher temporal resolution, this effect cannot be estimated in this study. 

6. Summary and Conclusion 360 

In this paper we have evaluated the performance of CMIP5 and CMIP6 ESMs with interactive carbon cycle (Tables 2 and 3) 

against column integral CO2 (XCO2) data from satellite retrievals. Our analysis has compared ESM simulations to the 2003-

2014 Obs4MIPs XCO2 satellite dataset O4Mv3 retrieved from radiance spectra measured by the SCIAMACHY/ENVISAT 

(20032012) and TANSO-FTS/GOSAT (2009–2014) satellite instruments. The O4Mv3 data product has a spatial resolution of 

5°x5° and monthly time resolution. For CMIP5, the historical simulations covering the period 2003–2005 were combined with 365 

simulations from the RCP 8.5 scenario (2006–2014) and for CMIP6 the historical simulations were used (2003–2014). The 

evaluation of the CMIP models with the satellite data focused on the time series, the growth-rate (GR) and the seasonal cycle 

amplitude (SCA) XCO2. All SCAs computed with a masked time series are considered to be “effective” SCAs due to the 

possibility of masking out peaks and troughs. 

The XCO2 time series comparison shows that most models overestimate the carbon content of the atmosphere relative to the 370 

satellite observations in both model ensembles, with a lower overestimation for the CMIP6 models of 2 ppmv for the multi-

model mean and a wide range of individual model differences of -15 ppmv to +20 ppmv. The CMIP5 models overestimate by 

5 to 25 ppmv with the exception of the MRI-ESM1 model, which underestimates by 20 ppmv. The CMIP5 multi-model mean 

overestimates by 10 ppmv compared to the observations, which has also previously been found for surface comparisons 



13 

 

(Friedlingstein et al., 2014;Hoffman et al., 2014). Overall, CMIP6 models follow the same trends as their CMIP5 counterparts, 375 

but with reduced systematic biases.  

The XCO2 annual mean growth rate is typically slightly overestimated compared to the observational value of 1.9 ± 0.4 ppmv 

yr-1. CMIP6 models range from 1.7 ± 0.4 ppmv yr-1 (MRI-ESM2.0) to 2.6 ± 0.7 ppmv yr-1 (GFDL-ESM4) with a multi-model 

mean of 2.3 ± 0.3 ppmv yr-1. CMIP5 models have a slightly higher multi-model mean growth rate of 2.4 ± 0.4 ppmv yr-1, and 

a larger spread, with the CMIP5 lowest model being MRI-ESM1 at 1.5 ± 0.4 ppmv yr-1 and the highest CMIP5 growth rate 380 

shown by CanESM2 at 3.0 ± 0.9 ppmv yr-1. 

All models capture the expected increase of the SCA with increasing latitudes, but most models underestimate the SCA to 

differing degrees in different regions. This result is in line with previous studies (Wenzel et al., 2016;Graven et al., 2013). 

Models with similar model components show similar behavior, with models including a nitrogen cycle generally showing a 

lower SCA in CMIP5, but this influence is not clear in CMIP6. Finally, the connection between SCA and XCO2 was 385 

investigated in the northern midlatitudes. Most models from both ensembles show a positive trend, i.e., an increase of the SCA 

with XCO2, consistent with findings for surface CO2 (Wenzel et al., 2016). However, the satellite product shows a strong 

negative trend in contrast to the models and surface based observations. We have attributed this trend reversal to the sampling 

characteristics of the satellite products. The average effective SCA is higher for models sampled according to the 

SCIAMACHY/ENVISAT as opposed to the TANSO-FTS/GOSAT mean data coverage. As the early time series is based 390 

solely on the SCIAMACHY/ENVISAT data and the last years only use data from TANSO-FTS/GOSAT, this introduces an 

artificial negative trend which dominates the positive trend shown by the unsampled models. This demonstrates the importance 

of equal sampling of models and observations in model evaluation studies. 

There are several ways to improve on this analysis in the future. With more available future scenario simulations, the analysis 

can be extended to a longer time series, making use of longer observational timeseries, such as the one introduced in Reuter et 395 

al. (2020). Higher temporal resolution of the models would enable studies on the effect of the diurnal cycle of CO2 on the 

monthly mean and also allow for the construction of a co-located time series with the Level 2 satellite data. This could help 

highlight some of the causes of model biases by being able to pinpoint time and space where they occur more precisely. Model 

biases may also result from the CMIP experimental design, such as requiring the climate state to be in equilibrium in 1850 

while the real world may not have been (Bronselaer et al., 2017), or the parametrizations of biological and physical processes 400 

not allowing the system to change rapidly enough (Hoffman et al., 2014). Along with a longer time series, newer satellites, 

such as OCO-2 or the planned Sentinel 7 bring higher resolutions and more data, potentially helping to fill the gaps and reduce 

the impact of the sampling we discussed in Section 5.3.2. 

Overall, the CMIP6 ensemble shows an improved agreement with the satellite data in all considered quantities (mean XCO2, 

growth rate, SCA and trend in SCA), with the biggest improvement shown in the mean XCO2 content of the atmosphere. The 405 

paper demonstrates the great potential of satellite data for climate model evaluation as it allows to go beyond regional means 

or single point observations from in situ data, and also enables the investigation of regional effects on SCA, such as the increase 

in SCA at higher latitudes.  
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Appendix A. Calculation of XCO2 410 

Here we documents the general procedure used to compute model XCO2 for comparison with the satellite-based obs4MIPs 

product following the description in (Buchwitz and Reuter, 2016).  

𝑋𝐶𝑂2 =  
∑ 𝑛𝑑 ∙  𝑐𝐶𝑂2

 

∑ 𝑛𝑑

(𝐴1) 

Here, 𝑐𝐶𝑂2
 represents the modeled CO2 dry air mole fraction on model layers (i.e., layer centers or full levels) and 𝑛𝑑 the 

number of dry air particles (air molecules excluding water vapor) within these levels. The summations are performed over all 415 

model layers. The number of dry air particles can be computed as follows: 

𝑛𝑑 =  
𝑁𝑎 ∙ ∆𝑝 ∙ (1 − 𝑞)

𝑚𝑑 ∙ 𝑔
(𝐴2) 

𝑁𝑎 is the Avogadro constant (6.022140857 ∙ 1023𝑚𝑜𝑙−1) and 𝑚𝑑 the molar mass of dry air (28.9644 ∙ 10−3𝑘𝑔 𝑚𝑜𝑙−1). ∆𝑝 

is the pressure difference (in hPa) computed from the model‘s pressure levels (i.e., layer boundaries or half levels) surrounding 

the model layers, 𝑞 is the modeled specific humidity (in kg/kg), and 𝑔 the gravitational accelaration approximated by: 420 

𝑔 =  √𝑔0
2 − 2 ∙ 𝑓 ∙ 𝜙 (𝐴3) 

This includes the model’s geopotential 𝜙 (in m2s-2) on layers, the free air correction constant 𝑓 = 3.0825959 ∙ 10−6𝑠−2, and 

the gravitational acceleration 𝑔0 on the geoid approximated by the international gravity formula depending only on the latitude 

𝜑: 

𝑔0 = 9.780327 ∙ [1 + 0.0053024 ∙ sin2(𝜑) − 0.0000058 ∙ sin2(2𝜑)] (𝐴4) 425 

Appendix B. Satellite data mean coverage impact on CMIP5 SCA trend 

The analysis from Section 5.3.2. on the influence of the satellite data mean coverage on the trend of the SCA was also 

performed for CMIP5. Figures B1 and B2 are the CMIP5 equivalent of Figures 8 and 10. The CMIP5 models support the 

analysis of the CMIP6 models and show that the different satellite data coverage results in a different mean effective SCA, 

with a higher mean effective SCA for SCIAMACHY (2003–2012) than GOSAT (2009–2014) mean data coverage, which 430 

overshadows the positive trend and causes it to flip to a negative one in most models. 

Appendix C. Trend of growing season temperature and interannual variability of CO2 growth rate 

Cox et al. (2013) developed an emergent constraint on the sensitivity of tropical land carbon to climate change using the 

sensitivity of the interannual variability (IAV) of CO2 growth rate to the IAV of tropical temperature, which was later adapted 
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by Wenzel et al. (2014) to CMIP5 models. Figure C1 shows the sensitivity of the IAV of XCO2 growth rate to the tropical 435 

growing season temperature IAV for CMIP6 (left) and CMIP5 (right) models, both compared with observations. The 

observational temperature is taken from the GISTEMP v4 dataset (Lenssen et al., 2019) and the models use their own modeled 

temperature. We find an observational value of -0.23 ± 0.70 ppmv yr-1 K-1 for the 2003-2014 period. However, when using the 

full span of the satellite data until 2016, the slope increases to 0.75 ± 0.6 ppmv yr-1 K-1 (not shown), as the additional years 

show both a high growing season temperature and GR IAV, coinciding with a strong El Nino. This shows that the time period 440 

2003–2014 is not sufficiently long to reproduce the emergent constraint, although this may become feasible once CMIP6 

emission driven future simulations are available for a longer time overlap between models and observations. CMIP5 model 

values for the timeframe 2003–2014 range from 0.53 ± 0.51 ppmv yr-1 K-1 (NorESM1-ME) to 3.14 ± 0.63 ppmv yr-1 K-1 (MRI-

ESM1), with only CESM1-BGC showing a negative trend of -0.64 ± 0.55 ppmv yr-1 K-1. The multi-model mean has a value 

of 1.79 ± 0.80 ppmv yr-1 K-1. In CMIP6 the range is significantly decreased with a minimum of 1.14 ± 0.56 ppmv yr-1 K-1 445 

(ACCESS-ESM1.5) to a maximum of 3.37 ± 0.71 ppmv yr-1 K-1 (CanESM5-CanOE), and a multi-model mean of 1.14 ± 0.37 

ppmv yr-1 K-1. 

7. Data and Code Availability 

The O4Mv3 XCO2 data product is available via the Copernicus Climate Change Service (C3S, https://climate.copernicus.eu/) 

Climate Data Store (CDS) (https://cds.climate.copernicus.eu/), accessed Aug 2018. The surface flasks measurements were 450 

obtained online (ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/) from Dlugokencky et al. (2018), accessed Aug-

2018. Surface temperature anomalies were obtained from the GISTEMP Team, 2020: GISS Surface Temperature Analysis 

(GISTEMP), version 4. NASA Goddard Institute for Space Studies. Dataset accessed 2020-02-13 at 

data.giss.nasa.gov/gistemp/. The MODIS IGBP Land Cover Type Classification was obtained from 

http://glcf.umd.edu/data/lc/ (accessed: 2018-01-31). CMIP data is available on various ESGF nodes (e.g. https://esgf-455 

data.dkrz.de/search/cmip5-dkrz/) (Williams et al., 2009), with CMIP6 data DOIs given in Table 3. 

ESMValTool v2.0 (Eyring et al., 2020; Lauer et al., 2020; Righi et al., 2020) is released under the Apache License, VERSION 

2.0. The latest release of ESMValTool v2 is publicly available on Zenodo at https://doi.org/10.5281/zenodo.3401363. The 

source code of the ESMValCore package, which is installed as a dependency of the ESMValTool v2, is also publicly available 

on Zenodo at https://doi.org/10.5281/zenodo.3387139. ESMValTool and ESMValCore are developed on the GitHub 460 

repositories available at https://github.com/ESMValGroup. The corresponding recipe that can be used to reproduce the figures 

of this paper will be included in ESMValTool v2 at the time of publication of the paper. 

https://cds.climate.copernicus.eu/
ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/
https://data.giss.nasa.gov/gistemp/
http://glcf.umd.edu/data/lc/
https://esgf-data.dkrz.de/search/cmip5-dkrz/
https://esgf-data.dkrz.de/search/cmip5-dkrz/
https://doi.org/10.5281/zenodo.3401363
https://doi.org/10.5281/zenodo.3387139
https://github.com/ESMValGroup
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Tables 

Table 1: List of active NOAA surface flask measurement sites used in this study. 

Code Location Latitude [°] Longitude [°] Altitude [m] Start Year 

ASK Assekrem, 

Algeria 

23.2625 5.6322 2710 1995 

CGO Cape Grim, 

Australia 

-40.6800 144.6800 94 1984 

LEF Park Falls, 

United States 

45-945 269.7300 868 1994 

HUN Hegyhatsal, 

Hungary 

46.950 16.650 248 1993 

WIS Ketura, Israel 30.8595 34.7809 482 1995 

855 
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Table 2: CMIP5 models analysed in this study. Under Comments, D stands for models including dynamic vegetation, and N for 

models including Nitrogen cycles. 

Model Institute 
Atmosphere 

Model 

Land 

Model 
Ocean Model 

Com

ment 
Main Reference 

BNU-ESM 

College of Global 

Change and Earth 

System Science, 

CAM3.5 

CoLM + 

BNU-

DGVM 

MOM4p1 + 

IBGC 
N, D Ji et al. (2014) 

CanESM2 

Canadian Center for 

Climate Modeling and 

Analysis, BC, Canada 

CanAM4 
CLASS2.7 

+ CTEM1 
CMOC  Arora et al. (2011) 

CESM1-BGC 

National Center for 

Atmospheric Research 

Boulder, CO, USA 

CAM4 CLM4 POP2 + BEC N 
Gent et al. (2011); Lindsay 

et al. (2014) 

FIO-ESM 

The First Institute of 

Oceanography, SOA, 

China 

CAM3.0 
CLM3.5 + 

CASA 

POP2.0 + 

OCMIP-2  
Bao et al. (2012); Qiao et 

al. (2013) 

GFDL-ESM2G 

Geophysical Fluid 

Dynamics Laboratory, 

United States 

AM2 LM3.0 
GOLD + 

TOPAZ2 
D 

Dunne et al. (2012); Dunne 

et al. (2013) 

GFDL-

ESM2M 

Geophysical Fluid 

Dynamics Laboratory, 

United States 

AM2 LM3.0 
MOM4.1 + 

TOPAZ2 
D 

Dunne et al. (2012); Dunne 

et al. (2013) 

MIROC-ESM 

Japan Agency for 

Marine-Earth Science 

and Technology, Japan; 

Atmosphere and Ocean 

Research Institute, Japan 

MIROC-AGCM 

+ SPRINTARS 

MATSIRO 

+ SEIB-

DGVM 

COCO3.4 + 

NPZD 
D Watanabe et al. (2011) 

MPI-ESM-LR 

Max Planck Institute for 

Meteorology, Hamburg, 

Germany 

ECHAM6 
JSBACH + 

BETHY 

MPIOM + 

HAMOCC5 
D Giorgetta et al. (2013) 
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MRI-ESM1 
Meteorological Research 

Institute, Japan 

MRI-AGCM3.3 

+ MASINGAR 

mk-2 + MRI-

CCM2 

HAL MRI.COM3 D 

Adachi et al. (2013); 

Yukimoto et al. (2012); 

Yukimoto et al. (2011) 

NorESM1-ME 
Norwegian Climate 

Center, Norway 
CAM4-Oslo CLM4 HAMOCC5 N Tjiputra et al. (2013) 
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Table 3: CMIP6 models analysed in this study. Under Comments, D stands for models including dynamic vegetation, and N for 860 
models including Nitrogen cycles. 

Model Institute 
Atmosphere 

Model 

Land 

Model 
Ocean Model 

Com

ment 

Main Reference 

& Data DOI 

ACCESS-

ESM1-5 

Commonwealth 

Scientific and Industrial 

Research Organisation, 

Australia 

UM7.3 

CABLE2.4 

with CASA-

CNP 

MOM5 + 

WOMBAT 
N 

Law et al. (2017); Ziehn et 

al. (2017) 

Data: Ziehn et al. (2019) 

CanESM5 

Canadian Center for 

Climate Modeling and 

Analysis, BC, Canada 

CanAM5 
CLASS-

CTEM 

NEMO 3.4.1. 

+ CMOC 
 

Swart et al. (2019a) 

Data: Swart et al. (2019c) 

CanESM5-

CanOE 

Canadian Center for 

Climate Modeling and 

Analysis, BC, Canada 

CanAM5 
CLASS-

CTEM 

NEMO 3.4.1. 

+ CanOE 
 

Swart et al. (2019a) 

Data: Swart et al. (2019b) 

CNRM-ESM2-

1 

CNRM-CERFACS, 

France 

ARPEGE-

Climat v6.3 + 

SURFEX v8.0 

ISBA + 

CTRIP 

NEMO v3.6 + 

GELATO + 

PISCESv2 

 
Séférian et al. (2019) 

Data: Seferian (2019) 

GFDL-ESM4 

Geophysical Fluid 

Dynamics Laboratory, 

United States 

AM4.1 LM4.1 
OM4 MOM6 

+ COBALTv2 
D 

Dunne et al. (2020) 

Data: Krasting et al. 

(2018) 

MIROC-ES2L MIROC, Japan 
MIROC-AGCM 

+ SPRINTARS 

VISIT-e & 

MATSIRO6 
COCO + 

OECO v2 
N 

Hajima et al. (2020b) 

Data: Hajima et al. 

(2020a) 

MPI-ESM1-2-

LR 

Max Planck Institute for 

Meteorology, Hamburg, 

Germany 

ECHAM6.3 JSBACH3.2 
MPIOM1.6 + 

HAMOCC6 
N, D 

Mauritsen et al. (2019) 

Data: Wieners et al. 

(2019) 

MRI-ESM2-0 
Meteorological Research 

Institute, Japan 

MRI- 

AGCM3.5 + 

MASINGAR 

mk-2r4c + MRI-

CCM2.1 

HAL MRI.COMv4  

Yukimoto et al. (2019a) 

Data: Yukimoto et al. 

(2019b) 
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NorESM2-LM 
Norwegian Climate 

Center, Norway 

Modified 

CAM6 
CLM5 HAMOCC N 

Seland et al. (2020) 

Data: Seland et al. (2019) 

UKESM1-0-

LL 

Met Office Hadley 

Centre, United Kingdom 
Unified Model 

JULES-ES-

1.0 

NEMO + 

MEDUSA-2 
N, D 

Sellar et al. (2019) 

Data: Tang et al. (2019) 
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Figures 

 865 
Figure 1: Mean fractional coverage of monthly satellite data for 2003–2014. A value of 0 (white) signifies no available data, while a 

value of 1 (dark green) means that this gridcell contains data for all years of this month.  
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Figure 2: Comparison of time series from satellite XCO2 (black), multi-model mean XCO2 (orange) and surface CO2 (red), and 870 
NOAA surface CO2 station data (blue) at selected sites, with the coordinates noted in brackets above the time series and the altitudes 

shown in the map plot (see table 1). The multi-model mean for both XCO2 and surface CO2 was offset to have the same average 

value as the satellite XCO2 for better comparison, and this offset is noted above each time series. CMIP6 and CMIP5 multi-model 

mean are shown on the top (a) and bottom (b) panels respectively.  
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 875 

Figure 3a: Global time series of monthly mean column averaged carbon dioxide (XCO2) from 2003 to 2014, for the emission driven 

CMIP6 model simulations in comparison to satellite XCO2 data (bold black line). The model output is sampled as the satellite data. 

The top panels show the time series, while the middle panels show the computed monthly growth rate, which has been used to 

detrend the data to obtain the seasonal cycle shown in the bottom panel. All available ensemble members for each model are shown 

to show the intrinsic variability of the models. 880 

  



35 

 

Figure 3b: Same as Figure 3a but for CMIP5. Only one ensemble member is shown.  
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Figure 4. Global mean and standard deviation over all years of annual growth rate of XCO2 during 2003–2014, for CMIP6 models 885 
(a) and CMIP5 models (b). The black bar represents the satellite observations, while the red bar depicts the multi-model mean. 
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Figure 5a: Maps of mean annual seasonal cycle amplitude for 2003–2014 for CMIP6 models. The model name is given at the top left 

of each panel, while the top right shows the global average of the mean annual seasonal cycle. The panel to the right of the maps 890 
shows the zonal mean SCA.  
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Figure 5b: Same as Figure 5a but for CMIP5 models. 
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 895 

Figure 6a: Maps of mean SCA of the CMIP6 multi-model mean for 2003–2014. Top: SCA of multi-model mean with observational 

sampling (left) and without sampling (right). Middle: SCA of the satellite observations. Bottom: Difference between observations 

and sampled model data (left) and sampled and unsampled model (right).  
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Figure 6b: Same as Figure 6a but for the CMIP5 multi-model mean. 
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Figure 7: Trend of SCA with XCO2 2003–2014 for the northern mid-latitudes (30–60° N), including a linear regression with slope 

and mean SCA given on the top left of each panel and the Pearson correlation coefficient as well as the p-value on the bottom right. 905 
Symbols denote the different years and model colors are consistent with previous figures.  The left panels (a) show unsampled CMIP6 

models, while CMIP6 models sampled according to the satellite data are shown on the right (b). Note that the y-axis range for each 

plot is the same and only differs by a shift. 
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 910 

Figure 8: Data Coverage of the satellite observations for (a) 2003–2008, containing only SCIAMACHY data, (b) 2009–2012 

containing the overlap of SCIAMACHY and GOSAT data, and (c) 2013–2014 containing only GOSAT data. The patterned area 

highlights values above 0.5. 
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 915 

Figure 9: Same as Figure 7, but with CMIP6 models masked using (a) the SCIAMACHY mask and (b) the GOSAT mask, with the 

masks derived from Figure 8, masking out points with less than 50% coverage in those time periods. 
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Figure B1: Same as Figure 7 but for CMIP5 models. The left panels (a) show unsampled models, while models sampled according 920 
to the satellite data are shown on the right (b). Note that the y-axis range is the same and only differs by a shift. 
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Figure B2: Same as Figure B1, but with CMIP5 models masked using (a) the SCIAMACHY mask and (b) the GOSAT mask, with 

the masks derived from Figure 8, masking out points with less than 50% coverage in those time periods. 925 
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Figure C1: Sensitivity of the interannual variability of the XCO2 growth rate in the tropics (30° S–30° N) to the interannual 

variability of tropical growing season temperature for CMIP6 models (a) and CMIP5 models (b). The observational temperature 

taken from the GIStemp temperature anomaly map, while the models use their own simulated temperature. A linear regression is 930 
performed on the data for each dataset. Model colors are the same as in Figure 3, and symbols denote the years. In the top left of 

each panel the regression coefficient and its uncertainty is shown, while the bottom right states the Pearson correlation coefficient 

and p-value. 

 


