
Supplementary Materials 

Model description 

The ecosys model has been rigorously examined in many high-latitude ecosystems, e.g.: modeled energy 

and carbon fluxes against data from eddy covariance flux towers at the Barrow Experimental Observatory 

(BEO) (Grant et al 2017b, 2017a) and a topographic gradient at Daring Lake, NWT (Grant 2015a, Grant et al 

2015) , and against long-term measurements from automated chambers in the Stordalen Mire(Chang et al 2019, 

n.d.). The model performance has also been tested and documented in sites from many biomes encompassing a 

range of latitudes in a long list of ecosys publications (5-92). The following qualitative model description is 

adapted from our earlier publication. 

Ecosys represents multiple canopy and soil layers and fully coupled carbon, energy, water, and nutrient 

cycles solved at an hourly time step. Surface energy and water exchanges drive soil heat and water transfers to 

determine soil temperatures and water contents. These transfers drive soil freezing and thawing and, hence, 

active layer depth, through the general heat flux equation. Carbon uptake is controlled by plant water status 

calculated from convergence solutions that equilibrate total root water uptake with transpiration. Atmospheric 

warming increases surface heat advection, soil heat transfers, and hence active layer depth. Canopy 

temperatures affect CO2 fixation rates from their effects on carboxylation and oxygenation modeled with 

Arrhenius functions for light and dark reactions. Soil temperatures affect heterotrophic respiration through the 

same Arrhenius function as for dark reactions.   

Carbon uptake is also affected by plant nitrogen uptake. The model represents fully coupled 

transformations of soil carbon, nitrogen, and phosphorus through microbially driven processes. Soil warming 

enhances carbon uptake by hastening microbial mineralization and root nitrogen uptake. Carbon uptake is 

affected by phenology with leafout and leafoff (deciduous plants) or dehardening and hardening (evergreen 

plants) being determined by accumulated exposure to temperatures above set values while day length is 

increasing or below set values while day length is decreasing. Senescence is driven by excess maintenance 

respiration and by phenology in deciduous plant functional types.  

Ecosystem-Atmosphere energy exchange: 



 Canopy energy and water exchanges in ecosys are calculated through a multi-layered soil-root-canopy 

system. The clumping effect for each leaf and stem surface is represented by a species-specific interception 

fraction to simulate non-uniformity in the horizontal distribution of leaves within each canopy layer. Coupled 

first-order closure schemes are solved between the atmosphere and each of leaf and stem surfaces in the multi-

layered canopy to achieve energy balance at each model time step. Once the system converges to the required 

canopy temperature, latent and sensible heat fluxes of each canopy layer are calculated based on the simulated 

vapor pressure deficit, canopy-atmosphere temperature gradient, aerodynamic conductance, and stomatal 

conductance. Canopy heat storage is calculated from changes in canopy temperature and heat capacities of 

leaves, twigs, and stems. 

Canopy water relations: 

 A convergence solution is sought for the canopy water potential of each plant population at which the 

difference between its transpiration and total root water uptake equals the difference between its water contents 

at the previous and current water potentials. Canopy water potential controls transpiration and soil-root water 

uptake, which affects stomatal conductance and thereby all the processes (e.g., canopy temperature and vapor 

pressure) described in “Ecosystem-Atmosphere energy exchange”. The water table depth in ecosys is calculated 

at the end of each time step as the depth to the top of the saturated zone below which air-filled porosity is zero. 

Changes in the simulated water table depth were driven by dynamical interactions among precipitation, 

evapotranspiration, vertical water transport, and lateral water transport. 

Canopy carbon and nutrient cycling: 

 Leaf carboxylation rates are adjusted from those calculated under non-limiting water potential to those 

under current water potential. The gross canopy CO2 fixation is the sum of the leaf carboxylation rate of each 

leaf surface present on each branch of each plant species, which is then transported to a mobile pool of carbon 

storage. Storage carbon oxidized in excess of maintenance respiration requirements is used as growth 

respiration to drive the formation of new biomass. Net CO2 fixation is calculated as the difference between 

gross fixation and the sum of maintenance, growth, and senescence respiration in the simulated canopy. 



Nutrient (nitrogen and phosphorous) uptake is calculated for each plant species by solving for aqueous 

concentrations at root and mycorrhizal surfaces in each soil layer at which radial transport by mass flow and 

diffusion from the soil solution to the surfaces equals active uptake by the surfaces. This solution dynamically 

links rates of soil nutrient transformations with those of root and mycorrhizal nutrient uptake. The products of 

nitrogen and phosphorous uptake are transported to mobile pools of nitrogen and phosphorous stored in each 

root and mycorrhizal layer, which regulate vegetation growth.  

Plant functional type dynamics: 

The model represents prognostic vegetation dynamics with internal resource allocation and 

remobilization. Shifts in plant functional types are modeled through processes of plant functional type 

competition for light, water, and nutrients within each canopy and rooted soil layer depending on leaf area and 

root length. Each plant functional type competes for nutrient and water uptake from common nutrient and water 

stocks held across multi-layer soil profiles, calculated from algorithms for transformations and transfers of soil 

carbon, nitrogen, and phosphorus, and for transfers of soil water. Modeled differences in plant functional type 

functional traits determine the strategy of resource acquisition and allocation that drive growth, resource 

remobilization, and litterfall, and therefore each plant functional type dynamic competitive capacity under 

different environmental conditions.  

Soil microbial activity: 

The modeling of microbial activity is based on six organic states: solid, soluble, sorbed, acetate, 

microbial biomass, and microbial residues. Carbon, nitrogen and phosphorous may move among these states 

within each of four organic matter-microbe complexes: plant litterfall, animal manure, particulate organic 

matter, and humus. Microbial biomass in ecosys is an active agent of organic matter transformation. The rate at 

which each component is hydrolyzed is a function of substrate concentration that approaches a first-order 

function at low concentrations, and a zero-order function at high concentrations. These rates are regulated by 

soil temperature through an Arrhenius function and by soil water content through its effect on substrate 

concentration. Similar to the growth and decline of vegetation biomass described above, the net change in 

microbial biomass is determined by the difference between heterotrophic respiration and maintenance 



respiration. When heterotrophic respiration is greater than maintenance respiration, the excessive amount of 

respiration is used as growth respiration that drives microbial growth according to the energy requirements of 

biosynthesis. 

Methane production and transport: 

The rate at which soil organic matter in ecosys is hydrolyzed during decomposition is a first-order 

function of the decomposer biomass of all heterotrophic microbial populations (functional types) generated 

from energy yields of the oxidation-reduction reactions conducted by each population. Hydrolysis rates are 

regulated by soil temperature through an Arrhenius function and by soil water content through its effect on 

aqueous microbial concentrations. Hydrolysis products are transferred to dissolved organic carbon (DOC) that 

is the substrate for respiration and growth according to energy yields from DOC oxidation-reduction by all 

heterotrophic microbial functional types (MFT) calculated from MFT biomass, a Michaelis-Menten function of 

DOC concentration, and from soil temperature and oxygen availability. DOC uptake by anaerobic MFTs 

(fermenters) drives fermentation products of which are partitioned among acetate (CH!COOH), CO2, and 

hydrogen (H2) according to Brock & Madigan (1991). These products are substrates for acetoclastic (AM) and 

hydrogenotrophic methanogenesis (HM), rates of which are driven by biomasses of AM and HM functional 

types, growths of which are generated from AM and HM energy yields. For all MFTs, respiration products 

beyond those used for microbial maintenance respiration drives microbial growth. Specifically, AM (HM) 

microbial growth is calculated by dividing the free energy change of AM (HM) by the energy required to 

construct new AM (HM) microbial carbon, which drives changes in AM (HM) microbial biomass after 

subtracting biomass loss from decomposition. CH4 production rates are functions of microbial biomass, 

temperature, substrate concentrations, and moisture for AM and HM MFTs in each model soil layer during each 

hourly model time step. CH4 produced by AM and HM can then be transported to the atmosphere through 

diffusion, plant aerenchyma transport, and ebullition, or oxidized by methanotrophs. Detailed equation sets for 

methanogenesis and methanotrophy used in ecosys were derived in Grant, (1998; 1999) and remain unchanged 

in other studies of methanogenesis (e.g. Grant et al., 2017, 2019) since then. 

 



  



Supplementary Table 1. Evaluation of modeled apparent CH4 emission temperature dependence calculated by 

fitting Boltzmann-Arrhenius functions with soil and air temperatures during the earlier, later, and full-season 

(entire thawed season) periods in the bog and fen at the Stordalen Mire.  

	
Soil	temperature	 	 Air	temperature	

2003-2007	 	 	 	 	 	 	 	 	 	

	
Earlier	 Later	

	
Earlier	 Later	

	

hysteretic	 full-
season	

hysteretic	 full-
season	 	

hysteretic	 full-
season	

hysteretic	 full-
season	

	
R2	 	 R2	

Bog	 0.68	 0.62	 0.49	 0.31	
	

0.40	 0.32	 0.36	 0.05	

Fen	 0.84	 -0.95	 0.71	 -0.93	 	 0.11	 -0.18	 0.14	 -0.24	

	
RMSE	

	
RMSE	

Bog	 10.75	 11.68	 14.93	 17.34	 	 13.39	 14.22	 17.07	 20.92	

Fen	 10.43	 36.06	 23.49	 60.86	
	

44.65	 51.37	 53.69	 64.51	

	
Percent	error	 	 Percent	error	

Bog	 -3.95	 10.29	 -3.02	 -21.01	 	 -14.20	 20.48	 -12.81	 -51.17	

Fen	 -2.45	 81.22	 -1.37	 -40.35	 	 -15.07	 36.97	 -8.02	 -57.64	

	
Ea	 	 Ea	

Bog	 1.88	 1.82	 1.49	 1.78	
	

1.47	 1.25	 1.17	 1.23	

Fen	 1.34	 0.98	 0.42	 0.97	 	 1.57	 1.25	 1.17	 1.27	

	 	 	 	 	 	 	 	 	 	

2011-2013	 	 	 	 	 	 	 	 	 	

	
R2	

	
R2	

Bog	 0.73	 0.59	 0.61	 0.17	 	 -1.34	 -2.69	 0.30	 -0.17	

Fen	 0.86	 0.01	 0.76	 -1.12	
	

-0.12	 -1.19	 0.20	 -0.55	

	
RMSE	 	 RMSE	

Bog	 8.72	 10.81	 10.60	 15.57	 	 17.88	 22.47	 17.42	 22.63	

Fen	 29.21	 76.88	 39.50	 119.42	 	 90.78	 126.80	 112.14	 156.44	

	
Percent	error	 	 Percent	error	

Bog	 -2.88	 16.39	 -1.92	 -21.48	
	

-0.93	 56.28	 -10.08	 -38.17	

Fen	 -2.61	 71.76	 -0.53	 -34.25	 	 -22.90	 61.11	 -11.11	 -52.16	

	
Ea	 	

Ea	

Bog	 1.85	 1.58	 1.16	 1.61	 	 2.18	 1.66	 1.07	 1.65	

Fen	 1.21	 1.04	 0.45	 1.05	
	

1.91	 1.53	 1.10	 1.61	
R2, RMSE, and Ea are the correlation, root mean squared error (in mg C m-2 d-1), and activation energy (in eV), 

respectively, from fitting Eq. 1 to the ecosys-modeled fluxes. Negative R2 implies the regression line fitted by 

Boltzmann-Arrhenius functions is worse than using the mean value. 

  



Supplementary Table 2. Evaluation of modeled apparent CH4 emission temperature dependence calculated by 

fitting Boltzmann-Arrhenius functions with soil and air temperatures during the earlier, later, and full-season 

(entire thawed season) periods in the trough, rim, center, and polygon mean in a low-centered polygon at 

Utqiaġvik (formerly Barrow) in 2013.  

	
Soil	temperature	 	 Air	temperature	

	
Earlier	 Later	 	 Earlier	 Later	

	

hysteretic	 full-
season	 hysteretic	 full-

season	 	 hysteretic	 full-
season	 hysteretic	 full-

season	

	
R2	

	
R2	

Trough	 0.44	 0.07	 0.25	 -0.67	 	 0.18	 0.15	 -0.04	 -1.03	

Rim	 -0.11	 -0.29	 -0.69	 -0.33	 	 -0.20	 -0.34	 -0.47	 -0.42	

Center	 0.58	 0.04	 0.52	 -1.41	 	 0.25	 -0.08	 0.11	 -1.75	
Polygon	
mean	

0.60	 0.06	 0.42	 -0.95	
	

0.28	 -0.13	 0.08	 -1.14	

	
RMSE	

	
RMSE	

Trough	 8.14	 9.40	 20.79	 27.91	 	 10.13	 10.28	 21.74	 30.36	

Rim	 3.90	 4.20	 10.04	 8.88	 	 4.33	 4.57	 9.55	 9.40	

Center	 13.24	 19.98	 13.58	 30.52	 	 17.68	 21.19	 18.84	 33.12	
Polygon	
mean	 7.24	 11.11	 12.14	 22.30	 	 9.63	 12.04	 15.40	 23.54	

	
Percent	error	

	
Percent	error	

Trough	 -22.59	 50.02	 -5.98	 -64.31	 	 -31.66	 32.49	 -16.14	 -61.37	

Rim	 -27.87	 -22.98	 -43.55	 -61.62	 	 -30.95	 -32.81	 -57.49	 -61.29	

Center	 -5.46	 40.77	 -1.81	 -38.38	 	 -12.40	 29.73	 -3.43	 -37.15	
Polygon	
mean	 -5.77	 45.40	 -3.40	 -44.45	 	 -11.92	 34.22	 -6.15	 -40.76	

	
Ea	 	 Ea	

Trough	 2.55	 1.56	 1.91	 1.56	 	 1.18	 0.62	 0.86	 0.62	

Rim	 0.26	 1.56	 2.92	 1.56	 	 0.00	 0.76	 1.41	 0.76	

Center	 1.75	 0.71	 0.67	 0.71	 	 0.78	 0.28	 0.25	 0.28	
Polygon	
mean	 1.69	 0.86	 0.88	 0.86	 	 0.79	 0.33	 0.37	 0.33	

	 	 	 	 	 	 	 	 	 	
R2, RMSE, and Ea are the correlation, root mean squared error (in mg C m-2 d-1), and activation energy (in eV), 

respectively, from fitting Eq. 1 to the ecosys-modeled fluxes. Negative R2 implies the regression line fitted by 

Boltzmann-Arrhenius functions is worse than using the mean value. 

  



 
Supplementary Figure 1. CH4 emissions are hysteretic to soil temperature modeled in the Stordalen Mire bog (a 

to c) and fen (d to f) and the Utqiaġvik low-centered polygon (g to i) from 2011 to 2013 thawed seasons. Dots 

and lines represent the daily data points and the fitted apparent temperature dependence, respectively. Earlier, 

later, and full-season periods are colored in red, blue, and black, respectively. Earlier and later periods are 

defined as the time before and after the seasonal maximum 0-20 cm soil temperature. Start date and end dates 

represent the beginning and ending of a thawed season defined as the period when daily 0-20 cm soil 

temperature is above 0 ˚C, respectively. 

 

  



 

Supplementary Figure 2. CH4 emissions are hysteretic to air temperature measured in individual automated 

chambers in the Stordalen Mire bog (top three panels) and fen (bottom three panels) sites from 2012 to 2017 

thawed seasons (left to right). Open circles and lines represent the daily data points and the fitted apparent CH4 

emission temperature dependence, respectively. The earlier, later, and full-season periods are colored in red, 

blue, and black, respectively. Earlier and later periods are defined as the time before and after the seasonal 

maximum air temperature. Start date and end dates represent the beginning and ending of a thawed season 

defined as the period when daily air temperature is above 1 ˚C, respectively. 

  



 

Supplementary Figure 3. CH4 emissions are hysteretic to ground surface temperature measured in individual 

automated chambers in the Stordalen Mire bog (top three panels) and fen (bottom three panels) sites from 2003 

to 2008 thawed seasons (left to right). Open circles and lines represent the daily data points and the fitted 

apparent CH4 emission temperature dependence, respectively. The earlier, later, and full-season periods are 

colored in red, blue, and black, respectively. Earlier and later periods are defined as the time before and after the 

seasonal maximum ground surface temperature. Start date and end dates represent the beginning and ending of 

a thawed season defined as the period when daily ground surface temperature is above 1 ˚C, respectively. 

  



 

Supplementary Figure 4. Observed apparent relationships between thawed-season CH4 emissions and ground 

temperature measured in the Stordalen Mire bog (green) and fen (blue) sites from 2012 to 2017, when spatial 

heterogeneity (i.e., differences across chambers within the same habitat) and temporal variability (i.e., intra-

seasonal and inter-annual variations) are ignored. Dots and lines represent the daily data points and the fitted 

apparent CH4 emission temperature dependence, respectively.  

  



 

Supplementary Figure 5. CH4 emissions are hysteretic to air temperature modeled in the Stordalen Mire bog (a 

to c) and fen (d to f) and the Utqiaġvik low-centered polygon (g to i) from 2011 to 2013 thawed seasons. Dots 

and lines represent the daily data points and the fitted apparent temperature dependence, respectively. Earlier, 

later, and full-season periods are colored in red, blue, and black, respectively. Earlier and later periods are 

defined as the time before and after the seasonal maximum air temperature. Start date and end dates represent 

the beginning and ending of a thawed season defined as the period when daily air temperature is above 1 ˚C, 

respectively. 

  



 

Supplementary Figure 6. Apparent soil temperature dependence of daily CH4 emissions modeled in the trough 

(a), rim (b), center (c), and polygon mean (i.e., areal means of trough, rim, and center) (d) in a low-centered 

polygon at Utqiaġvik, Alaska during the 2013 thawed season. Dots and lines represent the daily data points and 

the fitted apparent temperature dependence, respectively. The earlier, later, and full-season periods are colored 

in red, blue, and black, respectively. Earlier and later periods are defined as the time before and after the 

modeled maximum 0-20 cm soil temperature. Start date and end dates represent the beginning and ending of a 

thawed season defined as the period when daily 0-20 cm soil temperature is above 1 ˚C, respectively. The 

hysteresis is less clear in the rim due to lower CH4 emissions because of its drier conditions.  
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