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Abstract.
Vegetation responses to changes in environmental drivers

can be subject to temporal lags. This implies that vege-
tation is committed to future changes once environmental
drivers stabilize, e.g., changes in physiological processes,5

structural changes, and changes in vegetation composition
and disturbance regimes may happen with substantial de-
lay after a change in forcing has occurred. Understanding
the trajectories of such committed changes is important as
they affect future carbon storage, vegetation structure and10

community composition and therefore need consideration
in conservation management. In this study, we investigate
whether transient vegetation states can be represented by a
time-shifted trajectory of equilibrium vegetation states, or if
they are vegetation states without analogue in conceivable15

equilibrium states. We use a dynamic vegetation model, the
aDGVM, to assess deviations between simulated transient
and equilibrium vegetation states in Africa between 1970
and 2099 for the RCP4.5 and 8.5 scenarios using region-
ally downscaled climatology based on the MPI-ESM output20

for CMIP5. We determined lag times and dissimilarity be-
tween simulated equilibrium and transient vegetation states
based on the combined difference of nine selected state vari-
ables using Euclidean distance as a measure for that differ-
ence. We found that transient vegetation states over time in-25

creasingly deviated from equilibrium states in both RCP sce-
narios, but that deviation was more pronounced in RCP8.5
during the second half of the 21st century. Trajectories of
transient vegetation change did not follow a “virtual tra-
jectory” of equilibrium states, but represented non-analogue30

composite states resulting from multiple lags with respect to
vegetation processes and composition. Lag times between

transient and most similar equilibrium vegetation states in-
creased over time and were most pronounced in savanna and
woodland areas, where disequilibrium in savanna tree cover 35

frequently acted as main driver for dissimilarities. Fire addi-
tionally enhanced lag times and dissimilarity between tran-
sient and equilibrium vegetation states due to its restrain-
ing effect on vegetation succession. Long lag times can be
indicative of high rates of change in environmental drivers, 40

of meta-stability and non-analogue vegetation states, and of
augmented risk for future tipping points. For long-term plan-
ning, conservation managers should therefore strongly focus
on areas where such long lag times and high residual dissim-
ilarity between most similar transient and equilibrium vege- 45

tation states have been simulated. Particularly in such areas,
conservation efforts need to consider that observed vegeta-
tion may continue to change substantially after stabilization
of external environmental drivers.

Copyright statement. © Author(s) 2020. This work is distributed 50

under the Creative Commons Attribution 4.0 License.

1 Introduction

Vegetation dynamics is influenced by a variety of environ-
mental drivers, including climatic conditions, atmospheric
CO2 concentration, soil parameters, nutrient availability, and 55

disturbance regime (Eamus et al., 2016). These environmen-
tal drivers affect vegetation processes on a variety of lev-
els, from physiological processes at the leaf-level to com-
munity assembly processes at ecosystem level (Felton and
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Smith, 2017), and ultimately determine large-scale vegeta-
tion patterns on biome-level (Lavergne et al., 2010; Wood-
ward et al., 2004). The impact of environmental drivers is
reflected in vegetation structure, vegetation-related ecosys-
tem functions, and biogeochemical processes such as carbon5

sequestration, nutrient turnover, and ecohydraulics (Bonan,
2019). Although environmental drivers are subject to con-
stant variation, vegetation response does not happen instan-
taneously in accordance with forcing, but requires time to
allow the system to respond (Essl et al., 2015). It can there-10

fore be expected that climate change will cause widespread
shifts in the distribution of major vegetation formations until
the end of the century (Lucht et al., 2006). How much time
vegetation requires to respond depends on i) the type of pro-
cess that is affected, ii) the extent of change of the environ-15

mental driver, and iii) the velocity of change, i.e., how fast
the driver changes. For example, physiological processes at
the leaf level can adapt to changing environmental drivers
such as temperature on very short (sub-)daily time scales
(Chen et al., 1999; Vico et al., 2019), whereas adaptation20

to climate change at community level can require years to
decades. Slow gradual changes allow vegetation more reac-
tion time, whereas rapid changes leave vegetation drastically
behind (Davis, 1989; Corlett and Westcott, 2013). Continu-
ous fluctuation of environmental drivers entails that vegeta-25

tion is usually not in equilibrium with forcing at a given time,
and disequilibrium vegetation dynamics under future climate
change needs to be expected (Svenning and Sandel, 2013).

Temporal lags between forcing and vegetation state imply
that vegetation is committed to further changes even if envi-30

ronmental drivers stabilize (Jones et al., 2009; Scheiter et al.,
2020). It is particularly important to consider this when es-
timating or mitigating the effects of future climate change.
Committed vegetation changes at the time of stabilization
of climatic drivers have important implications for carbon35

storage (Pugh et al., 2018), vegetation structure, and com-
munity composition. In addition, delayed responses to envi-
ronmental drivers may unexpectedly push vegetation beyond
tipping points towards alternative stable states long after the
change in forcing has occurred. Particularly in connection40

with African savanna ecosystems, such multi-stable ecosys-
tem states have been proposed and studied by a variety of
authors (e.g., Staal et al., 2016; Li et al., 2019; Pausas and
Bond, 2020). Conservation management needs to be aware
that the vegetation state at any given time may not be the veg-45

etation state expected under prevailing environmental con-
ditions, and managers need to decide whether to preserve
the status quo, or allow vegetation development towards its
anticipated equilibrium state. Otherwise, climatic disequi-
librium may severely threaten the conservation of priority50

ecosystems (Huntley et al., 2018).
Estimating vegetation trajectories and lags is challenging,

and only few studies take into account that plant commu-
nity changes could substantially lag behind climatic changes
(Alexander et al., 2017). This is true when considering the55

change of single environmental drivers, and becomes in-
creasingly complex when considering concurrent changes of
multiple drivers. In a previous study, we examined how CO2
concentration change over a range from 100 to 1000 ppm,
at two different rates, affects African vegetation and vegeta- 60

tion lags with respect to equilibrium states using the aDGVM
(adaptive dynamic vegetation model, Scheiter et al., 2020).
In that study, we found substantial deviances and lags be-
tween equilibrium and transient vegetation states when we
increased or decreased CO2. However, in this previous study 65

we only considered CO2 effects while keeping long-term av-
erages of other environmental drivers of vegetation, such as
precipitation and temperature, constant. While an estimate on
the effect of CO2 in isolation is valuable, a more accurate as-
sessment of lags, debt and surplus in carbon, vegetation cover 70

and vegetation structure additionally requires consideration
of climatic drivers. This is particularly relevant when ad-
dressing committed vegetation change for future scenarios of
climate change, e.g., the climate change associated with the
RCP (Representative Concentration Pathways, Meinshausen 75

et al., 2011) scenarios.
Moreover, when considering multiple drivers of vegetation

dynamics, complexity increases. The combination of differ-
ent drivers may amplify (if they act in the same direction) or
weaken (if they act in opposing directions) effects on vegeta- 80

tion when compared to single-driver scenarios. For example,
CO2 fertilization effects may be reduced by other factors that
inhibit plant growth, such as nutrient limitation or increased
water stress. Elevated CO2 is often linked to higher water use
efficiency in C3 plants. However, this effect seems to have 85

its limits and CO2 fertilization cannot always counteract the
effects of reduced water availability (Temme et al., 2019).
Future changes in precipitation regime, e.g., of precipitation
seasonality (prolonged dry season duration), combined with
changes in precipitation frequency distribution and annual 90

quantities are very likely and already observed in different
parts of Africa (Batisani and Yarnal, 2010; Dunning et al.,
2018). Where water stress increases due to higher drought
frequency and severity or changes in precipitation seasonal-
ity, its negative effects may be too strong to be offset by CO2 95

fertilization (see, e.g., Jin et al., 2017; Liu et al., 2020). For a
realistic evaluation of vegetation lags associated with future
climate change, it is therefore necessary to assess the coupled
effects of different drivers in the climate system.

An open question that conservation managers as well as 100

vegetation modelers need to consider is whether observable
transient vegetation states correspond to conceivable equilib-
rium states, or whether non-analogue vegetation states exist,
i.e., vegetation states that have no corresponding equivalent
in vegetation states of the past or present. Two possible sce- 105

narios are conceivable. In scenario (1), transient vegetation
dynamics follows a virtual trajectory defined by equilibrium
states. Vegetation lags simply correspond to a time-shift of
equilibrium states that should exist at a given time according
to prevailing environmental conditions, i.e., transient vege- 110
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tation states are analogue to equilibrium vegetation states of
another point in time. In scenario (2), transient vegetation
states have no exact analogue in any conceivable equilib-
rium states, i.e., transient vegetation states not only lag be-
hind an equilibrium, but are “chimeras” that can never be5

represented by an equilibrium vegetation state. Such mixed
vegetation states that entirely lack accordance with any con-
ceivable equilibrium vegetation states are what we define
as “non-analogue” in the context of this study. Scenario (2)
may result from mismatches between equilibrium and tran-10

sient states at different levels of plant- and vegetation-related
processes. As all these processes operate at different time
scales, the time lag between various transient state variables
and their respective equilibria at any given time will differ,
resulting in vegetation disequilibrium with respect to mul-15

tiple variables. Scenario (2) has important implications, as
the complexity of disequilibrium in this scenario constitutes
a major challenge for future conservation efforts (Svenning
and Sandel, 2013).

Here, we used the aDGVM to assess deviations between20

transient and equilibrium vegetation states in Africa. The
aDGVM has been developed with specific focus on savan-
nas and tropical vegetation, and its performance has been
evaluated in a number of studies. In this study, we use the
model to compare transient and equilibrium vegetation states25

in Africa between 1970 and 2099 for RCP4.5 and RCP8.5
on a decadal basis. Using projected climate and CO2 con-
centrations of the RCPs allows evaluation of the combined
effects caused by simultaneous variation of several drivers of
vegetation dynamics. We asked:30

1. How do simulated transient vegetation states deviate
from equilibrium vegetation states expected under given
historic and future climate conditions, with respect
to ecosystem variables related to biomass, vegetation
structure and composition?35

2. Do trajectories of transient vegetation change follow a
“virtual trajectory” of analogue equilibrium states, or
are transient vegetation states non-analogue and differ-
ent from any equilibrium vegetation state?

3. What are the lag times between transient and most sim-40

ilar equilibrium vegetation states, and which state vari-
ables and underlying processes can explain dissimilari-
ties?

4. Which biomes and regions in Africa are most resistant
to climate change, and which ones are most prone to45

experience meta-stability and change as a consequence
of changing environmental drivers in the future?

2 Methods

2.1 Model description

The aDGVM (adaptive Dynamic Global Vegetation Model, 50

Scheiter and Higgins, 2009) has been developed with empha-
sis on grass-tree-interactions in tropical ecosystems. Trees
are simulated as single individuals, and the model incor-
porates an individual-based representation of plant physi-
ological processes and allows dynamic adjustment of leaf 55

phenology and carbon allocation to environmental condi-
tions. Carbon investment to biomass pools adjusts dynami-
cally in such a way that allocation to those biomass pools
that are the most limiting factor for plant growth at a given
time is maximized. For example, if water is limiting, more 60

carbon is allocated to roots at the expense of allocation to
stems and leaves to increase water uptake capacity, whereas
under light limitation, more carbon is allocated to stems
and/or leaves to increase light capture. State variables such as
biomass, height and photosynthetic rates keep track of plant 65

performance, while external disturbances such as herbivory
(Scheiter and Higgins, 2012), fire (Scheiter and Higgins,
2009) and land use (Scheiter and Savadogo, 2016; Scheiter
et al., 2019) impact plants as function of their traits. The
aDGVM simulates four plant types (Scheiter et al., 2012): 70

Fire-sensitive but shade-tolerant forest trees, fire-tolerant but
shade-intolerant savanna trees, C3 grasses, and C4 grasses,
with each type of grass being represented by two types of
super-individuals that distinguish grasses beneath or between
tree canopies. Physiological differences between C3 and C4 75

photosynthesis distinguish C3 and C4 grasses and their per-
formance under specific environmental conditions (e.g., Tay-
lor et al., 2018). Fire is modeled as function of fuel loads,
fuel moisture and wind speed (Higgins et al., 2008) and ig-
nitions are based on a random sequence. It removes above- 80

ground grass biomass and affects trees based on fire intensity
and tree height (Higgins et al., 2000, topkill effect). Large
trees with crowns above the flaming zone are largely fire-
resistant, and grasses and topkilled trees can regrow from
root reserves after fire (Bond and Midgley, 2001). Mortal- 85

ity in aDGVM is a probabilistic function of negative car-
bon balance. Scheiter and Higgins (2009), and Scheiter et al.
(2012) showed that aDGVM captures the distribution of ma-
jor vegetation formations in Africa. Scheiter and Higgins
(2009) showed that aDGVM can simulate biomass dynamics 90

in a long-term fire manipulation experiment in Kruger Na-
tional Park (Experimental Burn Plots, Higgins et al., 2007),
and Scheiter and Savadogo (2016) showed that an adjusted
model version can reproduce grass biomass and tree basal
area under various grazing, harvesting and fire treatments in 95

Burkina Faso. Scheiter and Higgins (2009) and Scheiter et al.
(2015) showed that aDGVM can simulate broad patterns of
fire activity in Africa and Australia, respectively. For a more
detailed description of aDGVM, see Scheiter and Higgins
(2009). 100
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2.2 Climate forcing data

Simulation of transient vegetation dynamics required time
series of climate data. In this study, we used daily cli-
mate data that were downscaled with the variable-resolution
conformal-cubic atmospheric model (CCAM, McGregor,5

2005) for Africa for the period between 1970 and 2099.
The downscaling was performed by the South African re-
search group Climate Studies, Modelling and Environmental
Health at the Council for Scientific and Industrial Research
(CSIR) (Archer et al., 2018; Davis-Reddy et al., 2017; Engel-10

brecht et al., 2015). The downscaling used GCM projections
from the Coupled Model Intercomparison Project Phase 5
(CMIP5, Tab. S1, IPCC, 2013) and followed the methodol-
ogy described in Engelbrecht et al. (2015), applying CCAM
globally at quasi-uniform resolution of approx. 50 km in the15

horizontal. Bias-correction of downscaled climate data was
performed based on monthly climatologies of tempreature
and rainfall from CRU TS3.1 data for the period 1961-1990
following Engelbrecht et al. (2015) and Engelbrecht and En-
gelbrecht (2016). CCAM output is available on daily tempo-20

ral resolution on a latitude-longitude grid of 0.5°resolution
for RCP 4.5 and RCP8.5. RCP4.5 is a modest-high impact
scenario with peaking greenhouse gas emissions around mid-
century and a CO2 concentration of ca. 540 ppm in 2100. In
the high-emission RCP8.5 scenario, emissions keep rising to25

the end of the century where CO2 concentrations will reach
ca. 900 ppm. Climate variables used in aDGVM simulations
were precipitation, daily minimum and maximum tempera-
ture, wind speed, and relative humidity. As projected radia-
tion was not available from CCAM, it was derived based on30

sunshine percentage (Allen et al., 1998) from the New et al.
(2002) dataset.

2.3 Experimental design

For our simulations, we used CCAM downscaled climate
data for RCP 4.5 and RCP 8.5 based on the boundary con-35

ditions provided by the Max Planck Institute Earth System
Model (MPI-ESM, Giorgetta et al., 2013). To obtain equi-
librium vegetation states on a decadal basis, we conducted
separate simulations for all decades between 1970 and 2099,
i.e., 13 decadal equilibrium runs per RCP scenario were per-40

formed. For each decade, a 250-year random sequence of
yearly climate data was generated using the respective RCP
scenario’s climate data for that decade. In order to avoid saw-
tooth pattern caused by potential small intradecadal trends
in climate, the yearly climate forcing for the spin-up of the45

transient runs and the equilibrium simulations was assembled
as a random sequence of the annual climates for the years
within a given decade, i.e., the climate of a respective decade
was split into ten annual blocks, which were then randomly
put together to create the 250-year climate sequence. The re-50

sulting randomized 250 years of climate data were used for
equilibrium simulations allowing modeled variables to reach

steady-state with the environmental conditions of the decade.
Previous simulations have shown that after 200-250 simula-
tion years, aDGVM reaches equilibrium state for large parts 55

of the study region. The last 30 years of the 13 equilibrium
runs were used to determine equilibrium vegetation states for
each RCP scenario. The decadal equilibrium states provided
the reference base for comparison with decadal results from
the transient simulations. 60

For transient simulations, a 210-year model spin-up was
performed using randomly generated sequences of the years
in the period 1970 to 1979 to ensure steady-state condi-
tions. After model spin-up, aDGVM was then forced with
the respective RCP climate time series for the period 1970 to 65

2099 to obtain simulation results of the transient vegetation
state. All simulations were conducted both in the presence
and absence of fire, i.e., in total eight simulation scenarios
were conducted, amounting to a total of 56 simulation runs
(four transient runs, 4x13 equilibrium runs). Transient model 70

runs were conducted previously by Martens et al. (2020, ac-
cepted).

2.4 Analyses

Comparison of equilibrium and transient vegetation states
was conducted using decadal averages of selected state vari- 75

ables at grid cell level that were calculated from annual
maximum values (grass and tree biomass) or annual aver-
age values. Model variables under consideration were above-
ground tree biomass, aboveground grass biomass, savanna
tree cover, forest tree cover, total tree cover, average tree 80

height, maximum tree height, number of tree individuals,
and C3:C4 grass ratio based on respective totals of grass leaf
biomass. Decadal averages for equilibrium scenarios were
calculated from the last 30 years of the 250 year simulation
sequence. For transient simulations, decadal averages were 85

calculated based on annual simulation output for the respec-
tive decades. Although all analyses in this study were con-
ducted on decadal basis, we focus on three decades (2010s,
2050s, 2090s) in the results section. Full sets of maps for all
decades from 1970 to 2099 are provided as video sequences 90

in the supplementary material of this study.

2.4.1 Comparison between scenarios

Scenarios were compared individually for each key variable
to address question 1, i.e., to determine how simulated tran-
sient vegetation states deviate from equilibrium vegetation 95

states with respect to specific ecosystem state variables. We
calculated continental-scale averages of each key variable
based on grid cell values of decadal variable averages, and
plotted the result as time series.

We calculated the Euclidean distance between transient 100

and equilibrium vegetation states to evaluate the similarity
between these scenarios on a per-grid cell and per-decade ba-
sis, in order to address question 2. As the nine key variables
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used for the calculation of Euclidean distance differed in
units and value ranges, we standardized all variables based on
variable mean and standard deviation across all decades, grid
cells and scenarios. The standardization across all decades
and grid cells of all scenarios to a common mean allows com-5

parison of distance values between scenarios.
Euclidean distance was calculated between same-decade

partners (SDPs) in transient and equilibrium simulations to
determine the development of similarity over time. To answer
question 3, for each transient decade the Euclidean distance10

to all previous equilibrium decades was calculated, and the
equilibrium decade with the closest distance to the respec-
tive transient decade was assigned as closest-decade part-
ner (CDP). We denote the time difference between closest-
decade partners as “lag time” in the wider sense, i.e., not tak-15

ing into account the residual distance between closest-decade
partners. This distance should be close to zero for a definition
of analogue vegetation states in the strict sense. We interpret
a non-zero residual distance of > 0.29 between CDPs as a
very high likelihood for a non-analogue transient vegetation20

state (question 2), because it implies that even the equilib-
rium decade closest to the transient decade is still different
from the transient decade (see supplementary material sec-
tion D to get a detailed explanation of how we derived the
0.29 threshold value).25

Contribution of individual key variables to the full Eu-
clidean distance, i.e., the Euclidean distance calculated based
on all nine state variables, was evaluated using a bootstrap-
ping approach. Each variable was omitted and the reduced
Euclidean distances based on the remaining eight key vari-30

ables were calculated. The reduced distances were then set
into relation to the full Euclidean distance to determine the
percent deviation from the full distance caused by each vari-
able:

Dv
x,y,t =

Fx,y,t −Rv
x,y,t

Fx,y,t
(1)35

Here, Fx,y,t is the full Euclidean distance calculated using
all nine state variables, at a given grid cell with coordinates
x,y for decade t, Rv

x,y,t is the reduced Euclidean distance
calculated based on eight state variables, omitting variable v
from the calculation, at a given grid cell with coordinates x,y40

for decade t, and Dv
x,y,t is the percent deviation from full Eu-

clidean distance caused by omitting a given variable v from
distance calculation, at a given grid cell with coordinates x,y
for decade t.

Variables were then ranked for each grid cell and transient45

decade according to their percent deviation Dv
x,y,t to deter-

mine the contribution of each variable to the full Euclidean
distance Fx,y,t. The highest-contributing variable is termed
“dominant variable” hereafter. Dominant variables were de-
termined for SDPs as well as CDPs to answer question 3.50

2.4.2 Biome classification

To assess which regions and vegetation formations in Africa
are most resistant or most susceptible to future vegetation
change (question 4), we aggregated vegetation in biomes us-
ing decadal averages of transient and equilibrium simulations 55

following the scheme used in Scheiter et al. (2012) for all
eight simulation scenarios. For definition of biome boundary
criteria, see table S1.

To identify stable biome core areas for each of the eight
scenarios, we identified grid cells with exactly one biome 60

type in all 13 decades and created maps showing these areas.
Desert core area was used for masking areas with very little
vegetation to omit edge effects from such areas. Where grid
cells took on more than one biome type in 13 decades, we
counted the number of different biome types that occurred 65

per grid cell, the number of changes between biome types
per grid cell, and the ratio between biome types per grid cell
and biome changes per grid cell. We created maps of these
variables. Additionally, we defined each biome’s area for all
decades to determine changes in fractional cover over time 70

for each scenario.

3 Results

3.1 Lags between equilibrium and transient
simulations at continental scale

In simulations with fire, aboveground tree biomass in both 75

equilibrium and transient scenarios was lower (Fig. 1a) and
grass biomass was higher (Fig. 1b) than in no-fire scenar-
ios. Seen in combination with the lower total tree cover in
scenarios with fire (Fig. 1g), this indicates a more open land-
scape in the presence of fire. Average aboveground tree and 80

grass biomass increased over time in all scenarios. While tree
biomass in transient scenarios was lower than in equilibrium
scenarios, grass biomass in transient scenarios only dropped
below levels expected based on equilibrium scenarios during
the second half of the 21st century. Grass layer composition 85

changed over time towards more C3 and less C4 grasses in all
scenarios (Fig. 1c), with transient scenarios shifting to higher
levels of C3 grasses to a lesser degree than equilibrium sce-
narios. This indicates that the change is too slow to attain the
levels of the equilibrium scenario. 90

While mean height of all trees combined (Fig. 1d) in-
creased only slightly over time (in runs with fire) or remained
more or less stable (in scenarios without fire), both maxi-
mum tree height (Fig. 1e) and number of tree individuals
per unit area (Fig. 1f) increased over time, contributing to 95

the simulated increase in tree biomass per unit area. Maxi-
mum tree height increased more strongly in equilibrium than
transient simulations, with fire having very little effect due
to tall trees not being affected by low- to medium-intensity
fires in aDGVM. The difference between transient and equi- 100
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Figure 1. Time series of continental-scale spatial averages of variables for RCP8.5, calculated from decadal averages of grid cells.

librium states increased over time, showing that maximum
tree height lags behind its equilibrium and lag size increases
over time. Towards the end of the 21st century, tree num-
bers increased more strongly in no-fire simulations, and tree
numbers were larger in transient than in equilibrium scenar-5

ios during the last decades.
Without the selection pressure exerted by fire, total tree

cover (Fig. 1g) was essentially identical with forest tree cover
(Fig. 1h) because savanna trees were largely absent in both
equilibrium and transient simulations (Fig. 1i). While equi-10

librium simulations indicated more or less constant levels of
total tree cover up to the year 2040, equilibrium tree cover
declined after 2040 to approx. 42% at the end of the cen-
tury. In comparison, transient no-fire simulations suggested
slightly rising total tree cover until 2050, followed by a slight15

decline to approx. 50% cover towards the end of the century.

Therefore, in the absence of fire, total transient tree cover in-
creasingly deviated from total equilibrium tree cover during
the second half of the century. The tree cover overshoot in
no-fire transient simulations indicates that vegetation devi- 20

ates from its equilibrium state.
The presence of fire fostered the existence of savanna trees

in equilibrium and transient simulations (Fig. 1i). However,
while the transient simulation showed an increase in savanna
tree cover from approx. 8% in the 1970s to approx. 20% at 25

the end of the century, equilibrium simulations showed a de-
cline in savanna tree cover with approx. half of the original
cover lost by the end of the century. While forest tree cover
in transient simulations with fire decreased slightly from ap-
prox. 25% to 21% cover, it increased in equilibrium simula- 30

tions and reached a value of approx. 34% at the end of the
century. In the presence of fire, both equilibrium and tran-
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Figure 2. Continental-scale spatial average of Euclidean distance
between same-decade partners (SDPs), for the four transient-
equilibrium scenario pairings. Error bars represent standard devia-
tion of spatial average in a given decade. The horizontal black line at
0.29 indicates the threshold value above which Euclidean distance
is assumed to be significantly different from zero.

sient simulations showed a trend of increasing total tree cover
over the course of the 21st century (Fig. 1g). However, while
this increase was driven by an increase in forest tree cover
that over-compensated a simultaneous decline in savanna tree
cover in equilibrium simulations, an increase in savanna tree5

cover caused the trend towards higher total tree cover in the
transient simulation.

For the RCP 4.5 climate scenario, the general patterns de-
scribed for RCP 8.5 were similar, but C3 grasses did not
become as prominent towards the end of the century as in10

RCP8.5 (see Fig. S1 for reference).

3.2 Similarity between same-decade partners

The Euclidean distance between SDPs averaged for Africa
increased over time (Fig. 2). Fire consistently enlarged the
distance between SDPs in comparison with the no-fire sim-15

ulations (differences in spatial means between fire and no-
fire partner scenarios were statistically significant at p<0.001
based on t-tests and Kolmogorov-Smirnov tests) and lead to
highest dissimilarity between SDPs in RCP8.5 towards the
end of the century. RCP4.5 and RCP8.5 showed similar tra-20

jectories until the 2040s, but while the distance kept increas-
ing towards the end of the century in RCP8.5, it leveled off
in RCP4.5 with fire, and average distance remained approx.
constant for RCP4.5 in the no-fire scenario. Spatial patterns
of dissimilarity started to emerge during the first decades of25

the simulated period (Fig. 3, Fig. S2). In RCP8.5 with fire,
maximum distance was found in the savanna areas south of
the Congo basin and the Sahel zone during the 2010s (Fig.
3a), whereas no such pattern existed for the corresponding
no-fire scenario (Fig. 3b). During the 2050s, the pattern of 30

dissimilarity became more pronounced and substantial dis-
tance between transient and equilibrium scenario was also
observed in eastern and southeastern Africa (Fig. 3c). In the
no-fire scenarios, dissimilarity developed in eastern Africa,
and in western Angola (Fig. 3d). Towards the end of the cen- 35

tury, distance between SDPs was substantial in most parts
of Africa in RCP8.5 in both the fire and no-fire scenario.
The largest distances were found in the Sahel, Ethiopia and
southern Central Africa (Fig. 3e,f). The general spatial pat-
tern observed in RCP8.5 was also found in RCP4.5 (Fig. S2), 40

but spatially less extensive and with overall lower distances
between SDPs. Towards the end of the century, RCP4.5 had
substantially lower distances than RC8.5, in particular in the
scenario without fire.

3.3 Variable contributions to dissimilarity between 45

SDPs

In RCP8.5 with fire, for ca. 28% of African area savanna
tree cover was the variable that had the largest influence
on dissimilarity between SDPs in the 2010s (Fig. 4). Rank-
ing of variables based on their impact on the full Euclidean 50

distance between SDPs revealed that the variable with the
strongest impact in average contributed ca. 40% to the full
Euclidean distance, whereas the variable with the second-
strongest impact in average only contributed approx. 10%
(Fig. S3a). The strength of impact varied between variables 55

and was highest where mean tree heights was identified as
most influential variable (ca. 65% contribution), and lowest
where forest tree cover was the most influential variable (ca.
18% contribution). This general pattern was similar for all
four scenarios (Fig. S3a, b, c, d). The area fraction where 60

savanna tree cover had the largest contribution to dissimilar-
ity increased towards mid-century, and then slightly declined
again towards the end of the century. Importance of average
and maximum tree height was second and third after savanna
tree cover in the 2010s, with the fraction of area where they 65

dominated the Euclidean distance decreasing towards the end
of the century. Remarkably, in RCP8.5 the area where C3:C4
grass ratio was the dominant variable increased towards the
end of the century, which in this form was not found in ei-
ther RCP4.5 scenario. In scenarios without fire, savanna tree 70

cover was very low and had less impact on Euclidean dis-
tance where it was the dominant variable, while average and
maximum tree height as well as total tree cover were more
important. Maps of dominant variable distribution are shown
in Fig. S4 and Fig. S5. 75

The percent deviance from the full Euclidean distance
caused by the dominant variable, averaged across Africa and
all decades, ranged between 40 and 50% (Fig. S6). Distinc-
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Figure 3. Spatial patterns of Euclidean distance between same-decade partners (SDPs) in RCP8.5 for three selected decades (2010-2019,
2050-2059, 2090-2099). Panels a), c) and e) represent distance between SDPs in simulations including fire (wifi), panels b), d) and f) show
results from simulations excluding fire (nofi).

tion of percent deviance according to dominant variables re-
vealed some differences according to the identity of the dom-
inant variable. Forest tree cover as dominant variable caused
a reduction of approx. 20%, whereas mean tree height caused
an approx. 60% reduction from the full Euclidean distance5

where it was the dominant variable. This was fairly consis-

tent for all four SDP-combinations. The most pronounced
difference between fire and no-fire scenarios was found with
respect to savanna tree cover, which was largely irrelevant as
dominant variable in no-fire scenarios, but also had less im- 10

pact where it dominated than in the fire-scenarios. For maps
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Figure 4. Fractions of African area where a given state variable is the dominant variable with respect to Euclidean distance between same-
decade partners (SDPs), illustrated as time series stacks for the four scenario pairings between SDPs. Variable color coding is annotated in
the panel for RCP8.5 with fire. The color-coding for the variables is identical in all four panels.

of percent deviance caused by the most influential variable,
see Fig. S7 and Fig. S8.

3.4 Lag times between transient and closest-distance
equilibrium vegetation states

The spatially averaged lag time between CDPs increased5

over time in all scenarios (Fig. 5a). Until the 2030s, all sce-
narios followed the same trajectory. After 2030, the scenar-
ios with fire started to diverge from the scenarios without
fire. At the end of the century, the spatially-averaged lag
time amounted to 5.0±3.5 and 5.5±3.6 decades for RCP8.510

and RCP4.5 with fire, and 3.8±2.8 and 4.4±3.1 decades for
RCP8.5 and RCP4.5 without fire, respectively.

While no clear spatial pattern in lag time existed in the
2010s (Fig. 6a), such a pattern emerged in the 2050s in
RCP8.5 with fire (Fig. 6c) and had developed clearly dur-15

ing the last decade of the century (Fig. 6e). Lag times of 10
decades and more were found in the Sahel zone, in eastern
Angola, western Zambia, Zimbabwe and in the northeast of
South Africa. In the no-fire RCP8.5 scenario, patterns were

less clear and extreme lag times of a century or more were 20

less abundant (Fig. S9). Patterns in RCP4.5 (Fig. S10, Fig.
S11) were similar to those found in RCP8.5, but the bound-
aries between areas with large lag times and areas of mod-
erate and intermediate lag times were more diffuse than in
RCP8.5. In both RCP4.5 scenarios, lag times of 7-8 decades 25

were more common at the end of the century in areas where
lag times between 3-5 decades prevailed in RCP8.5.

3.5 Residual distance between closest-decade partners

Spatially averaged residual Euclidean distance between
CDPs (Fig. 5b) was substantially smaller than for SDPs (Fig. 30

2), but nonetheless different from zero in all decades. The
spatial variability of the size of the remaining Euclidean dis-
tance was high, especially towards the end of the century (see
Fig. 6f), and the variables that were the main reason for the
remaining Euclidean distance differed spatially across Africa 35

(see Fig. 7 in combination with Fig. 5b to see the spatial
fractions of variables that dominate the Euclidean distance
at a given time). The non-zero distance between transient
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Figure 5. Continental-scale spatial average of lag time (panel a) and residual distance (panel b) between transient decade and most-similar
equilibrium decade (closest-decade partners (CPDs) based on Euclidean distance), for the four scenario pairings between CDPs. Error bars
represent standard deviation of spatial averages in a given decade. The horizontal black line at 0.29 in panel b indicates the threshold value
above which Euclidean distance is assumed to be significantly different from zero. Lag time increases over time for all scenarios, and
scenarios with fire start to diverge from scenarios without fire after 2030. Residual distances between CPDs are different from zero and
indicate that transient vegetation states are not time-shifted trajectories of equilibrium vegetation states. To see which variables are the main
drivers of the spatially averaged residual distance shown in panel b, please view panel b in comparison with Fig. 7.

decades and closest equilibrium decades indicates that equi-
librium states in average were still different from their tran-
sient partners. Residual distance was larger in both scenarios
with fire compared to the respective no-fire partner scenar-
ios, and larger in RCP8.5 than RCP4.5 from mid-century on-5

ward. Closest agreement between CDPs was reached during
the 2000s.

During the 2010s, residual distance between CDPs was be-
low 1 in most regions of Africa in RCP8.5 with fire, except
for areas adjacent to the north and south of the Congo basin,10

West Africa, and along the coast in southeast Africa (Fig. 6b).
In the no-fire scenario, residual distance was below 1 almost
everywhere (Fig. S9b). By mid-century, the residual distance
in the regions that already had elevated values in the 2010s
had increased further and additional areas of augmented dis-15

tance had appeared in East Africa and the eastern parts of
South Africa (Fig. 6d). In the no-fire scenario, residual dis-
tance was still low in most parts, but started to increase in
East Africa (Fig. S9d). At the end of the century, in RCP8.5
with fire substantial residual distance between CDPs existed20

in most parts of Africa, except for southwest Africa, the cen-
tral Congo basin, and the fringe areas of the Sahara desert
(Fig. 6f), with maxima in eastern Africa and southern Central
Africa. In the no-fire scenario, residual distance had become
more pronounced in East Africa since mid-century, and addi-25

tional hotspot areas in Cameroon and Angola had developed
(Fig. S9f).

The patterns for RCP4.5 were similar to those of RCP8.5
up to mid-century (Fig. S10, Fig. S11). However, residual
distance towards the end of the century was considerably 30

lower in both the fire and no-fire scenario in RCP4.5.

3.6 Residual distance in relation to lag time

As shown in the preceding two sections, both lag time and
residual distance in average increased over time and reached
a maximum towards the end of the century. In all scenarios, 35

residual distance tended to be lowest between CDPs that had
a lag time of 4 decades (Fig. S12). Where CDPs exceeded
lag times of seven decades, residual distance increased with
lag time in RCP8.5, especially in the scenario with fire. In
RCP4.5, this increase was hardly visible (Fig. S12b) or ab- 40

sent (Fig. S12d).

3.7 Variable contributions to dissimilarity between
CDPs

In most areas of Africa, a specific variable could be iden-
tified that dominated the Euclidean distance (Fig. S13). Sa- 45

vanna tree cover was the dominant variable explaining the
distance between CDPs for 25-35% of Africa’s non-desert
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Figure 6. Spatial patterns of lag time (decades) between closest-decade partners (CDPs) for RCP8.5 with fire (panels a, c, e), and residual
Euclidean distance between CDPs (panels b, d, f), for three selected decades (2010-2019, 2050-2059, 2090-2099).

area in RCP8.5 with fire (Fig. 7). Mean tree height was the
dominant variable for 26% of Africa’s non-desert area in the
first decade in RCP8.5 (34% in RCP4.5), and declined to
13% (17%) towards the end of the century. Aboveground
grass biomass was the dominant variable for 5-17% of the5

area, with maximum extent reached in the 2010s. The area
where C3:C4 grass ratio was the dominant variable increased

towards the end of the century, where it reached a cover of
approx. 21% in RCP8.5 with fire. The overall pattern was
similar in RCP4.5 with fire, with the exception that C3:C4 10

grass ratio never became as relevant as in RCP8.5. In sce-
narios without fire, savanna tree cover as dominant variable
for CDPs was negligible as this tree type was largely absent
without fire. Consistent with the fire scenario, the RCP8.5
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Figure 7. Fractions of African area where a given variable is the dominant variable defining residual distance between closest-decade
partners (CDPs), illustrated as time series stacks for the four scenario pairings between CDPs. Variable color coding is annotated in the panel
for RCP8.5 with fire. The color-coding for the variables is identical in all four panels.

without fire showed an increase in area where C3:C4 grass
ratio was the dominant variable towards the end of the cen-
tury. For maps of dominant variable distribution, see Fig. S14
and Fig. S15.

The dominant variable for CDPs in average caused a 34-5

44% deviation from the full residual distance (Fig. S16).
Similar to SDPs, the impact caused by the dominant variable
also depended on variable identity and for some variables
varied between scenarios. In particular savanna tree cover
showed a difference between fire and no-fire scenarios, with10

its impact on full Euclidean distance being almost twice as
high in fire than in no-fire scenarios. Where mean tree height
was the dominant variable, it had the highest impact on resid-
ual distance, but less than in SDPs, and considerably less in
RCP4.5 than RCP8.5. For spatial distribution of percent de-15

viance caused by dominant variables, see Fig. S17 and Fig.
S18.

3.8 Biome stability

Biome stability varied between scenarios (Fig. 8). Transient
scenarios had larger stable areas across all decades than equi- 20

librium scenarios, and no-fire scenarios had larger stable ar-
eas than the corresponding scenarios with fire. The largest
stable areas were found in transient RCP4.5 without fire.
Areas that experienced biome changes were located at the
fringes of biome core areas, and fringe areas were consis- 25

tently wider in equilibrium than in transient scenarios. Stable
savanna core areas were absent in no-fire scenarios, where
savanna core areas were replaced by woodland, and forest
expanded into areas that were woodland or savanna in sce-
narios with fire (Fig. S19). C3 grassland and C3 savanna only 30

emerged in small quantity in RCP8.5 scenarios with fire to-
wards the end of the century. In the presence of fire, transient
scenarios had more savanna areas than their equilibrium part-
ners, which lost savanna area to woodland area towards the
end of the century. 35

Where biome change occurred, the number of different
biome types per grid cell was highest in the two equilibrium
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Figure 8. Areas with only one biome type in all 13 decades (i.e.,
biome core areas) shown for each of the 8 scenarios. Areas that
experience one or more biome transitions are masked out (white
areas). Transient scenarios are indicated by label “trans.” (panels b,
d, f, h), equilibrium scenarios by label “equil.” (panels a, c, e, g).

scenarios with fire (Figs. S20 and S21). Additionally, these
scenarios revealed the highest number of biome changes, and

the most pronounced ratio between biome types and number
of biome changes, indicating back-and-forth fluctuations be-
tween biome types. Consistent with the largest stable core 5

sizes in no-fire transient scenarios, these also had the low-
est numbers of biome types, biome changes, and the lowest
ratios of biome types to biome changes.

4 Discussion

Understanding time lags in the climate-vegetation system 10

is important when trying to predict and evaluate vegetation
dynamics, composition, structure and associated ecosystem
functions and services against the background of climate
change. However, so far relatively few studies have focused
on this topic. For example, Wu et al. (2015) and Chen and 15

Wang (2020) studied time lag responses of vegetation growth
to different climatic factors based on analysis of a time se-
ries of NDVI data. Papagiannopoulou et al. (2017) studied
lagged vegetation anomalies caused by precedent precipita-
tion based on multi-decadal satellite data. However, these 20

studies were based on observational data and therefore ret-
rospective, they focused on a small number of specific vege-
tation properties such as growth and NDVI, and on lags oc-
curring on time scales of months, seasons, or few years. To
our knowledge, our study is the first that models time lags 25

for future conditions, on a multi-decadal scale, focusing on
the combined effects of different environmental drivers and
a range of different key variables.

4.1 Key variable behavior and biome stability

Aboveground biomass increase was consistently observed 30

across all scenarios for both trees and grasses (Fig. 1a and
b, Fig. S1a and b). For trees, this biomass increase is due to
an increase in maximum tree height (Fig. 1e, Fig. S1e) and
in tree number (Fig. 1f, Fig. S1f) towards the end of the cen-
tury, and in scenarios with fire also due to an increase in total 35

tree cover (Fig. 1g, Fig. S1g). This persistent trend suggests
that natural African vegetation may remain a carbon sink
throughout the 21st century, although we have not specifi-
cally analyzed changes in carbon sink strength in this study.
However, less biomass in transient than equilibrium scenar- 40

ios towards the end of the century indicates carbon debt of
ecosystems towards the atmosphere, which agrees with the
findings of Scheiter et al. (2020). Hubau et al. (2020) found
a stable carbon sink for Africa for the three decades up to
2015 and increased tree growth, consistent with the expected 45

net effect of rising atmospheric CO2, but predicted a long-
term future decline in the African tropical forest sink. How
the carbon balance of the African continent will develop is
still subject to considerable uncertainty due to high interan-
nual variability in emissions and involvement of a multitude 50

of factors other than natural vegetation development. Human
population development, land conversion and biomass over-
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exploitation may severely impact Africa’s potential as a fu-
ture carbon sink (Williams et al., 2007; Brandt et al., 2017;
Pelletier et al., 2018).

The simulated increase in biomass is likely linked to CO2
fertilization effects. Woody encroachment, i.e., increase in5

woody vegetation cover, woody plant individuals and woody
biomass, is commonly observed in African savannas and of-
ten attributed to rising atmospheric CO2 concentrations, al-
though other factors such as water constraints, fire and her-
bivory can confound the effect (Devinde et al., 2017; Case10

and Staver, 2017). As we did not conduct control simulations
omitting CO2 effects on vegetation, we cannot quantify how
much of the biomass increase is due to rising CO2 as opposed
to other factors. However, when keeping climate constant in
Scheiter et al. (2020) and varying CO2, a positive effect of15

elevated CO2 on carbon storage was observed. In two stud-
ies on biome change in South Asia (Kumar et al., 2020, in
review) and Africa (Martens et al., 2020, accepted) we di-
rectly compared fixed CO2 scenarios with scenarios follow-
ing RCP8.5 and RCP4.5 climate and CO2 trajectory. In these20

studies, we found that scenarios with fixed CO2 experienced
biomass decrease due to increased temperature and drought
stress, whereas biomass increased in scenarios with elevated
CO2.

The degree to which CO2 fertilization can (over-) com-25

pensate vegetation die-back due to increased temperature and
water stress is limited (Jin et al., 2017; Xu et al., 2019; Jiang
et al., 2020). Total tree cover decrease in our no-fire equi-
librium simulations from mid-century onward (Fig. 1g, Fig.
S1g) hints to such an upper limit. As conditions become drier30

towards the end of the century, even increased water use ef-
ficiency due to higher CO2 becomes insufficient to sustain
trees at the dry end of the gradient, and total tree cover de-
creases. Tree cover decline also occurs in the no-fire tran-
sient simulation, but less pronounced than in the equilibrium35

scenario. This indicates a tree cover surplus in the transient
scenario that is meta-stable. In scenarios with fire, total tree
cover is overall lower as fire reduces tree occurrence towards
the dry range of the gradient, i.e., trees are already absent
from sites that they can occupy in no-fire scenarios. The ob-40

served increase in tree biomass in no-fire scenarios is in con-
trast to the decline in tree cover and driven by tree number
and maximum tree height, i.e., tree biomass increases be-
cause there are more trees and the maximum height of trees
increases. The tree cover decline simulated by aDGVM is45

likely yet an optimistic perspective. While water limitation
effects on carbon assimilation and plant growth are captured,
water stress mortality occurs only indirectly. Due to stomatal
closure under water stress, the C-balance of a simulated plant
individual can become negative if respiratory costs exceed C-50

gain, which increases the plant’s probability of mortality. A
more direct simulation of water stress-related effects, such
as structural damage due to xylem cavitation, would likely
further increase tree mortality and cover decline.

The pronounced increase of C3 grasses towards the end 55

of the century in RCP8.5 (Fig. 1c), but not in RCP4.5 (Fig.
S1c), suggests that maximum CO2 levels in RCP4.5 are not
sufficient to enhance competitive performance of C3 grasses
such that they can coexist with or replace C4 grasses in warm
areas of Africa. This can be deduced from the fact that in 60

RCP8.5 C3:C4 grass ratio is the dominant variable causing
distance between SDPs towards the end of the century (Fig.
4). In RCP8.5, C3:C4 grass ratio debt in transient simulations
is the variable causing the largest difference between SDPs
in many parts of Africa (Fig. S4c,f), but this is not the case 65

in RCP4.5 (Fig. S5c,f). Even in areas where only little grass
biomass exists, for example in the Congo basin, the differ-
ence in C3:C4 grass ratio between SDPs is larger than the
differences caused by other key variables. This is because
other key variables are comparably stable in these tropical 70

forest areas. Although Euclidean distance is intermediate to
high in this area (Fig. 3e,f), albeit lower than in savanna and
woodland areas, up to 80% or more of contribution to full Eu-
clidean distance is explained by the dominant variable (Fig.
S7e,f), i.e., by C3:C4 grass ratio. As amount of grass biomass 75

is not considered in variable impact evaluation, the difference
in C3:C4 grass ratio is the most prominent difference where
other key variables are largely stable.

Aside from rainfall, fire plays a key role for landscape
openness (Staver et al., 2011b), as indicated by lower lev- 80

els of tree biomass (Fig. 1a, Fig. S1a), tree cover (Fig. 1g,
Fig. S1g) and higher levels of grass biomass (Fig. 1b, Fig.
S1b) in scenarios with fire as opposed to no-fire scenarios.
Without fire pressure, savanna trees and savannas are largely
absent and are replaced by woodland and forest (Figs. 1i, 85

S1i, 8), which confirms findings that savannas and forests are
alternative biome states differentiated by fire (Staver et al.,
2011a). The bi-stability between woodland and savanna in
the context of our study is the combined result of difference
in tree type (dominant cover of forest or savanna trees) and 90

tree cover in the presence or absence of fire. Savanna tree
cover increases in transient but decreases in equilibrium sim-
ulations with fire (Fig. 1i, Fig. S1i), whereas total tree cover
increases in both scenarios with fire (Fig. 1g, Fig. S1g). How-
ever, this total tree cover increase is driven by forest trees 95

in equilibrium and by savanna trees in transient simulations.
Where we see the final stage of succession as represented
by aDGVM in the equilibrium scenario, what we see in the
transient scenario is a snapshot of a system in motion. The
increase in savanna tree cover in the transient scenarios can 100

thus be interpreted as intermediary disequilibrium stage that
already indicates transition towards more tree cover, but has
not yet moved to the next successional stage that would be re-
placement of savanna trees with forest trees. Anthropogenic
fire management may therefore have considerable effects on 105

vegetation state and carbon sequestration of African ecosys-
tems. For example, Scheiter et al. (2015) showed that differ-
ent fire return intervals and early vs. late dry season manage-
ment fires influence biomass and other state variables of sim-
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ulated biomes. Scheiter and Savadogo (2016) showed that
management can slow or accelerate tipping point behavior
and hence the magnitude of vegetation lags. Targeted fire re-
duction could help to shift African vegetation towards higher
woody cover and biomass and therefore increase the size of5

the African carbon sink. This would, however, lead to the
loss of unique ecosystem types and their associated biodi-
versity and ecosystem functions. In particular grasslands and
savannas are threatened by targeted fire reductions, because
fire plays a pivotal role in the dynamics of these ecosystem10

types. Conservation management therefore has to balance
trade-offs between carbon storage vs. ecosystem conserva-
tion when evaluating the role of fire as a management tool in
African ecosystems.

Areas of biome stability are more extensive in transient15

than equilibrium scenarios (Fig. 8), and where biome change
occurs a higher number of biome types is simulated and a
larger number of biome changes occurs in equilibrium sce-
narios (Figs. S20, S21). Areas that are stable in transient but
not in equilibrium scenarios can be interpreted as meta-stable20

legacy states. The recognition of such meta-stable states
has important implications for conservation. Conservation of
meta-stable states will require extra effort as the system may
ultimately move towards a stable state. Areas of biome sta-
bility are also more extensive in no-fire than in fire scenarios,25

indicating the role of fire in keeping vegetation in dynamic
disequilibrium. More forests and woodlands in no-fire equi-
librium scenarios strongly support the notion that in our sim-
ulations a large part of the savannas exists due to disturbance,
with fire keeping vegetation in fluctuation between a mix of30

intermediary successional stages (Meyer et al., 2009).

4.2 Dissimilarity between same-decade partner
scenarios

Euclidean distance between SDPs increased over time (Figs.
2, 3, S2), which was more pronounced in fire than in no-35

fire scenarios. Such an increase in distance can be an indica-
tion of time lags in vegetation dynamics as well as of non-
analogue vegetation states. Whether the former or the latter
or a combination of both causes the observed dissimilarity
cannot be discerned based only on SDP comparison. A dif-40

ference between RCP4.5 and RCP8.5 was found for the sec-
ond half of the century, with dissimilarity in RCP4.5 only
moderately rising, but further increasing in RCP8.5, where
CO2 keeps rising and climate continues to change.

The vegetation formations most at risk are savannas and45

woodlands due to their meta-stability. They show highest
dissimilarity between transient and equilibrium state (com-
pare Figs. 3, S4 and 8 for RCP8.5, and Figs. S2, S5 and 8
for RCP4.5), which implies that they are farthest from their
equilibrium stage and therefore most at threat to experience50

change even after a stabilization of climate and CO2 con-
centrations. Savannas are disturbance-driven systems that are
subject to continuous fluctuations caused by abiotic and bi-

otic disturbances. Due to these non-equilibrium processes
that characterize savannas, they are non-equilibrium systems 55

that fluctuate around a mean state classifying them as savan-
nas (Gillson, 2004). If climate change deflects savannas to a
degree where this mean state changes from savanna to wood-
land or forest, they additionally may become a disequilib-
rium vegetation formation, i.e., a vegetation formation that 60

does not correspond to the new equilibrium state demanded
by the forcing regime. They will then be a remnant of a fore-
gone forcing system due to a relaxation time that exceeds the
time it took the forcing to change. It is likely that this disequi-
librium state will entail leading-edge as well as trailing-edge 65

dynamics. Leading-edge effects include lags due to migra-
tion and local population built-up and succession, whereas
trailing edge effects are caused by delayed local extinctions
and slow losses of ecosystem structural components (Sven-
ning and Sandel, 2013). Our results indicate that savannas 70

are particularly sensitive to future change of environmental
drivers, because in fire-scenarios, differences in savanna tree
cover were the dominant driver for SDP dissimilarity for 25
to 40% of African non-desert area (Fig. 4). Our results there-
fore suggest that savannas are likely to become disequilib- 75

rium vegetation formations and therefore will need special
focus in conservation management.

4.3 Dissimilarity between closest-decade partners

Increasing lag times between CDPs (Fig. 5a) and increasing
dissimilarity of SDPs over time (Fig. 2) are a sign that en- 80

vironmental drivers change faster than vegetation can adapt.
This agrees with findings of Jezkova and Wiens (2016) that
rates of change in climatic niches in plant and animal popula-
tions are much slower than projected climate change, posing
a threat in particular to tropical species. Extreme lag times 85

can therefore indicate areas where environmental drivers
change at a particularly high rate, where transient vegetation
is in a meta-stable state, and where future tipping of vegeta-
tion into alternative stable states is likely. Conversely, areas
with low lag times can either indicate low rate of change in 90

environmental drivers at the regional scale, or indicate vege-
tation that is particularly resistant to changing environmental
conditions. In both cases, small vegetation changes are suffi-
cient to stay close to the anticipated equilibrium state, either
because change in environmental drivers is weak and does 95

not require much change in vegetation, or because equilib-
rium vegetation is stable across a wide range of environmen-
tal drivers. Lag size can therefore be explained by combined
evaluation of change in environmental drivers and vegetation
resistance. 100

Combining information on vegetation lag time with resid-
ual distance between CDPs (Fig 5 a and b) reveals that tran-
sient vegetation states are likely non-analogue to any sim-
ulated equilibrium state. If transient vegetation states were
on a time-shifted trajectory of equilibrium vegetation states, 105

residual distances between CDPs should be approximately
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zero. This is not the case in our comparison of CDPs (Fig.
5b), where spatially averaged residual distance ranges be-
tween 0.5 and 1.5 depending on scenario and decade. Spa-
tially explicit evaluation of simulations with fire showed
that areas of particularly high residual distance (Figs. 6b,d,f,5

S10b,d,f) were mostly located in savanna and woodland areas
to the north and south of the Congo basin, in East Africa and
eastern South Africa. Fire caused more pronounced resid-
ual distances between CDPs than found in no-fire scenar-
ios, where areas of pronounced dissimilarity only started10

to emerge towards the end of the century (Figs. S9b,d,f,
S11b,d,f). This is a strong indication that disturbances can
help to keep vegetation in meta-stable intermediary succes-
sional states (Dantas et al., 2016). Comparison of residual
distance patterns (Fig. 6b, d, f) with lag time patterns (Fig.15

6a, c, e) reveals a connection between areas of pronounced
residual distance and long lag times. This implies that al-
though a closest equilibrium partner was found, this partner
not only has a vegetation state that corresponds to past envi-
ronmental conditions, but also is a poor match for the tran-20

sient vegetation state. We deduce from this that the corre-
sponding simulated transient vegetation states are composite
non-analogue states that cannot be described by any vegeta-
tion state achievable under equilibrium conditions.

Residual distance between CDPs is dominated by different25

key variables depending on location (Figs. S14, S15). In sce-
narios including fire, differences in savanna tree cover dom-
inated dissimilarity between CDPs in roughly a quarter to
a third of African non-desert area (Fig. 7), which supports
the notion that savanna and woodland areas are bi-stable30

states (Higgins and Scheiter, 2012; Staal et al., 2016) and
therefore prone to tipping point behavior in the future (Gill-
son, 2015). CO2 concentrations anticipated under RCP8.5 for
the second half of the century are predicted to cause shifts
from C4 to C3 dominance in the grass layer in extensive ar-35

eas of Africa (Figs. 1c, S5e,f). The threshold CO2 levels at
which such a shift in dominance occurs is also influenced by
growing-season temperature and water availability and addi-
tionally influenced by non-climatic factors such as fire, her-
bivore preferences and light availability (Ehleringer, 2005).40

Whether these shifts will be realized also depends on the
availability of a C3 grass species pool in these areas. Envi-
ronmental niche suitability alone not necessarily implies re-
alization of niche occupancy when target organisms (in this
case C3 grasses) are absent, e.g., due to migrational lags and45

local dispersal limits (Dexiecuo et al., 2012).
Non-analogue transient vegetation states emerge due to

differing response times of key processes and state variables,
leading to cumulative lagged responses that act on different
biodiversity components, including individuals, populations,50

species and communities (Essl et al., 2015a). In Scheiter et al.
(2020), we showed time series of different state variables
at a savanna study site in South Africa that illustrated the
temporal sequence of process and state variable responses
from leaf-level to population level. While ecophysiologi-55

cal responses such as increased photosynthesis happen very
quickly, population-level responses are slower and respond
sequentially on different time scales. This implies that vege-
tation in transient state is subject to multiple lags, i.e., at any
given time different key variables have different individual 60

lag times. These multiple lags make it impossible to approx-
imate transient vegetation states through equilibrium states,
resulting in composite non-analogue states.

The finding that future transient vegetation states deviate
from any equilibrium state has implications for conservation 65

management. Conservation managers need to decide on tar-
get ecosystem states, and whether preservation of contem-
porary ecosystem states will be feasible and sustainable in
the future. Awareness of meta-stable vegetation states should
influence decisions on suitable intervention measures, and 70

help decide to what extent these need to be applied (Gillson,
2015). In this context, our study can help to identify those
vegetation types and areas that are most prone to change and
tipping point behavior in the face of future climate change
and therefore need particular focus. We found that savan- 75

nas and woodlands, or more generally speaking those sys-
tems where disturbance regime is important, are especially
likely to exhibit multi-lags and meta-stability. This is because
disturbances such as fire or herbivory cause cyclical suc-
cessional resets that keep systems from converging to late- 80

successional states (Meyer et al., 2007), and therefore can
exacerbate climate-driven lags and meta-stability (Scheiter
et al., 2020). Accordingly, climate-mediated changes in dis-
turbance regime also need consideration in conservation
management, e.g., changes in fire frequency, intensity or tim- 85

ing of occurrence (Battisti et al., 2016).

4.4 Opportunities and limitations of this study

Field surveys and remote sensing data provide valuable in-
formation on vegetation status. However, they are usually
limited with respect to the time span they can cover, and 90

they are subject to a trade-off between high spatial or high
temporal resolution, as well as between high spatial reso-
lution and spatial extent. In addition, observations are also
confined to the past or present. Without reference base, it is
hard to determine whether an observed vegetation state is in 95

equilibrium with environmental forcing, time-lagged, or non-
analogue. Dynamic vegetation modeling can overcome these
constraints. Moreover, the influence of specific driver vari-
ables can be studied in isolation, e.g., the effect of elevated
CO2 can be studied by keeping climate constant (Scheiter 100

et al., 2020). Dynamic vegetation modeling also offers the
possibility to generate equilibrium vegetation states by en-
forcing constant or detrended drivers and allowing the model
to reach equilibrium under these conditions. These simulated
equilibrium vegetation states can then be used as controlled 105

reference base for simulated transient vegetation states, but
also to assess the status of observed vegetation. Enforce-
ment of vegetation equilibrium, projection of future vegeta-
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tion states, and the possibility for isolated factorial analysis
of specific drivers using vegetation models therefore provides
a unique opportunity to address knowledge gaps that cannot
be filled by observation data.

A limitation of the approach presented in this study is that5

climate data availability for RCP8.5 and RCP4.5 determined
the starting point (in our case the 1970s) for both equilib-
rium and transient vegetation simulations. This holds the im-
plicit assumption that transient and equilibrium vegetation
state were similar at the starting point. Moreover, the con-10

ceptual setup implies that simulated lag times cannot exceed
the number of decades between the 1970s and the decade of
interest. Therefore, simulated distance and lag times between
the historic decades and present can be underestimated and
need to be seen with caution, as observed vegetation states in15

Africa during the 1970s were very likely not in equilibrium
with environmental conditions of the 1970s. Hence, where
lag time equals number of simulated decades, the lag time
and associated Euclidean distances represent a lower limit
estimate. Consequently, simulated lag times and Euclidean20

distances in some cases may be underestimated due to the
limitation caused by the need to start simulations at the be-
ginning of the climate data set. We are, however, confident
that the general message of the simulation experiment, i.e.,
that transient vegetation states are non-analogue to equilib-25

rium vegetation states, and lag behind forcing, is nonetheless
valid.

We only conducted a limited number of equilibrium simu-
lation runs to establish equilibrium vegetation states as ref-
erence basis. The decadal-scale discretization was chosen30

because 13 simulation runs per scenario were determined
as technically feasible while also ensuring variability in in-
put climate data. Yet, discretization could imply that resid-
ual distance between CDPs may be overestimated if the best
equilibrium match to a transient vegetation state was lo-35

cated between two equilibrium scenarios. However, given the
clear dominance of specific key variables for residual dis-
tance between CDPs, we deem it unlikely that discretization
is responsible for overestimates of residual distances large
enough to falsely assume non-analogue state for a given tran-40

sient vegetation state. Moreover, an analysis of lag times con-
ducted for single variables revealed a large range of vari-
ability in lag times between variables for a given transient
decade, especially in the second half of the century (not
shown). This is a clear sign of multi-lags that should be45

unrelated to discretization and therefore points to true non-
analogue transient vegetation states.

Fire in aDGVM does not account for explicit occurrence
of ignitions, but has heuristically been calibrated such that
the ignition rates and resulting fires agree well with observed50

fire patterns and frequency (Scheiter and Higgins, 2009).
Where occurrence of ignitions may change in the future,
e.g., due to changes in fire management or occurrence of
lightning strikes due to climate change, aDGVM may there-
fore miss such changes in ignition patterns. However, given55

that the majority of African ecosystems are currently not
ignition-limited and therefore climate and landscape connec-
tivity combined with human fire management strategies are
the main limiting factors on fire occurrence (Archibald et al.,
2012, and references therein), the simulated amount of fire is 60

driven by the other two components of the fire triangle (fuel
load and quality, fire weather conditions, e.g., fuel moisture).
As fire intensity and spread in aDGVM are linked to fuel
moisture, fuel biomass and tree cover (increasing tree cover
reduces fire occurrence), simulated fire regimes in the future 65

do change in response to climate and vegetation change in a
non-ignition-limited system even if changes in ignition pat-
terns are not directly captured themselves. We therefore es-
timate that our main findings regarding the role of fire in re-
lation to vegetation patterns and lags would not change sub- 70

stantially with explicit representation of ignitions.
Due to the large number of simulation runs required for

this study (56 runs in total), we only used downscaled climate
output data from one Earth System Model (ESM). The results
might therefore differ slightly when using climate output 75

data from other ESMs. However, results from another study
recently conducted with aDGVM for Africa using CCAM-
downscaled projections from six different ESMs showed that
the choice of ESM had the smallest effect on simulation out-
come (Martens et al., 2020, accepted). Variation between all 80

24 ensemble members in that study was mainly explained by
the CO2 scenario, followed by interactions between CO2 and
RCP scenarios, while the type of ESM had only minor in-
fluence. The biomass values simulated with the downscaled
MPI-ESM climatology in that study were slightly below the 85

mean of the six ensemble members, indicating a tendency to-
wards slightly more-than-average temperature increase and
MAP decrease. This agrees with the slightly above-average
Equilibrium Climate Sensitivity (ECS) value of 3.6 for MPI-
ESM-LR (ensemble mean: 3.2± 1.3, in Tab. 9.5 of Flato 90

et al., 2013). Given the low impact of the ESM scenario on
the results and the fact that the downscaled MPI-ESM clima-
tology used in this study lies close to the ensemble mean of
different ESMs, we are confident that our results are repre-
sentative although only output from one ESM was used. 95

All presented simulations were conducted offline, i.e.,
without direct coupling between vegetation and climate. We
expect that lag times, bi-stability and non-linear tipping be-
havior between different vegetation states could be even
more pronounced in an online-coupling experiment, because 100

stability is likely enhanced by feedback mechanisms that fos-
ter it. For example, tropical rain forests transfer large quan-
tities of water vapor to the atmosphere and locally create
clouds and precipitation sustaining their existence even if
regional-scale precipitation patterns without such feedbacks 105

showed decreasing trends (see, e.g. Staal et al., 2018). In
line with Zhu and Zeng (2014), we expect that albedo ef-
fects, canopy transpiration and evaporation, and tempera-
ture effects mitigated by vegetation could alter local to re-
gional climate, in turn feeding back on vegetation dynam- 110
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ics. In semi-arid areas, such feedbacks can decide which one
of several possible equilibrium states will be realized, e.g.,
whether grasslands or deserts will be realized as alternative
stable states (Zeng et al., 2004). However, even fully cou-
pled ESMs may be unable to predict how future feedbacks5

between vegetation and climate will shape terrestrial vegeta-
tion state, as shown by Bathiany et al. (2014) in the context
of future Sahel greening trends simulated by three different
ESMs with dynamic vegetation coupling.

5 Conclusions10

Our results show that simulated transient vegetation states
increasingly deviate from equilibrium vegetation states in
both RCP scenarios, and that during the second half of the
21st century this deviation is more pronounced in RCP8.5
than RCP4.5. Fire additionally increased Euclidean distance15

between SDPs due to its restraining effects on vegetation
succession. Individual key variables such as woody cover,
grass and tree biomass, and tree height differed between tran-
sient and equilibrium scenarios, and for many regions vari-
ables that dominated Euclidean distance between transient20

and equilibrium partner scenarios could be clearly identified.
Trajectories of transient vegetation change did not follow a
“virtual trajectory” of equilibrium states, i.e., they are not
time-shifted trajectories of equilibrium vegetation states, but
composite non-analogue states caused by multiple lags with25

respect to vegetation processes and composition. Lag times
between transient and most similar equilibrium vegetation
states increased over time and to a degree were found to agree
with spatial patterns of maximum residual Euclidean dis-
tance between CDPs. Extremely long lag times can be indica-30

tive of high rates of change in environmental drivers, of non-
analogue transient vegetation states, and of meta-stability
and risk of future tipping points. Lag times toward the end of
the century were most pronounced in savanna and woodland
areas north and south of the Congo basin, the Sahel zone,35

east Africa, and eastern South Africa, with savanna tree cover
frequently being the main driver of transient-equilibrium dis-
similarities in these regions. Our results indicate that savanna
ecosystems will be most at risk for shifts towards alternative
stable states and therefore need a strong focus in nature con-40

servation management.

Code availability. The aDGVM code used to produce the re-
sults presented in this publication is available on Github (https:
//github.com/aDGVM/aDGVM1_CCAM). The decadally-averaged
model output data analyzed in this study as well as the45

scripts used to conduct data analysis and to create the Fig-
ures shown in the manuscript and its supplementary material are
available at https://data.mendeley.com/datasets/yx8wj84bd2/draft?
a=4203fa29-d8bb-4ba2-b96a-8c5ba573facc

Video supplement. Videos showing decadal time series of results 50

in form of maps are available as supplementary material and can
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