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Abstract.  The contribution of soil heterotrophic respiration to the boreal-Arctic carbon (CO2) cycle and its potential 20 

feedback to climate change remain poorly quantified. We developed a remote sensing driven permafrost carbon model 

at intermediate scale (~1 km) to investigate how environmental factors affect the magnitude and seasonality of soil 

heterotrophic respiration in Alaska. The permafrost carbon model simulates snow and soil thermal dynamics, and 

accounts for vertical soil carbon transport and decomposition at depths up to 3 m below surface. Model outputs include 

soil temperature profiles and carbon fluxes at 1-km resolution spanning the recent satellite era (2001-2017) across 25 

Alaska. Comparisons with eddy covariance tower measurements show that the model captures the seasonality of 

carbon fluxes, with favorable accuracy in simulating net ecosystem CO2 exchange (NEE) for both tundra (R > 0.8, 

RMSE = 0.34 g C m-2 d-1) and boreal forest (R > 0.73, RMSE = 0.51 g C m-2 d-1). Benchmark assessments using two 

regional in-situ datasets indicate that the model captures the complex influence of snow insulation on soil temperature, 

and the temperature sensitivity of cold-season soil heterotrophic respiration. Across Alaska, we find that seasonal 30 

snow cover imposes strong controls on the contribution from different soil depths to total soil heterotrophic respiration. 

Earlier snow melt in spring promotes deeper soil warming and enhances the contribution of deeper soils to total soil 

heterotrophic respiration during the later growing season, thereby reducing net ecosystem carbon uptake. Early cold-

season soil heterotrophic respiration is closely linked to the number of snow-free days after the land surface freezes 

(R = -0.48, p < 0.1), i.e. the delay in snow onset relative to surface freeze onset. Recent trends toward earlier autumn 35 

snow onset in northern Alaska promote a longer zero-curtain period and enhanced cold-season respiration. In contrast, 

southwestern Alaska shows a strong reduction in the number of snow-free days after land surface freeze onset, leading 

to earlier soil freezing and a large reduction in cold-season soil heterotrophic respiration. Our results also show non-
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negligible influences of sub-grid variability of surface conditions on the model simulated CO2 seasonal cycle, 

especially during the early cold season at 10-km scale. Our results demonstrate the critical role of snow cover affecting 40 

the seasonality of soil temperature and respiration, and highlight the challenges of incorporating these complex 

processes into future projections of the boreal-Arctic carbon cycle.   

1 Introduction 

Warming in the northern high latitudes (> 50°N) is occurring at roughly twice the global rate, and has trigged a series 

of changes in boreal and Arctic ecosystems including earlier and longer growing seasons, widespread soil thawing 45 

and permafrost degradation (Jeganathan et al., 2014; Liljedahl et al., 2016), with large impacts on the regional carbon 

cycle (McGuire et al., 2016). Atmospheric CO2 observations indicate a strong increase in the seasonal amplitude of 

the northern carbon cycle, which may reflect an enhancement of net carbon uptake during the growing season or soil 

carbon emissions during the cold season in northern ecosystems (Graven et al., 2013). However, there is a lack of 

consensus on whether increased vegetation productivity or enhanced respiration drives such changes, due to sparse 50 

in-situ measurements, and uncertainties in satellite remote sensing retrievals and model simulations (Fisher et al., 

2014; Forkel et al., 2016; Parazoo et al., 2016; Wenzel et al., 2016). For example, there is a large discrepancy on the 

contribution of cold-season respiration to the annual carbon budget in boreal-Arctic ecosystems (Zona et al., 2016; 

Euskirchen et al., 2017; Natali et al., 2019a). In addition, potential release of a large amount of carbon currently 

sequestered in perennially frozen soils in the northern high latitudes adds additional uncertainty in assessing the 55 

response of boreal-Arctic ecosystems to future climate change (Schuur et al., 2015). 

 

Pronounced changes have occurred in the northern high latitudes, especially during the shoulder seasons. Satellite 

remote sensing datasets over the past several decades indicate reductions of 0.8-1.3 days decade-1 in the duration of 

annual frozen period in the northern high latitudes (Kim et al., 2015) and ~3-4 days decade-1 in the snow cover duration 60 

across the Northern Hemisphere mostly due to spring snow cover reduction (Hori et al., 2017; Bormann et al., 2018). 

Strong warming in both spring and fall has significantly reduced snow cover during the shoulder seasons; however, 

there is large spatial variability across the region, partly due to more variable snow cover conditions during fall and 

winter (Brown and Derksen, 2013; Hori et al., 2017). Climate models project continued strong warming during the 

spring and fall in the Arctic, and increases in previously rare winter rain events (Bintanja and Andry, 2017). How the 65 

boreal-Arctic carbon cycle responds to such changes remains to be understood.  

 

Previous studies reported that the combination of warming and a longer snow-free season has led to widespread 

greening and enhanced vegetation productivity in the northern latitudes especially during the early growing season 

(Aurela et al., 2004; Humphreys and Lafleur, 2011; Buermann et al., 2013; Pulliainen et al., 2017). However, a detailed 70 

understanding of how soil respiration and other belowground processes respond to climate variability, especially 

during the cold season, remains elusive. Soil respiration is mainly the product of respiration by roots (autotrophic) and 

soil decomposers (heterotrophic), while it is generally difficult to partition soil respiration into the heterotrophic and 

autotrophic components (Phillips et al., 2017). In this study, we focus on the heterotrophic component of soil 
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respiration, and assume it is the dominant component of total soil respiration in northern ecosystems during the cold 75 

season due to root dormancy (Tucker et al., 2014; Hicks Pries et al., 2015). Surface warming and a longer snow-free 

season are associated with earlier soil thawing and deeper active layer thickness (ALT) in permafrost regions, which 

can result in enhanced soil respiration and reduced annual net carbon uptake (Lund et al., 2012; Yi et al., 2018). 

Moreover, ALT deepening in permafrost regions will likely lead to a longer zero-curtain period (i.e. soil temperature 

persists around 0 °C) especially in the deeper active layer, which may even form talik and further accelerate permafrost 80 

thawing (Connon et al., 2018; Yi et al., 2019). These changes may promote even more soil carbon losses particularly 

during the cold season, reinforcing a positive permafrost carbon feedback (Parazoo et al., 2018). On the other hand, 

the timing and magnitude of autumn snowfall determine the onset and rate of soil freeze-up, which affects soil 

microbial activity and soil respiration during fall and early winter (Zona et al., 2016; Arndt et al., 2019). Better 

understanding of how snow cover trends are affecting soil respiration is needed to inform projections of the potential 85 

response of the boreal-Arctic carbon cycle to climate change. 

 

Landscape-level processes can affect the amount and age of soil carbon released to the atmosphere (Hobbie et al., 

2000). An important feature of boreal-Arctic landscapes is strong surface heterogeneity, driven by relatively fine scale 

microtopographic variability on the order of 0.1-10 meters (Zona et al., 2011; Kumar et al., 2016; Grant et al., 2017a, 90 

b), which can influence coarser landscape level behavior. However, current large-scale models generally operate at 

scales of 10-100 km, and are too coarse to resolve finer scale surface heterogeneity and its influence on active layer 

dynamics and soil carbon decomposition (Yi et al., 2015; Tao et al., 2019). Satellite or airborne remote sensing can 

provide information on land surface heterogeneity across large extents, and may provide critical constraints on model 

predictions of regional active layer changes, soil carbon and permafrost vulnerability. Therefore, the objective of this 95 

study was to develop a process-based permafrost carbon model mainly driven by satellite remote sensing data. The 

model was designed at an intermediate scale (~1 km) that is efficient for regional runs but also able to bridge the gap 

between very fine-scale (~tens of meters) ground measurements and large-scale (~tens of kilometers) earth system 

simulations. The model simulations were conducted over a multi-year period (2001-2017) across Alaska to study how 

soil carbon emissions and the seasonal carbon cycle are responding to recent climate and snow cover trends.  100 

2 Methods 

2.1 Model description 

The Remote Sensing driven Permafrost Model (RS-PM) developed in Yi et al (2018; 2019), was coupled with a 

terrestrial carbon flux (TCF) model (Yi et al., 2015) to investigate the climate sensitivity of carbon fluxes across 

Alaska (Fig. 1), with a particular focus on the shoulder season. The soil decomposition model in the original TCF 105 

model was revised in this study to account for vertical soil carbon transport in order to better simulate the depth-

dependent soil carbon distribution and respiration fluxes. The RS-PM model simulates soil temperature and changes 

in soil liquid water content due to soil freeze/thaw transitions along the soil profile, using remote sensing based land 

surface temperature (LST), snow cover information and total soil moisture content as key model forcing. The RS-PM 
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outputs were then used as inputs to the carbon model, as constraints on both the vegetation productivity and soil 110 

respiration. A brief description of the modeling framework is described here, with a focus on the revised soil 

decomposition model, while a detailed description on the RS-PM model is provided in the supplementary material.     

 

The RS-PM follows the prototype of a detailed permafrost hydrology model (Rawlins et al., 2013; Yi et al., 2015), 

but has a flexible structure designed to use satellite remote sensing data as key model drivers and for model 115 

parameterization. The RS-PM uses a numerical approach to simulate soil freeze/thaw (F/T) and temperature profiles 

down to 60 m below the surface, using 23 soil layers with increasing layer thickness at depth. The model also accounts 

for the effects of seasonal snow cover evolution, organic soil and soil-water phase change on soil F/T processes. 

Satellite-based LST and snow cover time series data were used as model drivers. Soil thermal properties were 

parameterized using soil moisture data from the Soil Moisture Active Passive (SMAP) Level 4 (L4) data assimilation 120 

system (Reichle et al., 2017). RS-PM validation using in-situ measurements shows favorable model accuracy for ALT 

(mean R=0.60, bias=1.58 cm, RMSE=20.32 cm) and zero-curtain period (mean R=0.60, RSME=19 days) simulations, 

especially over the Alaska North Slope (Yi et al., 2018, 2019).  

 

We coupled the RS-PM and TCF models to represent the influence of permafrost active layer processes on net 125 

ecosystem CO2 exchange (NEE) and its component carbon fluxes. The TCF model uses a light use efficiency (LUE) 

algorithm driven by satellite FPAR (Fraction of vegetation canopy absorbed Photosynthetically Active Radiation) 

observations to calculate vegetation productivity and litterfall inputs to a soil decomposition model:  

𝐺𝑃𝑃 = 𝜀 × 𝐹𝑃𝐴𝑅 × 𝑃𝐴𝑅                                                                                                                                           (1) 

𝜀 = 𝜀𝑚𝑎𝑥 × 𝑇𝑚𝑛_𝑠𝑐𝑎𝑙𝑎𝑟 × 𝑆𝑀𝑚𝑛_𝑠𝑐𝑎𝑙𝑎𝑟                                                                                                                         (2) 130 

where GPP is the gross primary productivity (g C m-2 d-1),  𝜀 (g C MJ-1) is the LUE coefficient converting canopy 

absorbed photosynthetically active solar radiation (APAR; MJ m-2 d-1) to biomass. The biome-specific maximum LUE 

coefficient (𝜀𝑚𝑎𝑥) was reduced for suboptimal temperature and moisture conditions represented by the scalars 

𝑇𝑚𝑛_𝑠𝑐𝑎𝑙𝑎𝑟  and 𝑆𝑀𝑚𝑛_𝑠𝑐𝑎𝑙𝑎𝑟  to estimate 𝜀. MODIS nighttime LST and SMAP L4 rootzone (0-1 m depth) soil moisture 

records were used to estimate these rate scalars using a simple linear ramp functions (Yi et al., 2015). Vegetation net 135 

primary productivity (NPP) was estimated as a fixed portion of GPP for each biome type based on an assumption of 

conservatism in vegetation carbon use efficiency within similar plant functional types. Annual litterfall was assumed 

to be equal to annual NPP without accounting for the impact of disturbance events.  

 

Our soil decomposition model uses multiple litter and soil organic carbon (SOC) pools to characterize the progressive 140 

decomposition of fresh litter to more recalcitrant materials, which include three litterfall pools and three SOC pools 

with relatively fast turnover rates, and a deep SOC pool with slow turnover rates (Thornton et al., 2002). The litterfall 

carbon inputs were first allocated to the three litterfall pools and then transferred to the SOC pools through progressive 

decomposition. In a previous study (Yi et al., 2015), the litterfall and SOC pools were arbitrarily distributed at different 

soil depths within the top 3 m soils to account for depth-dependent differences in litterfall and soil organic matter 145 

substrate quality. However, in this study we model the profile of the carbon pools by introducing a vertical dimension 
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𝑧 and accounting for the vertical carbon transport across the z dimension (Elzein and Balesdent, 1995; Koven et al., 

2013a): 

𝜕𝐶𝑖(𝑧)

𝜕𝑡
= 𝑅𝑖(𝑧) + ∑ (1 − 𝑟𝑗)𝑇𝑗𝑖𝑘𝑗(𝑧)𝐶𝑗(𝑧)𝑛

𝑗≠𝑖 +
𝜕

𝜕𝑧
(𝐷(𝑧)

𝜕𝐶𝑖

𝜕𝑧
) − 𝑘𝑖𝐶𝑖(𝑧)                                                                       (3) 

where 𝑅𝑖 (g C m-3 d-1) is the carbon input from litterfall allocated to pool 𝑖 through the profile, and 𝑇𝑗𝑖  is the fraction 150 

of carbon directed from pool 𝑗 to pool 𝑖 with fraction 𝑟𝑗 lost as respiration;  𝑘𝑖(𝑘𝑗) is the decomposition rate (day-1) of 

carbon pool 𝑖 (𝑗), which was derived as the product of a theoretical maximum rate constant and dimensionless 

multipliers for soil temperature and liquid water content constraints to decomposition, simulated by the RS-PM model. 

The diffusivity 𝐷 was used to account for vertical diffusive soil C transport while vertical C transport due to advection 

was ignored here. Constant D values were assigned to permafrost (5.0 cm2 yr-1) and non-permafrost (2.0 cm2 yr-1) 155 

regions within the top 1m soil, and then linearly decreased to 0 at 3 m below surface (Koven et al., 2013a). The 

boundary conditions at the soil surface were defined as: 

𝐷
𝜕𝐶𝑖

𝜕𝑧
= 𝑅𝑠,𝑖 at z=0                                                                                                                                                            (4) 

where 𝑅𝑠,𝑖 is the carbon input rate (g C m-3 d-1) to the three surface litterfall pools. A zero-flux was assigned at the 

bottom of the soil carbon pool, which was set to 3 m depth.  160 

2.2 Model inputs and parameterization 

The main RS-PM inputs include LST, snow cover properties and soil moisture from global satellite and reanalysis 

data products. LST and soil moisture records from the MODIS 8-day composite dataset (MOD11A2; Wan and Hulley, 

2015) and SMAP L4 9-km daily surface (5cm depth) and root zone (0-1 m depth) products (L4SM, Reichle et al., 

2017) were used to define the model boundary conditions and parameterize soil thermal properties (Yi et al., 2018). 165 

MODIS 500-m snow cover extent (SCE) data (MOD10A2; Hall and Riggs, 2016) were used to downscale snow depth 

and density data from the MERRA2 (~0.5°) global reanalysis (Gelaro et al. 2017) to characterize sub-grid variability 

in snow distribution as described in Yi et al. (2019). The RS-PM model outputs include soil temperature and liquid 

water fraction within the soil profile, which are the major inputs to the soil decomposition model. Other primary inputs 

to the TCF model include MODIS normalized difference vegetation index (NDVI), nighttime LST, and MERRA2 170 

downward solar radiation data. The NDVI data was used to estimate FPAR using a biome-specific empirical 

relationship (Yi et al., 2015). The nighttime LST and SMAP L4 rootzone soil moisture were used to estimate the 

environmental constraints on LUE and GPP. All model input datasets were reprojected into a 1km resolution Albers 

projection and resampled to an 8-day time step consistent with the model simulations.  

 175 

Other ancillary datasets included the 30-m national land cover database (NLCD) 2011 (Jin et al., 2013), 50-m SOC 

estimates for Alaska (to 1-m depth; Mishra et al., 2017), and the global 9-km mineral soil texture data developed for 

the SMAP L4SM algorithm (De Lannoy et al., 2014). The dominant NLCD land cover type within each 1 km pixel 

was used to define the modeling domain, with open water and perennial ice and snow areas excluded (Fig. 2). The 

SOC inventory data was used to define the organic fraction of the top 10 model soil layers (~1.05 m depth), which 180 
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was used to adjust the soil properties of each soil layer based on the weighted mineral and organic soil components. 

More details on the data processing and soil parameterization can be found in Yi et al. (2018, 2019). 

 

A dynamic litterfall allocation scheme based on the satellite NDVI time series was used in Yi et al (2015) to account 

for litterfall seasonality. We revised this scheme for the present study to incorporate a vertical distribution of root 185 

turnover, required by the soil decomposition model. The total litterfall was partitioned into aboveground (leaves and 

woody components) and belowground (mostly fine roots) litterfall using prescribed ratios for each biome type (Table 

S1). A constant turnover rate for each 8-day composite period was assigned to the woody components of litterfall. 

The turnover rates of the other components of litterfall, i.e. leaves and fine roots, were calculated based on the annual 

time series of MODIS NDVI, with more litterfall generally allocated during the latter half of the year. The 190 

belowground litterfall was distributed through the rooting depth based on a vertical root distribution profile (Jackson 

et al., 1996). The maximum root depth in permafrost areas was limited to the maximum thaw depth. Then, the total 

litterfall at each depth was first allocated to the three litterfall pools according to the substrate quality of each litterfall 

component, i.e., labile, cellulose and lignin fractions, and then transferred to the SOC pools through progressive 

decomposition. Table S1 provides the main parameters of the TCF model for each biome type, which were largely 195 

consistent with the prior study (Yi et al., 2015).   

2.3 In-situ data and model validation 

We used four Alaska eddy covariance (EC) tower sites having multi-layer soil temperature or moisture measurements 

to evaluate the simulated carbon fluxes and temperature sensitivity of ecosystem respiration. Table 1 lists the relevant 

site characteristics. The Atqasuk site (US‐Atq) is about 100 km south of Utqiaġvik on the Alaska North Slope and 200 

consists of a mixture of tussock tundra and shrubs with some sedges and sandy soils (Davidson et al., 2016; Arndt et 

al., 2019). The Ivotuk site (US‐Ivo) is about 300 km south of Utqiaġvik in the northern foothills of the Brooks Range 

and characterized as a mixed tussock tundra/moss composition on a gentle slope (Arndt et al., 2019). Soil temperature 

measurements were available at 5, 15, 30 cm at US-Atq and 5, 15, 30, and 40 cm at US-Ivo, with full annual cycles 

recorded in 2014 and 2015. The two boreal forests sites (US-Prr and US-Uaf) are located near Fairbanks, Alaska and 205 

dominated by mature black spruce forest (Ueyama et al., 2014; Ikawa et al., 2015). The leaf area index is ~ 0.73 at 

US-Prr and 1.9 at US-Uaf. Understory vegetation is dominated by peat moss and feather moss. The US-Uaf is located 

in ice-rich permafrost, and the soil is silt-loam overlain by a 25-45 cm organic layer. Measurement records longer than 

7 years were available at both forest sites; however, soil temperature measurements at the two sites show some drift 

throughout the period, while soil moisture measurements are more consistent. Therefore, for the boreal sites, we used 210 

the relationship between ecosystem response and the zero-curtain period calculated from the soil moisture 

measurements to evaluate the temperature response of cold-season respiration. The zero-curtain period was defined 

as the difference between surface freeze-up and the soil freeze-up dates, where soil freeze-up was defined as the date 

when the soil liquid water content dropped below 15%–20% of the annual amplitude after surface freeze-up (Yi et al., 

2019).  215 
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We used two regional datasets to evaluate the model performance during the cold-season. Daily snow depth and soil 

temperature measurements at SNOTEL (SNOwpack TELemetry) sites across Alaska (http://www.wcc.nrcs.usda.gov) 

were used to evaluate the model skill in representing snow insulation effects during the cold-season, using a snow and 

heat transfer metric (SHTM) defined in Slater et al. (2017), which was based on the deviation of a model simulated 220 

snow insulation curve from observations. The snow insulation curve can be characterized as an exponential 

relationship of attenuated soil temperature amplitude with increasing snow depth, with snow insulation influence 

diminishing beyond a certain depth: 

𝐴𝑛𝑜𝑟𝑚 = 𝑃 + 𝑄(1 − 𝑒−(𝑆𝑑𝑒𝑝𝑡ℎ,𝑒𝑓𝑓 𝑅)⁄ )                                                                                                                         (5) 

where 𝐴𝑛𝑜𝑟𝑚 is the normalized temperature amplitude difference between air temperature and soil temperature, 225 

ranging from 0 to 1. The effective snow depth 𝑆𝑑𝑒𝑝𝑡ℎ,𝑒𝑓𝑓 describes the snow insulation impact and is the integrated 

monthly snow depth from October to March weighted by its duration. P and Q are empirical parameters and R is the 

effective damping soil depth, which can be determined using a data fitting method. We chose to evaluate the modeled 

snow insulation effects using the SHTM metric, rather than directly compare the modeled and observed soil 

temperatures. This approach minimizes the influence of potentially large differences between the relatively coarse 230 

(~1-km resolution) model input data and the local site observations, particularly for SNOTEL sites located in 

mountainous terrain.  

 

We used the Natali et al. (2019b) in-situ winter soil CO2 flux dataset to evaluate our simulated temperature sensitivity 

of cold-season respiration. The CO2 flux measurements were collected from previous studies using a variety of 235 

methods (e.g. chamber, EC tower), and reported as the daily average over the monthly or seasonal interval when 

monthly data were not available. This dataset represents CO2 emissions from belowground ecosystems, including 

respiration contributions from both autotrophic (from roots) and heterotrophic components. In this study, we compared 

the model simulated soil heterotrophic respiration directly with the measured soil CO2 flux, since the model assumes 

the autotrophic respiration (as a portion of GPP) is very low throughout the cold season, especially for tundra (Tucker 240 

et al., 2014; Hicks Pries et al., 2015). Soil temperature measurements were also provided in the dataset, at varying 

depths. Soil temperature data at 10 cm depth were collected if available; otherwise, surface soil temperature reported 

in the studies were collected. The data set contains 366 data records at tundra sites and 174 data records at boreal 

forest sites across Alaska from October to April during the study period (2001-2017). However, most of the data 

records were collected from the same sites, with 17 tundra sites and 16 boreal forest sites in total (Fig. 2). For the 245 

tundra sites, modeled ecosystem respiration and NEE from October to April are quite similar due to negligible GPP. 

For the boreal sites, simulated NEE can be very small or even negative (net sink) when soil temperatures approach 

0 °C. We chose simulated ecosystem respiration and soil temperature values at the center of layer 3 (~8 cm) as a 

representative depth and aggregated these model outputs to monthly or seasonal averages for comparison with the 

observation dataset.  250 

 

For all of the site comparisons, the model was run using the 1-km spatial input datasets described in Section 2.2, and 

the model outputs from the 1-km grid cell encompassing each validation site were extracted. For the winter flux 

http://www.wcc.nrcs.usda.gov/
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comparison, 1-km grid cells having biome types inconsistent with the local in-situ sites were removed prior to the 

comparison.  255 

2.4 Model analysis 

The permafrost carbon model was run at 1-km resolution and 8-day time step from 2001 to 2017. The model domain 

encompassed the majority of the Alaska land area (~1.21 million km2). The model was initialized using a two-step 

spin up process prior to the transient simulations. The model was first spun-up using satellite-based LST, snow depth, 

and soil moisture data for 50 years to bring soil temperatures in the top ~3 m into dynamic equilibrium. The model 260 

was then run using the same meteorology inputs, simulated soil temperature and liquid water content fields over 

several thousand years to bring the soil carbon pools (0-3 m) into equilibrium. Due to an incomplete MODIS record 

in year 2000, year 2001 was used for the spin up period. The permafrost mode simulation is sensitive to the choice of 

spin up year. However, our analysis focused on the interannual variability in the model simulations, and the associated 

model sensitivity to environmental factors, which were less affected by the choice of spin up year. In order to examine 265 

the impact of model resolution on the simulated ecosystem carbon fluxes, another set of model simulation was 

conducted at 10-km resolution, and the statistical distribution of the model simulated carbon fluxes was compared 

between the two simulations. For the 10-km runs, all model input meteorology datasets were aggregated to the coarser 

resolution, and the dominant land cover type within each 10-km grid cell was used.  

 270 

Correlation analysis was used to examine the sensitivity of soil freeze-up and carbon fluxes to snow cover changes 

and other environmental variables across Alaska. We first calculated the onset of land-surface freeze based on the 

MODIS LST data, which was defined as the center date of the 8-day period at which the mean LST during three 

consecutive 8-day periods dropped below 0 °C. Soil freeze onset for each soil layer was then determined when the 

simulated soil temperature dropped below −0.35 °C and after land surface freezing; this temperature threshold 275 

corresponds to ~15-20% liquid water content in the model simulations at an Arctic Alaska site (Yi et al., 2019). The 

soil freeze delay at each layer was defined as the duration between land-surface freeze onset and freeze onset of the 

given soil layer. In permafrost areas, this was also the duration of the zero-curtain period. Unfrozen conditions in the 

deep active layer may persist well into the cold season and even into January, causing a temporal lag in soil freeze 

onset at these depths that may extend into the following calendar year. Since the model was only run from 2001 to 280 

2017, the soil freeze onset delay in year 2017 was not calculated. The number of snow-free days after the land surface 

temperature drops below 0 °C will affect how fast and deep the soil freezes (Bjerke et al., 2015). Therefore, we 

calculated the number of snow-free days after land surface freeze onset (defined as the difference between the snow 

onset and land surface freeze onset), and analyzed its correlation with the above soil freeze indices. The timing of 

snow onset after the summer snow-free period was defined as the center date of the 8-day composite period when both 285 

the snow depth for this period, and the mean snow depth within the 24-day moving window was greater than 5 cm.  

 

Finally, we used the gradient boosting regression (GBR) method to quantify the contribution of selected environmental 

variables to the annual carbon fluxes. The GBR method consists of a sequence of models, and each consecutive model 
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is developed based on the errors of previously added models (Friedman, 2000). The above model simulated annual 290 

carbon fluxes from 2002 to 2017 were used to train and evaluate the GBR models. We chose the following nine 

contributing environmental factors or predictors to annual carbon fluxes during the model fitting, including summer 

(June-August) NDVI, annual freezing and thawing index, mean annual downward solar radiation, rootzone soil 

moisture during the thaw season, snow offset and onset, mean snow depth averaged from January to March 

(representing annual maximum snow depth), and snow depth during the early snow season (from October to 295 

November). The GBR method was implemented using the sklearn package in Python 2.7. The following method was 

used to determine the relative importance of each predictor to the model predictive performance. We first ran the 

model using all nine predictors, and the model results were referred as the baseline simulation (𝐺𝐵𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒). We then 

ran the fitted model successively with one randomized variable and the other variables intact, with the model outputs 

denoted as 𝐺𝐵𝑅𝑜𝑛𝑒_𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒_𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑 . The reduction in the Pearson’s correlation coefficient between the two model 300 

runs was used to quantify the relative importance of each variable, computed as follows (Karjalainen et al., 2019; 

Zheng et al., 2020):  

𝐼𝑥 = 1 − 𝑐𝑜𝑟𝑟(𝐺𝐵𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝐺𝐵𝑅𝑜𝑛𝑒_𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒_𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑)                                                           

𝑅𝐼𝑥 =
𝐼𝑥

∑ 𝐼𝑥𝑥=1,9

 
                                   

(6) 
where 𝐼𝑥 represents the reduction in the correlation coefficient of the model runs with the variable 𝑥 randomized, and 

𝑅𝐼𝑥 is the relative importance value of variable 𝑥.  

3. Results 305 

3.1 Model validation 

Previous studies have evaluated the performance of the RS-PM model in reproducing regional ALT patterns over the 

Alaska domain (Yi et al., 2018) and the zero-curtain period in Arctic Alaska (Yi et al., 2019). Here we focus on 

assessing the model capability in representing snow insulation effects and ecosystem carbon fluxes, particularly during 

the cold season.   310 

3.1.1 Model representation of snow insulation effects 

The relationship between the normalized temperature amplitude difference between surface air and 20 cm depth soil 

conditions (𝐴𝑛𝑜𝑟𝑚), and the effective mean snow depth (𝑆𝑑𝑒𝑝𝑡ℎ,𝑒𝑓𝑓) derived from the Snotel observations and model 

simulations is shown in Fig. 3. Both the model simulations and in-situ data indicate an increase in the snow insulation 

effect with increasing snow depth until 𝑆𝑑𝑒𝑝𝑡ℎ,𝑒𝑓𝑓 reaches approximately 0.3 m; this relationship is also significantly 315 

(p < 0.1) correlated with the fitted curve derived from Slater et al. (2017) (observations: R = 0.56; Model: R = 0.48). 

Using an interval of 0.01 m for 𝑆𝑑𝑒𝑝𝑡ℎ,𝑒𝑓𝑓 below 0.3 m, the RS-PM model’s snow and heat metric was 0.85, indicating 

good performance. Similar performance was found using 5 cm depth soil temperatures. However, relatively few data 

points were available with 𝑆𝑑𝑒𝑝𝑡ℎ,𝑒𝑓𝑓  lower than 0.2 m; the biases toward deeper 𝑆𝑑𝑒𝑝𝑡ℎ,𝑒𝑓𝑓  conditions were attributed 

to the model snow depth inputs. MERRA2 generally shows earlier snow accumulation compared with the MODIS 320 
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SCE data, which leads to model overestimation of 𝑆𝑑𝑒𝑝𝑡ℎ,𝑒𝑓𝑓  (Fig. S1). During the downscaling process, the snow 

depth during the early period was reassigned as 0 when the MODIS SCE record indicated “no snow” conditions, 

which may also contribute to a higher value of 𝑆𝑑𝑒𝑝𝑡ℎ,𝑒𝑓𝑓.  

3.1.2 Model simulated carbon fluxes and temperature sensitivity 

The model simulations showed overall favorable agreement with tower-based 8-day composite carbon fluxes at the 325 

two tundra sites (Fig. 4), including strong correlation (R > 0.8, p < 0.1), minimal mean bias (0.065 g C m-2 d-1 for US-

Ivo and -0.015 g C m-2 d-1 for US-Atq), and low RMSE (0.39 g C m-2 d-1 for US-Atq and 0.29 g C m-2 d-1 for US-Ivo) 

differences. However, the model showed an apparent overestimation of GPP at the US-Ivo site (bias = 0.18 gC m-2 d-

1, RMSE = 0.71 g C m-2 d-1). Here the aggregated land cover map indicated shrub/scrub vegetation at this site, while 

in-situ surveys show a mixture of tussock sedge, dwarf shrub and moss communities (Davidson et al., 2016). 330 

Alternative model simulations for the site using the less productive “tundra” land cover type markedly reduced the 

resulting model GPP discrepancy (bias = -0.01 g C m-2 d-1, RMSE = 0.42 g C m-2 d-1). The model simulated GPP at 

US-Atq showed no apparent bias compared with the tower measurements (bias = -0.04 g C m-2 d-1, RMSE = 0.34 g C 

m-2 d-1).  

 335 

At both sites, abrupt decreases in the model simulated GPP and the net carbon uptake occur during the peak growing 

season (Fig. 4 a, c), which was mainly due to imposed low minimum temperatures and associated LUE reductions 

defined by the MODIS nighttime LST observations. The largest GPP reductions during the peak season were generally 

caused by very low nighttime LST, which may have large uncertainties in cloudy sky conditions. In addition, there is 

also large uncertainty imposed from the NEE partitioning method, with different methods resulting in large differences 340 

(up to more than1 g C m-2 d-1) in the tower-based GPP and Reco estimates. Both the model simulations and tower 

observations indicate a significant non-zero carbon flux during early cold season. The model simulated Reco also shows 

overall similar sensitivity to surface soil temperature (Tsoil) as the tower data, including a large decrease in respiration 

when surface soil temperatures drop below -2 °C (Fig. 4b & Fig. S2). However, the tower-based data indicate a large 

amount of scatter in the Reco - Tsoil relationship for Tsoil above 0 °C, depending on the partitioning method.  345 

 

The model simulated soil temperatures showed overall good correspondence with the in-situ measurements over the 

soil profile (R > 0.9 and RMSE < 2 °C; Fig. S3 and Fig. S4). Both the tower-based and model simulated soil 

temperature profiles show a consistent pattern of soil warming over the growing season, followed by gradual freezing 

with cold season onset; however, the soil temperature of the middle and bottom active layer can stay near 0 °C through 350 

December. The model simulated soil respiration density profile largely follows soil temperature, with respiration peaks 

during mid-summer, followed by gradual diminishment with active-layer freeze-up.   

 

The model simulated carbon fluxes were also comparable to the in-situ data at the two boreal forest sites (Fig. 5 and 

Fig. S5). The model showed a slight underestimation of GPP and Reco at the US-Uaf site, with respective mean bias 355 

of -0.32 and -0.34 g C m-2 d-1. The model showed a slightly lower positive bias in GPP and Reco at the US-Prr site, 
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averaging 0.16 g C m-2 d-1 and 0.06 g C m-2 d-1. At both sites, no obvious bias was observed in model simulated NEE 

during the growing-season, despite the model assumption of dynamic-equilibrium in the estimated carbon pools at 

these two mature forest sites. A much stronger decrease in ecosystem respiration when the surface soil temperature 

drops below 0 °C was observed at the US-Prr site relative to the US-Uaf site (Fig. S6), which may partially reflect soil 360 

temperature measurement uncertainty (Section 2.3). Significant respiration fluxes were observed at the US-Uaf site 

when soil temperatures were less than 0 ºC and even below -10 °C. At the US-Uaf site, the in-situ data indicate a linear 

increase in the total respiration fluxes with longer zero-curtain duration during this period (Fig. 5c, n = 10, R = 0.6, p 

< 0.1). The model simulations for this site indicate a similar Reco relationship with the zero-curtain, but with a much 

shorter estimated zero-curtain period. The apparent model discrepancy was attributed to a lower SMAP L4SM derived 365 

mean annual soil saturation level at two boreal forest sites (~ 45-50%), while the in-situ measurements indicate much 

higher saturation (> 80%) in the deep soils. We were unable to conduct a similar analysis at the US-Prr site due to the 

relatively short measurement record for this site compared with the US-Uaf site.  

 

The model simulated ecosystem respiration showed a broadly similar response to surface soil temperature during the 370 

cold-season (Oct to Apr) relative to the in-situ winter flux synthesis data from the larger Alaska domain (Fig. 6). The 

temperature sensitivity of the winter flux shown here is generally similar to the temperature sensitivity curve at the 

two tundra sites (Fig. 4b & Fig. S2), when ecosystem respiration mainly consists of soil respiration. The model 

indicates a rapid decrease in soil respiration as soil temperature and unfrozen water content decrease. The in-situ data 

collected using chambers and the diffusion method show a similar response pattern as the model; however, the EC 375 

data show large scattering in the respiration temperature response and evidence of large winter carbon fluxes when 

surface soil temperatures drop below -5 °C, especially from the open-path EC measurements (Fig. S7). At the tundra 

sites, model simulations showed higher correlation with observations excluding the EC-open path measurements (R 

= 0.49), than using all available measurements (R = 0.32). The synthesis dataset does not include any Alaskan boreal 

forest sites using EC-closed path measurements, and all available measurements were used in the analysis. Here, the 380 

in-situ data indicate a more consistent winter carbon flux temperature response among different measurement 

methods, which was moderately correlated (R = 0.44) with the model simulated carbon flux. The model estimated soil 

temperature was also significantly correlated with the surface soil temperature reported for both tundra sites (R = 0.59, 

p < 0.01) and the two boreal forest sites (R = 0.51, p < 0.01). However, the model simulated soil temperatures showed 

a warm bias of 1.6 °C at the tundra sites and a cold bias of 2.3 °C at the boreal forest sites.  385 

3.2 Spatial pattern and temporal trends of carbon fluxes  

3.2.1 Annual carbon fluxes  

The seasonal cycle of model simulated carbon fluxes and the soil heterotrophic respiration (Rh) from different soil 

depths averaged across Alaska and within different permafrost regions is shown in Fig. 7. The model simulations 

indicate that both GPP and Rh peak in July, while Rh persists well into the cold season. There is a notable difference 390 

in the timing of the Rh seasonal peak from different soil depths, with a longer temporal lag for deeper soil layers. 

Figure 7 (c) compares the seasonality of the Rh fraction from different soil depths averaged for regions with different 
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permafrost probability using an ancillary permafrost map (Pastick et al., 2015; Fig. S8). Southern Alaska has relatively 

low permafrost probability (≤ 33%), where the upper (0-13 cm) soil layer shows an earlier seasonal onset and peak in 

respiration relative to deeper soil layers. The surface soil contribution to Rh gradually decreases after the seasonal 395 

peak in May as deeper soil layers progressively warm. As the surface starts to freeze in September, Rh from deeper 

(> 13 cm depth) soil layers provides the major contribution to total soil respiration during the cold season (October – 

March). Other areas in Alaska show a similar pattern but with ~ 1-month delay in the seasonal peak of the surface Rh 

contribution in the colder permafrost region (permafrost probability > 67%), compared with the more southern areas.  

 400 

Across Alaska, annual GPP from 2001 to 2017 shows overall positive productivity trends mostly in western and 

interior Alaska (Fig. 8a), with 66.8% of areas showing positive trends and 32.9% of areas showing negative trends. 

However, only a very small portion of the areas show significant (p<0.1) productivity trends. The positive GPP trends 

are mostly explained by increasing vegetation growth and a longer growing season, indicated by the MODIS SCE and 

NDVI records (Fig. S9). Areas with negative GPP trends mainly occur in southern and interior Alaska. The areas in 405 

interior Alaska with negative GPP trends also show negative trends in growing-season NDVI, and are likely associated 

with fire-induced vegetation loss (Ju et al., 2016). Compared with GPP, Rh shows more extensive enhancement across 

the region, with 88.4% (11.5%) of areas showing increasing (decreasing) respiration trends (Fig. 8b). Correspondingly, 

areas with strong increase in ecosystem respiration but moderate or non-significant increase in GPP show decreases 

in net ecosystem carbon uptake (i.e. positive NEE trends), such as the North Slope and portions of southern Alaska, 410 

while much of the Alaskan interior shows increasing net carbon uptake (i.e. negative NEE trends) due to the generally 

stronger increase in GPP relative to respiration (Fig. 8c). Overall, approximately 63.1% (36.9%) of the Alaska domain 

showed decreasing (increasing) trends in net ecosystem carbon sequestration. However, only a very small portion of 

the land area shows significant (p < 0.1) trends, with only 6.1% (2.1%) of areas having significant positive (negative) 

NEE trends. At the regional scale, the time series of estimated annual carbon fluxes showed non-significant (p > 0.1) 415 

positive trends of 2.58, 1.86, and 0.38 Tg C yr-1 for respective GPP, Rh and NEE fluxes (Fig. S10). 

The attribution analysis results using the GBR method confirmed that NDVI and annual thawing index are the two 

most important variables affecting the estimated annual carbon fluxes, which was generally consistent across different 

vegetation types (Fig. 9). For annual GPP flux, NDVI was the most important variable followed by annual thawing 

index and downward solar radiation, while for annual Rh fluxes, annual thawing index was the most important 420 

variable, followed by NDVI, with other variables playing a very minor role. Despite the importance of annual thawing 

index in controlling annual GPP and Rh fluxes, the snow offset showed little importance to both fluxes. This was 

likely due to the low temporal resolution of the MODIS snow cover data (i.e. 8-day composite) used to calculate the 

snow offset, which was calculated as the center date of the 8-day composite period. The low temporal resolution of 

snow offset and a strong correlation (R>0.7, p<0.1) between annual thawing index and snow offset may limit its use 425 

in the regression model. As for annual NEE flux, NDVI, downward solar radiation, and annual freezing index are 

among the most important factors. However, the effects of different variables on annual NEE flux varied throughout 

the period due to their compensating effects on GPP and Rh fluxes, and NEE being a small residual of these two larger 

carbon fluxes; therefore, none of the variables played a dominant role throughout the entire period. In addition, the 
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GBR model also showed generally poor performance in predicting annual NEE fluxes (R ≥ 0.7) compared with the 430 

other two fluxes (R > 0.9).  

3.2.2 Growing-season carbon fluxes 

The model simulated growing-season Rh shows overall positive trends during the study period, while the contribution 

of surface (≤ 13 cm) soils to total Rh shows opposite trends during the snow melting period (April to May) and the 

summer season (June to August, Fig. 10). During the snow melting period, the Rh trend pattern is similar to GPP, 435 

while the surface soil Rh fraction shows large positive trends in western Alaska and the North Slope. The MODIS 

LST record during this period shows a general surface warming trend in western and interior Alaska during April and 

across the North Slope from May to June, which contributes to an advance in seasonal snow melt in those areas (Fig. 

S11), and surface soil warming. From June to August, the MODIS LST data show mixed trends in interior Alaska, 

and overall cooling trends in southern and southwestern Alaska, which contribute to the negative model GPP trends 440 

in those areas. However, Rh still shows extensive positive trends across Alaska, likely due to increasing trends in the 

deep soil (> 13 cm) respiration contribution discussed below. Correspondingly, NEE shows negative trends (i.e. 

increasing net carbon uptake) in interior and southern Alaska from April to May, but overall positive trends 

(decreasing net carbon uptake) across Alaska from June to August (Fig. S12 a, b).  

 445 

The timing of snow offset or surface thaw onset shows the highest correlation with the surface soil Rh fraction during 

the growing season, but with opposing respiration responses during the early (April-May: R = -0.55) and peak (June-

August; R ≥ 0.58) growing season (Table 2). The snow offset and spring thaw onset are highly correlated as both are 

mainly controlled by surface temperature (Fig. S11). Correlation analysis (Fig. S13) indicates that the Rh fraction 

from surface soils is more closely correlated with monthly LST in April and May in areas with low permafrost 450 

probability (≤ 33%), and with LST in May and June in areas with high permafrost probability (> 67%). These periods 

correspond to the active snow melt period in each region, with mean snow offset date of ~ DOY 136.0±14.4 in areas 

with low permafrost probability, and ~ DOY 148.8±8.9 in more continuous permafrost areas. Changes in the 

contribution of surface soils to total Rh between the early and peak growing season can be explained by a slower 

warming rate in deeper soils. Earlier snow melt and reduced spring snow cover can significantly increase thermal 455 

loading into the ground, with progressive warming of underlying soils. This can partly explain the low correlation 

between summer (June-August) LST and the Rh contribution from surface soils for the same period.  

3.2.3 Cold-season carbon fluxes 

Total Rh during the early cold season from September to November shows overall positive trends from 2001 to 2017 

except for portions of interior and southwestern Alaska, while the Rh contribution from surface (≤ 13 cm) soils (hereby 460 

denoted as Rh fraction) shows a similar trend pattern as total Rh (Fig. 11). The Rh trend pattern is largely explained 

by regional trends in the number of snow-free days after the land surface freezes (i.e. snow onset – surface freeze 

onset) (Fig. 11c), which shows the highest correlation with both Rh and the surface soil Rh fraction (Table 3; Rh: 

mean R = -0.48; Rh fraction: mean R = -0.46) among all environmental variables examined. The number of snow-free 
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days after land surface freeze onset shows large positive trends in southwestern Alaska and portions of southern 465 

Alaska, while negative trends mostly occur in northern Alaska. Both total Rh and the Rh fraction of surface soils 

generally increase with delaying surface freeze onset, but decrease with delaying snow onset, although the correlation 

is relatively weak (Table 3). Among the monthly snow depth data, Rh and Rh fraction show the highest correlation 

with snow depth during the early snow season (September-October), which supports a close correlation between snow 

accumulation and soil respiration. 470 

 

The spatial pattern in the soil respiration trends during the early cold season can be explained by the temporal lag 

(days) between the onset of surface freezing and freezing in deeper (23 cm) soil layers, i.e. the soil freezing delay or 

the duration of the zero-curtain period in areas with permafrost occurrence (Fig. 12). The model simulations show an 

advance of ~ 0.78 day per year (p < 0.1) in the regional-mean soil freezing delay at 23 cm averaged across Alaska 475 

from 2001 to 2016, which is mainly driven by a delay in autumn snow cover onset (Fig. S11 d-f). However, large 

variations in the timing and depth of autumn snow accumulation contribute to large interannual variability in the soil 

freezing delay (Fig. 12c). The model simulated soil freezing delay increases with soil depth, and the soil freezing delay 

at different soil depths is generally highly correlated. Soil water content is one of the major factors affecting the soil 

freezing delay, which explains why northern and southern Alaska show a longer delay in soil freezing than relatively 480 

drier soil regions in interior Alaska, indicated by the SMAP L4 SM record (not shown). The trends of soil freezing 

delay at 23 cm depth are largely determined by the number of snow-free days after land surface freeze onset (regional 

mean R= -0.46±0.26), with ~ 72% of areas showing significant (p < 0.1) correlation. Earlier snow onset over the 

Alaska North Slope corresponds to an overall longer delay in soil freezing (i.e. longer zero-curtain duration), consistent 

with a previous study (Yi et al., 2019), while southwestern Alaska shows an overall shorter soil freezing delay due to 485 

later snow onset (Fig. S11 e-f). The soil freezing delay at the 23 cm depth was also closely related to the snow depth 

during early snow season from September to October (regional mean R = 0.58±0.21), with ~ 85% of areas showing 

significant (p < 0.1) correlation.  

3.2.4 Impact of model resolution on the CO2 seasonal cycle 

Comparisons of the statistical distribution of model simulated carbon fluxes at the 1-km and 10-km resolutions show 490 

an enhanced NEE seasonal amplitude from the coarser scale model simulations (Fig. 13). A larger difference in the 

distributions is seen in the model simulated Rh fluxes, with slightly reduced Rh flux during summer, and enhanced 

Rh flux from October to November at 10-km resolution. The largest differences in the Rh fluxes occur in October and 

November, with daily mean differences of ~ 0.1 gC m-2 d-1 and a total difference of 9.8 Tg C across the entire study 

area from October to December, or more than 20% of the multi-year mean during the same period averaged across 495 

Alaska. This is consistent with an overall reduction in the number of days between snow onset and surface freeze 

onset derived from the model input datasets of LST and snow depth at 10-km resolution (Fig. 13a). The statistical 

distribution of the model input snow depth data at the two resolutions also shows the largest differences in October 

due to more variable snow cover conditions in the early snow season, which can have a large impact on subsurface 

soil temperatures due to stronger insulating effects of early snow accumulation (Fig. 3; Slater et al., 2017). The model 500 
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simulated GPP flux during the growing season shows only limited differences (< 2%) between the two spatial scales 

(not shown). However, the NEE simulations at 10-km resolution show enhanced carbon uptake during the growing 

season, and enhanced carbon loss during the early cold season, with ~ 14% increases in the seasonal amplitude 

averaged over Alaska. 

4. Discussion 505 

Based on the simulations of a newly developed 1-km permafrost carbon model, we highlight the important role of 

snow cover variability in controlling soil heterotrophic respiration and the CO2 seasonal cycle of boreal and Arctic 

ecosystems in Alaska. The large differences between model simulated soil respiration during the early cold season, 

and the estimated NEE seasonal amplitude at different model spatial scales also highlight potential large uncertainties 

in regional model simulations contributed from an inadequate representation of land surface heterogeneity.  510 

4.1 Environmental sensitivity of boreal-Arctic CO2 seasonal cycle  

Our results show that earlier snow melting associated with spring warming enhances soil heterotrophic respiration 

throughout the growing season, leading to a reduction in net carbon uptake later in the growing season in Alaska (Fig. 

S12). Previous studies reported that earlier snow melting generally results in enhanced vegetation productivity and 

carbon uptake during the early growing season, consistent with our simulations, while its impact on net ecosystem 515 

exchange during the later growing season may vary with local climate and site conditions (Aurela et al., 2004; 

Humphreys and Lafleur, 2011; Pulliainen et al., 2017). The variable impact of snow on the seasonal carbon cycle can 

be explained by divergent responses of vegetation productivity and Rh to soil moisture and soil temperature during 

the later growing season. Earlier snow melting in spring can lead to depleted soil water conditions during the later 

growing season, resulting in a decrease in vegetation productivity and weaker net ecosystem carbon sink activity, 520 

especially in the boreal region (Buermann et al., 2013; Sulla-Menashe et al., 2018). However, our simulations indicate 

that deeper soil warming associated with early snow melting is mainly responsible for enhanced ecosystem carbon 

loss later in the growing season. Surface warming and earlier disappearance in spring snow cover are associated with 

a deeper thaw depth in the permafrost region (Park et al., 2016; Yi et al., 2018). Field studies have shown that deeper 

permafrost thawing is associated with enhanced ecosystem respiration and thus reduced carbon sink activity during 525 

the later summer (Natali et al., 2011; Lund et al., 2012; Webb et al., 2016). Other studies also indicate that ecosystem 

respiration may dominate the NEE response to spring snow cover conditions and warming in Arctic tundra; however, 

divergent responses have been observed in different tundra ecosystems (Humphreys and Lafleur, 2011; Parmentier et 

al., 2011; Lund et al., 2012; Darrouzet-Nardi et al., 2019).  

 530 

Our simulations also indicate that the arrival of seasonal snow cover and the number of snow-free days after land 

surface freeze play a major role controlling subsurface soil freeze-up and soil respiration during the early cold season. 

Earlier snow onset relative to surface freeze onset (i.e. a short snow-free period after surface freezing) keeps the soil 

warm, and results in a longer soil freezing delay and zero-curtain period in permafrost areas, with enhanced soil 

respiration during the early cold season (Fig. 11). Due to strong snow insulation effects, underlying soils can remain 535 
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unfrozen for a substantial period long after the surface soil freezes, i.e. the zero-curtain period. Field studies have 

shown persistent carbon emissions during this zero-curtain period and also throughout the winter season, while the 

resulting cold season soil carbon emissions may partially offset or even exceed the growing season net carbon uptake 

(Elberling and Brandt, 2003; Luers et al., 2014; Webb et al., 2016; Euskirchen et al., 2017). A recent study showed 

that Alaska ecosystems were either a carbon source or carbon neutral during the recent observational period (2012-540 

2014), due to a large contribution of cold season carbon emissions, with larger emissions in the early cold season 

based on CO2 flux estimates optimized using data collected from the Carbon in Arctic Reservoirs Vulnerability 

Experiment (CARVE) (Commane et al., 2017). Our simulations show a much longer soil freezing delay and zero-

curtain period in 2013 than the other two years for the same overlapping period (Fig. 12c), corresponding to large net 

CO2 fluxes during the fall in 2013 across Alaska and the North Slope region as shown in Fig. 1 of Commane et al. 545 

(2017). 

 

However, large uncertainties are associated with cold-season carbon emissions in our estimates and other studies based 

on either in-situ data or atmospheric inversions. An analysis using satellite and airborne CO2 observations pointed out 

that the current sparse CO2 observational network is insufficient to constrain current and future estimates of cold-550 

season carbon emissions and the annual carbon budget of Arctic ecosystems (Parazoo et al., 2016). The in-situ winter 

flux synthesis dataset (Natali et al., 2019b) also shows large scatter in the winter flux response to surface soil 

temperature, especially using the eddy covariance method. The in-situ dataset indicated that significant carbon loss (> 

0.5 gC m-2 d-1) can occur even when surface soil temperature drops below -5 °C (Fig. S7). This large carbon loss at 

very low temperatures was not reproduced by our model, which showed a rapid decrease in soil respiration when 555 

surface soil temperatures (~8 cm depth) drop below -2 or -3 °C. However, previous studies have highlighted the 

inconsistency among different measurement methods in the Arctic and uncertainties in winter flux measurements due 

to significant data loss under extreme weather conditions (Goodrich et al., 2016; Webb et al., 2016).  

4.2 Model limitations and potential improvements 

An important feature of boreal-arctic landscapes is strong surface heterogeneity, which may not be well represented 560 

in current global scale models operating at an order of tens of kilometers or more (Koven et al., 2013b; Yi et al., 2015; 

Tao et al., 2019). Our comparisons between the 1-km and 10-km model simulations showed non-negligible influence 

of landscape heterogeneity on the model simulated CO2 seasonal cycle, especially during the early cold season (Fig. 

13). A total difference of ~ 9.8 Tg C from October to December across Alaska was found between the two simulations. 

Scaled to the larger pan-Arctic region (24.95 million km2), the resulting difference represents ~194 Tg C in cold-565 

season carbon emissions and can account for more than 10% of the estimated total winter flux for the pan-Arctic 

permafrost region (Natali et al., 2019a). The resulting uncertainty partially reflects spatial heterogeneity in autumn 

snow cover conditions, as well as sub-grid variability in the surface energy budget (indicated by LST). The complex 

relationship among soil saturation, snow accumulation and soil freezing also contributes to scale dependent differences 

in the soil carbon emission estimates (Outcalt et al., 1990; Oechel et al., 1997; Zhang, 2005). These results highlight 570 

a non-linear response of carbon fluxes to land surface heterogeneity across the different model scales (≥ 1 km). 
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Moreover, a number of studies have shown that micro-topography, on the order of a few meters, exerts a strong control 

on permafrost thaw and carbon dynamics (Kumar et al., 2016; Liljedahl et al, 2016; Grant et al., 2017 a, b), which 

should be addressed in future model development.  

 575 

Our current and previous assessment of the permafrost soil model also identified several areas where improvements 

should be made to enhance model capabilities, especially in boreal forest. Comparisons with in situ measurements 

indicate larger discrepancy between model ALT simulations and in-situ data in the boreal interior of Alaska 

characterized by a greater density of woody vegetation, overlain by discontinuous or sporadic permafrost (Yi et al., 

2018). Model simulated soil temperatures also showed a larger bias at the boreal forest sites in relation to the in-situ 580 

winter flux synthesis data (Section 3.1.2). The larger apparent uncertainty may reflect poor model representation of 

the vegetation canopy influence on thermal energy loading at the soil surface. Previous studies have shown that the 

MODIS vegetation index, leaf area index and tree cover data are sensitive to boreal forest structure and post-fire 

disturbance recovery (Mastepanov et al., 2013). These datasets can be used to account for the temperature difference 

between the soil surface and canopy skin temperature indicated by the MODIS LST data for different vegetation 585 

categories, through simple empirical models or more sophisticated approaches derived from canopy radiative transfer 

models (Paul et al., 2004; Verhoef et al., 2007; Dolschak et al., 2015).  

 

In addition, better understanding of the scaling behavior of environmental controls on soil moisture is needed to 

improve model representation of active layer conditions and carbon emissions (Mishra and Riley, 2015). Previous 590 

studies indicate that topography and soil conditions are the dominant factors affecting soil moisture variability at finer 

scales (Crow et al., 2012), which are not sufficiently represented by the coarse-resolution (~ 9 km) soil moisture 

observations used as model inputs for this study. For example, our model simulations indicate a much shorter zero-

curtain period at an interior Alaska boreal forest site compared with the local site measurements (Fig. 5c), and also 

overall shorter zero-curtain period in interior Alaska than the Alaska North Slope and southern Alaska. This pattern 595 

was closely related to the model input SMAP soil wetness data, which indicated much drier conditions in interior 

Alaska.  

 

Other notable uncertainties in the model estimated carbon fluxes include insufficient representation of the soil moisture 

migration with permafrost thaw and winter processes. Earlier spring thaw and snow melt has been linked with active 600 

layer deepening and permafrost degradation, exacerbating the soil water deficit during the later growing season, 

especially in the southern boreal forest areas (Buermann et al., 2013; Park et al., 2016; Zhang et al., 2019). Using 

external soil moisture inputs, the current permafrost model was not able to fully represent this phenomenon, which 

requires a more complete depiction of soil water, energy and carbon processes, and linkages (Walvoord and Kuryly, 

2016). On the other hand, insufficient winter process representation in our model may partly explain the inconsistency 605 

between the model simulated and observation-based temperature response curve of the winter flux indicated by the 

EC tower-based measurements (Fig. 6). For example, field studies have shown that the soil CO2 flux from microbial 

production during fall and winter can be trapped due to the overlying snowpack or surface ice layers (Elberling and 

https://scholar.google.com/citations?user=PINPEqQAAAAJ&hl=en&oi=sra
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Brandt, 2003; Raz-Yaseef et al. 2017). The trapped CO2 can be rapidly released during high wind conditions or the 

spring thaw period, resulting in strong transient flux events, which are more likely recorded in EC measurements, but 610 

not detected in closed chamber measurements (Luers et al., 2014; Webb et al., 2016). Late-season bursts in CO2 

emissions were also reported during the soil freeze-in period at a high Arctic wetland site (Mastepanov et al., 2013). 

However, our model currently assumes that all soil microbial respiration is released directly to the atmosphere, without 

the mediation of snowpack, ice and mesoscale wind and pressure conditions on CO2 emissions.  

5 Conclusion 615 

We developed a remote sensing driven permafrost carbon model at intermediate scale (~1 km) to evaluate the 

sensitivity of the seasonal and annual carbon (CO2) cycle, and soil respiration to snow cover changes across Alaska 

during the recent two decades (2001-2017). Our results indicate that earlier snow melt onset associated with spring 

warming enhances soil heterotrophic respiration throughout the growing season and reduces net carbon uptake during 

the later growing season when carbon losses from enhanced deep soil respiration may offset or exceed ecosystem 620 

carbon gains from vegetation productivity. Soil freeze-up and early cold-season soil respiration are closely linked to 

the number of snow-free days after the land surface freezes, i.e. the delay in snow onset relative to surface freeze 

onset. Recent trends toward earlier autumn snow onset in northern Alaska promote a longer zero-curtain period and 

enhanced cold-season respiration. In contrast, southwestern Alaska shows a longer delay in autumn snow 

accumulation relative to surface freeze onset, leading to earlier soil freezing and a large reduction in cold-season soil 625 

respiration. Our results also show non-negligible influences of sub-grid variability of surface conditions on the model 

simulated CO2 seasonal cycle, especially during the early cold season at 10-km scale. These results confirm the 

important control of seasonal snow cover on annual and seasonal carbon exchange of boreal-Arctic ecosystems. A 

nonlinear response of soil respiration to snow cover changes poses significant challenges for global earth system 

models in accurately projecting the pan-Arctic carbon cycle response to climate change. 630 

 

 

Code and data availability. The regional model simulations will be archived and distributed for public access through 

the NASA ABoVE archive at the NASA ORNL DAAC (https://daac.ornl.gov/). All data used in this study were 

obtained from free and open data repositories. The model code used in this study is available from GitHub: 635 

https://github.com/yiyh05/STM-C.    
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Table 1 Characteristics of the eddy covariance tower sites used for model validation. 

 

 US-Atqa US-Ivoa US-Uaf b US-Prr c 

Location 70.4696° N  

157.4089° W 

68.4805° N  

155.7568° W 

64.8663° N 

147.8555° W 

65.1237° N 

147.4876° W 

Mean Tair (°C) -9.4 -8.3 -2.9 -2.0 

Annual P (mm) 93 304 263 275 

Vegetation Tussock tundra Tussock Tundra Black spruce forest Black spruce forest 

Permafrost Yes  Yes Yes Yes 

Observation period 2014-2016 2013-2016 2008-2017 2011-2016 

Tsoil measurement depths (cm) 5, 15, 30 cm 5, 15, 30, 40 cm 10, 20, 50, 80 125 cm* 5, 10, 20, 30, 40, 100 cm* 

SM measurement depths (cm) 5, 15, 30 cm 5, 15, 30 cm 5, 15, 25 cm 5, 10, 20, 30, 40 cm 

* Data were not consistent throughout the observational period 920 
Site references: aDavidson et al., 2016; Arndt et al., 2019; bUeyama et al., 2014; cIkawa et al., 2015 
 

 

Table 2 Regional mean correlation coefficient between the environmental variables and estimated Rh fraction of surface (0-13 cm) 

soils during the growing season from 2001 to 2017. Unless indicated, the variables were calculated during the same period as the 925 
Rh fraction. The thaw onset was derived from MODIS LST data, and the snow offset was derived from MERRA2 downscaled 

snow depth data.  

Period Thaw onset  Snow offset  GPP LST 

Rh fraction (April-May) -0.55 -0.55 0.40 0.48 

Rh fraction (June-August) 0.66 0.58 -0.24 (-0.43*) -0.26 

* indicates GPP from April to August.  

 

Table 3 Regional mean correlation coefficient between the environmental variables and estimated surface (0-13 cm) soil 930 
contribution to total Rh during the early cold season (September to November). Unless indicated, the variables were calculated 

during the same period as the Rh fraction. 

 GPP LST SNOD Freeze onset Snow onset Snow onset-freeze onset 

Total Rh 0.33 (0.27*) 0.15 0.24** 0.36 -0.22 -0.48 

Rh fraction (0-13 cm) 0.13 (-0.10*) 0.01 0.22** 0.33 -0.21 -0.46 

* GPP from April to November; ** Snow depth (SNOD) from September to October shows strongest correlation with the Rh and 

Rh fraction.  

  935 
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Fig. 1 Flow diagram describing the modelling procedure and main input datasets used in this study. The terrestrial carbon flux 

model has two components, including the light use efficiency algorithm for vegetation productivity estimates and a soil 

decomposition model for soil heterotrophic respiration estimates. The main equations used for each modelling component are 

referenced in the appropriate modelling box.  940 
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Fig. 2 The Alaskan land cover map and the location of in-situ sites used for model validation. The land cover types are aggregated 

from the 30-m NLCD map (Jin et al., 2013), while the following land cover classes were used in the model simulations: developed 

and barren land, forest, scrub/shrub, grassland/herbaceous, croplands, and wetlands. The percentage of each land cover type is 945 
provided alongside the colorbar legend labels.   
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Fig. 3 Comparison of the snow insulation curve derived from in-situ measurements and model simulations at the Alaskan Snotel 

sites. The dark line is drawn using the parameters presented in Slate et al. (2017): Anorm = 0.1875 + 0.5 × (1 −950 
e−(Sdepth,eff 0.0941)⁄ ). Observations have fewer data points due to data gaps in the observed snow depth and soil temperatures at the 

Snotel sites. 
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Fig. 4 Model simulated carbon fluxes and temperature sensitivity of ecosystem respiration at two tundra sites (US-Ivo and US-955 
Atq). “GPP1 obs” and “GPP2 obs” represent GPP estimates derived using tower-based NEE measurements and different 

partitioning methods provided by the tower PI, similar to “Reco1 obs” and “Reco2 obs”. At the US-Ivo site, two GPP simulations 

were conducted using different maximum LUE parameters representing two different vegetation types (shrub and grassland 

tundra), indicated as “GPP (shrub)”, and “GPP (tundra)” in panel (a). Comparisons between model and tower-based NEE fluxes 

at the two sites are shown in panel (d).   960 
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Fig. 5 Comparisons of model simulated carbon fluxes with tower-based estimates (a&b), and the relations of total NEE fluxes to 

the zero-curtain duration at 25 cm soil depth (c). There was a significant correlation (R = 0.6, p < 0.1) between the zero-curtain 

period derived from in-situ soil moisture data and the total NEE fluxes during this period. “model_1” and “model_2” indicate 

model simulations using different soil saturation levels, with “model_2” using a slightly higher (120%) saturation level than 965 
“model_1”.    
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Fig. 6 Effects of soil temperature on CO2 fluxes during the cold season over Alaskan tundra (a) and boreal forest (b) sites indicated 

by model simulations (this study) and in-situ observations from a winter flux synthesis dataset (Natali et al., 2019b). 

“ch&ch_snow”, “diff”, “ECC” and “ECO” represent measurements made using chambers and chambers placed atop the snowpack, 970 
diffusion, EC-closed path, and EC-open path methods, respectively. The error bars indicate the standard deviations of model 

simulations using different values (0.35 ~ 0.9) for the dimensionless parameter characterizing the unfrozen water curve for most 

soil types (Schaefer and Jafarov, 2016). 
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 975 

Fig. 7 Regional mean of model simulated carbon fluxes (a), Rh fluxes from different soil depths (b) averaged across Alaska, and 

Rh contribution from different soil depths to total Rh averaged across two regions with different permafrost probability (c). In panel 

(c), solid and dashed lines represent the mean values averaged across areas with permafrost probability from 0-33% and 67-100%, 

respectively. Gray shading denotes the standard deviation of monthly mean fluxes from 2001 to 2017.  

  980 
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Fig. 8 Temporal trends of model estimated annual carbon fluxes from 2001 to 2017. For NEE, positive trends indicate decreasing 

net carbon uptake activity, while negative trends indicate enhanced net ecosystem carbon uptake.   
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 985 
Fig. 9 Mean relative importance values of selected environmental variables in controlling model estimated annual carbon fluxes in 

Alaska (a: GPP; b: Rh; c: NEE). The importance values were averaged for four major vegetation types (Forest, Shrub, Herbaceous, 

and Wetlands, Fig. 2), and the error bar represents their standard deviation across the different vegetation types. The nine 

environmental variables are: summer (June-August) NDVI, annual thawing and freezing index, snow offset and onset, mean snow 

depth averaged from January to March (representing annual maximum snow depth), and snow depth averaged during the early 990 
snow season (from October to November), mean annual downward solar radiation, and rootzone soil moisture during the thaw 

season. The annual thawing and freezing index represent the sum of MODIS LST above 0 °C and below 0 °C throughout the year, 

respectively.  
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Fig. 10 Temporal trends of model estimated total Rh, GPP and surface soil contribution to Rh (Rh fraction) during the early and 

peak growing season from 2001 to 2017. In panel (c), large areas in the Alaska North Slope were masked out (in white) due to 

negligible total Rh fluxes in April.  

 1000 
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Fig. 11 Regional trends of total Rh (a) and its surface soil contribution (b) during the early cold season (September-November) 

versus regional trends of the number of snow-free days after the land surface freezes (c), which was defined as the difference 

between snow onset and surface freeze onset.  1005 
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Fig. 12 Sensitivity of model simulated soil freezing process to snow cover changes across Alaska: the mean (a) and trends (b) of 

soil freezing delay at 23 cm soil depth relative to surface freeze onset; c) the annual time series of model simulated soil freezing 

delay, the number of snow-free days after land surface freezes, and MERRA-2 snow depth (SNOD) from September to October 1010 
averaged across Alaska.   
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Fig. 13 Comparisons of statistical distribution of model inputs and simulations at 1-km and 10-km resolution across Alaska: (a) the 

number of snow-free days after land surface freeze onset, derived from the model input LST and snow depth datasets; (b) model 

simulated daily mean Rh flux averaged from September to November; (c) model simulated daily mean NEE flux averaged from 1015 
June to August; (d) model simulated NEE amplitude, which was defined as the difference of the daily mean NEE flux between two 

periods (September-November vs June-August). The lines show the fitted probability distribution function (pdf) using a normal 

distribution.   


