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Abstract. The contribution of soil heterotrophic respiration to the boreal-Arctic carbon (CO) cycle and its potential
feedback to climate change remain poorly quantified. We developed a remote sensing driven permafrost carbon model
at intermediate scale (~1 km) to investigate how environmental factors affect the magnitude and seasonality of soil
heterotrophic respiration in Alaska. The permafrost carbon model simulates snow and soil thermal dynamics, and
accounts for vertical soil carbon transport and decomposition at depths up to 3 m below surface. Model outputs include
soil temperature profiles and carbon fluxes at 1-km resolution spanning the recent satellite era (2001-2017) across
Alaska. Comparisons with eddy covariance tower measurements show that the model captures the seasonality of
carbon fluxes, with favorable accuracy in simulating net ecosystem CO, exchange (NEE) for both tundra (R > 0.8,
RMSE = 0.34 g C m2d) and boreal forest (R > 0.73, RMSE = 0.51 g C m2 d!). Benchmark assessments using two
regional in-situ datasets indicate that the model captures the complex influence of snow insulation on soil temperature,
and the temperature sensitivity of cold-season soil heterotrophic respiration. Across Alaska, we find that seasonal
snow cover imposes strong controls on the contribution from different soil depths to total soil heterotrophic respiration.
Earlier snow melt in spring promotes deeper soil warming and enhances the contribution of deeper soils to total soil
heterotrophic respiration during the later growing season, thereby reducing net ecosystem carbon uptake. Early cold-
season soil heterotrophic respiration is closely linked to the number of snow-free days after the land surface freezes
(R =-0.48, p <0.1), i.e. the delay in snow onset relative to surface freeze onset. Recent trends toward earlier autumn
snow onset in northern Alaska promote a longer zero-curtain period and enhanced cold-season respiration. In contrast,
southwestern Alaska shows a strong reduction in the number of snow-free days after land surface freeze onset, leading

to earlier soil freezing and a large reduction in cold-season soil heterotrophic respiration. Our results also show non-



40

45

50

55

60

65

70

negligible influences of sub-grid variability of surface conditions on the model simulated CO, seasonal cycle,
especially during the early cold season at 10-km scale. Our results demonstrate the critical role of snow cover affecting
the seasonality of soil temperature and respiration, and highlight the challenges of incorporating these complex

processes into future projections of the boreal-Arctic carbon cycle.

1 Introduction

Warming in the northern high latitudes (> 50°N) is occurring at roughly twice the global rate, and has trigged a series
of changes in boreal and Arctic ecosystems including earlier and longer growing seasons, widespread soil thawing
and permafrost degradation (Jeganathan et al., 2014; Liljedahl et al., 2016), with large impacts on the regional carbon
cycle (McGuire et al., 2016). Atmospheric CO, observations indicate a strong increase in the seasonal amplitude of
the northern carbon cycle, which may reflect an enhancement of net carbon uptake during the growing season or soil
carbon emissions during the cold season in northern ecosystems (Graven et al., 2013). However, there is a lack of
consensus on whether increased vegetation productivity or enhanced respiration drives such changes, due to sparse
in-situ measurements, and uncertainties in satellite remote sensing retrievals and model simulations (Fisher et al.,
2014; Forkel et al., 2016; Parazoo et al., 2016; Wenzel et al., 2016). For example, there is a large discrepancy on the
contribution of cold-season respiration to the annual carbon budget in boreal-Arctic ecosystems (Zona et al., 2016;
Euskirchen et al., 2017; Natali et al., 2019a). In addition, potential release of a large amount of carbon currently
sequestered in perennially frozen soils in the northern high latitudes adds additional uncertainty in assessing the

response of boreal-Arctic ecosystems to future climate change (Schuur et al., 2015).

Pronounced changes have occurred in the northern high latitudes, especially during the shoulder seasons. Satellite
remote sensing datasets over the past several decades indicate reductions of 0.8-1.3 days decade™ in the duration of
annual frozen period in the northern high latitudes (Kim et al., 2015) and ~3-4 days decade™ in the snow cover duration
across the Northern Hemisphere mostly due to spring snow cover reduction (Hori et al., 2017; Bormann et al., 2018).
Strong warming in both spring and fall has significantly reduced snow cover during the shoulder seasons; however,
there is large spatial variability across the region, partly due to more variable snow cover conditions during fall and
winter (Brown and Derksen, 2013; Hori et al., 2017). Climate models project continued strong warming during the
spring and fall in the Arctic, and increases in previously rare winter rain events (Bintanja and Andry, 2017). How the

boreal-Arctic carbon cycle responds to such changes remains to be understood.

Previous studies reported that the combination of warming and a longer snow-free season has led to widespread
greening and enhanced vegetation productivity in the northern latitudes especially during the early growing season
(Aurelaetal., 2004; Humphreys and Lafleur, 2011; Buermann et al., 2013; Pulliainen et al., 2017). However, a detailed
understanding of how soil respiration and other belowground processes respond to climate variability, especially
during the cold season, remains elusive. Soil respiration is mainly the product of respiration by roots (autotrophic) and
soil decomposers (heterotrophic), while it is generally difficult to partition soil respiration into the heterotrophic and

autotrophic components (Phillips et al., 2017). In this study, we focus on the heterotrophic component of soil
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respiration, and assume it is the dominant component of total soil respiration in northern ecosystems during the cold
season due to root dormancy (Tucker et al., 2014; Hicks Pries et al., 2015). Surface warming and a longer snow-free
season are associated with earlier soil thawing and deeper active layer thickness (ALT) in permafrost regions, which
can result in enhanced soil respiration and reduced annual net carbon uptake (Lund et al., 2012; Yi et al., 2018).
Moreover, ALT deepening in permafrost regions will likely lead to a longer zero-curtain period (i.e. soil temperature
persists around 0 °C) especially in the deeper active layer, which may even form talik and further accelerate permafrost
thawing (Connon et al., 2018; Yi et al., 2019). These changes may promote even more soil carbon losses particularly
during the cold season, reinforcing a positive permafrost carbon feedback (Parazoo et al., 2018). On the other hand,
the timing and magnitude of autumn snowfall determine the onset and rate of soil freeze-up, which affects soil
microbial activity and soil respiration during fall and early winter (Zona et al., 2016; Arndt et al., 2019). Better
understanding of how snow cover trends are affecting soil respiration is needed to inform projections of the potential

response of the boreal-Arctic carbon cycle to climate change.

Landscape-level processes can affect the amount and age of soil carbon released to the atmosphere (Hobbie et al.,
2000). An important feature of boreal-Arctic landscapes is strong surface heterogeneity, driven by relatively fine scale
microtopographic variability on the order of 0.1-10 meters (Zona et al., 2011; Kumar et al., 2016; Grant et al., 20173,
b), which can influence coarser landscape level behavior. However, current large-scale models generally operate at
scales of 10-100 km, and are too coarse to resolve finer scale surface heterogeneity and its influence on active layer
dynamics and soil carbon decomposition (Yi et al., 2015; Tao et al., 2019). Satellite or airborne remote sensing can
provide information on land surface heterogeneity across large extents, and may provide critical constraints on model
predictions of regional active layer changes, soil carbon and permafrost vulnerability. Therefore, the objective of this
study was to develop a process-based permafrost carbon model mainly driven by satellite remote sensing data. The
model was designed at an intermediate scale (~1 km) that is efficient for regional runs but also able to bridge the gap
between very fine-scale (~tens of meters) ground measurements and large-scale (~tens of kilometers) earth system
simulations. The model simulations were conducted over a multi-year period (2001-2017) across Alaska to study how

soil carbon emissions and the seasonal carbon cycle are responding to recent climate and snow cover trends.

2 Methods
2.1 Model description

The Remote Sensing driven Permafrost Model (RS-PM) developed in Yi et al (2018; 2019), was coupled with a
terrestrial carbon flux (TCF) model (Yi et al., 2015) to investigate the climate sensitivity of carbon fluxes across
Alaska (Fig. 1), with a particular focus on the shoulder season. The soil decomposition model in the original TCF
model was revised in this study to account for vertical soil carbon transport in order to better simulate the depth-
dependent soil carbon distribution and respiration fluxes. The RS-PM model simulates soil temperature and changes
in soil liquid water content due to soil freeze/thaw transitions along the soil profile, using remote sensing based land

surface temperature (LST), snow cover information and total soil moisture content as key model forcing. The RS-PM
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outputs were then used as inputs to the carbon model, as constraints on both the vegetation productivity and soil
respiration. A brief description of the modeling framework is described here, with a focus on the revised soil

decomposition model, while a detailed description on the RS-PM model is provided in the supplementary material.

The RS-PM follows the prototype of a detailed permafrost hydrology model (Rawlins et al., 2013; Yi et al., 2015),
but has a flexible structure designed to use satellite remote sensing data as key model drivers and for model
parameterization. The RS-PM uses a numerical approach to simulate soil freeze/thaw (F/T) and temperature profiles
down to 60 m below the surface, using 23 soil layers with increasing layer thickness at depth. The model also accounts
for the effects of seasonal snow cover evolution, organic soil and soil-water phase change on soil F/T processes.
Satellite-based LST and snow cover time series data were used as model drivers. Soil thermal properties were
parameterized using soil moisture data from the Soil Moisture Active Passive (SMAP) Level 4 (L4) data assimilation
system (Reichle et al., 2017). RS-PM validation using in-situ measurements shows favorable model accuracy for ALT
(mean R=0.60, bias=1.58 cm, RMSE=20.32 cm) and zero-curtain period (mean R=0.60, RSME=19 days) simulations,
especially over the Alaska North Slope (Yi et al., 2018, 2019).

We coupled the RS-PM and TCF models to represent the influence of permafrost active layer processes on net
ecosystem CO; exchange (NEE) and its component carbon fluxes. The TCF model uses a light use efficiency (LUE)
algorithm driven by satellite FPAR (Fraction of vegetation canopy absorbed Photosynthetically Active Radiation)

observations to calculate vegetation productivity and litterfall inputs to a soil decomposition model:

GPP = & X FPAR X PAR (1)

€ = &€max X Tnn_scatar X SMmn_scatar (2

where GPP is the gross primary productivity (g C m?2 d?), ¢ (g C MJ?) is the LUE coefficient converting canopy
absorbed photosynthetically active solar radiation (APAR; MJ m d) to biomass. The biome-specific maximum LUE
coefficient (&,,4,) Was reduced for suboptimal temperature and moisture conditions represented by the scalars
Tinn_scatar A SMpy scaiar 10 eStimate . MODIS nighttime LST and SMAP L4 rootzone (0-1 m depth) soil moisture
records were used to estimate these rate scalars using a simple linear ramp functions (Yi et al., 2015). Vegetation net
primary productivity (NPP) was estimated as a fixed portion of GPP for each biome type based on an assumption of
conservatism in vegetation carbon use efficiency within similar plant functional types. Annual litterfall was assumed

to be equal to annual NPP without accounting for the impact of disturbance events.

Our soil decomposition model uses multiple litter and soil organic carbon (SOC) pools to characterize the progressive
decomposition of fresh litter to more recalcitrant materials, which include three litterfall pools and three SOC pools
with relatively fast turnover rates, and a deep SOC pool with slow turnover rates (Thornton et al., 2002). The litterfall
carbon inputs were first allocated to the three litterfall pools and then transferred to the SOC pools through progressive
decomposition. In a previous study (Yi et al., 2015), the litterfall and SOC pools were arbitrarily distributed at different
soil depths within the top 3 m soils to account for depth-dependent differences in litterfall and soil organic matter

substrate quality. However, in this study we model the profile of the carbon pools by introducing a vertical dimension
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z and accounting for the vertical carbon transport across the z dimension (Elzein and Balesdent, 1995; Koven et al.,
2013a):

9Ci(z) _

ac;
at

5,) ~ kiCi(2) 3)

where R; (g C m®d™) is the carbon input from litterfall allocated to pool i through the profile, and Tj; is the fraction

Ri(2) + Xi(1 = 1)Tyik; (2)C(2) + = (D(2)

of carbon directed from pool j to pool i with fraction r; lost as respiration; k;(k;) is the decomposition rate (day™) of
carbon pool i (j), which was derived as the product of a theoretical maximum rate constant and dimensionless
multipliers for soil temperature and liquid water content constraints to decomposition, simulated by the RS-PM model.
The diffusivity D was used to account for vertical diffusive soil C transport while vertical C transport due to advection
was ignored here. Constant D values were assigned to permafrost (5.0 cm? yr?) and non-permafrost (2.0 cm? yrt)
regions within the top 1m soil, and then linearly decreased to 0 at 3 m below surface (Koven et al., 2013a). The
boundary conditions at the soil surface were defined as:

ac; _

~ =Ry, atz=0 4)

where Rg; is the carbon input rate (g C m= d?) to the three surface litterfall pools. A zero-flux was assigned at the
bottom of the soil carbon pool, which was set to 3 m depth.

2.2 Model inputs and parameterization

The main RS-PM inputs include LST, snow cover properties and soil moisture from global satellite and reanalysis
data products. LST and soil moisture records from the MODIS 8-day composite dataset (MOD11A2; Wan and Hulley,
2015) and SMAP L4 9-km daily surface (5cm depth) and root zone (0-1 m depth) products (L4SM, Reichle et al.,
2017) were used to define the model boundary conditions and parameterize soil thermal properties (Yi et al., 2018).
MODIS 500-m snow cover extent (SCE) data (MOD10A2; Hall and Riggs, 2016) were used to downscale snow depth
and density data from the MERRAZ2 (~0.5°) global reanalysis (Gelaro et al. 2017) to characterize sub-grid variability
in snow distribution as described in Yi et al. (2019). The RS-PM model outputs include soil temperature and liquid
water fraction within the soil profile, which are the major inputs to the soil decomposition model. Other primary inputs
to the TCF model include MODIS normalized difference vegetation index (NDVI), nighttime LST, and MERRA2
downward solar radiation data. The NDVI data was used to estimate FPAR using a biome-specific empirical
relationship (Yi et al., 2015). The nighttime LST and SMAP L4 rootzone soil moisture were used to estimate the
environmental constraints on LUE and GPP. All model input datasets were reprojected into a 1km resolution Albers

projection and resampled to an 8-day time step consistent with the model simulations.

Other ancillary datasets included the 30-m national land cover database (NLCD) 2011 (Jin et al., 2013), 50-m SOC
estimates for Alaska (to 1-m depth; Mishra et al., 2017), and the global 9-km mineral soil texture data developed for
the SMAP L4SM algorithm (De Lannoy et al., 2014). The dominant NLCD land cover type within each 1 km pixel
was used to define the modeling domain, with open water and perennial ice and snow areas excluded (Fig. 2). The

SOC inventory data was used to define the organic fraction of the top 10 model soil layers (~1.05 m depth), which
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was used to adjust the soil properties of each soil layer based on the weighted mineral and organic soil components.

More details on the data processing and soil parameterization can be found in Yi et al. (2018, 2019).

A dynamic litterfall allocation scheme based on the satellite NDVI time series was used in Yi et al (2015) to account
for litterfall seasonality. We revised this scheme for the present study to incorporate a vertical distribution of root
turnover, required by the soil decomposition model. The total litterfall was partitioned into aboveground (leaves and
woody components) and belowground (mostly fine roots) litterfall using prescribed ratios for each biome type (Table
S1). A constant turnover rate for each 8-day composite period was assigned to the woody components of litterfall.
The turnover rates of the other components of litterfall, i.e. leaves and fine roots, were calculated based on the annual
time series of MODIS NDVI, with more litterfall generally allocated during the latter half of the year. The
belowground litterfall was distributed through the rooting depth based on a vertical root distribution profile (Jackson
et al., 1996). The maximum root depth in permafrost areas was limited to the maximum thaw depth. Then, the total
litterfall at each depth was first allocated to the three litterfall pools according to the substrate quality of each litterfall
component, i.e., labile, cellulose and lignin fractions, and then transferred to the SOC pools through progressive
decomposition. Table S1 provides the main parameters of the TCF model for each biome type, which were largely

consistent with the prior study (Yi et al., 2015).

2.3 In-situ data and model validation

We used four Alaska eddy covariance (EC) tower sites having multi-layer soil temperature or moisture measurements
to evaluate the simulated carbon fluxes and temperature sensitivity of ecosystem respiration. Table 1 lists the relevant
site characteristics. The Atgasuk site (US-Atq) is about 100 km south of Utgiagvik on the Alaska North Slope and
consists of a mixture of tussock tundra and shrubs with some sedges and sandy soils (Davidson et al., 2016; Arndt et
al., 2019). The Ivotuk site (US-1vo) is about 300 km south of Utgiagvik in the northern foothills of the Brooks Range
and characterized as a mixed tussock tundra/moss composition on a gentle slope (Arndt et al., 2019). Soil temperature
measurements were available at 5, 15, 30 cm at US-Atq and 5, 15, 30, and 40 cm at US-Ivo, with full annual cycles
recorded in 2014 and 2015. The two boreal forests sites (US-Prr and US-Uaf) are located near Fairbanks, Alaska and
dominated by mature black spruce forest (Ueyama et al., 2014; Ikawa et al., 2015). The leaf area index is ~ 0.73 at
US-Prr and 1.9 at US-Uaf. Understory vegetation is dominated by peat moss and feather moss. The US-Uaf is located
in ice-rich permafrost, and the soil is silt-loam overlain by a 25-45 cm organic layer. Measurement records longer than
7 years were available at both forest sites; however, soil temperature measurements at the two sites show some drift
throughout the period, while soil moisture measurements are more consistent. Therefore, for the boreal sites, we used
the relationship between ecosystem response and the zero-curtain period calculated from the soil moisture
measurements to evaluate the temperature response of cold-season respiration. The zero-curtain period was defined
as the difference between surface freeze-up and the soil freeze-up dates, where soil freeze-up was defined as the date
when the soil liquid water content dropped below 15%-20% of the annual amplitude after surface freeze-up (Yietal.,
2019).
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We used two regional datasets to evaluate the model performance during the cold-season. Daily snow depth and soil

temperature measurements at SNOTEL (SNOwpack TELemetry) sites across Alaska (http://www.wcc.nrcs.usda.gov)

were used to evaluate the model skill in representing snow insulation effects during the cold-season, using a snow and
heat transfer metric (SHTM) defined in Slater et al. (2017), which was based on the deviation of a model simulated
snow insulation curve from observations. The snow insulation curve can be characterized as an exponential
relationship of attenuated soil temperature amplitude with increasing snow depth, with snow insulation influence
diminishing beyond a certain depth:

Aporm = P + Q(L — e~ (Sdepthers/D) (5)
where 4,4, IS the normalized temperature amplitude difference between air temperature and soil temperature,
ranging from 0 to 1. The effective snow depth Sg.,en ¢ describes the snow insulation impact and is the integrated
monthly snow depth from October to March weighted by its duration. P and Q are empirical parameters and R is the
effective damping soil depth, which can be determined using a data fitting method. We chose to evaluate the modeled
snow insulation effects using the SHTM metric, rather than directly compare the modeled and observed soil
temperatures. This approach minimizes the influence of potentially large differences between the relatively coarse
(~1-km resolution) model input data and the local site observations, particularly for SNOTEL sites located in

mountainous terrain.

We used the Natali et al. (2019b) in-situ winter soil CO. flux dataset to evaluate our simulated temperature sensitivity
of cold-season respiration. The CO, flux measurements were collected from previous studies using a variety of
methods (e.g. chamber, EC tower), and reported as the daily average over the monthly or seasonal interval when
monthly data were not available. This dataset represents CO, emissions from belowground ecosystems, including
respiration contributions from both autotrophic (from roots) and heterotrophic components. In this study, we compared
the model simulated soil heterotrophic respiration directly with the measured soil CO; flux, since the model assumes
the autotrophic respiration (as a portion of GPP) is very low throughout the cold season, especially for tundra (Tucker
et al., 2014; Hicks Pries et al., 2015). Soil temperature measurements were also provided in the dataset, at varying
depths. Soil temperature data at 10 cm depth were collected if available; otherwise, surface soil temperature reported
in the studies were collected. The data set contains 366 data records at tundra sites and 174 data records at boreal
forest sites across Alaska from October to April during the study period (2001-2017). However, most of the data
records were collected from the same sites, with 17 tundra sites and 16 boreal forest sites in total (Fig. 2). For the
tundra sites, modeled ecosystem respiration and NEE from October to April are quite similar due to negligible GPP.
For the boreal sites, simulated NEE can be very small or even negative (net sink) when soil temperatures approach
0 °C. We chose simulated ecosystem respiration and soil temperature values at the center of layer 3 (~8 cm) as a
representative depth and aggregated these model outputs to monthly or seasonal averages for comparison with the
observation dataset.

For all of the site comparisons, the model was run using the 1-km spatial input datasets described in Section 2.2, and

the model outputs from the 1-km grid cell encompassing each validation site were extracted. For the winter flux
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comparison, 1-km grid cells having biome types inconsistent with the local in-situ sites were removed prior to the

comparison.

2.4 Model analysis

The permafrost carbon model was run at 1-km resolution and 8-day time step from 2001 to 2017. The model domain
encompassed the majority of the Alaska land area (~1.21 million km?). The model was initialized using a two-step
spin up process prior to the transient simulations. The model was first spun-up using satellite-based LST, snow depth,
and soil moisture data for 50 years to bring soil temperatures in the top ~3 m into dynamic equilibrium. The model
was then run using the same meteorology inputs, simulated soil temperature and liquid water content fields over
several thousand years to bring the soil carbon pools (0-3 m) into equilibrium. Due to an incomplete MODIS record
in year 2000, year 2001 was used for the spin up period. The permafrost mode simulation is sensitive to the choice of
spin up year. However, our analysis focused on the interannual variability in the model simulations, and the associated
model sensitivity to environmental factors, which were less affected by the choice of spin up year. In order to examine
the impact of model resolution on the simulated ecosystem carbon fluxes, another set of model simulation was
conducted at 10-km resolution, and the statistical distribution of the model simulated carbon fluxes was compared
between the two simulations. For the 10-km runs, all model input meteorology datasets were aggregated to the coarser

resolution, and the dominant land cover type within each 10-km grid cell was used.

Correlation analysis was used to examine the sensitivity of soil freeze-up and carbon fluxes to snow cover changes
and other environmental variables across Alaska. We first calculated the onset of land-surface freeze based on the
MODIS LST data, which was defined as the center date of the 8-day period at which the mean LST during three
consecutive 8-day periods dropped below 0 °C. Soil freeze onset for each soil layer was then determined when the
simulated soil temperature dropped below —0.35 °C and after land surface freezing; this temperature threshold
corresponds to ~15-20% liquid water content in the model simulations at an Arctic Alaska site (Yi et al., 2019). The
soil freeze delay at each layer was defined as the duration between land-surface freeze onset and freeze onset of the
given soil layer. In permafrost areas, this was also the duration of the zero-curtain period. Unfrozen conditions in the
deep active layer may persist well into the cold season and even into January, causing a temporal lag in soil freeze
onset at these depths that may extend into the following calendar year. Since the model was only run from 2001 to
2017, the soil freeze onset delay in year 2017 was not calculated. The number of snow-free days after the land surface
temperature drops below 0 °C will affect how fast and deep the soil freezes (Bjerke et al., 2015). Therefore, we
calculated the number of snow-free days after land surface freeze onset (defined as the difference between the snow
onset and land surface freeze onset), and analyzed its correlation with the above soil freeze indices. The timing of
snow onset after the summer snow-free period was defined as the center date of the 8-day composite period when both

the snow depth for this period, and the mean snow depth within the 24-day moving window was greater than 5 cm.

Finally, we used the gradient boosting regression (GBR) method to quantify the contribution of selected environmental

variables to the annual carbon fluxes. The GBR method consists of a sequence of models, and each consecutive model
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is developed based on the errors of previously added models (Friedman, 2000). The above model simulated annual
carbon fluxes from 2002 to 2017 were used to train and evaluate the GBR models. We chose the following nine
contributing environmental factors or predictors to annual carbon fluxes during the model fitting, including summer
(June-August) NDVI, annual freezing and thawing index, mean annual downward solar radiation, rootzone soil
moisture during the thaw season, snow offset and onset, mean snow depth averaged from January to March
(representing annual maximum snow depth), and snow depth during the early snow season (from October to
November). The GBR method was implemented using the sklearn package in Python 2.7. The following method was
used to determine the relative importance of each predictor to the model predictive performance. We first ran the
model using all nine predictors, and the model results were referred as the baseline simulation (GBR},gse1ine)- We then
ran the fitted model successively with one randomized variable and the other variables intact, with the model outputs
denoted as GBRyne variabie randomizea- 1NE reduction in the Pearson’s correlation coefficient between the two model
runs was used to quantify the relative importance of each variable, computed as follows (Karjalainen et al., 2019;
Zheng et al., 2020):
L, = 1= corr(GBRyaseiine — GBRone_variable_randomizea)

RI b
D NPy S (6)
where I, represents the reduction in the correlation coefficient of the model runs with the variable x randomized, and

RI, is the relative importance value of variable x.

3. Results
3.1 Model validation

Previous studies have evaluated the performance of the RS-PM model in reproducing regional ALT patterns over the
Alaska domain (Yi et al., 2018) and the zero-curtain period in Arctic Alaska (Yi et al., 2019). Here we focus on
assessing the model capability in representing snow insulation effects and ecosystem carbon fluxes, particularly during
the cold season.

3.1.1 Model representation of snow insulation effects

The relationship between the normalized temperature amplitude difference between surface air and 20 cm depth soil
conditions (A,,,-m), and the effective mean snow depth (Sgepener5) derived from the Snotel observations and model
simulations is shown in Fig. 3. Both the model simulations and in-situ data indicate an increase in the snow insulation
effect with increasing snow depth until Sgep,cn, o reaches approximately 0.3 m; this relationship is also significantly
(p < 0.1) correlated with the fitted curve derived from Slater et al. (2017) (observations: R = 0.56; Model: R = 0.48).
Using an interval of 0.01 m for Sgepen oy below 0.3 m, the RS-PM model’s snow and heat metric was 0.85, indicating
good performance. Similar performance was found using 5 cm depth soil temperatures. However, relatively few data
points were available With S;.,¢p ¢r¢ lower than 0.2 m; the biases toward deeper Sqepen o4 CONditions were attributed

to the model snow depth inputs. MERRAZ2 generally shows earlier snow accumulation compared with the MODIS
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SCE data, which leads to model overestimation of Syepen erp (Fig. S1). During the downscaling process, the snow
depth during the early period was reassigned as 0 when the MODIS SCE record indicated “no snow” conditions,

which may also contribute to a higher value of Sgepep e -

3.1.2 Model simulated carbon fluxes and temperature sensitivity

The model simulations showed overall favorable agreement with tower-based 8-day composite carbon fluxes at the
two tundra sites (Fig. 4), including strong correlation (R > 0.8, p < 0.1), minimal mean bias (0.065 g C m2 d-! for US-
Ivo and -0.015 g C m2 d*! for US-Atq), and low RMSE (0.39 g C m2 d* for US-Atq and 0.29 g C m2 d for US-1vo)
differences. However, the model showed an apparent overestimation of GPP at the US-Ivo site (bias = 0.18 gC m2 d-
1, RMSE = 0.71 g C m2d). Here the aggregated land cover map indicated shrub/scrub vegetation at this site, while
in-situ surveys show a mixture of tussock sedge, dwarf shrub and moss communities (Davidson et al., 2016).
Alternative model simulations for the site using the less productive “tundra” land cover type markedly reduced the
resulting model GPP discrepancy (bias = -0.01 g C m? d!, RMSE = 0.42 g C m? d!). The model simulated GPP at
US-Atq showed no apparent bias compared with the tower measurements (bias = -0.04 g C m2?d*, RMSE=0.34g C

m2d™1).

At both sites, abrupt decreases in the model simulated GPP and the net carbon uptake occur during the peak growing
season (Fig. 4 a, ¢), which was mainly due to imposed low minimum temperatures and associated LUE reductions
defined by the MODIS nighttime LST observations. The largest GPP reductions during the peak season were generally
caused by very low nighttime LST, which may have large uncertainties in cloudy sky conditions. In addition, there is
also large uncertainty imposed from the NEE partitioning method, with different methods resulting in large differences
(up to more thanl g C m?2 d?) in the tower-based GPP and R, estimates. Both the model simulations and tower
observations indicate a significant non-zero carbon flux during early cold season. The model simulated Reco also shows
overall similar sensitivity to surface soil temperature (Tsoi) as the tower data, including a large decrease in respiration
when surface soil temperatures drop below -2 °C (Fig. 4b & Fig. S2). However, the tower-based data indicate a large

amount of scatter in the Reco - Tsoil relationship for Tseii above 0 °C, depending on the partitioning method.

The model simulated soil temperatures showed overall good correspondence with the in-situ measurements over the
soil profile (R > 0.9 and RMSE < 2 °C; Fig. S3 and Fig. S4). Both the tower-based and model simulated soil
temperature profiles show a consistent pattern of soil warming over the growing season, followed by gradual freezing
with cold season onset; however, the soil temperature of the middle and bottom active layer can stay near 0 °C through
December. The model simulated soil respiration density profile largely follows soil temperature, with respiration peaks

during mid-summer, followed by gradual diminishment with active-layer freeze-up.
The model simulated carbon fluxes were also comparable to the in-situ data at the two boreal forest sites (Fig. 5 and
Fig. S5). The model showed a slight underestimation of GPP and Reco at the US-Uaf site, with respective mean bias

of -0.32 and -0.34 g C m2 dX. The model showed a slightly lower positive bias in GPP and Reco at the US-Prr site,
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averaging 0.16 g C m2 d*and 0.06 g C m? d. At both sites, no obvious bias was observed in model simulated NEE
during the growing-season, despite the model assumption of dynamic-equilibrium in the estimated carbon pools at
these two mature forest sites. A much stronger decrease in ecosystem respiration when the surface soil temperature
drops below 0 °C was observed at the US-Prr site relative to the US-Uaf site (Fig. S6), which may partially reflect soil
temperature measurement uncertainty (Section 2.3). Significant respiration fluxes were observed at the US-Uaf site
when soil temperatures were less than 0 °C and even below -10 °C. At the US-Uaf site, the in-situ data indicate a linear
increase in the total respiration fluxes with longer zero-curtain duration during this period (Fig. 5¢,n=10,R=0.6, p
< 0.1). The model simulations for this site indicate a similar Reco relationship with the zero-curtain, but with a much
shorter estimated zero-curtain period. The apparent model discrepancy was attributed to a lower SMAP L4SM derived
mean annual soil saturation level at two boreal forest sites (~ 45-50%), while the in-situ measurements indicate much
higher saturation (> 80%) in the deep soils. We were unable to conduct a similar analysis at the US-Prr site due to the

relatively short measurement record for this site compared with the US-Uaf site.

The model simulated ecosystem respiration showed a broadly similar response to surface soil temperature during the
cold-season (Oct to Apr) relative to the in-situ winter flux synthesis data from the larger Alaska domain (Fig. 6). The
temperature sensitivity of the winter flux shown here is generally similar to the temperature sensitivity curve at the
two tundra sites (Fig. 4b & Fig. S2), when ecosystem respiration mainly consists of soil respiration. The model
indicates a rapid decrease in soil respiration as soil temperature and unfrozen water content decrease. The in-situ data
collected using chambers and the diffusion method show a similar response pattern as the model; however, the EC
data show large scattering in the respiration temperature response and evidence of large winter carbon fluxes when
surface soil temperatures drop below -5 °C, especially from the open-path EC measurements (Fig. S7). At the tundra
sites, model simulations showed higher correlation with observations excluding the EC-open path measurements (R
= 0.49), than using all available measurements (R = 0.32). The synthesis dataset does not include any Alaskan boreal
forest sites using EC-closed path measurements, and all available measurements were used in the analysis. Here, the
in-situ data indicate a more consistent winter carbon flux temperature response among different measurement
methods, which was moderately correlated (R = 0.44) with the model simulated carbon flux. The model estimated soil
temperature was also significantly correlated with the surface soil temperature reported for both tundra sites (R = 0.59,
p < 0.01) and the two boreal forest sites (R = 0.51, p < 0.01). However, the model simulated soil temperatures showed

a warm bias of 1.6 °C at the tundra sites and a cold bias of 2.3 °C at the boreal forest sites.
3.2 Spatial pattern and temporal trends of carbon fluxes

3.2.1 Annual carbon fluxes

The seasonal cycle of model simulated carbon fluxes and the soil heterotrophic respiration (Rh) from different soil
depths averaged across Alaska and within different permafrost regions is shown in Fig. 7. The model simulations
indicate that both GPP and Rh peak in July, while Rh persists well into the cold season. There is a notable difference
in the timing of the Rh seasonal peak from different soil depths, with a longer temporal lag for deeper soil layers.

Figure 7 (c) compares the seasonality of the Rh fraction from different soil depths averaged for regions with different
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permafrost probability using an ancillary permafrost map (Pastick et al., 2015; Fig. S8). Southern Alaska has relatively
low permafrost probability (< 33%), where the upper (0-13 cm) soil layer shows an earlier seasonal onset and peak in
respiration relative to deeper soil layers. The surface soil contribution to Rh gradually decreases after the seasonal
peak in May as deeper soil layers progressively warm. As the surface starts to freeze in September, Rh from deeper
(> 13 cm depth) soil layers provides the major contribution to total soil respiration during the cold season (October —
March). Other areas in Alaska show a similar pattern but with ~ 1-month delay in the seasonal peak of the surface Rh

contribution in the colder permafrost region (permafrost probability > 67%), compared with the more southern areas.

Across Alaska, annual GPP from 2001 to 2017 shows overall positive productivity trends mostly in western and
interior Alaska (Fig. 8a), with 66.8% of areas showing positive trends and 32.9% of areas showing negative trends.
However, only a very small portion of the areas show significant (p<0.1) productivity trends. The positive GPP trends
are mostly explained by increasing vegetation growth and a longer growing season, indicated by the MODIS SCE and
NDVI records (Fig. S9). Areas with negative GPP trends mainly occur in southern and interior Alaska. The areas in
interior Alaska with negative GPP trends also show negative trends in growing-season NDVI, and are likely associated
with fire-induced vegetation loss (Ju et al., 2016). Compared with GPP, Rh shows more extensive enhancement across
the region, with 88.4% (11.5%) of areas showing increasing (decreasing) respiration trends (Fig. 8b). Correspondingly,
areas with strong increase in ecosystem respiration but moderate or non-significant increase in GPP show decreases
in net ecosystem carbon uptake (i.e. positive NEE trends), such as the North Slope and portions of southern Alaska,
while much of the Alaskan interior shows increasing net carbon uptake (i.e. negative NEE trends) due to the generally
stronger increase in GPP relative to respiration (Fig. 8c). Overall, approximately 63.1% (36.9%) of the Alaska domain
showed decreasing (increasing) trends in net ecosystem carbon sequestration. However, only a very small portion of
the land area shows significant (p < 0.1) trends, with only 6.1% (2.1%) of areas having significant positive (negative)
NEE trends. At the regional scale, the time series of estimated annual carbon fluxes showed non-significant (p > 0.1)
positive trends of 2.58, 1.86, and 0.38 Tg C yr* for respective GPP, Rh and NEE fluxes (Fig. S10).

The attribution analysis results using the GBR method confirmed that NDVI and annual thawing index are the two
most important variables affecting the estimated annual carbon fluxes, which was generally consistent across different
vegetation types (Fig. 9). For annual GPP flux, NDVI was the most important variable followed by annual thawing
index and downward solar radiation, while for annual Rh fluxes, annual thawing index was the most important
variable, followed by NDVI, with other variables playing a very minor role. Despite the importance of annual thawing
index in controlling annual GPP and Rh fluxes, the snow offset showed little importance to both fluxes. This was
likely due to the low temporal resolution of the MODIS snow cover data (i.e. 8-day composite) used to calculate the
snow offset, which was calculated as the center date of the 8-day composite period. The low temporal resolution of
snow offset and a strong correlation (R>0.7, p<0.1) between annual thawing index and snow offset may limit its use
in the regression model. As for annual NEE flux, NDVI, downward solar radiation, and annual freezing index are
among the most important factors. However, the effects of different variables on annual NEE flux varied throughout
the period due to their compensating effects on GPP and Rh fluxes, and NEE being a small residual of these two larger

carbon fluxes; therefore, none of the variables played a dominant role throughout the entire period. In addition, the
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GBR model also showed generally poor performance in predicting annual NEE fluxes (R > 0.7) compared with the
other two fluxes (R > 0.9).

3.2.2 Growing-season carbon fluxes

The model simulated growing-season Rh shows overall positive trends during the study period, while the contribution
of surface (< 13 cm) soils to total Rh shows opposite trends during the snow melting period (April to May) and the
summer season (June to August, Fig. 10). During the snow melting period, the Rh trend pattern is similar to GPP,
while the surface soil Rh fraction shows large positive trends in western Alaska and the North Slope. The MODIS
LST record during this period shows a general surface warming trend in western and interior Alaska during April and
across the North Slope from May to June, which contributes to an advance in seasonal snow melt in those areas (Fig.
S11), and surface soil warming. From June to August, the MODIS LST data show mixed trends in interior Alaska,
and overall cooling trends in southern and southwestern Alaska, which contribute to the negative model GPP trends
in those areas. However, Rh still shows extensive positive trends across Alaska, likely due to increasing trends in the
deep soil (> 13 cm) respiration contribution discussed below. Correspondingly, NEE shows negative trends (i.e.
increasing net carbon uptake) in interior and southern Alaska from April to May, but overall positive trends

(decreasing net carbon uptake) across Alaska from June to August (Fig. S12 a, b).

The timing of snow offset or surface thaw onset shows the highest correlation with the surface soil Rh fraction during
the growing season, but with opposing respiration responses during the early (April-May: R = -0.55) and peak (June-
August; R > 0.58) growing season (Table 2). The snow offset and spring thaw onset are highly correlated as both are
mainly controlled by surface temperature (Fig. S11). Correlation analysis (Fig. S13) indicates that the Rh fraction
from surface soils is more closely correlated with monthly LST in April and May in areas with low permafrost
probability (< 33%), and with LST in May and June in areas with high permafrost probability (> 67%). These periods
correspond to the active snow melt period in each region, with mean snow offset date of ~ DOY 136.0+14.4 in areas
with low permafrost probability, and ~ DOY 148.8+£8.9 in more continuous permafrost areas. Changes in the
contribution of surface soils to total Rh between the early and peak growing season can be explained by a slower
warming rate in deeper soils. Earlier snow melt and reduced spring snow cover can significantly increase thermal
loading into the ground, with progressive warming of underlying soils. This can partly explain the low correlation

between summer (June-August) LST and the Rh contribution from surface soils for the same period.

3.2.3 Cold-season carbon fluxes

Total Rh during the early cold season from September to November shows overall positive trends from 2001 to 2017
except for portions of interior and southwestern Alaska, while the Rh contribution from surface (< 13 ¢m) soils (hereby
denoted as Rh fraction) shows a similar trend pattern as total Rh (Fig. 11). The Rh trend pattern is largely explained
by regional trends in the number of snow-free days after the land surface freezes (i.e. snow onset — surface freeze
onset) (Fig. 11c), which shows the highest correlation with both Rh and the surface soil Rh fraction (Table 3; Rh:

mean R = -0.48; Rh fraction: mean R = -0.46) among all environmental variables examined. The number of snow-free
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days after land surface freeze onset shows large positive trends in southwestern Alaska and portions of southern
Alaska, while negative trends mostly occur in northern Alaska. Both total Rh and the Rh fraction of surface soils
generally increase with delaying surface freeze onset, but decrease with delaying snow onset, although the correlation
is relatively weak (Table 3). Among the monthly snow depth data, Rh and Rh fraction show the highest correlation
with snow depth during the early snow season (September-October), which supports a close correlation between snow

accumulation and soil respiration.

The spatial pattern in the soil respiration trends during the early cold season can be explained by the temporal lag
(days) between the onset of surface freezing and freezing in deeper (23 cm) soil layers, i.e. the soil freezing delay or
the duration of the zero-curtain period in areas with permafrost occurrence (Fig. 12). The model simulations show an
advance of ~ 0.78 day per year (p < 0.1) in the regional-mean soil freezing delay at 23 cm averaged across Alaska
from 2001 to 2016, which is mainly driven by a delay in autumn snow cover onset (Fig. S11 d-f). However, large
variations in the timing and depth of autumn snow accumulation contribute to large interannual variability in the soil
freezing delay (Fig. 12c). The model simulated soil freezing delay increases with soil depth, and the soil freezing delay
at different soil depths is generally highly correlated. Soil water content is one of the major factors affecting the soil
freezing delay, which explains why northern and southern Alaska show a longer delay in soil freezing than relatively
drier soil regions in interior Alaska, indicated by the SMAP L4 SM record (not shown). The trends of soil freezing
delay at 23 cm depth are largely determined by the number of snow-free days after land surface freeze onset (regional
mean R= -0.46£0.26), with ~ 72% of areas showing significant (p < 0.1) correlation. Earlier snow onset over the
Alaska North Slope corresponds to an overall longer delay in soil freezing (i.e. longer zero-curtain duration), consistent
with a previous study (Yi et al., 2019), while southwestern Alaska shows an overall shorter soil freezing delay due to
later snow onset (Fig. S11 e-f). The soil freezing delay at the 23 cm depth was also closely related to the snow depth
during early snow season from September to October (regional mean R = 0.58+0.21), with ~ 85% of areas showing

significant (p < 0.1) correlation.

3.2.4 Impact of model resolution on the CO: seasonal cycle

Comparisons of the statistical distribution of model simulated carbon fluxes at the 1-km and 10-km resolutions show
an enhanced NEE seasonal amplitude from the coarser scale model simulations (Fig. 13). A larger difference in the
distributions is seen in the model simulated Rh fluxes, with slightly reduced Rh flux during summer, and enhanced
Rh flux from October to November at 10-km resolution. The largest differences in the Rh fluxes occur in October and
November, with daily mean differences of ~ 0.1 gC m? d* and a total difference of 9.8 Tg C across the entire study
area from October to December, or more than 20% of the multi-year mean during the same period averaged across
Alaska. This is consistent with an overall reduction in the number of days between snow onset and surface freeze
onset derived from the model input datasets of LST and snow depth at 10-km resolution (Fig. 13a). The statistical
distribution of the model input snow depth data at the two resolutions also shows the largest differences in October
due to more variable snow cover conditions in the early snow season, which can have a large impact on subsurface

soil temperatures due to stronger insulating effects of early snow accumulation (Fig. 3; Slater et al., 2017). The model
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simulated GPP flux during the growing season shows only limited differences (< 2%) between the two spatial scales
(not shown). However, the NEE simulations at 10-km resolution show enhanced carbon uptake during the growing
season, and enhanced carbon loss during the early cold season, with ~ 14% increases in the seasonal amplitude

averaged over Alaska.

4, Discussion

Based on the simulations of a newly developed 1-km permafrost carbon model, we highlight the important role of
snow cover variability in controlling soil heterotrophic respiration and the CO, seasonal cycle of boreal and Arctic
ecosystems in Alaska. The large differences between model simulated soil respiration during the early cold season,
and the estimated NEE seasonal amplitude at different model spatial scales also highlight potential large uncertainties

in regional model simulations contributed from an inadequate representation of land surface heterogeneity.

4.1 Environmental sensitivity of boreal-Arctic CO2 seasonal cycle

Our results show that earlier snow melting associated with spring warming enhances soil heterotrophic respiration
throughout the growing season, leading to a reduction in net carbon uptake later in the growing season in Alaska (Fig.
S12). Previous studies reported that earlier snow melting generally results in enhanced vegetation productivity and
carbon uptake during the early growing season, consistent with our simulations, while its impact on net ecosystem
exchange during the later growing season may vary with local climate and site conditions (Aurela et al., 2004;
Humphreys and Lafleur, 2011; Pulliainen et al., 2017). The variable impact of snow on the seasonal carbon cycle can
be explained by divergent responses of vegetation productivity and Rh to soil moisture and soil temperature during
the later growing season. Earlier snow melting in spring can lead to depleted soil water conditions during the later
growing season, resulting in a decrease in vegetation productivity and weaker net ecosystem carbon sink activity,
especially in the boreal region (Buermann et al., 2013; Sulla-Menashe et al., 2018). However, our simulations indicate
that deeper soil warming associated with early snow melting is mainly responsible for enhanced ecosystem carbon
loss later in the growing season. Surface warming and earlier disappearance in spring snow cover are associated with
a deeper thaw depth in the permafrost region (Park et al., 2016; Yi et al., 2018). Field studies have shown that deeper
permafrost thawing is associated with enhanced ecosystem respiration and thus reduced carbon sink activity during
the later summer (Natali et al., 2011; Lund et al., 2012; Webb et al., 2016). Other studies also indicate that ecosystem
respiration may dominate the NEE response to spring snow cover conditions and warming in Arctic tundra; however,
divergent responses have been observed in different tundra ecosystems (Humphreys and Lafleur, 2011; Parmentier et
al., 2011; Lund et al., 2012; Darrouzet-Nardi et al., 2019).

Our simulations also indicate that the arrival of seasonal snow cover and the number of snow-free days after land
surface freeze play a major role controlling subsurface soil freeze-up and soil respiration during the early cold season.
Earlier snow onset relative to surface freeze onset (i.e. a short snow-free period after surface freezing) keeps the soil
warm, and results in a longer soil freezing delay and zero-curtain period in permafrost areas, with enhanced soil

respiration during the early cold season (Fig. 11). Due to strong snow insulation effects, underlying soils can remain
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unfrozen for a substantial period long after the surface soil freezes, i.e. the zero-curtain period. Field studies have
shown persistent carbon emissions during this zero-curtain period and also throughout the winter season, while the
resulting cold season soil carbon emissions may partially offset or even exceed the growing season net carbon uptake
(Elberling and Brandt, 2003; Luers et al., 2014; Webb et al., 2016; Euskirchen et al., 2017). A recent study showed
that Alaska ecosystems were either a carbon source or carbon neutral during the recent observational period (2012-
2014), due to a large contribution of cold season carbon emissions, with larger emissions in the early cold season
based on CO; flux estimates optimized using data collected from the Carbon in Arctic Reservoirs Vulnerability
Experiment (CARVE) (Commane et al., 2017). Our simulations show a much longer soil freezing delay and zero-
curtain period in 2013 than the other two years for the same overlapping period (Fig. 12c), corresponding to large net
CO:; fluxes during the fall in 2013 across Alaska and the North Slope region as shown in Fig. 1 of Commane et al.
(2017).

However, large uncertainties are associated with cold-season carbon emissions in our estimates and other studies based
on either in-situ data or atmospheric inversions. An analysis using satellite and airborne CO; observations pointed out
that the current sparse CO, observational network is insufficient to constrain current and future estimates of cold-
season carbon emissions and the annual carbon budget of Arctic ecosystems (Parazoo et al., 2016). The in-situ winter
flux synthesis dataset (Natali et al., 2019b) also shows large scatter in the winter flux response to surface soil
temperature, especially using the eddy covariance method. The in-situ dataset indicated that significant carbon loss (>
0.5 gC m?2 d) can occur even when surface soil temperature drops below -5 °C (Fig. S7). This large carbon loss at
very low temperatures was not reproduced by our model, which showed a rapid decrease in soil respiration when
surface soil temperatures (~8 cm depth) drop below -2 or -3 °C. However, previous studies have highlighted the
inconsistency among different measurement methods in the Arctic and uncertainties in winter flux measurements due

to significant data loss under extreme weather conditions (Goodrich et al., 2016; Webb et al., 2016).

4.2 Model limitations and potential improvements

An important feature of boreal-arctic landscapes is strong surface heterogeneity, which may not be well represented
in current global scale models operating at an order of tens of kilometers or more (Koven et al., 2013b; Yi et al., 2015;
Tao et al., 2019). Our comparisons between the 1-km and 10-km model simulations showed non-negligible influence
of landscape heterogeneity on the model simulated CO, seasonal cycle, especially during the early cold season (Fig.
13). Atotal difference of ~ 9.8 Tg C from October to December across Alaska was found between the two simulations.
Scaled to the larger pan-Arctic region (24.95 million km?), the resulting difference represents ~194 Tg C in cold-
season carbon emissions and can account for more than 10% of the estimated total winter flux for the pan-Arctic
permafrost region (Natali et al., 2019a). The resulting uncertainty partially reflects spatial heterogeneity in autumn
snow cover conditions, as well as sub-grid variability in the surface energy budget (indicated by LST). The complex
relationship among soil saturation, snow accumulation and soil freezing also contributes to scale dependent differences
in the soil carbon emission estimates (Outcalt et al., 1990; Oechel et al., 1997; Zhang, 2005). These results highlight

a non-linear response of carbon fluxes to land surface heterogeneity across the different model scales (> 1 km).
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Moreover, a number of studies have shown that micro-topography, on the order of a few meters, exerts a strong control
on permafrost thaw and carbon dynamics (Kumar et al., 2016; Liljedahl et al, 2016; Grant et al., 2017 a, b), which

should be addressed in future model development.

Our current and previous assessment of the permafrost soil model also identified several areas where improvements
should be made to enhance model capabilities, especially in boreal forest. Comparisons with in situ measurements
indicate larger discrepancy between model ALT simulations and in-situ data in the boreal interior of Alaska
characterized by a greater density of woody vegetation, overlain by discontinuous or sporadic permafrost (Yi et al.,
2018). Model simulated soil temperatures also showed a larger bias at the boreal forest sites in relation to the in-situ
winter flux synthesis data (Section 3.1.2). The larger apparent uncertainty may reflect poor model representation of
the vegetation canopy influence on thermal energy loading at the soil surface. Previous studies have shown that the
MODIS vegetation index, leaf area index and tree cover data are sensitive to boreal forest structure and post-fire
disturbance recovery (Mastepanov et al., 2013). These datasets can be used to account for the temperature difference
between the soil surface and canopy skin temperature indicated by the MODIS LST data for different vegetation
categories, through simple empirical models or more sophisticated approaches derived from canopy radiative transfer
models (Paul et al., 2004; Verhoef et al., 2007; Dolschak et al., 2015).

In addition, better understanding of the scaling behavior of environmental controls on soil moisture is needed to
improve model representation of active layer conditions and carbon emissions (Mishra and Riley, 2015). Previous
studies indicate that topography and soil conditions are the dominant factors affecting soil moisture variability at finer
scales (Crow et al., 2012), which are not sufficiently represented by the coarse-resolution (~ 9 km) soil moisture
observations used as model inputs for this study. For example, our model simulations indicate a much shorter zero-
curtain period at an interior Alaska boreal forest site compared with the local site measurements (Fig. 5c), and also
overall shorter zero-curtain period in interior Alaska than the Alaska North Slope and southern Alaska. This pattern
was closely related to the model input SMAP soil wetness data, which indicated much drier conditions in interior
Alaska.

Other notable uncertainties in the model estimated carbon fluxes include insufficient representation of the soil moisture
migration with permafrost thaw and winter processes. Earlier spring thaw and snow melt has been linked with active
layer deepening and permafrost degradation, exacerbating the soil water deficit during the later growing season,
especially in the southern boreal forest areas (Buermann et al., 2013; Park et al., 2016; Zhang et al., 2019). Using
external soil moisture inputs, the current permafrost model was not able to fully represent this phenomenon, which
requires a more complete depiction of soil water, energy and carbon processes, and linkages (Walvoord and Kuryly,
2016). On the other hand, insufficient winter process representation in our model may partly explain the inconsistency
between the model simulated and observation-based temperature response curve of the winter flux indicated by the
EC tower-based measurements (Fig. 6). For example, field studies have shown that the soil CO, flux from microbial

production during fall and winter can be trapped due to the overlying snowpack or surface ice layers (Elberling and
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Brandt, 2003; Raz-Yaseef et al. 2017). The trapped CO; can be rapidly released during high wind conditions or the
spring thaw period, resulting in strong transient flux events, which are more likely recorded in EC measurements, but
not detected in closed chamber measurements (Luers et al., 2014; Webb et al., 2016). Late-season bursts in CO;
emissions were also reported during the soil freeze-in period at a high Arctic wetland site (Mastepanov et al., 2013).
However, our model currently assumes that all soil microbial respiration is released directly to the atmosphere, without

the mediation of snowpack, ice and mesoscale wind and pressure conditions on CO, emissions.

5 Conclusion

We developed a remote sensing driven permafrost carbon model at intermediate scale (~1 km) to evaluate the
sensitivity of the seasonal and annual carbon (COy) cycle, and soil respiration to snow cover changes across Alaska
during the recent two decades (2001-2017). Our results indicate that earlier snow melt onset associated with spring
warming enhances soil heterotrophic respiration throughout the growing season and reduces net carbon uptake during
the later growing season when carbon losses from enhanced deep soil respiration may offset or exceed ecosystem
carbon gains from vegetation productivity. Soil freeze-up and early cold-season soil respiration are closely linked to
the number of snow-free days after the land surface freezes, i.e. the delay in snow onset relative to surface freeze
onset. Recent trends toward earlier autumn snow onset in northern Alaska promote a longer zero-curtain period and
enhanced cold-season respiration. In contrast, southwestern Alaska shows a longer delay in autumn snow
accumulation relative to surface freeze onset, leading to earlier soil freezing and a large reduction in cold-season soil
respiration. Our results also show non-negligible influences of sub-grid variability of surface conditions on the model
simulated CO- seasonal cycle, especially during the early cold season at 10-km scale. These results confirm the
important control of seasonal snow cover on annual and seasonal carbon exchange of boreal-Arctic ecosystems. A
nonlinear response of soil respiration to snow cover changes poses significant challenges for global earth system

models in accurately projecting the pan-Arctic carbon cycle response to climate change.

Code and data availability. The regional model simulations will be archived and distributed for public access through
the NASA ABOVE archive at the NASA ORNL DAAC (https://daac.ornl.gov/). All data used in this study were
obtained from free and open data repositories. The model code used in this study is available from GitHub:
https://github.com/yiyh05/STM-C.
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Table 1 Characteristics of the eddy covariance tower sites used for model validation.

US-Atg? US-Ivo? US-Uaf® US-Prr¢

Location 70.4696° N 68.4805° N 64.8663° N 65.1237° N

157.4089° W 155.7568° W 147.8555° W 147.4876° W
Mean Tair (°C) -9.4 -8.3 -2.9 -2.0
Annual P (mm) 93 304 263 275
Vegetation Tussock tundra Tussock Tundra Black spruce forest Black spruce forest
Permafrost Yes Yes Yes Yes
Observation period 2014-2016 2013-2016 2008-2017 2011-2016
Tsoil measurement depths (cm) 5, 15,30 cm 5, 15, 30, 40 cm 10, 20, 50, 80 125 cm* 5, 10, 20, 30, 40, 100 cm*
SM measurement depths (cm) 5, 15,30 cm 5,15,30cm 5,15,25cm 5, 10, 20, 30,40 cm

* Data were not consistent throughout the observational period
Site references: ®Davidson et al., 2016; Arndt et al., 2019; PUeyama et al., 2014; ‘lkawa et al., 2015

Table 2 Regional mean correlation coefficient between the environmental variables and estimated Rh fraction of surface (0-13 cm)
soils during the growing season from 2001 to 2017. Unless indicated, the variables were calculated during the same period as the
Rh fraction. The thaw onset was derived from MODIS LST data, and the snow offset was derived from MERRA2 downscaled

snow depth data.

Period Thaw onset Snow offset GPP LST
Rh fraction (April-May) -0.55 -0.55 0.40 0.48
Rh fraction (June-August) 0.66 0.58 -0.24 (-0.43%) -0.26

* indicates GPP from April to August.

Table 3 Regional mean correlation coefficient between the environmental variables and estimated surface (0-13 cm) soil
contribution to total Rh during the early cold season (September to November). Unless indicated, the variables were calculated
during the same period as the Rh fraction.

GPP LST SNOD Freeze onset | Snow onset | Snow onset-freeze onset
Total Rh 0.33 (0.27%) 0.15 0.24** 0.36 -0.22 -0.48
Rh fraction (0-13 cm) | 0.13 (-0.10%) 0.01 0.22%* 0.33 -0.21 -0.46

* GPP from April to November; ** Snow depth (SNOD) from September to October shows strongest correlation with the Rh and

Rh fraction.
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MERRA2/MODIS MODIS SMAP soil
snow records LST moisture (SM)

downscale | ) |

Remote sensing based

permafrost model
(Eq. S1)
F/T state | Tsoil, liquid water fraction
MERRA2 l
solar radiation ) ¥
Light use efficiency _ Litterfall  goil decomposition
Satellite algorithm (Eq. 1-2) model (Eq. 3)
LST/SM
GPP/NPP Rh
NEE

Fig. 1 Flow diagram describing the modelling procedure and main input datasets used in this study. The terrestrial carbon flux
model has two components, including the light use efficiency algorithm for vegetation productivity estimates and a soil
decomposition model for soil heterotrophic respiration estimates. The main equations used for each modelling component are

940 referenced in the appropriate modelling box.
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Croplands (0.03 %)
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*  Winter flux sites
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Fig. 2 The Alaskan land cover map and the location of in-situ sites used for model validation. The land cover types are aggregated
from the 30-m NLCD map (Jin et al., 2013), while the following land cover classes were used in the model simulations: developed

945 and barren land, forest, scrub/shrub, grassland/herbaceous, croplands, and wetlands. The percentage of each land cover type is
provided alongside the colorbar legend labels.
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Fig. 3 Comparison of the snow insulation curve derived from in-situ measurements and model simulations at the Alaskan Snotel

950 sites. The dark line is drawn using the parameters presented in Slate et al. (2017): Aporm = 0.1875+4+ 0.5 X (1 —
e~ (Sdeptneft/ 0-0941)) ' Ohservations have fewer data points due to data gaps in the observed snow depth and soil temperatures at the
Snotel sites.
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Fig. 4 Model simulated carbon fluxes and temperature sensitivity of ecosystem respiration at two tundra sites (US-lvo and US-
Atq). “GPP1 obs” and “GPP2 obs” represent GPP estimates derived using tower-based NEE measurements and different
partitioning methods provided by the tower PI, similar to “Recol obs” and “Reco2 obs”. At the US-Ivo site, two GPP simulations
were conducted using different maximum LUE parameters representing two different vegetation types (shrub and grassland
tundra), indicated as “GPP (shrub)”, and “GPP (tundra)” in panel (a). Comparisons between model and tower-based NEE fluxes
at the two sites are shown in panel (d).
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Fig. 5 Comparisons of model simulated carbon fluxes with tower-based estimates (a&b), and the relations of total NEE fluxes to
the zero-curtain duration at 25 cm soil depth (c). There was a significant correlation (R = 0.6, p < 0.1) between the zero-curtain
period derived from in-situ soil moisture data and the total NEE fluxes during this period. “model 1" and “model 2” indicate
965 model simulations using different soil saturation levels, with “model_2” using a slightly higher (120%) saturation level than

“model_1”.
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Fig. 6 Effects of soil temperature on CO2 fluxes during the cold season over Alaskan tundra (a) and boreal forest (b) sites indicated
by model simulations (this study) and in-situ observations from a winter flux synthesis dataset (Natali et al., 2019b).
“ch&ch_snow”, “diff”, “ECC” and “ECO” represent measurements made using chambers and chambers placed atop the snowpack,
diffusion, EC-closed path, and EC-open path methods, respectively. The error bars indicate the standard deviations of model
simulations using different values (0.35 ~ 0.9) for the dimensionless parameter characterizing the unfrozen water curve for most

soil types (Schaefer and Jafarov, 2016).
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Fig. 7 Regional mean of model simulated carbon fluxes (a), Rh fluxes from different soil depths (b) averaged across Alaska, and
Rh contribution from different soil depths to total Rh averaged across two regions with different permafrost probability (c). In panel
(c), solid and dashed lines represent the mean values averaged across areas with permafrost probability from 0-33% and 67-100%,
respectively. Gray shading denotes the standard deviation of monthly mean fluxes from 2001 to 2017.
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Fig. 8 Temporal trends of model estimated annual carbon fluxes from 2001 to 2017. For NEE, positive trends indicate decreasing
net carbon uptake activity, while negative trends indicate enhanced net ecosystem carbon uptake.
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Fig. 9 Mean relative importance values of selected environmental variables in controlling model estimated annual carbon fluxes in
Alaska (a: GPP; b: Rh; c: NEE). The importance values were averaged for four major vegetation types (Forest, Shrub, Herbaceous,
and Wetlands, Fig. 2), and the error bar represents their standard deviation across the different vegetation types. The nine
environmental variables are: summer (June-August) NDVI1, annual thawing and freezing index, snow offset and onset, mean snow
depth averaged from January to March (representing annual maximum snow depth), and snow depth averaged during the early
snow season (from October to November), mean annual downward solar radiation, and rootzone soil moisture during the thaw
season. The annual thawing and freezing index represent the sum of MODIS LST above 0 °C and below 0 °C throughout the year,

respectively.
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Fig. 10 Temporal trends of model estimated total Rh, GPP and surface soil contribution to Rh (Rh fraction) during the early and

peak growing season from 2001 to 2017. In panel (c), large areas in the Alaska North Slope were masked out (in white) due to
negligible total Rh fluxes in April.
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(c) Snow onset - surface freeze onset (trends, days yr")

(a) Rh trends (month 9-11, unit: gC m2d! yr") os(b) Rh fraction (0-13 cm) trends (month 9-11, unit: yr")

0.

Fig. 11 Regional trends of total Rh (a) and its surface soil contribution (b) during the early cold season (September-November)
versus regional trends of the number of snow-free days after the land surface freezes (c), which was defined as the difference
1005 between snow onset and surface freeze onset.
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Fig. 12 Sensitivity of model simulated soil freezing process to snow cover changes across Alaska: the mean (a) and trends (b) of
soil freezing delay at 23 cm soil depth relative to surface freeze onset; c) the annual time series of model simulated soil freezing

1010 delay, the number of snow-free days after land surface freezes, and MERRA-2 snow depth (SNOD) from September to October
averaged across Alaska.
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Fig. 13 Comparisons of statistical distribution of model inputs and simulations at 1-km and 10-km resolution across Alaska: (a) the
number of snow-free days after land surface freeze onset, derived from the model input LST and snow depth datasets; (b) model
simulated daily mean Rh flux averaged from September to November; (c) model simulated daily mean NEE flux averaged from
June to August; (d) model simulated NEE amplitude, which was defined as the difference of the daily mean NEE flux between two

periods (September-November vs June-August). The lines show the fitted probability distribution function (pdf) using a normal
distribution.
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