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Abstract. Coccolithophores are globally important marine calcifying phytoplankton that utilize a haplo-diplontic life cycle.

The haplo-diplontic life cycle allows coccolithophores to divide in both life cycle phases, and has been proposed to allow coc-

colithophores to expand their niche space. To-date research has however largely overlooked the life cycle of coccolithophores,

and has instead focused on the diploid life cycle phase. Through a synthesis of global scanning electron microscopy (SEM) coc-

colithophore abundance data (n = 2534), we show that the haploid life cycle phase contributes significantly to coccolithophore5

abundance, constituting ≈18 % of species abundance for which haploid-diploid pairs are defined. Using hypervolumes to

quantify the niche space of coccolithophores, we furthermore show that the haploid and diploid life cycle phases inhabit con-

trasting niches, and that this allows coccolithophores to expand their niche space by ≈17 %. Our results highlight that future

coccolithophore research should consider both life cycle stages, as omission of the haploid life cycle phase in current research

limits our understanding of coccolithophore ecology.10

1 Introduction

Coccolithophores are marine phytoplankton that produce calcium carbonate platelets, called ‘coccoliths’, which can be seen

from space when coccolithophores bloom. Coccoliths eventually rain down into the ocean interior or serve as ballasts as they

are incorporated into faecal pellets and aggregates, which drives the carbonate pump and increases organic carbon export rates

to the deep sea (Klaas and Archer, 2002). Through the production of coccoliths, coccolithophores produce≈1.5 Pg of inorganic15

carbon per year (Hopkins and Balch, 2018; Krumhardt et al., 2019), and subsequently account for 30 % to 90 % of carbonate

in sediments (Broecker and Clark, 2009).
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In addition to the carbonate pump, coccolithophores contribute to the organic carbon pump, accounting for 1-40 % of marine

primary production depending on habitat (Poulton et al., 2007, 2013). Because of involvement in the ocean carbon pumps and

food web, coccolithophores thus play an important role in the ocean on regional to global spatial scales and seasonal to20

geological time scales.

Much focus has been put on understanding coccolithophore ecology and physiology, such as the function of calcification

(Young, 1994; Monteiro et al., 2016; Xu et al., 2016), their diversity (Aubry, 2009; Young et al., 2003), the factors control-

ling their calcification (Zondervan, 2007; Taylor et al., 2017) and competitiveness (Margalef, 1978; Krumhardt et al., 2017).

However, one factor that significantly impacts coccolithophore calcite production and potentially their global success, has been25

given little attention: their distinctive life cycle.

The life cycle of an organism is defined by the number of chromosome sets (the ‘ploidy level’) of the cell when asexual

reproduction (‘mitosis’) occurs. If mitosis occurs when the cell has one set of chromosomes (a haploid cell) the life cycle is

called ‘haplontic’ (Fig. 1a), while if mitosis occurs when the cell has two sets of chromosomes (a diploid cell) the life cycle

is called ‘diplontic’ (Fig. 1b). A few organism can divide in both the haploid and diploid phase. Such a life cycle is called30

‘haplo-diplontic’ (Fig. 1c). Coccolithophores utilize the latter life cycle strategy - which is in contrast to dinoflagellates and

diatoms which tend to be either haplontic or diplontic, and as such can only divide in either the haploid or diploid life cycle

phase (Von Dassow and Montresor, 2011).

The haploid and diploid life cycle phases of coccolithophores can vary significantly in terms of coccolith structure, size and

morphology, cell size, and degree of calcification (Fig. 2). The diploid life cycle phases tend to be more heavily calcified than35

the haploid life cycle phases, which tend to be more lightly, or non-calcified (Cros et al., 2000; Daniels et al., 2016; Fiorini

et al., 2011a, b). This difference in cell calcium carbonate content, cell organic carbon content, and ratio thereof (the PIC:POC

ratio), between the two life cycle phases means that the two phases potentially have contrasting impacts on the carbonate pump.

Although coccolithophore morphology is highly diverse, the diploid phases of coccolithophores primarily utilize hetero-

coccolithophore morphology (with some exceptions, i.e. Braarudosphaera bigelowii), while the haploid life cycle phases can40

broadly be classified into four morphologies: polycrater (Fig. 2a), ceratolith (Fig. 2b), holococcolith (Fig. 2c-i) and unminer-

alized (not pictured) (Frada et al., 2018). Of these four haploid morphologies, the holococcolithophore morphology - which is

defined by rhomboid calcite structures that constitute the coccoliths - is the most frequent utilized (Frada et al., 2018). Eight

coccolithophore clades utilize holococcoliths, while four clades utilize an unmineralized haploid morphology, one clade uti-

lizes a ceratolith morphology, one clade utilizes ceratolith morphology, and for five clades the haploid morphology is currently45

unknown (Frada et al., 2018).

Coccolith and coccosphere morphology, cell and coccosphere size, and the degree of calcification influences coccolithophore

ecology (Young, 1994). We can thus expect that the haploid and diploid life cycle phases of coccolithophores can have contrast-

ing ecological preferences, which has been proposed to allow a coccolithophore species to occupy multiple niches (Houdan

et al., 2006; Frada et al., 2012; Cros and Estrada, 2013; Godrijan et al., 2018; Frada et al., 2018). This ability to occupy multiple50

niches should expand the total niche space coccolithophore can inhabit, a potential advantage for haplo-diplontic organisms in
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variable environments (Mable and Otto, 1998). An idea which is supported by genetic models (Hughes and Otto, 1999; Rescan

et al., 2015).

While niche differentiation has been widely observed for haplo-diplontic seaweeds (Couceiro et al., 2015; Guillemin et al.,

2013; Lees et al., 2018; Lubchenco and Cubit, 1980), and coccolithophores (Houdan et al., 2006; Cros and Estrada, 2013;55

Godrijan et al., 2018; Frada et al., 2018), to-date no research has quantitatively investigated the extent of niche overlap and

niche expansion for haplo-diplontic algae. For coccolithophores this is because research has primarily focused on the diploid

life phases, and relatively little is known in regards to the haploid life phase (Taylor et al., 2017; Frada et al., 2018). This is in

part due to a research focus on the globally ubiquitous Emiliania huxleyi which utilizes an unmineralized haploid morphology

which cannot be readily identified with conventional light or scanning electron microscopy (Frada et al., 2008).60

With the aim of understanding how haploid coccolithophores contribute to coccolithophore success, we quantify the niche

overlap and niche expansion between haploid and diploid life stages of coccolithophores for the first time.

To do so, we compile global coccolithophore abundance observations of coccolithophores using all available SEM measure-

ments and where appropriate corresponding environmental measurements (temperature, salinity, fixed nitrogen, phosphate, and

silicate). Although our focus is on holococcolith forming clades rather than E. huxleyi, holococcolith forming clades include65

ecologically relevant species such as Helicosphaera carteri (Fig. 2e), Coccolithus pelagicus and Calcidiscus leptoporus (Fig.

2i) which contribute more to the CaC03 flux to the deep ocean than E. huxelyi due to their larger coccolith and coccosphere

size (Ziveri et al., 2007; Rigual Hernández et al., 2019).

In addition to niche overlap and niche expansion, we investigate the dataset to identify ecological preferences of holococ-

colith forming species, providing an updated picture on their global distribution, relative abundance, niche space, and envi-70

ronmental controls. This work provides key information to better understand how the haplo-diplontic life cycle contributes to

coccolithophore success.

2 Methods

2.1 Metadata compilation

Coccolithophore abundance measurements were compiled from 36 studies, constituting 2534 measurements, and representing75

all major oceans (Table 1). These studies utilized scanning electron microscopy (SEM) to enumerate or further identify coccol-

ithophores rather than soley relying on the more commonly utilized light or cross polarized microscopy which under-represents

coccolithophore biodiversity (Godrijan et al., 2018), in particular holococcolithophores (Bollmann et al., 2002; Cerino et al.,

2017). We used this data set to investigate global, and vertical distribution patterns of haploid and diploid coccolithophore life

cycle phases, specifically focusing on holococcolith forming species.80

In addition to the global data set, we further investigated three case studies, in order to better understand specific drivers and

differences between the life cycle phases: the Atlantic Meridional Transect (AMT), representative of mid-oligotrophic open

ocean ecosystems, the long term time series at Bermuda (BATS), and two times series in a mesotrophic coastal ecosystem in the

Adriatic Sea (the ’Mediterranean data set’). For the AMT study, we considered observations from 4 cruises, specifically AMT-
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12 (May-Jun 2003), AMT-14 (Apr-Jun 2004), AMT-15 (Sep-Oct 2004) and AMT-17 (Oct-Nov 2005) previously published by85

Poulton et al. (2017). For the BATS station we considered data published by Haidar and Thierstein (2001), which consists of

approximately monthly observations between January 1991 to January 1994. For the Mediterranean study, we combine two

time-series in the Adriatic Sea by Godrijan et al. (2018) and Cerino et al. (2017), between September 2008 to December 2009

and May 2011 to February 2013 at the RV-001 and C1-LTER stations respectively.

For the AMT and Mediterranean case studies, we additionally compiled temperature, salinity, and concentrations of fixed90

nitrogen (nitrite + nitrate), phosphate, and silicate. For the AMT environmental variables were acquired from the British

Oceanographic Data Centre (BODC). For the Mediterranean study, day length was calculated using the MIT Skyfield package

in Python.

All data was acquired from supplementary data, online databases, or if neither was available by contacting the authors di-

rectly. The data was manually checked for synonyms or misspellings of species names, and where appropriate cell abundances95

were converted to cells l−1. All species, or genera if not identified to a species level, were labeled as either heterococcol-

ithophore, holococcolithophore, or ‘other’, which includes polycrater, nanoliths, and unidentified species. For these catego-

rizations we followed definitions from Cros and Fortuño (2002).

The species and environmental data were compiled in Python, and subsequently analysed in R (R Core Team, 2019). For

all analysis we only considered samples within the top 200 m of the water column. On a global scale and regional scale, we100

calculated the mean and highest observed abundances (the ‘maximum abundance’) of both hetero- and holococcolithophores.

For the mean abundance calculations the mean was calculated for each sample and then averaged.

2.2 Definition of pairs and HOLP-index

Not all heterococcolithophore forming coccolithophore species form holococcospheres. Thus, to better illustrate the proportion

of haploid and diploid coccolithophore cells, we reported the ratio between hetero- and holococcospheres of species that form105

holococcoliths in their haploid phase, which is commonly implemented (Cros and Estrada, 2013; Šupraha et al., 2016).

This ratio is referred to as the ‘HOLP-index’, and is defined by Cros and Estrada (2013) as:

HOLP-index = 100 · paired holococcolithophore abundance
paired coccolithophore abundance

(1)

Species included in the HOLP-index follow the definitions of paired species as defined in Frada et al. (2018) (Table 2)

- which is confined to currently understood associations and which is likely to change as our understanding holococcolith110

species continues to improve. We calculated the HOLP-index on a global and regional level for studies that identified holo-

coccolithophores to a species level, the AMT data set, and the Mediterranean data set. To calculate the mean HOLP-index, the

ratios were calculated for each sample and then averaged.

2.3 Environmental drivers

We quantified the environmental drivers of hetero- and holococcolithophore abundance and the HOLP-index for the AMT115

and Mediterranean data sets using Spearman correlations. We calculated Spearman correlations for hetero- and holococcol-
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ithophores and the HOLP-index relative to temperature, salinity, depth, and concentrations of fixed nitrogen (nitrite + nitrate),

phosphate, and silicate for the AMT data set. The same ordinal associations were calculated for the Mediterranean data set, but

we considered day length instead of depth, because only the top 30 meters of the water column was sampled, and seasonality is

an important driver in this region. To focus on marine systems of coccolithophores, we only considered samples with salinities120

above 30 ppt. Samples missing any environmental variables were removed. Subsequently the AMT data set included a total of

45 samples, and the Mediterranean data set 100 samples. Spearman correlation was performed in R using the ’cor.test’ function

from the ’stats’ package (R Core Team, 2019). We also visualised environmental drivers by plotting the distributions of cell

concentrations and environmental parameters within the water column or within the first two axes of a Principal Component

Analysis (PCA), and then interpolating values using the Multilevel B-spline Approximation (MBA) algorithm described by125

Lee et al. (1997). Prior to conducting the PCA, samples with a Cook’s Distance greater than 4 times the sample size were

removed. For the visualizations, we used the same environmental parameters and samples as for the Spearman correlations, ex-

cept for the AMT data set where we plotted chlorophyll instead of depth - which allowed visualization of the deep chlorophyll

maximum (DCM). For the AMT data set, we plotted the abundance and environmental parameters as a function of latitude

and depth. While for the Mediterranean data set the variables were plotted as a function of the first two axes of a PCA which130

included temperature, salinity, day length, and concentrations of phosphate, fixed nitrogen, and silicate. The MBA interpola-

tion was performed with the ‘mba.surf’ function from the ’MBA’ R package (Finley et al., 2017), and the PCA was performed

with the ‘dudi’ function of the ‘ade4’ package (Dray and Dufour, 2007). Cook’s distances were calculated using the ‘lm’ and

‘cooks.distance’ functions provided in the ‘stats’ R package (R Core Team, 2019).

2.4 Seasonality135

To investigate seasonality we compared monthly hetero- and holococcolithophore abundance data to temporal variations of

temperature, salinity, day length, and concentrations of phosphate, fixed nitrogen, and silicate of the BATS and Mediterranean

data sets.

2.5 Niche overlap and niche expansion

Distribution patterns of phytoplankton are influenced by multiple environmental drivers. These environmental drivers form a n-140

dimensional hyperspace within which hypervolumes can be defined based on where the phytoplankton occur. This hypervolume

can be used to quantify niche space (Hutchinson, 1957) and allows comparisons between multiple phytoplankton - in this

instance the two life cycle phases of coccolithophores.

Although processing hypervolumes is challenging due to their high dimensionality, methods described by Blonder et al.

(2014) allow hypervolume quantification and comparison (for futher discussion see Blonder (2018) and Mammola (2019)).145

Using this strategy we determine the niche overlap of hetero- and holococcolithophores in hyperspace using the Sørensen-Dice

and Jaccard similarity metrics.

5

https://doi.org/10.5194/bg-2020-194
Preprint. Discussion started: 24 June 2020
c© Author(s) 2020. CC BY 4.0 License.



We furthermore calculate the ‘niche expansion’ of the haplo-diplontic life cycle strategy, which we define here as the non-

overlapping region of either phase within hyperspace. In other words:

NE(A) =
|A| − |A∩B|
|A∪B| (2)150

Where NE(A)= niche expansion of A; A = hypervolume A; B = hypervolume B;∩ = intersection between two hypervolumes;

∪ = union between two hypervolumes

We calculated the Jaccard and Sørensen-Dice similarity metrics and niche expansion for both the Atlantic Ocean and

Mediterranean Sea data set. For the Atlantic Ocean, nitrogen showed high Pearson correlation to silicate (ρ = 0.95, p < 0.001)

and phosphate (ρ = 0.90, p < 0.001). We thus only considered temperature, salinity and the concentration of fixed nitrogen in155

this region. Although no such correlations were observed for the Mediterreanean data set, to make the niche metrics compara-

ble in both regions, the silicate and phosphate concentration of the Mediterrean data set were also excluded. The environmental

data were normalized using z-scores prior to analysis. Niche overlap and niche expansion was calculated only for species for

which both life cycle phases were observed.

We used the ‘hypervolume’ R package (Blonder and David J. Harris, 2018) to conduct our niche overlap and niche expansion160

analysis. Gaussian kernel density estimation (R function ‘hypervolume_gaussian’) was used to construct the hypervolume, the

overlap metrics were calculated with the ‘hypervolume_overlap_statistics’ R function, and the volume and intersection of hyper

volumes were calculated using the ‘get_volume’ R function.

3 Results

3.1 Biogeography of coccolithophores165

Within our compilation heterococcolithophores showed global distribution, while holococcolithophores were noticeably absent

at the ALOHA station in Hawaii and (with some exceptions) >50◦ S in the Southern Ocean (Fig. 3 and Table 3).

Highest maximum abundances of heterococcolithophores were observed at high latitudes within the Arctic circle (>66◦ N)

(≈4.37 x 106 cells l−1), and the Southern Ocean (>40◦ S and <65◦ S) (≈1.64 x 106 cells l−1). Low maximum abundances

were observed in most of the subtropical and tropical waters such as the Arabian Sea (≈1.11 x 105 cells l−1), East China Sea170

(≈2.39 x 105 cells l−1), and East Indian Ocean (≈2.27 x 105 cells l−1).

The regions with the highest mean heterococcolithophore abundance differed from the regions where highest maximum

heterococcolithophore abundance were observed. For example, the highest mean abundance was observed in the East Indian

Ocean (≈1.96 x 105 cells l−1); which was higher than the mean abundance in the Southern Ocean (≈8.87 x 104 cells l−1),

North Atlantic (≈9.99 x 104 cells l−1) and Arctic Circle (≈5.71 x 104 cells l−1).175

Although holococcolithophores showed low abundances at at high latitude regions in the Southern Hemisphere, highest max-

imum holococcolithophore abundances were observed in the Arctic circle (>66◦ N) (≈2.23 x 105 cells l−1). High maximum

abundances were additionally observed in the Mediterranean Sea (≈1.38 x 105 cells l−1). Generally low maximum abundances
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were observed at tropical and subtropical basins such as the Arabian Sea (≈5.63 x 103 cells l−1); with exception of the East

Indian Ocean (≈3.10 x 104 cells l−1). Medium maximum abundances were observed in the North Atlantic Ocean (≈3.00 x180

104 cells l−1). On average the Mediterranean Sea had the highest mean holococcolithophore abundance (≈6.00 x 103 cells

l−1), followed by the East Indian Ocean (≈4.40 x 103 cells l−1), and the Arctic Circle (≈1.70 x 103 cells l−1). The lowest

mean abundances were observed in the Southern Ocean (≈4.00 cells x 102 l−1), and Arabian Sea (≈4.60 x 102 cells l−1).

Overall holococcolithophores contributed 7.3 % (±16 %) to total coccolithophore abundance globally, with their highest

contribution observed in the Mediterranean Sea (16.5 % ±22.7 %) (Table 3). However, on a regional basis (Table 4) holo-185

coccolithophores generally contributed less than 6 % to total coccolithophore abundances. The contribution of holococcol-

ithophores to paired species was much higher than when all hetero- and holococcolithophores are considered (Table 4), with a

HOLP-index of 18.3 % (±28.2 %) globally, and the highest HOLP indices observed off the coast of Chile in the South Pacific

(36.2 % ± 37.4 %), the Central Atlantic (30.2 % ± 25.2 %), and the Mediterranean Sea (27.7 % ± 30.1 %). The average

HOLP-index was above 15.7 % for all locations, except in the Southern Ocean where an HOLP-index of 7.1 % (±23.7 %) was190

observed.

3.2 Vertical distribution

In the global data set heterococcolithophore abundance is evenly distributed with depth, while holococcolithophore abundance

is highest in the top 50 m of the water column (Fig. 4).

For holococcolithophores the vertical distribution pattern is mainly driven by paired holococcolithophore species which195

constituted ≈62.2 % to total coccolithophore abundance. Two currently unpaired holococcolithophores also contribute to the

depth distribution trend with Helladosphaera cornifera (for which the association has to be further confirmed) constituting

≈8.1 % of total holococcolithophore abundance, and Corisphaera gracilis (for which no pair has been described) constituting

≈3.6 % of total holococcolithophore abundance. Subsequently paired holococcolithophore abundances broadly followed the

same patterns observed when all holococcolithophores were considered.200

In comparison to holococcolithophores, depth distribution of heterococcolithophores was driven by unpaired species - in

particular E. huxleyi which constituted≈59.2 % of total heterococcolithophore abundance, but also by the presence of unpaired

deep water species such as Ophiaster formosus, Florisphaera profunda, Calciopappus caudatus, and Oolithotus antillarum.

However, although paired heterococcolithophores only contributed≈5.7 % to total heterococcolithophore abundance, the depth

distribution trends of paired and total heterococcolithophores species were similar.205

3.3 Environmental drivers of niche partitioning

To further understand the distribution patterns observed on a global basis and within the water column we investigated the

environmental drivers of hetero- and holococcolithophore abundance in the Atlantic Ocean (with the AMT data set) and the

Mediterranean Sea. For the Atlantic Ocean data set, the environmental drivers were considered in the context of their distri-

bution within the water column, whereas for the Mediterranean the environmental drivers were considered within PCA ‘niche210

space’. These observed patterns were then further corroborated through Spearman analysis.
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3.3.1 Atlantic Ocean

In the Atlantic Ocean both hetero- and holococcolithophores have highest abundances in the top 50 m of the water column (Fig.

5). However, a noticeable difference between hetero- and holococcolithophore distribution (Fig. 5a and Fig. 5d respectively)

is the absence of holococcolithophores below the deep chlorophyll maximum (DCM) (Fig. 5l). The DCM tends to occur at215

1-10 % irradiance levels, and is closely linked to the nutricline and thermocline (Poulton et al., 2006). The difference in depth

distribution between hetero- and holococcolithophores, and the absence of holococcolithophores below the DCM may therefore

be influenced by a combination of light limitation, high nutrient concentrations, and cold water temperatures at depth. This

suggests that heterococcolithophores might be better adapted to exploit such conditions. Although differences in sinking rates

- which are conceivably higher in the more heavily calcified heterococcolithophores could also factor into the difference in220

depth distribution between the two life cycle phases.

The distribution of heterococcolithophores (Fig. 5a) is primarily driven by E. huxleyi (Fig. 5c) which constitutes ≈30 %

of total heterococcolithophore abundance in the data set. When only paired heterococcolithophore species were considered

(Fig. 5b) a more even distribution in subtropical and tropical regions is observed. Holococcolithophores and paired holococ-

colithophores showed roughly similar distribution patterns (Fig. 5d and Fig. 5e).225

Within the upper water column, heterococcolithophores showed highest abundance at higher latitudes (>35◦ N and >30◦

S), which is associated with a shallow mixed layer, lower salinity, and lower temperature, as well as increasing silicate concen-

trations in the southern hemisphere. Holococcolithophores meanwhile showed highest abundances at both high latitudes and

in the Atlantic subtropical gyres. The HOLP-index (Fig. 5f) was highest within the Atlantic subtropical gyres, with a higher

proportion of holococcolithophores in the Northern subtropical Gyre, which is associated with a shallower DCM relative to230

the Southern subtropical Gyre. This shallowing of the DCM on the AMT is however likely a seasonal signal as described by

Poulton et al. (2006) and Poulton et al. (2017).

Spearman correlations (Table 6) suggests holococcolithophores are significantly (p<0.05) negatively correlated to phos-

phate, fixed nitrogen, silicate and depth and significantly positively correlated to temperature and salinity. Paired holoccol-

ithophore and the HOLP-index showed the same correlation trends as holococcolithophores.235

On the contrary, heterococcolithophores are only significantly and negatively correlated with depth and phosphate. While

for paired heterococcolithophores significant negative correlations were observed with depth and silicate.

Thus hetero- and holococcolithophore abundance in the Atlantic Ocean seems primarily driven by the depth of the DCM

both in terms of vertical and latitudinal distribution. Highest abundances of both hetero- and holocococlithophores are observed

above the DCM, and heterococcolithophores are present below the DCM while holococcolithophores are not. In terms of240

latitude highest abundances of heterococcolithophores correspond to shallow DCM depth which occurs in higher latitude

regions, and highest abundances of holococcolithophores occur in subtropical regions with deep DCM depths.
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3.3.2 Mediterranean Sea

For the Mediterranean Sea long term time series, niche separation of hetero- and holococcolithophores within the PCA niche

space (Fig 6), is primarily driven by Principal Component 1 (PC1) which is positively associated with temperature and day245

length and negatively associated with salinity, fixed nitrogen, silicate and phosphate (see Table 7). Heterococcolithophores

are most abundant at low PC1 values (i.e. the left quadrants of Fig. 6a) which corresponds to low temperatures and short day

lengths, and high salinity and concentrations of fixed nitrogen, silicate and phosphate. Holococcolithophores are most abundant

at high PC1 values (i.e. the right quadrants of Fig. 6b), which corresponds to high temperatures and long day lengths, and low

salinity and concentrations of fixed nitrogen, silicate and phosphate.250

The pattern observed in the PCA niche space is also apparent in the Spearman correlations (Table 6) which indicate that het-

erococcolithophores are significantly negatively correlated to temperature, and day-length, and significantly positively corre-

lated to phosphate, fixed nitrogen, silicate and salinity. For paired heterococcolithophore species the only significant correlation

observed was a positive correlation with silicate.

Holococcolithophores showed an opposite pattern to heterococcolithophores, and are significantly positively correlated to255

day-length and temperature, and significantly negatively correlated to salinity, fixed nitrogen, silicate and phosphate. Paired

holoccolithophores and the HOLP-index showed significant positive correlation to temperature and day length, but no signifi-

cant correlations with the other environmental variables were observed.

3.3.3 General environmental trends

Our statistical analysis shows that in both the Mediterranean Sea and Atlantic Ocean holococcolithophores are generally found260

in low nutrient and warm environments and high light availability. However, an opposite trend was observed between the

Atlantic Ocean and Mediterranean Sea in terms of correlation to salinity, with holococcolithophores positively correlated to

salinity in the Atlantic Ocean and negatively correlated to salinity in the Mediterranean Sea. This difference in correlation to

salinity may be explained by the different drivers of salinity in both regions. In the Atlantic Ocean, low salinity occurs at high

latitudes, while high salinity corresponds to mid-ocean gyres due to higher evaporation in tropical and sub-tropical regions. In265

contrast, at the coastal site in the Mediterranean Sea, low salinity is strictly related to direct freshwater input and associated

nutrients. As such salinity may be simply correlated to other environmental drivers, rather than be a driver itself.

Statistically significant correlations were the same when all holococcolithophores, paired holococcolithophores or the HOLP-

index was considered at both locations - however fewer significant correlations were observed for paired holococcolithophores

and the HOLP-index.270

The trend for heterococcolithophore is less clear when comparing the two sites: an opposite trend to holococcolithophores -

e.g. high nutrients and low temperatures - is observed in the Mediterranean Sea, but not in the Atlantic Ocean where many of

the correlations were not significant and heterococolithophore were negatively correlated to phosphate. This negative correla-

tion to phosphate is potentially due to deeper sampling in the Atlantic Ocean combined with high phosphate concentrations in

deep and light limited waters skewing correlations, which highlights the need to consider sampling and DCM depth when com-275
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paring environmental correlation between studies. It may furthermore be due to the presence of mixotrophic or heterothrophic

coccolithophores at depth in the Atlantic Ocean, which are not found in the shallow coastal waters of the Mediterranean Sea.

3.4 Niche overlap and niche expansion

We conducted niche similarity and niche expansion calculations on both the Atlantic Ocean and Mediterranean data sets to

quantify niche space in these regions. For niche overlap we considered the Jaccard overlap and Sørensen-Dice overlap metrics280

which range from 0 to 1, with 1 signifying complete overlap. For niche expansion we considered the relative amount each

life cycle contributed to the total niche space. In the Atlantic Ocean the niche overlap of paired species was high for both the

Jaccard overlap and Sørensen-Dice overlap metrics (0.84 and 0.91 respectively, Table 8). However, for individual species the

overlap metrics were highly variable ranging from 0.11 - 0.74 and from 0.20 - 0.81 for the Jaccard overlap and Sørensen-Dice

overlap metrics respectively. The niche expansion was higher for heterococcolithophores than holococcolithophores when all285

paired species were considered (see Table 8), but was again highly variable for individual species. The holococcolithophore

phase of C. mediterranea, S. bannockii, H. wallichii, and C. leptoporus for instance all contributed more to the total niche

space than their heterococcolithophore life cycle phase.

In the Mediterranean Sea niche overlap values were smaller, and niche expansion values were larger than in the Atlantic

Ocean (Table 9). Niche expansion of heterococcolithophores was also higher than holococcolithophores when all paired species290

were considered, but like in the Atlantic Ocean species specific exceptions were observed. The holococcolithophore phase of

C. mediterranea, S. histrica, S. strigilis and C. leptoporus all contributed more to the total niche space than their heterococcol-

ithophore life cycle phase in this region. In the Mediterranean Sea the niche space of S. molischii is of particular note, as no

overlap between the two life cycle phases was observed, and the two unique components were of similar size (0.51 and 0.49

for hetero- and holococcolithophores respectively).295

Although quantitative interpretation of niche space is difficult since niche space will vary depending on the number of

environmental axes included (Blonder et al., 2014), these results highlight that holococcolithophores contribute significantly to

the niche space of coccolithophores, in some instances contributing more to total niche space than the heterocococlithophore

phase. In this context C. pelagicus is particularly relevant as this species contributes significantly to the global carbonate flux

(Ziveri et al. (2007); Rigual Hernández et al. (2019), and is one of the key calcifiers in the Arctic Ocean (Daniels et al., 2016).300

These results additionally suggest that the niche expansion and difference in niche preference between the two life cycle

phases is higher in the Mediterranean Sea than the Atlantic Ocean. It is however not clear if this is because the haplo-diplontic

life cycle is better suited to more variable coastal environments as suggested by Godrijan et al. (2018) or due to higher temporal

sampling resolution in the Mediterranean Sea data set compared to the Atlantic Ocean data set.

3.5 Seasonality of coccolithophores305

Hetero- and holococcolithophore abundance highly varies with season at both the BATS station in the Atlantic Ocean and the

long-term stations in the Mediterranean sea (Fig. 7). Both locations experience a peak of heterococcolithophores in the winter,

followed by a peak of holococcolithophores at the end of spring, and in early summer. In the Atlantic Ocean, the heterococcol-
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ithophore are present in high abundance for a longer period of time - overlapping with the spring peak in holococcolithophore

abundance (Fig. 7a).310

At both locations the peak of the holococcolithophore bloom occurs in the spring and summer when water temperatures

rise and the day length is longest, while heterococcolithophore abundance is highest in the winter when temperature is lowest

and day length shortest. The seasonality of peak hetero- and holococolithophore abundance may furthermore correspond to

seasonal changes in mixed layer depth (MLD), as both the Atlantic Ocean and Mediterranean Sea experience increased mixing

in the winter and higher stratification in the summer.315

No clear seasonal patterns were observed for fixed nitrogen or silicate concentrations at either location. Which suggest that

although hetero- and holococcolithophores abundance is correlated to nutrient concentrations on spatial scales (see Sect. 3.3),

on a seasonal scale other drivers such as temperature, light availability, and mixed layer depth predominate.

It is important to note that on a species level, individual species do not exclusively follow the seasonal hetero-holococcolithophore

trends described above, as illustrated in detail by the original publications (Cerino et al., 2017; Godrijan et al., 2018). For in-320

stance for Syracosphaera molischii and Syracosphaera pulchra the holococcolith rather than heterococcolith phase is the dom-

inant life cycle phase in these time series. Furthermore the holococcolithophore phases of S. molischii, Syracosphaera histrica,

Algirosphaera robusta and Acanthoica quattrospina are observed in the winter - a period when total holococcolithophore abun-

dance is lowest. Finally on a individual level, succession does not immediately follow the previous life cycle phase with several

months of absence observed between peak abundance for some species (Cerino et al., 2017; Godrijan et al., 2018).325

This highlights that grouped hetero-holococcolithophore abundances represents a generalization that might not always rep-

resent patterns observed for individual species. These differences from generally observed patterns could be due to variations

in life strategy - such as mixotrophy, motility and grazing susceptibility - independent of life cycle phase. Suggesting that

functional traits different from the life cycle phase may determine the niche space these species inhabit.

4 Discussion330

Our meta-analysis shows that holococcolithophores are important contributors to coccolithophore abundance and ecology,

contributing ≈7.3 % to total coccolithophore abundance. Our analysis furthermore shows that haploid cells play an important

role in coccolithophore species that calcify in their haploid phase, accounting on average for≈18.3 % of their total abundance.

Although holococcolithophore contribution to calcium carbonate production is likely small due to their lower cellular CaCO3

content - which is an order of magnitude lower than heterococcolithophores (Daniels et al., 2016; Fiorini et al., 2011a, b) - their335

role in the carbonate cycle in present, past and future oceans is not to be underestimated. A shift towards a higher proportion

of holococcolithophore cells, would result in lower global calcium carbonate production which would subsequently result in

lower CO2 outgassing on short time scales. Furthermore the ballasting effect of coccolithophores would be reduced if a shift

towards more lightly calcified haploid cells occurred (Hoffmann et al., 2015).

In terms of the ecological niche space - which is the environmental range a species inhabits - hetero- and holococcol-340

ithophores observations in our meta-analysis broadly conform to the Margalef Niche Space Model, proposed by Margalef
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(1978), which posits that the distribution of phytoplankton functional groups relate broadly to turbulence, light and nutrients.

Within this framework, we find that hetero- and holococcolithophores occupy an intermediate functional group located between

diatoms and dinoflagellates (see Fig. 8) as proposed by Houdan et al. (2006) and Frada et al. (2018). Diploid heterococcol-

ithophores thus favour high nutrient, and more turbulent waters, whereas haploid holococcolithophores favour low nutrient,345

and more stratified waters.

Although the Margalef niche space model certainly presents a simplification that is prone to exceptions both for diatoms (see

Kemp and Villareal (2018)) as well as coccolithophores (The generalist E. huxleyi and deep water species such as F. profunda

are clear examples), the model broadly holds in our meta-analysis.

This ecological-environmental distinction of hetero- and holococcolithophores is observed in coccolithophore species distri-350

bution in our analysis in terms of geographical succession, depth distribution and seasonal trends. In the Southern Ocean and

Atlantic Ocean a geographical shift from holococcolithophores to heterococcolithophores is observed as latitude and turbulence

and nutrients increases. While in the Atlantic Ocean as well as the global data set a vertical shift is observed with holococ-

colithophores absent or at low abundance in deep nutrient rich waters. Finally, in the Mediterranean Sea, a seasonal shift is

observed as heterococcolithophores are most abundant in well mixed nutrient rich winter months and holococcolithophore are355

most abundant in nutrient poor stratified summer months.

However, some exceptions occur. For instance in the AMT data set, although heterococcolithophores are more evenly

distributed with depth, maximum abundance of heterococcolithophores is in surface waters, and subsequently heterococcol-

ithophores are negatively correlated to nutrients. Nonetheless the relation to turbulence holds: heterococcolithophore abundance

is highest in well mixed high latitude waters and holococcolithophore abundance is highest in stratified sub-tropical regions.360

Finally, many species specific exceptions occur. We highlight examples on a seasonal scale in our Mediterranean data set dis-

cussion (see Sect. 3.6), but exceptions were also noted along the AMT (see discussion in Poulton et al. (2017), and in other

Mediterranean studies (Šupraha et al., 2016; ?; Skejić et al., 2018). Which means that caution should be used when considering

the niche space model for individual species.

4.1 Niche overlap and expansion365

Our study showed that the niche volume of coccolithophores is larger when holococcolithophores are included in coccol-

ithophore niche space. This tells us two things: first, studies focused solely on heterococolithophore are underestimating

coccolithophore habitat and thus inaccurately represent the coccolithophore functional group in modelling and physiological

studies, which means that we might be underestimating their ability to compete with other phytoplankton, as well as the range

of environmental conditions they can tolerate. Secondly, we are underestimating the importance of coccolithophore primary370

productivity and carbonate production by not including accurate assessments of their abundance or activity.

This might be of particular relevance for E. huxleyi, the diploid phase of which has been of particular research focus due

to high abundances (approx 59.2% in our compilation). Although our meta-analysis does not include haploid abundance data

of this species, we suspect, following upon our findings on the haploid/diploid paired species, that the haploid phase of E.

huxleyi is also ecologically relevant. Previous studies suggest that the haploid life cycle phase of E. huxleyi can increase its375
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niche space due to streamlined metabolism (Rokitta et al., 2011), and variations in response to bacterial (Mayers et al., 2016;

Bramucci et al., 2018), and viral pressures (Frada et al., 2008). Although it should be noted that in some instance, morphology

rather than ploidy level seems to be the primary driver for observed differences in E. huxleyi (Frada et al., 2017). Overall,

observations in the haploid stage of E. huxleyi are extremely limited due to difficulty of identifying the haploid phase with

regular light microscopy, highlighting the need for developing new techniques to account for this potentially important life380

cycle stage. Further development of the COD-FISH method as described by Frada et al. (2012) in particular would be relevant

in this context.

4.2 Concluding remarks

Our compilation provides insight into the distribution of hetero- and holococcolithophores, but also highlights many gaps in

the data distribution and our knowledge on coccolithophore ecology. There is for instance a lack of SEM observations in the385

Pacific Ocean (2 studies in this compilation), and there are a limited number of time series available, which are particularly

valuable due to the seasonal nature of these organisms. Patchiness of data combined with the patchiness of coccolithophore

blooms is a challenge in fully assessing marine ecosystem functioning, and in providing global abundance estimations. Beside

limitations of in situ measurements, size, POC and PIC measurements of paired hetero- and holococcolithophore species are

sparse, in particularly for holococcolithophores.390

Such measurements are needed for global organic carbon and carbonate production estimates, which are critical for bio-

geochemical estimates, including model studies. Models which could then be used to contextualize in situ observations in

biogeochemical context, and which could test response to environmental pressures presented by anthropogenic CO2 emis-

sions. Modelling approaches could furthermore be used to investigate drivers of distribution trends difficult to acquire with in

situ measurements such as the role of competition with other phytoplankton and the influence of top down control on distri-395

bution trends, both of which have shown to be important drivers of coccolithophore distribution in previous studies (Monteiro

et al., 2016; Nissen et al., 2018).

A pertinent environmental driver not covered in our meta-analysis due to limited data, is the influence of carbonate chemistry

within the haploid-diploid niche space. As the haploid and diploid phases of coccolithophores vary in their calcification status,

they may thus show different responses to carbonate chemistry. A study by Triantaphyllou et al. (2018) for instance found that400

holococcolithophores increased abundance in low pH waters. If this holds true on a global level, and holococcolithophores

inhabit lower pH waters in terms of their niche space, this would have important implication in the context of ocean acidifica-

tion. In particular because meta-analysis (Ridgwell et al., 2009; Krumhardt et al., 2017) and modelling (Ridgwell et al., 2007;

Krumhardt et al., 2019) suggest a shift towards lower global calcification rates in response to ocean acidification and warming.

It should however be noted that the response of heterococcolithophores to ocean acidification is both strain and species depen-405

dent (Langer et al., 2006, 2009; Meyer and Riebesell, 2015), and global calcification rates might be more impacted by shifts in

species compositions rather than individual response (Ridgwell et al., 2009).

Finally, additional experiments on the numerical response of hetero- and holococcolithophores to various environmental

drivers such as those performed on E. huxleyi would allow a better understanding of individual environmental pressures, and
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will furthermore be highly valuable for future modelling approaches. In this context a better understanding of the triggers of410

phase transition would additionally be highly desirable, as the lack of haploid-diploid pairs of the same strain limits genomic

approaches.

5 Conclusions

Our analysis shows that holococcolithophores constitute a large proportion of total coccolithophore abundance (≈18 % for

paired species). Our study furthermore shows that hetero- and holococcolithophores have contrasting environmental preference,415

and that therefore the haplo-diplontic life cycle expands the niche space coccolithophores can inhabit by ≈17 %. Although our

findings are limited to holococcolith forming species, lab studies suggest similar patterns are likely to be observed for other

coccolithophore species such as E. huxleyi, and raises the question how much the haploid phase of this species contributes to

global coccolithophore abundance.

These results highlight the need to include haploid cells into coccolithophore studies, both in the context of environmental420

studies, modelling approaches, and physiological studies. We limit our understanding of these organisms by just focusing on

one life cycle phase, particularly in the context of coccolithophore response to climate change, as increased stratification in a

warming climate may favour the haploid life cycle of coccolithophores.
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Godrijan, J., Young, J. R., Marić Pfannkuchen, D., Precali, R., and Pfannkuchen, M.: Coastal zones as important habitats of coc-

colithophores: A study of species diversity, succession, and life-cycle phases, Limnology and Oceanography, 63, 1692–1710,

https://doi.org/10.1002/lno.10801, 2018.

Guerreiro, C., Oliveira, A., De Stigter, H., Cachão, M., Sá, C., Borges, C., Cros, L., Santos, A., Fortuño, J. M., and Rodrigues, A.: Late

winter coccolithophore bloom off central Portugal in response to river discharge and upwelling, Continental Shelf Research, 59, 65–83,530

https://doi.org/10.1016/j.csr.2013.04.016, 2013.

Guillemin, M. L., Sepúlveda, R. D., Correa, J. A., and Destombe, C.: Differential ecological responses to environmental stress in

the life history phases of the isomorphic red alga Gracilaria chilensis (Rhodophyta), Journal of Applied Phycology, 25, 215–224,

https://doi.org/10.1007/s10811-012-9855-8, 2013.

Guptha, M. V., Mohan, R., and Muralinath, A. S.: Living coccolithophorids from the Arabian Sea, Rivista Italiana di Paleontologia e Strati-535

grafia, 100, 551–573, 1995.

Haidar, A. T. and Thierstein, H. R.: Coccolithophore dynamics off Bermuda (N. Atlantic), Deep-Sea Research Part II: Topical Studies in

Oceanography, 48, 1925–1956, https://doi.org/10.1016/S0967-0645(00)00169-7, 2001.

Hoffmann, R., Kirchlechner, C., Langer, G., Wochnik, A. S., Griesshaber, E., Schmahl, W. W., and Scheu, C.: Insight into Emiliania huxleyi

coccospheres by focused ion beam sectioning, Biogeosciences, 12, 825–834, https://doi.org/10.5194/bg-12-825-2015, 2015.540

Hopkins, J. and Balch, W. M.: A New Approach to Estimating Coccolithophore Calcification Rates From Space, Journal of Geophysical

Research: Biogeosciences, 123, 1447–1459, https://doi.org/10.1002/2017JG004235, 2018.

Houdan, A., Probert, I., Zatylny, C., Véron, B., and Billard, C.: Ecology of oceanic coccolithophores. I. Nutritional preferences of

the two stages in the life cycle of Coccolithus braarudii and Calcidiscus leptoporus, Aquatic Microbial Ecology, 44, 291–301,

https://doi.org/10.3354/ame044291, 2006.545

Hughes, J. S. and Otto, S. P.: Ecology and the Evolution of Biphasic Life Cycles, The American Naturalist, 154, 306–320,

https://doi.org/10.1086/303241, 1999.

Hutchinson, G. E.: Concluding Remarks, in: Cold SpringHarbor Symposia on Quantitative Biology, pp. 415–427,

https://doi.org/10.1201/9781315366746, 1957.

Karatsolis, B. T., Triantaphyllou, M. V., Dimiza, M. D., Malinverno, E., Lagaria, A., Mara, P., Archontikis, O., and Psarra, S.: Coccolithophore550

assemblage response to Black Sea Water inflow into the North Aegean Sea (NE Mediterranean), Continental Shelf Research, 149, 138–

150, https://doi.org/10.1016/j.csr.2016.12.005, http://dx.doi.org/10.1016/j.csr.2016.12.005, 2017.

18

https://doi.org/10.5194/bg-2020-194
Preprint. Discussion started: 24 June 2020
c© Author(s) 2020. CC BY 4.0 License.



Kemp, A. E. and Villareal, T. A.: The case of the diatoms and the muddled mandalas: Time to recognize diatom adaptations to stratified

waters, Progress in Oceanography, 167, 138–149, https://doi.org/10.1016/j.pocean.2018.08.002, 2018.

Kinkel, H., Baumann, K. H., and Cepek, M.: Coccolithophores in the equatorial Atlantic Ocean: Response to seasonal and Late Quaternary555

surface water variability, Marine Micropaleontology, 39, 87–112, https://doi.org/10.1016/S0377-8398(00)00016-5, 2000.

Klaas, C. and Archer, D. E.: Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the

rain ratio, Global Biogeochemical Cycles, 16, 63–1–63–14, https://doi.org/10.1029/2001gb001765, 2002.

Krumhardt, K. M., Lovenduski, N. S., Iglesias-Rodriguez, M. D., and Kleypas, J. A.: Coccolithophore growth and calcification in a changing

ocean, Progress in Oceanography, 159, 276–295, https://doi.org/10.1016/j.pocean.2017.10.007, 2017.560

Krumhardt, K. M., Lovenduski, N. S., Long, M. C., Levy, M., Lindsay, K., Moore, J. K., and Nissen, C.: Coccolithophore Growth and

Calcification in an Acidified Ocean: Insights From Community Earth System Model Simulations, Journal of Advances in Modeling Earth

Systems, pp. 1418–1437, https://doi.org/10.1029/2018MS001483, 2019.

Langer, G., Geisen, M., Baumann, K. H., Kläs, J., Riebesell, U., Thoms, S., and Young, J. R.: Species-specific responses of calcifying algae

to changing seawater carbonate chemistry, Geochemistry, Geophysics, Geosystems, 7, https://doi.org/10.1029/2005GC001227, 2006.565

Langer, G., Nehrke, G., Probert, I., Ly, J., and Ziveri, P.: Strain-specific responses of Emiliania huxleyi to changing seawater carbonate

chemistry, Biogeosciences, 6, 2637–2646, https://doi.org/10.5194/bg-6-2637-2009, 2009.

Lee, S., Wolberg, G., and Shin, S. Y.: Scattered data interpolation with multilevel b-splines, IEEE Transactions on Visualization and Computer

Graphics, 3, 228–244, https://doi.org/10.1109/2945.620490, 1997.

Lees, L. E., Krueger-Hadfield, S. A., Clark, A. J., Duermit, E. A., Sotka, E. E., and Murren, C. J.: Nonnative Gracilaria vermiculo-570

phylla tetrasporophytes are more difficult to debranch and are less nutritious than gametophytes, Journal of Phycology, 54, 471–482,

https://doi.org/10.1111/jpy.12746, 2018.

Luan, Q., Liu, S., Zhou, F., and Wang, J.: Living coccolithophore assemblages in the Yellow and East China Seas in response to physical

processes during fall 2013, Marine Micropaleontology, 123, 29–40, https://doi.org/10.1016/j.marmicro.2015.12.004, http://dx.doi.org/10.

1016/j.marmicro.2015.12.004, 2016.575

Lubchenco, J. and Cubit, J.: Heteromorphic Life Histories of Certain Marine Algae as Adaptations to Variations in Herbivory, Ecology, 61,

676–687, https://doi.org/10.2307/1937433, 1980.

Mable, B. K. and Otto, S. P.: The evolution of life cycles with haploid and diploid phases, BioEssays, 20, 453–462,

https://doi.org/10.1002/(SICI)1521-1878(199806)20:6<453::AID-BIES3>3.0.CO;2-N, 1998.

Malinverno, E.: Coccolithophorid distribution in the Ionian Sea and its relationship to eastern Mediterranean circulation during late fall580

to early winter 1997, Journal of Geophysical Research, 108, 8115, https://doi.org/10.1029/2002JC001346, http://doi.wiley.com/10.1029/

2002JC001346, 2003.

Malinverno, E., Triantaphyllou, M. V., and Dimiza, M. D.: Coccolithophore assemblage distribution along a tem-

perate to polar gradient in the West Pacific sector of the Southern Ocean (January 2005), Micropaleontology,

61, 489–506, https://doi.org/10.1007/BF01874407, https://www.researchgate.net/profile/Elisa{_}Malinverno/publication/585

298489041{_}Coccolithophore{_}assemblage{_}distribution{_}along{_}a{_}temperate{_}to{_}polar{_}gradient{_}in{_}the{_}West{_}Pacific{_}sector{_}of{_}the{_}Southern{_}Ocean{_}January{_}2005/

links/56e9abc608ae25ede830b17f.pdf{%}0Ahttp, 2015.

Mammola, S.: Assessing similarity of n-dimensional hypervolumes: Which metric to use?, Journal of Biogeography, 46, 2012–2023,

https://doi.org/10.1111/jbi.13618, 2019.

19

https://doi.org/10.5194/bg-2020-194
Preprint. Discussion started: 24 June 2020
c© Author(s) 2020. CC BY 4.0 License.



Margalef, R.: Life-forms of phytoplankton as survival alternatives in an unstable environment, Oceanologica Acta, 1, 493–509,590

https://doi.org/10.1007/BF00202661, 1978.

Mayers, T. J., Bramucci, A. R., Yakimovich, K. M., and Case, R. J.: A bacterial pathogen displaying temperature-enhanced virulence of the

microalga Emiliania huxleyi, Frontiers in Microbiology, 7, 1–15, https://doi.org/10.3389/fmicb.2016.00892, 2016.

Meyer, J. and Riebesell, U.: Reviews and syntheses: Responses of coccolithophores to ocean acidification: A meta-analysis, Biogeosciences,

12, 1671–1682, https://doi.org/10.5194/bg-12-1671-2015, 2015.595

Monteiro, F. M., Bach, L. T., Brownlee, C., Bown, P., Rickaby, R. E., Poulton, A. J., Tyrrell, T., Beaufort, L., Dutkiewicz, S., Gibbs,

S., Gutowska, M. A., Lee, R., Riebesell, U., Young, J., and Ridgwell, A.: Why marine phytoplankton calcify, Science Advances, 2,

https://doi.org/10.1126/sciadv.1501822, 2016.

Nissen, C., Vogt, M., Münnich, M., Gruber, N., Haumann, F. A., Haumann, A., and Gruber, N.: Factors controlling coccolithophore biogeog-

raphy in the Southern Ocean, Biogeosciences Discussions, 2, 1–37, https://doi.org/10.5194/bg-2018-157, 2018.600

Patil, S. M., Mohan, R., Shetye, S. S., Gazi, S., Baumann, K. H., and Jafar, S.: Biogeographic distribution of extant Coccolithophores in

the Indian sector of the Southern Ocean, Marine Micropaleontology, 137, 16–30, https://doi.org/10.1016/j.marmicro.2017.08.002, http:

//dx.doi.org/10.1016/j.marmicro.2017.08.002, 2017.

Poulton, A. J., Holligan, P. M., Hickman, A., Kim, Y. N., Adey, T. R., Stinchcombe, M. C., Holeton, C., Root, S., and Woodward, E. M. S.:

Phytoplankton carbon fixation, chlorophyll-biomass and diagnostic pigments in the Atlantic Ocean, Deep-Sea Research Part II: Topical605

Studies in Oceanography, 53, 1593–1610, https://doi.org/10.1016/j.dsr2.2006.05.007, 2006.

Poulton, A. J., Adey, T. R., Balch, W. M., and Holligan, P. M.: Relating coccolithophore calcification rates to phytoplankton community

dynamics: Regional differences and implications for carbon export, Deep-Sea Research Part II: Topical Studies in Oceanography, 54,

538–557, https://doi.org/10.1016/j.dsr2.2006.12.003, 2007.

Poulton, A. J., Painter, S. C., Young, J. R., Bates, N. R., Bowler, B., Drapeau, D., Lyczsckowski, E., and Balch, W. M.: The 2008 Emiliania610

huxleyi bloom along the Patagonian Shelf: Ecology, biogeochemistry, and cellular calcification, Global Biogeochemical Cycles, 27, 1023–

1033, https://doi.org/10.1002/2013GB004641, 2013.

Poulton, A. J., Holligan, P. M., Charalampopoulou, A., and Adey, T. R.: Coccolithophore ecology in the tropical and subtropical At-

lantic Ocean: New perspectives from the Atlantic meridional transect (AMT) programme, Progress in Oceanography, 158, 150–170,

https://doi.org/10.1016/j.pocean.2017.01.003, https://doi.org/10.1016/j.pocean.2017.01.003, 2017.615

R Core Team: R: A Language and Environment for Statistical Computing, https://www.r-project.org/, 2019.

Rescan, M., Lenormand, T., and Roze, D.: Interactions between genetic and ecological effects on the evolution of life cycles, American

Naturalist, 187, 19–34, https://doi.org/10.1086/684167, 2015.

Ridgwell, A., Zondervan, I., Hargreaves, J. C., Bijma, J., and Lenton, T. M.: Assessing the potential long-term increase of oceanic fossil fuel

CO 2 uptake due to CO2-calcification feedback, Biogeosciences, 4, 481–492, https://doi.org/10.5194/bg-4-481-2007, 2007.620

Ridgwell, a., Schmidt, D. N., Turley, C., Brownlee, C., Maldonado, M. T., Tortell, P., and Young, J. R.: From laboratory manipu-

lations to earth system models: predicting pelagic calcification and its consequences, Biogeosciences Discussions, 6, 3455–3480,

https://doi.org/10.5194/bgd-6-3455-2009, 2009.

Rigual Hernández, A. S., Trull, T. W., Nodder, S. D., Flores, J. A., Bostock, H., Abrantes, F., Eriksen, R. S., Sierro, F. J., Davies, D. M.,

Ballegeer, A.-M., Fuertes, M. A., and Northcote, L. C.: Coccolithophore biodiversity controls carbonate export in the Southern Ocean,625

Biogeosciences Discussions, pp. 1–39, https://doi.org/10.5194/bg-2019-352, 2019.

20

https://doi.org/10.5194/bg-2020-194
Preprint. Discussion started: 24 June 2020
c© Author(s) 2020. CC BY 4.0 License.



Rokitta, S. D., de Nooijer, L. J., Trimborn, S., de Vargas, C., Rost, B., and John, U.: Transcriptome analyses reveal differential gene expression

patterns between the life-cycle stages of emiliania huxleyi (haptophyta) and reflect specialization to different ecological niches, Journal of

Phycology, 47, 829–838, https://doi.org/10.1111/j.1529-8817.2011.01014.x, 2011.

Saavedra-Pellitero, M., Baumann, K. H., Flores, J. A., and Gersonde, R.: Biogeographic distribution of living coccolithophores in the pacific630

sector of the southern ocean, Marine Micropaleontology, 109, 1–20, https://doi.org/10.1016/j.marmicro.2014.03.003, http://dx.doi.org/10.

1016/j.marmicro.2014.03.003, 2014.

Schiebel, R., Zeltner, A., Treppke, U. F., Waniek, J. J., Bollmann, J., Rixen, T., and Hemleben, C.: Distribution of diatoms, coccolithophores

and planktic foraminifers along a trophic gradient during SW monsoon in the Arabian Sea, Marine Micropaleontology, 51, 345–371,

https://doi.org/10.1016/j.marmicro.2004.02.001, 2004.635

Schiebel, R., Brupbacher, U., Schmidtko, S., Nausch, G., Waniek, J. J., and Thierstein, H. R.: Spring coccolithophore production and disper-

sion in the temperate eastern North Atlantic Ocean, Journal of Geophysical Research, 116, 1–12, https://doi.org/10.1029/2010JC006841,

2011.

Silver, M.: Vertigo KM0414 phytoplankton species data and biomass data: abundance and fluxes from CTDs, 2009.
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Figure 1. Life cycle strategies of phytoplankton. (a) Dinoflagellates tend to utilize a haplontic life cycle; (b) Diatoms tend to utilize a

diplontic life cycle; (c) coccolithophores tend to utilize a haplo-diplontic life cycle. Note that not all coccolithophores calcify in their haploid

phase.
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Figure 2. Coccosphere diversity of common cococcolithophores. Haploid cells are colored in blue and diploid cells in red. (a) Polycrater

haploid morphology; (b) Ceratolith haploid morphology; (c-i). Holococcolith haploid morphology. Note that in some instances multiple

haploid phases are associated with one diploid phase (e.g. S. mediterranea and H. carteri), which may be due to cryptic speciation (Geisen

et al., 2002). Furthermore, some species (e.g. E. huxleyi) do not calcify in their haploid phase and are thus not pictured. Images reproduced

with permission from Young et al. (b-d, i), and Šupraha et al. (2016) (a, e-h). Images (b-d, i (HOL)) by Jeremy Young, (i (HET)) by

Marie-Helene Kawachi, (a, e-h) by Luka Šupraha.
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Figure 3. (a-b) Global coccolithophore distribution; (c-h) latitudinal coccolithophore distribution. (a) Heterococolithophores; (b) Holococ-

colithophores; (c) Heterococcolithophores; (d) E. huxleyi; (e) Paired heterococolithophores; (f) Holococcolithophores; (g) Paired holococ-

colithophores; (h) HOLP-index. For the latitudinal plots, the light shading is log transformed distribution.
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Figure 4. Global depth distribution of hetero- and holococcolithophores. (a-d) total paired and unpaired hetero- and holococcolithophore

abundance; (e-f) individual species abundances. Heterococcolithophores are plotted in blue, and holococcolithophores are plotted in red.

Only the most abundant coccolithophore species are plotted individually. Error bars are standard error.
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Figure 5. Depth distribution along AMT. (a) Heterocococlithophore abundance; (b) Paired heterococcolithophore abundance; (c) E. huxleyi

abundance; (d) Holococcolithophore abundance; (e) Paired holococcolithophore abundance; (f) HOLP-index; (g) Temperature (◦ C); (h)

Salinity (ppt); (i) Phosphate (µM); (j) Silicate (µM); (l) Chlorophyll. Species abundances are plotted on log scale.
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Figure 6. Principal Component analysis (PCA) of the RV-001 and LTER1 stations in the Mediterranean Sea. Abundance and environmental

values were projected on the PCA post hoc, and then interpolated. (a) Heterococcolithophore abundance; (b) Holococcolithophore abun-

dance; (c) Salinity; (d) Temperature; (e) Depth; (f) Phosphate; (g) Fixed nitrogen; (h) Silicate. Data was acquired from Cerino et al. (2017)

and Godrijan et al. (2018).
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Figure 7. Seasonality of hetero- and holococcolithophores at the BATS station in Bermuda (left column) and the RV-001 and LTER-1

stations in the Mediterranean Sea (right column). For the hetero- and holococcolithophore plots, heterococcolithophores are plotted in red

and holococcolithophores are plotted in blue.
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Figure 8. A. Modified version of Margalef’s niche space model (Margalef, 1978) as proposed by Houdan et al. (2006) and Frada et al. (2018).

Note that we have added day length, which was proposed by Balch (2004) as a third axis of the Margalef niche space model.
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Table 1. Overview of Metadata.

Reference Survey Period Region Method HOLP n

Andruleit et al. (2003) Sep (1993) Arabian Sea SEM YES 71

Andruleit et al. (2005) Jun (2000) Arabian Sea SEM NO 21

Andruleit (2007) Jan to Feb (1999) Indian Ocean SEM YES 45

Boeckel and Baumann (2008) Mar to May (1998) South Atlantic SEM YES 57

Feb to Mar (2000)

Baumann et al. (2008) Feb (1993, 1996) South Atlantic SEM NO 34

Mar (1996), Dec (1999)

Cerino et al. (2017) Monthly (2011-2013) Mediterranean sea pLM/SEM YES 84

Charalampopoulou et al. (2011) Jul to Aug (2008) North Sea and Arctic Ocean SEM YES 94

Charalampopoulou et al. (2016) Feb to Mar (2009) Southern Ocean SEM YES 103

Cepek (1996) Feb (1993) South Atlantic Ocean SEM YES 33

Cros and Estrada (2013) Jun to Jul, and Sep (1996) Mediterranean sea SEM YES 113

D’Amario et al. (2017) Apr (2011) and May (2013) Mediterranean sea SEM YES 44

Daniels et al. (2016) Jun (2012) Arctic Ocean pLM/SEM YES 19

Dimiza et al. (2008) Apr (2002), Aug (2001 and 2002) Mediterranean sea SEM YES 190

Dimiza et al. (2015) Jan (2007), Feb (2012) Mediterranean sea SEM YES 99

Mar (2002), Apr (2006)

May (2013), Aug (2001)

Sep (2004)

Eynaud et al. (1999) Feb to Mar (1995) South Atlantic Ocean LM/SEM NO 40

Giraudeau et al. (2016) Aug to Sep (2014) Barents Sea pLM/SEM YES 170

Godrijan et al. (2018) Twice a month (2008-2009) Mediterranean sea LM/SEM YES 24

Guerreiro et al. (2013) Mar (2010) Nazare Canyon, Portugal pLM/SEM YES 108

Guptha et al. (1995) Sep to Oct (1992) Arabian Sea SEM YES 18

Haidar and Thierstein (2001) Jan 1991 to Jan 1994 Bermuda, North Atlantic pLM/SEM NO 217

Karatsolis et al. (2017) Oct (2013), Mar (2014) Mediterranean sea SEM YES 72

Oct (2013), Jul (2014)

Kinkel et al. (2000) Aug to Sep (1994) Atlantic ocean SEM 47

Mar to Apr (1996)

Jan to Mar (1997)

Luan et al. (2016) Oct to Nov (2013) Yellow and East China Seas SEM YES 57

Malinverno (2003) Nov to Dec (1997) Mediterranean sea pLM/SEM NO 72

Malinverno et al. (2015) Jan (2001) Southern Ocean, West Pacific pLM/SEM NO 13

Patil et al. (2017) Jan to Feb (2010) Southern Ocean SEM NO 48

Poulton et al. (2017) May to Jun (2003) Atlantic ocean SEM YES 143

Apr to Jun (2004)

Sep to Oct (2004)

Oct to Nov (2005)

Saavedra-Pellitero et al. (2014) Nov (2009) to Jan (2010) Southern ocean SEM NO 150

Schiebel et al. (2011) Mar (2004) North Atlantic Ocean SEM NO 47

Schiebel et al. (2004) May to Jun (1997) Arabian Sea SEM YES 49

and Jul to Aug (1995)

Smith et al. (2017) Jan to Feb (2011), Southern Ocean SEM NO 27

Feb to Mar (2012)

Šupraha et al. (2016) Feb (2013) and Jul (2013) Mediterranean sea SEM YES 63

Takahashi and Okada (2000) Feb to Mar (1996) SE Indian Ocean SEM NO 118

Triantaphyllou et al. (2018) Mar (2017) Mediterranean sea LM/SEM YES 42

Mar (2017)

Silver (2009) Jan (2004) to Jun (2004) Pacific Ocean (HOT) SEM NO 13
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Table 2. Taxanomic units included in HOLP-index

Heterococcolithophores Holococcolithophores

C. mediterranea C. mediterranea HOL

S. pulchra S. pulchra HOL

S. protrudens

S. bannockii S. bannockii HOL

S. nana S. nana HOL

S. arethusae S. arethusae HOL

S. nodosa H. cornifera

S. histrica S. histrica HOL

S. molischii S. molischii HOL

S. anthos S. anthos HOL

S. strigilis S. strigilis HOL

S. halldalii S. halldalii HOL

S. marginiporata S. marginiporata HOL

S. apsteinii S. apsteinii HOL

P. japonica P. japonica HOL

H. carteri H. carteri HOL

H. wallichii H. wallichii HOL

H. pavimentum Helicosphaera HOL dalmaticus type

A. quattrospina A. quattrospina HOL

A. robusta S. quadridentata

R. clavigera

R. xiphos

C. aculeata C. heimdaliae

C. leptoporus C. leptoporus HOL

C. pelagicus C. pelagicus HOL

C. quadriperforatus C. quadriperforatus HOL

C. sphaeroidea C. sphaeroidea HOL

P. arctica P. arctica HOL

P. sagittifera P. sagittifera HOL

P. borealis P. borealis HOL

B. virgulosa B. virgulosa HOL
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Table 3. Global hetero- and holococcolithophore abundance

Location spp mean (cells L−1) max (cells L−1) contribution (%) n

Global HET 54100 (± 142353) 4365960 89.225 (±19.178) 2534

Global HOL 2754 (±10832) 223100 7.258 (±15.959) 2534

Global Other 2086 (±14343) 436564 3.517 (±8.942) 2534

Arabian Sea HET 13776 (±19675) 110600 89.67 (±15.967) 159

Arabian Sea HOL 458 (±961) 5632 5.036 (±13.681) 159

Arabian Sea Other 775 (±2003) 17194 5.294 (±9.777) 159

Arctic Circle HET 57140 (±328195) 4365960 93.275 (±21.523) 225

Arctic Circle HOL 1743 (±15799) 223100 3.721 (±14.593) 225

Arctic Circle Other 40 (±675) 7200 34 (±16.517) 225

Central Atlantic HET 18846 (±19308) 98822 92.082 (±11.02) 164

Central Atlantic HOL 1265 (±2609) 17588 5.83 (±9.092) 164

Central Atlantic Other 468 (±1027) 7748 2.089 (±3.695) 164

East China Sea HET 29796 (±47418) 238701 96.331 (±14.46) 51

East China Sea HOL 906 (±2908) 14664 3.528 (±14.473) 51

East China Sea Other 22 (±112) 647 0.141 (±0.785) 51

East Indian Ocean HET 195737 (±11491) 227000 96.553 (±3.365) 118

East Indian Ocean HOL 4441 (±6255) 31000 2.224 (±3.138) 118

East Indian Ocean Other 2475 (±2410) 12000 1.223 (±1.203) 118

Hawaii HET 786 (±504) 1840 89.357 (±15.303) 13

Hawaii HOL 0 (±0) 0 0 (±0) 13

Hawaii Other 50 (±63) 220 10.643 (±15.303) 13

Mediterranean Sea HET 20474 (±36834) 396340 79.158 (±26.052) 756

Mediterranean Sea HOL 6008 (±16640) 137805 16.521 (±22.696) 756

Mediterranean Sea Other 2987 (±23043) 436564 4.322 (±8.976) 756

North Atlantic HET 92498 (±213373) 1548984 96.414 (±6.726) 211

North Atlantic HOL 1470 (±4486) 30051 1.712 (±4.716) 211

North Atlantic Other 1009 (±2488) 17277 1.874 (±4.083) 211

South Pacific Ocean HET 22009 (±33278) 159815 95.332 (±12.559) 49

South Pacific Ocean HOL 44 (±156) 732 0.146 (±0.444) 49

South Pacific Ocean Other 3006 (±9037) 40097 4.521 (±12.575) 49

Southern Ocean HET 94291 (±148966) 1636130 97.918 (±8.06) 382

Southern Ocean HOL 397 (±1983) 26668 0.997 (±6.076) 382

Southern Ocean Other 329 (±856) 5257 1.085 (±5.414) 382

Values in parentheses are standard deviations.
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Table 4. Global HOLP-index

Location mean (%) n

Global 18.33% (±28.19%) 1836

Arabian Sea 18% (±34.83%) 102

Arctic Circle 15.66% (±31.89%) 108

Central Atlantic 16% (±23.94%) 117

East China Sea 17.06% (±26.61%) 40

East Indian Ocean 0% 85

Hawaii 0% 9

Mediterranean Sea 27.69% (±30.08%) 709

North Atlantic 16.43% (±25.41%) 174

South Pacific Ocean 36.19% (±37.43%) 30

Southern Ocean 7.05% (±23.73%) 141

Values in parentheses are standard deviations.
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Table 5. PCA loadings of Mediterranean Sea data set

Variable PC1 PC2

Temperature 1.57 -0.75

Salinity -1.25 1.23

Fixed Nitrogen -0.42 -1.04

Silicate -0.98 -1.27

Phosphate -0.81 -0.89

DayLength 1.17 0.27

The first two axis of the PCA captured

53.94% of variance. Data from Cerino et al.

(2017) and Godrijan et al. (2018)

35

https://doi.org/10.5194/bg-2020-194
Preprint. Discussion started: 24 June 2020
c© Author(s) 2020. CC BY 4.0 License.



Table 6. Spearman correlations for AMT data set

Phase Temp Sal PO4 NOx Depth Si

HET -0.095 -0.085 -0.298* -0.095 -0.323*** -0.139

HET.P 0.13 0.136 -0.069 -0.092 -0.384*** -0.295**

HOL 0.339*** 0.224** -0.327* -0.609*** -0.584*** -0.52***

HOL.P 0.327*** 0.233** -0.289* -0.55*** -0.58*** -0.502***

HOLP 0.31*** 0.236** -0.506*** -0.587*** -0.472*** -0.469***

*** p<0.001, ** p<0.01, * p<0.05

Significant correlations are highlighted in bold. Data was acquired from Poulton et al. (2017).
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Table 7. Spearman correlations for Mediterranean data set

Phase Temp Sal PO4 NOx DayLen Si

HET -0.304** 0.324** 0.213* 0.351*** -0.329** 0.373***

P.HET 0.096 0.18 0.08 -0.009 0.029 0.208*

HOL 0.443*** -0.365*** -0.071 -0.295** 0.475*** -0.155

P.HOL 0.359*** -0.056 0.042 -0.079 0.357*** 0.029

HOLP 0.418*** -0.145 0.018 -0.063 0.399*** -0.031

*** p<0.001, ** p<0.01, * p<0.05

Significant correlations are highlighted in bold. Data was acquired from Godrijan et al. (2018) and Cerino

et al. (2017)
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Table 8. Niche expansion and niche overlap in Atlantic Ocean

Species NE1 NE2 Jaccard Sørensen

Paired species 0.11 0.05 0.84 0.91

S. pulchra 0.18 0.14 0.68 0.81

C. mediterranea 0.06 0.46 0.48 0.65

S. molischii 0.44 0.32 0.24 0.39

S. histrica 0.36 0.17 0.47 0.64

A. quattrospina 0.50 0.05 0.45 0.62

S. bannockii 0.17 0.19 0.63 0.77

S. nana 0.50 0.06 0.44 0.62

S. anthos 0.69 0.04 0.27 0.42

S. halldalii 0.17 0.08 0.74 0.85

H. carteri 0.41 0.30 0.29 0.45

H. wallichii 0.42 0.47 0.11 0.20

C. leptoporus 0.21 0.45 0.34 0.51

NE1 = Heterococcolithophore niche expansion,

NE2 = Holococcolithophore niche expansion
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Table 9. Niche expansion and niche overlap in Mediterranean Sea

Species NE1 NE2 Jaccard Sørensen

Paired species 0.31 0.15 0.54 0.70

S. pulchra 0.51 0.16 0.33 0.49

C. mediterranea 0.22 0.42 0.37 0.54

S. molischii 0.47 0.53 0.00 0.00

S. histrica 0.03 0.78 0.19 0.32

A. quattrospina 0.47 0.18 0.35 0.52

S. arethusa 0.26 0.29 0.45 0.62

S. strigilis 0.12 0.53 0.35 0.52

C. leptoporus 0.26 0.61 0.13 0.23

NE1 = Heterococcolithophore niche expansion,

NE2 = Holococcolithophore niche expansion
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