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Abstract. Ecosystems play a fundamental role in climate change mitigation by photosynthetically fixing carbon from the
atmosphere and storing it for a period of time in organic matter. Although climate impacts of carbon emissions by sources can
be quantified by global warming potentials, the appropriate formal metrics to assess climate benefits of carbon removals by
sinks are unclear. We introduce here the Climate Benefit of Sequestration (CBS), a metric that quantifies the radiative effect
of fixing carbon dioxide from the atmosphere and retaining it for a period of time in an ecosystem before releasing it back as
the result of respiratory processes. In order to quantify CBS, we present a formal definition of carbon sequestration (CS) as the
integral of an amount of carbon removed from the atmosphere stored over the time horizon it remains within an ecosystem.
Both metrics incorporate the separate effects of i) inputs (amount of atmospheric carbon removal), and ii) transit time (time of
carbon retention) on carbon sinks, which can vary largely for different ecosystems or forms of management. These metrics can
be useful for comparing the climate impacts of carbon removals by different sinks over specific time horizons, to assess the
climate impacts of ecosystem management, and to obtain direct quantifications of climate impacts as the net effect of carbon

emissions by sources versus removals by sinks.

1 Introduction

Terrestrial ecosystems exchange carbon with the atmosphere at globally significant quantities, thereby influencing Earth’s
climate and potentially mitigating warming caused by increasing concentrations of COs in the atmosphere. Carbon fixed during
the process of photosynthesis remains stored in the terrestrial biosphere over a range of timescales, from days to millennia;
timescales of relevance for affecting the concentration of greenhouse gases in the atmosphere (Archer et al., 2009; IPCC, 2014;
Joos et al., 2013). During the time carbon is stored in the terrestrial biosphere, it is removed from the radiative forcing effect
that occurs in the atmosphere; thus, it is of scientific and policy relevance to understand the timescale of carbon storage in
ecosystems; i.e., for how long newly fixed carbon is retained in an ecosystem before it is released back to the atmosphere.
Timescales of element cycling and storage are unambiguously characterized by the concepts of system age and transit
time (Bolin and Rodhe, 1973; Rodhe, 2000; Rasmussen et al., 2016; Sierra et al., 2017; Lu et al., 2018). In a system of
multiple interconnected compartments, system age characterizes the time that the mass of an element observed in the system
has remained there since its entry. Transit time characterizes the time that it takes element masses to traverse the entire system,

from the time of entry until they are released back to the external environment (Sierra et al., 2017). Both metrics are excellent
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system-level diagnostics of the dynamics and timescales of ecosystem processes. Because system age and transit time both can
be reported as mass- or probability distributions, they provide different information about an ecosystem over a wide range in
the time domain.

System age and transit time are closely related to the complexity of the ecosystem and its process rates, which are affected
by the environment (Luo et al., 2017; Rasmussen et al., 2016; Sierra et al., 2017; Lu et al., 2018). Mean system ages are
consistently greater than mean transit time (Lu et al., 2018; Sierra et al., 2018b), suggesting that once a mass of carbon enters
an ecosystem, a large proportion gets quickly released back to the atmosphere, but a small proportion remains for very long
times. Furthermore, differences in transit times across ecosystems suggest that not all carbon sequestered in the terrestrial
biosphere spends the same amount of time stored; e.g., one unit of photosynthesized carbon is returned back to the atmosphere
faster in a tropical than in a boreal forest (Lu et al., 2018). Therefore, not all carbon drawn down from the atmosphere should
be treated equally for the purpose of quantifying the climate mitigation potential of sequestering carbon in ecosystems as it is
currently recommended in accounting methodologies (IPCC, 2006).

Global warming potentials (GWPs, see definition in section 2) quantify the radiative effects of greenhouse gases emitted
to the atmosphere (Fig. 1), but do not consider the avoided radiative effect of storing carbon in ecosystems (Neubauer and
Megonigal, 2015). GWPs are computed using the age distribution of CO2 and other greenhouse gases in the atmosphere
(Rodhe, 1990; Joos et al., 2013), but do not consider age or transit times of carbon in ecosystems in the case of sequestration.
Transit time distributions, in particular, can better inform us about the time newly sequestered carbon will be removed from
radiative effects in the atmosphere.

For more comprehensive accounting of the contribution of carbon sequestration to climate change mitigation, it is necessary
to quantify the avoided warming effects of sequestered carbon in ecosystems over the timescale the carbon is stored. The
GWP metric is inappropriate to quantify avoided warming potential as a result of sequestration. A metric that can capture this
avoided warming effect could have applications for 1) comparing different carbon sequestration activities considering the time
carbon is stored in ecosystems, and 2) providing better accounting methods for the effect of removals by sinks in climate policy.
Currently, the Intergovernmental Panel on Climate Change (IPCC) recommends countries and project developers to report only
emissions by sources and removals by sinks of greenhouse gases (GHGs), treating all removals equally in terms of their fate
(IPCC, 2006).

Problems with applying GWPs to compute climate benefits of sequestering carbon in ecosystems are well documented
(Moura Costa and Wilson, 2000; Fearnside et al., 2000; Brandio et al., 2013; Neubauer and Megonigal, 2015). Several ap-
proaches have been proposed to deal with the issue of timescales (Brandao et al., 2013), many of which deal with time as some
form of delay in emissions. However, to our knowledge, no solution proposed thus far explicitly accounts for the time carbon
is sequestered in ecosystems, from the time of photosynthetic carbon fixation until it is returned back to the atmosphere by
autotrophic and heterotrophic respiration.

Therefore, the main objective of this manuscript is to introduce a metric to assess the climate benefits of carbon sequestration

while accounting for the time carbon is stored in ecosystems. We first present the theoretical framework for the development
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of the metric, then provide simple examples for its computation and discuss potential applications for ecosystem management

and for climate change mitigation.

2 Theoretical framework
2.1 Absolute Global Warming Potential AWGP

The direction of carbon flow, into or out of ecosystems, is of fundamental importance to understand and quantify their contri-
bution to climate change mitigation. The absolute global warming potential (AGWP) of carbon dioxide quantifies the radiative
effects of a unit of CO4 emitted to the atmosphere during its life time; in the direction land — atmosphere. It is expressed as
(Lashof and Ahuja, 1990; Rodhe, 1990)

to+T
AGWP(T,ty) = / kco, M, (t)dt (1)
to
where kco, is the radiative efficiency or greenhouse effect of one unit of CO5 (in mole or mass) in the atmosphere, and M, (t)
is the amount of gas remaining in the atmosphere after some time ¢ (Rodhe, 1990; Joos et al., 2013). The AGWP quantifies the
amount of warming produced by CO5 while it stays in the atmosphere since the time the gas is emitted at time ¢y over a time
horizon T'. The function M, (t) quantifies the fate of the emitted carbon in the atmosphere and can be written in general form

as
Mo (t) = ha(t — to) My (to) + / ha(t — 7)Q(r) dr, @)

where h,(t —to) is the impulse response function of atmospheric COs released into the atmosphere; M, (¢o) is the content of
atmospheric CO» at time ¢, and Q(7) is the perturbation of new incoming carbon to the atmosphere between ¢ and ¢.

For a pulse, or instantaneous emission of COs, M, (to) = Ey, and
M, (t) = hy(t —to) Eo, 3)

assuming no additional carbon enters the atmosphere after the pulse. If the pulse is equivalent to 1 kg or mole of CO5, then
Ey=1and M, (t) = ha(t —to). For a pulse emission of any arbitrary size,
to+T
AGWP(T, Ey,to) = kco, Eo / ha(t —to)dt. 4)
to
The AGWP can be computed for any other greenhouse gas using their respective radiative efficiencies and fate in the

atmosphere (impulse response function). To compare different gases, the Global Warming Potential (GWP) is defined as the
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AGWP of a particular gas divided by the AGWP of CO; (Shine et al., 1990; Lashof and Ahuja, 1990). Our interest in this
manuscript is on carbon fixation and respiration in the form COs, therefore we primarily concentrate here on AGWP.

The impulse response function h, (t—t() plays a central role within the AGWP framework. The function encodes information
about the fate of a gas once it enters the atmosphere and determines for how long the gas will remain. Therefore, it can be
interpreted as a density distribution for the the transit time of a gas, since the time of emission until it is removed by natural
sinks (e.g. CO3) or by chemical reactions (e.g. CHy).

The function typically is assumed to be static, i.e. the time at which the gas enters the atmosphere is not relevant, only the
time it remains there (¢ —t¢(). However, this function can be time-dependent, expressing different shapes depending on the time
the gas enters the atmosphere, i.e. h,(fo,t — to). For example, when natural sinks saturate, faster accumulation of CO2 and
longer transit times of carbon in the atmosphere would be observed (Metzler et al., 2018). In this situation, the specific time
of an emission would lead to different response functions in the atmosphere. Because current research on impulse response
functions primarily considers the static time-independent case (see Millar et al., 2017, for an exception), we will consider only

the static case for the remainder of this manuscript.
2.2 The radiative efficiency of CO- and its impulse response function

The radiative efficiency of COs is a function of the concentration of this gas and the concentration of other gases in the
atmosphere with overlapping absorption bands (Lashof and Ahuja, 1990; Shine et al., 1990). Therefore, kco, changes as the
concentration of GHGs change in the atmosphere. For most applications however, the radiative efficiency of CO2 has been
assumed constant in the limit of a small perturbation at a specific background concentration (Lashof and Ahuja, 1990; Shine
et al., 1990; Joos et al., 2013; Myhre et al., 2013).

Here, we use a constant value of kco, = 6.48 x 10712 W m~2 MgC~! based on results reported by Joos et al. (2013) for
an atmospheric background of 389 ppm (~ present day). This radiative efficiency represents the change in radiative forcing
caused by a change of 1 Mg of carbon in the atmosphere in the form of CO> in units of rate of energy transfer (Watt) per square
meter of surface.

Joos et al. (2013) have also derived impulse response functions (IRFs) of CO; in the atmosphere using coupled carbon-
climate models that include multiple feedbacks among Earth system processes. One function was obtained by emitting a pulse
of 100 GtC to a ‘pre-industrial’ atmosphere with a background concentration of 280 ppm (PI100 function from here on), and
another function was obtained by emitting 100 GtC to a ‘present day’ atmosphere with a background of 389 ppm (PD100 from
here on). The functions they report are averages from the numerical output of multiple models fitted to a sum of exponential
functions that include an intercept term. This intercept implies that a proportion of the added CO2 never leaves from the
atmosphere-ocean-terrestrial system to long-term geological reservoirs. Following Millar et al. (2017), we added a timescale
of 1 million years that corresponds to the intercept term in the IRFs. The addition of this timescale has no effect on the results
presented here, which are focused on much shorter timescales, but they avoid the mathematical problem that the integrals of

the original functions go to infinity with time (Lashof and Ahuja, 1990; Millar et al., 2017).
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2.3 Carbon sequestration CS, and the climate benefit of carbon sequestration CBS

GWPs are useful to quantify the climate impacts of increasing or reducing emissions of GHGs to the atmosphere. However, it
is also necessary to quantify the climate benefits of carbon flows in the opposite direction, atmosphere — land. Furthermore, it
is also important to quantify not only how much and how fast carbon enters ecosystems, but also for how long the carbon stays
(Korner, 2017).

Carbon taken up from the atmosphere through the process of photosynthesis is stored in multiple ecosystem reservoirs for a
particular amount of time. Carbon sequestration can be defined as the process of capture and long-term storage of CO5 (Sedjo
and Sohngen, 2012). We define here carbon sequestration CS over a time horizon 7" as

to+T
CS(T, So. to) = / M. (t—to) dt, )
to
where M (t —to) represents the fate of a certain amount of carbon Sy taken up by the sequestering system at a time ¢,. Notice
that this definition of carbon sequestration is very similar to that of AGWP for an emission, with the exception that the radiative
efficiency term is omitted.

To obtain the fate of sequestered carbon over time, we represent carbon cycling and storage in ecosystems using the theory
of compartmental dynamical systems (Luo et al., 2017; Sierra et al., 2018a). In their most general form, we can write carbon
cycle models as
dx(t)

dt

=z(t) = u(z,t) + B(z,t) x, (6)

where z(t) € R™ is a vector of n ecosystem carbon pools, u(z,t) € R™ is a time-dependent vector-valued function of carbon
inputs to the system, and B(x,t) € R"*" is a time-dependent compartmental matrix. The latter two terms can depend on the
vector of states, in which case the compartmental system is considered nonlinear. In case the input vector and the compartmental
matrix have fixed coefficients (no time-dependencies), the system is considered autonomous, and non-autonomous otherwise
(Sierra et al., 2018a). This distinction of models with respect to linearity and time-dependencies (autonomy) is fundamental to
distinguish important properties of models. For instance, models expressed as autonomous linear systems have a steady-state
solution given by 2* = —B~! u, where z* is a vector of steady-state contents for all ecosystem pools. Non-autonomous models
have no steady-state solution.

The fate of the fixed carbon for the general non-autonomous case can be obtained as
M(t—to) = [|®(t,t0)B(t0)Sol, @)

where 3(to)So = u(to), and B(tp) is an n-dimension vector representing the partitioning of the total sequestered carbon among
n ecosystem carbon pools (Ceballos-Nuiiez et al., 2020). The n x n matrix ®(t,to) is the state transition operator, which
represents the dynamics of how carbon moves in a system of multiple interconnected compartments (see details in appendix).
Throughout this document, we use the symbol || || to denote the 1-norm of a vector, i.e. the sum of the absolute values of all

elements in a vector.
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Because ecosystems and most reservoirs are open systems, the sequestered carbon .Sy returns back to the atmosphere (mostly

as ecosystem respiration r(¢)) according to
r(t) = —1TB(t)®(t,t0)5(t0) S0, (8)

where 17 is the transpose of the n-dimensional vector containing only 1s.

The link between the time it takes sequestered carbon Sy to appear in the output flux r(¢) is established by the concept of
transit time (Metzler et al., 2018). In particular, we define the forward transit time (FTT) as the age that fixed carbon will have
at the time it is released back to the atmosphere, or, how long a mass fixed now will stay in the system. The backward transit
time (BTT) is defined as the age of the carbon in the output flux since the time it was fixed, or, how long the mas leaving the

system now had stayed. This implies that

7(t) = perr(t —to,t) = prrr(t — to,to), )

where pprT(t — to,t) is the backward transit time distribution of carbon leaving the system at time ¢ with an age ¢t — t,, while
prTT(t — to,to) is the forward transit time distribution of carbon entering the system at time ¢y and leaving with an age ¢ — .
For systems in equilibrium, both quantities are equal (Metzler et al., 2018). For systems not in equilibrium, semi-explicit
formulas for their distributions are given in the appendix.

For the atmosphere, carbon sequestration is a form of ‘negative emission’, and we can represent its fate in the atmosphere as

t
M () = ~halt ~to)So+ [ halt = )r(r)dr (10)
to
where the prime symbol represents a perturbed atmosphere as an effect of sequestration. The first term in the rhs represents the
response of the atmosphere to an instantaneous sequestration Sy at to, and the second term represents the perturbation in the
atmosphere of the carbon returning back from the terrestrial biosphere. Notice that the integral in this equation can be written
as a convolution (h,x7)(t) between the impulse response function of atmospheric CO5 and the respired carbon returning from
ecosystems to the atmosphere.
We define now the climate benefit of sequestration for a pulse of CO; into an ecosystem as
to+T

CBS(T, Sy, to) := / kco, M. (t)dt,

to
bt T (11)

= —kco, / (ha(t —t0)So — (ha *7)(t)) dt.
to
This metric integrates over a time horizon 7’ the radiative effect avoided by sequestration of an amount of carbon S taken up at
time to by an ecosystem. It captures the timescale at which the carbon is stored and gradually returns back to the atmosphere. It

can also be interpreted as the atmospheric response to carbon sequestration in the form of a negative emission of COy during a
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time horizon of interest. It relies on knowledge of the atmospheric response to perturbations in the form of an impulse response

function, and the transit time of carbon in an ecosystem.
2.4 Ecosystems in equilibrium: the linear, steady-state case

The computation of CS and CBS is simplified for systems in equilibrium. For linear systems at steady-state, the time at which
the carbon enters the ecosystem is irrelevant (Kloeden and Rasmussen, 2011; Rasmussen et al., 2016); one only needs to know

for how long the carbon has been in the system to predict how much of it remains. Mathematically, this implies
®(t,tg) =e®B forall to<t and a=t—to. (12)

Therefore, for linear systems at steady state, we have the special cases

M,(a) =le*Bul, (13)
and

_|l,aB Y
@)= [+ (1

where M, represents the fate of one unit of fixed carbon, which can also be interpreted as the proportion of carbon remaining
after the time of fixation.

The amount of released carbon returning to the atmosphere is therefore
r(a) = —1TBe*Bu, (15)

which for one unit of fixed carbon is equal to the transit time density distribution f(7) of a linear system (Metzler and Sierra,

2018, see also appendix)

u
ri(a) = —1TBe*B Tall (16)

where 71 (a) = f(7), with mean (expected value) transit time given by

1 u x*
E(r)=-1TB~! Tall = HlluIIH' (17)
We can now derive the steady-state expression of CS as
T
CS(T) = /He“'BuH da. (18)
0
Furthermore, it is possible to find a closed-form expression for this integral
CS(T) = B~ (" = 1) ull, (19)
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where I € R"*" is the identity matrix. Similarly, for one unit of carbon entering a steady-state system at any time, we define
CS; as

T
CS1(T) :/
0

which by integration gives

(B U
[[ul

‘ da, (20)

B—l T'B_I L
(e ) Tl

‘. @1

These steady-state expressions can be very useful to compare different systems or changes to a particular system if the
steady-state assumption is justified. Furthermore, it can be shown that in the long term, as the time horizon 7" goes to infinity

T-B _ I)

(00), the term (e converges to —I, and therefore equation (19) converges to the expression

lim CS(T) = ||=*]|, (22)
T—o0

which means that the total amount of carbon at steady-state is equal to the long-term carbon sequestration of an instantaneous
amount of fixed carbon at an arbitrary time.
Similarly, for one unit of carbon entering a system at steady-state, the long-term CS; from equation (21) can be obtained

simply as
lim CSy(T) =E(7), (23)
T—o0

by using the definition of mean transit time of equation (17). This means that long-term sequestration of one unit of COq

converges to the mean transit time of carbon in an ecosystem.
2.5 Dynamic ecosystems out of equilibrium: the continuous sequestration and emissions case

In addition of considering isolated pulses of emissions E or sequestrations Sy, we can also consider permanently ongoing

emissions e : ¢t — FE(t) and sequestration s : t — S(t), respectively. Hence,

to+T
CS(T, s,tg) == / M,(t)dt, 24
to
where
¢
M0 = [12(7)5(r)s()] @s)
to
Here s(7) is a scalar flux of sequestration at time 7. This leads to
t
r(t) = ~1TB(1) / B(1,7) B(r) () dr. (26)
to
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The fate of sequestered carbon, for the atmosphere in the form of a balance between simultaneous sequestration and return

of carbon, can now be obtained as

M!(t)= 7/ha(t7T)S(T)d7'+/ha(t77')7'(7')d7'

to

t @7
_ —/ha(t ) [s(r) — ()] dr

=—(ha*(s—71))(1).

We can now define the climate benefit of sequestration for a dynamic ecosystem with continuous sequestration and respiration
as

to+T
CBS(T, s,to) := / kco, M. (t)dt,

to
to+T (28)

— ko, [ (hax(s=r)(B)at
to
This expression of CBS accounts for the dynamic behavior of inputs and outputs of carbon in ecosystems, and can be used
to represent time-dependencies resulting from environmental changes, disturbances, or produced by emission scenarios or
scheduled management activities. This time-dependent CBS is computed for a time horizon T starting at any initial time ¢g.
In other words, it can be used to analyze specific time windows of interest, accounting for the fate of all carbon sequestered

during specific time intervals.

3 Example 1: CS and CBS for linear systems in equilibrium
3.1 The fate of a pulse of inputs through the system

A simple ecosystem carbon model, the Terrestrial Ecosystem Model (TECO), will now demonstrate an application of the
theory to compute CS and CBS assuming a linear system at steady-state (i.e., in equilibrium). The TECO model is described
by Weng and Luo (2011) with parameter values obtained through data assimilation using observations from the Duke forest
in North Carolina, USA. It contains eight main compartments: foliage x;, woody biomass z, fine roots x3, metabolic litter
x4, structural litter x5, fast soil organic matter (SOM) xg, slow SOM x7, and passive SOM zg (Figure 2). In addition to its
simplicity and tractability, there are two advantages of using this model over others: 1) it provides reasonable predictions of net
ecosystem carbon fluxes and biometric pool data (Weng and Luo, 2011), 2) it is commonly used to express complex ecosystem-
level concepts such as the matrix generalization of carbon cycle models, their traceability, and transient behavior (e.g. Luo and
Weng, 2011; Luo et al., 2012; Xia et al., 2013; Luo et al., 2017; Sierra, 2019).
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The model is commonly expressed as

d%’f) =bU(t) +£(t) ACX(t), (29)

where X is a vector of ecosystem carbon pools, C is a diagonal matrix with cycling rates for each pool, A is a matrix of
transfer coefficients among pools, and b is a vector of allocation coefficients to plant parts. The function U(t) determines the
carbon inputs to the system as net primary production (NPP), and £(¢) is a time-dependent function that modifies ecosystem
cycling rates according to changes in the environment.

For this steady state example, we assume constant inputs (U (¢) = U) and constant rates (£(¢) = 1). Furthermore, defining

B := AC, and u := bU, we can write this model as a linear, autonomous compartmental system of the form
r=u+ Bz, 30)

with values for B and u as in Luo et al. (2012) and provided in the appendix.

The fate of a pulse of carbon input entering the ecosystem at an arbitrary time (time-independent) may be observed by
applying equations (13) and (14) (Figure 3). Carbon enters the ecosystem through foliage, wood, and fine root pools. A large
proportion of this carbon is quickly transferred from these pools to the fine and metabolic litter pools. Subsequently, the
carbon moves to the SOM pools with important respiration losses during these transfers. Most carbon is returned back to the
atmosphere with a mean transit time of 35.8 yr for the whole system. Half of the sequestered carbon is returned back to the
atmosphere in 14.1 yr, and 95% in 134.5 yr.

Ecosystem-level CS, i.e., the area under the curve of the amount of remaining carbon over time, increases towards an
asymptote as the time horizon of integration increases (Figure 4a). Here, CS is reported in units of MgC ha~—! yr, because this
is the amount of carbon retained in organic matter over a fixed time horizon. For relevant time horizons of 50, 100, 500, and
1000 yr, CS was 145.85, 200.70, 236.52, and 237.69 MgC ha~! yr, respectively. In the long-term (i.e., as the time horizon goes
to infinity), CS converges to the steady-state carbon stock predicted by the model of 237.86 MgC ha~!.

A similar computation can be made for one unit of fixed carbon (CSy, unitless). In this case CS; was 21.96, 30.21, 35.61,
and 35.79 yr for time horizons of 50, 100, 500, and 1000 yr, respectively. In the long-term, CS; converges to the mean transit
time of carbon, 35.81 yr (Figure 4b).

Due to sequestration at ¢, the CBS shows a rapid negative increase in radiative forcing, which decreases as the time horizon
increases due to the return of carbon to the atmosphere as an effect of respiration (Figure 4c). The shape of the curve however,
depends strongly on the IRF for atmospheric CO». CBS is larger over the long-term (> 200 yr) for the present day (PD100)
curve proposed by Joos et al. (2013) than for the pre-industrial curve (PI100). Impulse response functions depend strongly
on the magnitude and timing of the pulse (Joos et al., 2013; Millar et al., 2017). Therefore, estimates of climate impacts of
emissions (AGWP, Figure 5) and climate benefits to sequestration (CBS, Figure 4c,d) depend strongly on the choice of the
IRF. For the purpose of this manuscript, we will use the present day curve (PD100) from here on.

Because AGWP and CBS are based on similar concepts and share similar units, it becomes possible to directly compare one

another (Figure 6) and obtain an estimate of the climate impact of emissions versus sequestration. This can be done either as

10
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the ratio of the absolute value of CBS to AGWP, i.e. | CBS | /AGWP (unitless); or as the net radiative balance CBS+AGWP
(W m~2 yr). It is possible to compute these relations using the CBS for one unit of sequestered carbon, which provides a
direct estimate of the impact of one unit of sequestration versus one unit of emission; or corresponding to the amount of NPP
sequestered in one year (6.6 MgC ha~! yr—! for Duke forest).

In our example, the emission of 1 MgC to the atmosphere has a predominant warming effect that cannot be compensated
by the sequestration of 1 MgC at the Duke forest (Figure 6). However, the sequestration of the equivalent of NPP in one year
can have a significant climate benefit compared to the emission of 1MgC, depending on the time horizon of analysis. When
one integrates in time horizons lower than 200 years, CBS outweighs AGWP in this example. However, because the lifetime
of an emission of CO, is much longer in the atmosphere than the transit time of carbon through a forest ecosystem, AGWP
outweighs CBS on longer timescales.

The time of integration in the computation of GWP has been a heavily debated topic in the past, and this is related to the
topic of ‘permanence’ of sequestration in carbon accounting and climate policy (Moura Costa and Wilson, 2000; Noble et al.,
2000; Sedjo and Sohngen, 2012). One problem in these previous debates is that the timescale of carbon in ecosystems was
not considered explicitly while the timescale of carbon in the atmosphere was. With the approach proposed here, both are
explicitly taken into account, and can better inform management and policy debates about sequestration of carbon in natural

and man-made sinks.
3.2 Carbon management to maximize the climate benefit of carbon sequestration

In the context of climate change mitigation, management of ecosystems may be oriented to increase carbon sequestration
and its climate benefit. In the recent past, scientists and policy makers have advocated increasing the amount of inputs to
ecosystems as an effective form of carbon management (e.g. Silver et al., 2000; Grace, 2004; Lal, 2004; Chabbi et al., 2017,
Minasny et al., 2017). Although increases in carbon inputs can increase the amount of stored carbon in an ecosystem with
related climate benefits, it does not necessarily increase the amount of time the sequestered carbon will stay in the system.
Therefore, strategies that focus on increasing carbon inputs alone, do not take full advantage of the potential of ecosystems to
mitigate climate change.

We can conceptualize any management activity that increases or reduces carbon inputs to an ecosystem by a factor -, so the
new inputs are given by the product yu. For example, if we increase carbon inputs to an ecosystem by 10%, v = 1.1. Increasing

(decreasing) carbon inputs increase (decrease) carbon storage at steady state by an equal proportion since

-1 —1
-B7 (yu) =y (=B u),
(3D
=yz*.
However, the time carbon requires to travel through the ecosystem is still the same since the transit time does not change, as
we can see from the mean transit time expression

—1TB! L E(r). (32)
[y ull

11
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Both the transit time distribution (eq. B4) and the mean transit time (eq. 17) only take into account the proportional distribution
of the carbon inputs to the different pools (u/||u||), but not the total amount of inputs. Therefore, a unit of carbon that enters
an ecosystem stays there for the same amount of time independent of how much carbon is entering the system. Although these
results only apply to linear systems at steady-state, they provide some intuition about what might be the case in systems out of
equilibrium, such as while in transition from one steady state to another following a land use or management change.

Carbon management can also be oriented to modify process rates in ecosystems as encoded in the matrix B. A proportional

decrease (increase) in process rates by a factor £ not only increases (decreases) carbon storage as

1
—(B) u = (-B '),
. (33)
_r
é— )
it also increases (decreases) the mean transit time as
qou E(7)
—1T(¢B) ' = (34)
Jull €

Based on these results, it is now clear that carbon management to increase carbon inputs alone can only increase CS, but not
CSy; i.e. the new carbon inputs have a sequestration benefit only through increase of carbon storage, but not through a longer
transit time in ecosystems. Management to decrease process rates on the contrary, can increase both CS and CS; because the
new carbon entering the system stays there for longer.

We can see these effects of carbon management on CS by running simulations using the same steady-state model (Figure
7). Now, we modified carbon inputs and process rates by either increasing them by 10 and 50% (v, £ = 1.1, 1.5), or decreasing
them by 10 and 50% (v, £ = 0.9, 0.5). The simulations showed that increasing or decreasing carbon inputs increase or decrease
CS for any time horizon (Figure 7a), but it does not modify the behavior of one unit of sequestered carbon (CS;) (Figure 7b).
On the contrary, decreasing or increasing process rates increase or decrease both CS (Figure 7c) and CS; (Figure 7d).

The resultant effects of changes in management of inputs or process rates on CBS can differ substantially. Increases or
decreases of carbon inputs have similar proportional effects on CBS, but differences in processes rates are not equally propor-
tional. While an increase in inputs by 50% would increase CBS by 50%, a decrease in process rates by 50% would have an
increase in CBS by more than 100% for time horizons longer than 300 years (Figure 8). Similarly, while a decrease in inputs
by 50% would reduce CBS by 50%, an increase in process rates by 50% would decrease CBS by only ~40%.

These results show that management of transit time, e.g. by decreasing process rates, may lead to stronger climate benefits
than managing carbon inputs alone. Furthermore, one could think about optimization scenarios in which both inputs and transit
times are managed to achieve larger climate benefits given certain constraints. The concept of CBS is thus a useful mathematical

framework to formally pose such an optimization problem.
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4 Example 2: CS and CBS for dynamic systems out of equilibrium
4.1 Pulses entering at different times and experiencing different environments

The steady-state examples above are useful to gain some intuition about potential long-term patterns in CS and CBS, but for
real-world applications it is necessary to consider systems out of equilibrium and driven by specific time-dependent signals.
We will consider now the case of an ecosystem driven by increases in atmospheric CO5 concentrations that lead to higher
photosynthetic uptake, and increasing temperatures that lead to faster cycling rates. We will thus consider a non-autonomous

version of the TECO model that follows the general form
#(t) =y(Hu+E(H)B-x(t), 35)

where the time-dependent function ~(t) incorporates the effects of temperature and atmospheric CO3 on primary production,
and the function £(¢) incorporates the effects of temperature on respiration rates. Specific shapes for these functions were taken
from Rasmussen et al. (2016), and are described in detail in the appendix. When applied to the CASA model in Rasmussen
et al. (2016), these functions predicted an increase in primary production and an increase in process rates, which resulted in a
decrease in transit times over a simulation of 600 years.

We used the same simulation setup here starting from an empty system (2(0) = 0), and obtained similar results in terms of
primary production and transit times as in Rasmussen et al. (2016). We used these simulation results to compute CS and CBS
for carbon entering the ecosystem at different times during the simulation window. In particular, we considered the case of
the amount of carbon sequestered at years 100 and 300 after the start of the simulation; i.e. we considered the cases ¢y = 100
and to = 300 (Figure 9a) and computed the fate of this carbon (M(t,to,up)), its carbon sequestration (CS(T',ug, %)) and the
climate benefit of sequestration (CBS(T, ug, to)) for different time horizons 7.

Although more carbon enters the ecosystem at simulation year 300 than at year 100 due to the CO., fertilization effect, it is
lost much faster because of higher temperatures that result in faster transit times for simulation times above 300 years (Figure
9a). The slower transit times experienced by the carbon that enters at year 100 due to lower temperature results then in much
higher values of CS for time horizons 7' > 100 yr (Figure 9c¢). Similarly for CBS, where differences are evident much earlier,
for time horizons 1" > 50 yr (Figure 9d).

This simple example highlights the importance of time-dependent transit times in determining CS and CBS. If changes in
climate lead to faster carbon processing rates, we would thus expect carbon to transit faster through the ecosystem, returning

faster to the atmosphere, and therefore with lower values for carbon sequestration and its climate benefit.
4.2 Continuous inputs into a changing environment

In the previous example, we considered the case of two single pulses entering the ecosystem at different times under changing
environmental conditions during a simulation. A consolidated view can be obtained by taking all single pulses and integrate
them continuously in time to compute CS and CBS using equations (24) and (28), respectively. In this case, CS increases

monotonically, and CBS decreases monotonically with time horizon (Figure 10, continuous black lines), which is somewhat
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obvious because as the ecosystem accumulates carbon, more of it is retained in the ecosystem and is isolated from atmospheric
radiative effects. However, this simulation only considers carbon that enters the ecosystem from the beginning of the simulation
until the end of the time horizon, from ¢y to 7. An important aspect to consider is the role of carbon already present in the
ecosystem at ¢g.

We will consider now the case of continuous sequestration and release of carbon with differences in the initial conditions in
the simulation, which can vary according to land use changes. For example, when changing land use from agriculture to forest,
or from natural forest to plantation, there are carbon legacies that have an influence on future carbon trajectories (Harmon et al.,
1990; Janisch and Harmon, 2002; Sierra et al., 2012). These carbon legacies are usually dead biomass and detritus, which cause
ecosystems to lose carbon via decomposition before photosynthesis from new biomass compensates for the losses. In these
initial stages of recovery, ecosystems are usually net carbon sources, but they still may store more carbon than an ecosystem
developing from bare ground.

The CS and CBS concepts can be very useful to compare contrasting trajectories of ecosystem development and assess their
role in terms of carbon sequestration alone and their climate impact. For this purpose, we performed an additional simulation
in which at the starting time there is no living biomass, but the detritus pools and the SOM pools are 1.5 and 1.0 times as large
as in the equilibrium case, respectively (z(0) = 98.7 MgC ha~!). In this simulation, the ecosystem losses a significant amount
of carbon in the early stages of development and respiration is much larger than primary production (r(t) > u(t)) (Fig. 10a,
dashed magenta line). Because soils are already close to an equilibrium value, the ecosystem has already a large amount of
carbon stored, therefore in the computation of the fate of carbon M (¢,to) there is already a larger amount of carbon to consider,
which causes CS to be larger for the land-use-change case than for the bare ground case (Figure 10c). On the contrary, because
there are more emissions from the ecosystem in early development stages, CBS is lower for the land-use-change case than for
the bare ground case (Figure 10d).

These contrasting results between CS and CBS for the continuous case with contrasting initial conditions, can be very
useful to address debates and controversies about the role of land use change and baselines in carbon accounting. The results
show that carbon sequestration can still be high in ecosystems where emission fluxes are large, but climate impacts can differ

significantly. By using two different metrics, these two different aspects of carbon sequestration can be discussed separately.

5 Discussion

The metrics introduced here, carbon sequestration (CS) and the climate benefit of sequestration (CBS), integrate both the
amount of carbon entering an ecosystem and the time it is stored there and thus avoiding radiative effects in the atmosphere.
Disproportionate attention is given to quantifying sources and sinks of carbon in ongoing debates about the role of ecosystems
in climate change mitigation, with much less attention to the fate of carbon once it enters an ecosystem. The time carbon
remains in an ecosystem, encapsulated in the concept of transit time, is critical for climate change mitigation because during

this time carbon is removed from radiative effects in the atmosphere.
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The CS and CBS concepts unify atmospheric and ecosystem approaches to quantifying the greenhouse effect. The CBS
concept builds on that of absolute global warming potential (AGWP) of a greenhouse gas. The main difference is that CBS
quantifies avoided warming during the time carbon is stored in an ecosystem, while AGWP quantifies potential warming when
the carbon enters the atmosphere. Both metrics rely on the quantification of the fate of carbon (or other GHGs for AGWP) once
it enters the particular system. For atmospheric systems, a significant amount of work has been done in determining the fate
of GHGs once they enter the atmosphere after emissions (e.g. Rodhe, 1990; O’Neill et al., 1994; Prather, 1996; Archer et al.,
2009; Joos et al., 2013). For terrestrial ecosystems however, robust methods to quantify the fate of carbon as it flows through
terrestrial system components have been developed only recently (Rasmussen et al., 2016; Metzler and Sierra, 2018; Metzler
et al., 2018).

Global warming potential (GWP), or the climate impact of an emission of a certain gas in relation to the impact of an emission
of COao, is often used to assess climate impacts of actions, e.g., avoided deforestation, land use change, and even enhanced
carbon sequestration. However, this metric has two limitations when applied to carbon sequestration and in comparison to
the combined use of CBS and AGWP we advocate here: 1) it only quantifies the climate effects of emissions but not of
sequestration, and treats all fixed carbon equally independent of its transit time in the ecosystem, 2) it is a relative measure
with respect to the emission of COy. GWPs are commonly reported in units of COz-equivalents, which only address indirectly
the effect of a gas in producing warming. In contrast, CBS quantifies the effects of avoided warming in units of W m~2 over
the period of time carbon is retained, facilitating comparisons to other effects of ecosystems on climate (Bonan, 2008).

Other concepts have been proposed in the past to account for the temporary nature of carbon sequestration (see review
by Branddo et al., 2013, and references therein), with special interest in accounting for credits in carbon markets. In fact,
‘ton-year’ accounting methods (Noble et al., 2000) resemble our definition of carbon sequestration; however, none of these
previous concepts explicitly considers the time carbon is retained in the ecosystem. Instead, these approaches relate carbon
sequestration to delay in fossil fuel emissions (Fearnside et al., 2000), or as the equivalence of the amount of carbon storage
to AGWP (Moura Costa and Wilson, 2000). The concepts of sustained global warming potential SGWP and sustained global
cooling potential SGCP proposed by Neubauer and Megonigal (2015) are notable exceptions. The CBS concept captures some
of the ideas of the SGCP concept, but differs in some fundamental assumptions related to the interpretation of the impulse
response functions, the treatment of time-dependent fluxes and rates, and reporting. While SGCP reports values in reference
to CO; as is commonly done for GWP, we report CBS for individual gases as it is done for AGWP. Appendix A elaborates on
other aspects of the SGWP and SGCP concepts.

The concept of CBS improves our ability to address some of the existing debates about the role of ecosystems in mitigating
climate change and enhances our potential to provide decision-support. In combination with quantifications of AGWP, CBS
provides the net climate effect of an ecosystem or some management. For example, CBS can be used to better understand
the climate impacts of storing carbon in long-term reservoirs such as soils and wood products, and the climate benefits of
increasing the transit time in these systems. CBS can be used to better quantify the climate benefits of using biofuels as fossil

fuel substitution by computing the CBS of the whole bioenergy production system and adding the negative AGWP attributed
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to the avoided emission. Similarly, it can be incorporated in assessments of sequestration in industrial systems with associated
carbon capture and storage.

Carbon management of ecosystems can maximize CS and/or CBS by not only increasing carbon inputs, but also by increas-
ing the transit time of carbon. There are many ways in which the transit time of carbon can be increased; for instance, by
increasing transfers of carbon to slow cycling pools such as the case of increasing wood harvest allocation to long-duration
products (Schulze et al., 2019), or addition of biochar to soils, or by reducing cycling rates of organic matter such as the case
of soil flipping (Schiedung et al., 2019). Independently of the management activity, CS and CBS can be powerful metrics to
quantify their climate benefits, make comparisons among them, and compare against baselines or no management scenarios.

The examples we provided in this manuscript illustrate the use and interpretation of CS and CBS metrics under the as-
sumptions of linearity, steady-state, or time-dependences in carbon cycle dynamics with subsequent consequences for carbon
sequestration and its climate benefits. The computation of the CBS relies on a model, which can be as simple as a one-pool
model or a state-of-the-science land surface model. The TECO model is an excellent tool to illustrate ecosystem-level concepts
because of its simplicity and tractability, but other models with more accurate parameterizations and including more processes
should be considered for practical applications. The formulas and formal theory developed in Section 2 are general enough to
deal with the non-steady-state case as well as with models with nonlinear interactions among state variables.

The concepts of CS and CBS present improvements to the current guidelines for carbon inventories that treat all carbon
removals by sinks equally (IPCC, 2006) by explicitly considering the transit time of carbon in ecosystems. Therefore, these new
concepts have potential for being incorporated in revised policies for carbon accounting in the context of international climate
agreements and carbon markets. CS and CBS can aid in the economic valuation of carbon by adding economic incentives to
sequestration activities that retain carbon in ecosystems for longer times. In addition, the concepts can help in dealing with the
issue of permanence of carbon by explicitly quantifying climate benefits of sequestration that can be compared directly with
the climate impacts of emissions on a similar time horizon.

Two potential limitations to apply the concepts of CS and CBS are that 1) they rely on a model that tracks the fate of
the fixed carbon and 2) on an impulse response function of COs in the atmosphere. Reliable models may not be available
for certain type of ecosystems or may include large uncertainties that propagate to CS and CBS estimates. Also, estimates of
impulse response functions for atmospheric CO5 seem to have also uncertainties, particularly related to the size of the emission
pulse, the atmospheric background at which the pulse is applied, and the long-term behavior of the curve for timescales longer
than 1000 years (Archer et al., 2009; Lashof and Ahuja, 1990; Joos et al., 2013; Millar et al., 2017). However, one advantage
of the functions proposed by Joos et al. (2013) is that they are derived from coupled climate-carbon models that include
multiple feedbacks. Therefore, when computing CS and CBS for small perturbations of the carbon cycle, it is not necessary to
explicitly compute carbon-climate feedbacks. Also, when comparing two different systems with a CBS ratio as in Figure (8) or
aratio CBS to AGWP (Figure 6), uncertainties in the IRFs would tend to cancel each other out. Nevertheless, advances in our
understanding of the fate of emitted COs to the atmosphere will consequently derive in better estimates of the climate benefits

of carbon sequestration.

16



470

475

480

485

490

495

6 Conclusions

Analyses of carbon sequestration for climate change mitigation purposes must consider both the amount of carbon inputs and
the transit time of carbon. Both concepts are encapsulated in the unifying concepts of carbon sequestration (CS) and climate
benefit of sequestration (CBS) that we propose. Carbon management can be oriented to maximize CS and CBS, which can be
achieved by managing both rates of carbon input and process rates in ecosystems. We believe the use of these metrics can help
to better deal with current discussions about the role of ecosystems in mitigating climate change, provide better estimates of

avoided or human-induced warming, and have potential to be included in accounting methods for climate policy.

Code availability. Code to reproduce all results is available at https:/git.bgc-jena.mpg.de/csierra/cbs. Upon acceptance for publication, a

copy of this repository will be archived in a permanent location with a respective digital object identifier.

Appendix A: Comment on Neubauer and Megonigal (2015)

Neubauer and Megonigal (2015) proposed two metrics, the sustained global warming potential SGWP and the sustained global
cooling potential SGCP, to overcome issues with GWP. However, there is an important misconception in their study that we
would like to address here. In particular, these authors state ... GWPs requires the implicit assumption that greenhouse gas
emissions occur as a single pulse; this assumption is rarely justified in ecosystem studies”. The use of pulse emissions in
computing AGWP, as shown in equation (3), is done with the purpose of obtaining a representation of the fate of a unit of
emissions under the assumption that the system is in equilibrium. This is a mathematical property of linear time-invariant
dynamical systems, by which an impulse response function can provide a full characterization of the dynamics of the system
(Hespanha, 2009). In other words, the emission pulse is a mathematical method to obtain a description of the fate of incoming
mass into the system, but it is not an assumption imposed on the system.

To use impulse response functions, it is necessary to assume that a system is in equilibrium and that all rates remain constant
for all times. It is this assumption that is problematic and difficult to impose on ecosystems, but not the pulse emission because
it is simply a method. Therefore, we are of the opinion that the sustained-flux global warming potential metric proposed by
these authors is unjustified on the argument that it removes the assumption of pulse emissions.

One interesting characteristic of the study of Neubauer and Megonigal (2015) is that it uses a model that couples an ecosys-
tem compartment with the atmosphere, and their computation of SGWP and SGCP captures the interactions between these two
reservoirs similarly as in the framework described here in section 2. The SGCP is very similar in spirit to the CBS. However,
their approach differs from the approach we present here in that our mathematical framework is general enough to deal with
ecosystem models of any level of complexity, not restricted to a one pool model and constant parameters and sequestration
rates. Furthermore, we abstain from proposing a metric that is relative to CO,. We are rather interested in an absolute metric
that quantifies the effect of CO sequestration on radiative forcing, and not in equivalents to sequestration or emissions of other

gases.
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Appendix B: Fate and timescales of carbon in compartmental systems

Carbon cycling in the terrestrial biosphere is well characterized by a particular type of dynamical systems called compartmental
systems (Anderson, 1983; Jacquez and Simon, 1993). These systems of differential equations generalize mass-balanced models
and therefore generalize element and carbon cycling models in ecosystems (Rasmussen et al., 2016; Luo et al., 2017; Sierra
et al., 2018a). In their most general form, we can write carbon cycle models as

dz(t)
dt

=&(t) = u(z,t) + B(z,t) z, (BI)

where z(t) € R™ is a vector of ecosystem carbon pools, u(z,t) € R™ is a time-dependent vector-valued function of carbon
inputs to the system, and B(z,t) € R"*" is a time-dependent compartmental matrix. The latter two terms can depend on the
vector of states, in which case the compartmental system is considered nonlinear. In case the input vector and the compartmental
matrix have fixed coefficients (no time-dependencies), the system is considered autonomous, and non-autonomous otherwise
(Sierra et al., 2018a). At steady-state, the autonomous linear system has the general solution z* = —B~! .

The probability density function (pdf) for system age of linear autonomous models at steady-state can be computed by the

following expression (Metzler and Sierra, 2018)

f(a)=—-1TBe"B ”x*” . a>0, (B2)
X

B is the matrix

where a is the random variable age, 17 is the transpose of the n-dimensional vector containing ones, e
exponential computed for each value of a, and ||2*|| is the sum of the stocks of all pools at steady-state.

The mean, i.e. the expected value, of the age pdf can be computed by the expression

* Bfl *
E(a) = —1TB™! = = I = I (B3)
[Edl [ESl

The pdf of the transit time variable 7 for linear autonomous systems in equilibrium is given by (Metzler and Sierra, 2018)

f(r)=-1TBe™® L >0, (B4)

[l
and the mean transit time by

o =l
E(r)=-1TB™!' — = :
l[ull - lull

(B5)

For the most general case of nonlinear non-autonomous systems, we follow the approach described in Metzler et al. (2018).

For these systems, the age distribution of mass is given by

Mass in the system at ®(t,t —a)u(t—a), a <t—to,

time ¢ with age a ®(t,to) fOla— (t—t0)), a>t—t
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where ® is a state-transition matrix, and f° is an initial age density distribution at initial time ¢y. We obtain @ by taking
advantage of an existing numerical solution z(¢), which we plug in the original system, obtaining a new compartmental matrix

B(t) := B(z(t), ) and a new input vector 4 := u(z(t),t). Then, the new linear non-autonomous compartmental system
g(t) =B()y(t) +a(t), t>to, (B6)

has the unique solution y(¢) = x(t), which emerges from the fact that both systems are identical. The solution of the system is
then given by
t
o(t) = B(tt0) "+ [ B(t,5)uls) s, (B7)
to
where 20 = fooo f°(a)da is the initial vector of carbon stocks. We obtain the state-transition matrix as the solution of the
following matrix differential equation

P(1,t0)

i =B(t)®(t,ty), t>to, (B8)

with initial condition
®(to,t0) =1, (B9)

where I € R"*™ is the identity matrix. For the special case in which the time-dependent metric can be expressed as a product
between a time-dependent scalar factor £(¢) and a constant value matrix B, i.e. B(t) = {(¢)B, we obtain the state-transition

matrix as
t
®(t,tg) = exp /E(T)dT-B . (B10)
to
These formulas can be applied to any carbon cycle model represented as a compartmental system to obtain the fate of carbon
once it enters the ecosystem as well as timescale metrics such as age and transit time distributions.
Computation of the mass remaining in the system

From equation (B7), we can see from the first term that the initial amount of carbon in the system z° changes over time accord-
ing to the term ® (¢, o) 20, Rasmussen et al. (2016) showed that under certain circumstances, equation (B7) is exponentially
stable as long as B is invertible, and the state transition operator acts as a term that exponentially ‘decomposes’ the initial
amount of carbon. Furthermore, the state transition operator tracks the dynamics of the incoming carbon and how it is trans-
ferred among the different pools before it is respired. Therefore, this operator can be used to compute the fate of an amount of

carbon sequestered at time ¢4 as
Ms(t—ts) = Mg(a) = | ®(¢,ts)ults)|l, a=t—ts. (B11)
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Similarly, the fate of one unit of sequestered carbon at time ¢, can be computed as

Maato) = 200,040 B12)

where the subscript 1 denotes that the function predicts the fate of one unit of carbon.

Appendix C: Detailed representation of the TECO model and the transient simulations used in examples

The terrestrial ecosystem model TECO described in Weng and Luo (2011) and Luo et al. (2012) has eight pools to simulate
ecosystem-level carbon dynamics, with a parameterization for the Duke Forest, a temperate forest in North Carolina, USA. The
annual amount of photosynthetically fixed carbon predicted by the model in this forest (GPP) is U = 12.3 Mg C ha=! yr~1.

The vector of carbon allocation is given by

0.14

0.26

0.14
0

0
0
0
0

which shows that from all photosynthetically fixed carbon, 14% is allocated to foliage, 26% to woody biomass, and 14% to
roots. Net primary production (NPP) in this case is the proportion of GPP that stays in the system, i.e. NPP = U (0.14 +0.26 +
0.14) =6.64 Mg C ha=! yr— 1.

Each pool in the model cycles at annual rates given by the diagonal elements of the matrix

0.942 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.021 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.872 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 3.978 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.347 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 3.833 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.036 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004
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with a matrix of transfer coefficients as

-1.00 0.00 0.00 000 0.00 0.00 0.00 0.00
0.00 -1.00 0.00 0.00 000 0.00 0.00 0.00
0.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00
0.90 0.00 020 -1.00 0.00 0.00 0.00 0.00
0.10 1.00 0.80 0.00 -1.00 0.00 0.00 0.00
0.00 0.00 0.00 045 0.28 —1.00 0.42 0.45
0.00 0.00 0.00 0.00 028 030 -—-1.00 0.00
0.00 0.00 000 0.00 0.00 000 001 -1.00

Defining B := AC and u = bU, we obtained the steady-state solution as
=-B 1.y

1.83
149.52
1.97
0.48 (CI)
13.69 |
0.81
61.29
8.27

For the simulation with initial conditions as in a land-use-change case, the initial conditions x( of the simulation where set

as

)
xoz(o 00 15 15 1.0 10 1.0) oz*, (C2)

where the symbol o represents entry-wise multiplication.
For the transient simulations, we derived time-dependent modifiers for inputs ~(¢) and for process rates £(t) following the

approach described in Rasmussen et al. (2016). Atmospheric CO2 concentrations increase following a sigmoid curve given by

0.0305¢
o(t) =28441715 , C3
Za(t) * eXp((1715+exp(O.0305t) —1)) €3
and surface air temperature increases with CO5 concentrations according to
o

Tst:Ts —1 alt 285).

(t) = To + 55 In(wa(t)/285) (4

The combined effect of CO4 concentrations and air surface temperature on primary production are then computed as
V() = (1+ Bxa(t), Ts (1)) In(2a (1) /285)), (C5)
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with

B 3pxq (1)1 (Ts(t))
Plralth T 0) = (o B =TT (1)) (palt) + 2T (D) -

where [3(2,(t),Ts(t)) is the sensitivity of primary production with respect to atmospheric CO5 and air surface temperature,

and p = 0.65 is the ratio of intracellular CO5 to z,(t). The response function with respect to temperature I'(Ts(¢)) is given by

D(Ty(t)) = 42.7 + 1.68(T,(t) — 25) 4 0.012(T (t) — 25). (e7))
The separate effect of air surface temperatures on process rates are computed with a power function of the form

ST =g O (C8)

with &, = 2.
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Figure 1. Contrast between current approach to quantification of climate effects of emissions and sequestration (left), and the proposed
approach for sequestration (right). Plots and equations represent the concepts of absolute global warming potential (AGWP) of an emission
of CO2, carbon sequestration (CS), and climate benefits of sequestration (CBS). AGWP integrates over a time horizon 7" the fate of an instant
emission at time to of a gas (M, (t)) and multiplies by the radiative efficiency k of the gas. A similar idea can be used to define CS as the
integral of the fate M,(¢) of an instant amount of carbon uptake So over 7. The CBS captures the atmospheric ‘disturbance’ caused by
CO, uptake and subsequent release by respiration as the integral over T' of the fate of sequestered carbon M (¢) multiplied by the radiative

efficiency of COa.
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Figure 2. Graphical representation of the terrestrial ecosystem model TECO described in Weng and Luo (2011) and Luo et al. (2012). Carbon

enters the ecosystem through canopy photosynthesis and is allocated to three biomass pools: foliage, woody biomass and fine roots. From
these pools, carbon is transferred to metabolic and structural litter pools, from where it can be respired as CO2 or transferred to the soil
organic matter (SOM) pools. Blue arrows represent transfers among compartments and red arrows release to the atmosphere in the form of
COa.
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Figure 3. Fate of carbon (M, (¢) left axis and M1 () right axis) entering the terrestrial biosphere according to the TECO model parameterized
for the Duke Forest and calculated using equation (13) for the upper panel, and respired carbon (r(t)) returning back to the atmosphere

calculated using equations (15).
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Figure 4. Carbon sequestration (CS) and climate benefit of sequestration (CBS) for instantaneous carbon uptake at any given time. a) CS due

to the uptake of 6.64 MgC ha™!, b) CS due to the uptake of one unit of carbon (CS1). c) CBS due to the uptake of 6.64 MgC ha~! for two

different impulse response functions (PI100 and PD100). d) CBS due to the uptake of one unit of carbon (CBS;) for two different impulse

response function. Dotted lines in panels a and b represent steady-state carbon storage and mean transit time, respectively.
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Figure 5. Absolute global warming potential (AGWP) due to the emission of 1 MgCO»-C to the atmosphere for the two different IRFs
(PI100 and PD100) reported by Joos et al. (2013).
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Figure 6. Relations between CBS and AGWP for the IRF PD100 as a function of time horizon 7'. a) Ratio between the absolute value of
CBS and AGWP, based on a total sequestration 6.6 MgC (back line, NPP equivalent for one hectare and one year at Duke forest), versus
a sequestration of 1 MgC (dashed green line). b) Radiative balance (net difference) between CBS and AGWP for the sequestration of 6.6.
MgC (black line), and 1 MgC (dashed green line).
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Figure 7. Different carbon management strategies and their effect on the CS and CS;. Management to increase or decrease carbon inputs

in the vector u by specific proportions ~ are shown in panels a and b. Management to increase or decrease process rates in the matrix B by

a proportion £ are shown in panels ¢ and d. Since CS; quantifies carbon sequestration of one unit of carbon, management of the amount of

carbon inputs does not modify CS; in panel b, and all lines overlap.
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Figure 8. Effects of different management strategies on CBS. a) Effect of increasing or decreasing carbon inputs by a proportion v on CBS,
b) same effect of v expressed as a ratio with respect to the reference case of v = 1. ¢) effects of decreasing or increasing process rates in the

matrix B by a proportion £ on CBS, d) same effect of £ expressed as a ratio with respect to the reference case £ = 1.
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Figure 9. Prediction of CS and CBS for a non-steady-state case with time-dependent inputs «(¢) controlled by CO» fertilization and temper-
ature, and process rates controlled by temperature modified by a time-dependent factor £(¢). a) Predicted time-dependent inputs u(t), and
the fate of carbon entering the ecosystem at simulation year 100 (M, (t,to = 100)) and simulation year 300 (M, (t,to = 300)). b) Predicted
carbon accumulation in the ecosystem (||(t)||) for the entire simulation period. ¢) Carbon sequestration for the amount of inputs entering at
simulation years 100 and 300 calculated for different time horizons 7. d) Climate benefit of sequestration for carbon entering the ecosystem

at simulation years 100 and 300 integrated for different time horizons 7'.

35



12
|
250
|

T S ] § ]
[ a0
; I(-u
T'm o - S
S £
S o - %
x L o
> 2} o
= c —
s < 3
5 § o
@] ~ L u(t) [re)
— r(t,x(0)=0)
o ---- r(t,x(0)=98.7) o
[ I I I I I | [ I I I I I |
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Simulation time (yr) Simulation time (yr)
—_— O ]
<t
? - o
o 8 -
5 o |
‘T‘m | 1S
2 =
@) S 8
(o) < ! ]
= % - g 7
n ()
o v 3
®)
o
- o
m -
7
o
o
_q'_) p—
o [ I I I I I | [ I I I I I |
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time horizon (yr) Time horizon (yr)

Figure 10. Computation of CS and CBS for continuous inputs and release of carbon in simulations with different initial conditions z¢: in one
simulation the ecosystem develops from empty pools (x(0) = 0, i.e. bare ground, black lines), and in the second simulation the ecosystem
develops from existing litter and SOM pools, but empty biomass pools (z(0) = 98.7 MgC ha™*, dashed magenta color lines). a) Inputs u(t)
and release fluxes (t) along the simulation time. b) Carbon stocks predicted by the model along the simulation time. ¢) Carbon sequestration

CS for a sequence of time horizons. d) Climate benefit of sequestration CBS for a sequence of time horizons.
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