1	Impact of dust <u>addition</u> on Mediterranean plankton	
2	communities under present and future conditions of pH and	
3	temperature: an experimental overview	
4	Frédéric Gazeau ¹ , Céline Ridame ² , France Van Wambeke ³ , Samir Alliouane ¹ , Christian Stolpe ¹ ,	
5	Jean-Olivier Irisson ¹ , Sophie Marro ¹ , Jean-Michel Grisoni ⁴ , Guillaume De Liège ⁴ , Sandra	
6	Nunige ³ , Kahina Djaoudi ³ , Elvira Pulido-Villena ³ , Julie Dinasquet ^{5,6} , Ingrid Obernosterer ⁶ ,	
7	Philippe Catala ⁶ , Cécile Guieu ¹	
8	¹ Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, 06230	
9	Villefranche-sur-Mer, France	
10	² CNRS-INSU/IRD/MNHN/UPMC, LOCEAN: Laboratoire d'Océanographie et du Climat:	
11	Expérimentation et Approches Numériques, UMR 7159, 75252 Paris Cedex 05, France	
12	³ Aix-Marseille Université, Université de Toulon, CNRS/INSU, IRD, MIO, UM 110, 13288,	
13	Marseille, France	
14	⁴ Sorbonne Université, CNRS, Institut de la Mer de Villefranche, IMEV, 06230 Villefranche-sur-	
15	Mer, France	
16	⁵ Scripps Institution of Oceanography, University of California San Diego, USA	
17	⁶ CNRS, Sorbonne Université, Laboratoire d'Océanographie Microbienne, LOMIC, F-66650	
18	Banyuls-sur-Mer, France	
19	Correspondence to: Frédéric Gazeau (f.gazeau@obs-vlfr.fr)	
20	Keywords: Mediterranean Sea; Atmospheric deposition; Plankton community; Ocean	
21	acidification; Ocean warming	

Formatted: Indent: First line: 1.27 cm Deleted: enrichment

23 Abstract

24	In Low Nutrient Low Chlorophyll areas, such as the Mediterranean Sea, atmospheric	
25	fluxes represent a considerable external source of nutrients likely supporting primary production	
26	especially during stratification periods. These areas are expected to expand in the future due to	
27	lower nutrient supply from sub-surface waters caused by <u>climate-driven enhanced stratification</u> ,	Deleted: enhanced stratification
28	likely further increasing the role of atmospheric deposition as a source of new nutrients to	
29	surface waters. Yet, whether plankton communities will react differently to dust deposition in a	
30	warmer and acidified environment remains an open question. The potential impact of dust	
31	deposition both in present and future climate conditions was investigated through three	Deleted: assessed
32	perturbation experiments in the open Mediterranean Sea. Climate reactors (300 L) were filled	
33	with surface water collected in the Tyrrhenian Sea, Ionian Sea and in the Algerian basin during a	
34	cruise conducted in May/June 2017 in the frame of the PEACETIME project. The experimental	
35	protocol comprised two unmodified control tanks, two tanks enriched with a Saharan dust analog	
36	and two tanks enriched with the dust analog and maintained under warmer (+3 °C) and acidified	
37	(-0.3 pH unit) conditions. Samples for the analysis of an extensive number of biogeochemical	
38	parameters and processes were taken over the duration of the experiments (3-4 d). Here, we	
39	present the general setup of the experiments and the impacts of dust seeding with and without	Deleted: and/or future climate change scenario
40	addressing the effects of environmental changes on nutrients and biological stocks. Dust addition	
41	led to a rapid and maximum input of nitrate whereas phosphate release from the dust analog was	
42	much smaller. Our results showed that the impacts of Saharan dust deposition in three different	
43	basins of the open Northwestern Mediterranean Sea are at least as strong as those observed	
44	previously in coastal waters. However, interestingly, the effects of dust deposition on biological	
45	stocks were highly different between the three investigated stations and could not be attributed to	Formatted English (US)
46	differences in their degree of oligotrophy but rather to the initial metabolic state of the	Formatted: English (US) Deleted: Finally,
47	community, Ocean acidification and warming did not drastically modify the composition of the	Formatted: English (US) Deleted: o
I		

53	autotrophic assemblage with all groups positively impacted by warming and acidification	(Formatted: English (US)
54	Although autotrophic biomass was more positively impacted than heterotrophic biomass under	< (Formatted: English (US)
55	future environmental conditions, a stronger impact of warming and acidification on	(Formatted: English (US)
56	mineralization processes suggests a decreased capacity of Mediterranean surface plankton		
57	communities to sequester atmospheric CO ₂ following the deposition of atmospheric particles,	< (Formatted: English (US)
			Deleted: , suggesting an exacerbation of effects from atmospheric dust deposition in the future.

60 1. Introduction

61	Atmospheric deposition is well recognized as a significant source of micro- and macro-
62	nutrients for surface waters of the global ocean (Duce et al., 1991; Jickells et al., 2005; Moore et
63	al., 2013). The potential modulation of the biological carbon pump efficiency and the associated
64	export of carbon by atmospheric deposition events are still poorly understood and quantified
65	(Law et al., 2013). This is especially true for Low Nutrient Low Chlorophyll (LNLC) areas
66	where atmospheric fluxes can play a considerable role in nutrient cycling and that represent 60%
67	of the global ocean surface area (Longhurst et al., 1995) as well as 50% of global carbon export
68	(Emerson et al., 1997). These regions are characterized by a low availability of macronutrients
69	(N, P) and/or metal micronutrients (e.g. Fe) that can severely limit or co-limit phytoplankton
70	growth during large periods of year.
71	The Mediterranean Sea is a typical example of these LNLC regions and exhibits surface
72	chlorophyll a concentrations below 0.2 μ g L ⁻¹ all year round over most of its area, except in the
73	Ligurian Sea where relatively large blooms can be observed in late winter-early spring (e.g.
74	Mayot et al., 2016). Recent assessments showed that the atmospheric input of nutrients in the
75	Mediterranean Sea is of the same order of magnitude as riverine inputs (Powley et al., 2017),
76	making the atmosphere a considerable external source of nutrients (Richon et al., 2018).
77	Atmospheric deposition originates both from natural (mainly Saharan dust) and anthropogenic
78	sources (e.g. Bergametti et al., 1989; Desboeufs et al., 2018), Dust deposition, mostly in the form
79	of pulsed inputs, is mainly associated with wet deposition (Loÿe-Pilot and Martin, 1996), Ternon
80	et al. (2010) reported an average annual dust flux over four years of 11.4 g m ⁻² yr ⁻¹ (average
81	during the period 2003–2007) at the DYFAMED station in the Northwestern Mediterranean Sea.
82	In this region, the most important events reported in the 2010 decade amounted to ~ 22 g m ⁻²
-	

83 (Bonnet and Guieu, 2006; Guieu et al., 2010b).

Deleted: Deleted: perfect

Formatted: English (US) Deleted: of less than

Formatted: English (US)

Deleted:

(Moved (insertion) [1]

Formatted: English (US)

Deleted: Atmospheric depositions are mostly in the form of pulsed inputs of aerosols from both natural (Saharan dust) and anthropogenic origins (e.g. Bergametti et al., 1989; Desboeufs et al., 2018). Dust deposition is mainly associated with wet deposition and occurs in the form of extreme even **Moved up [1]:** (e.g. Bergametti et al., 1989; Desboeufs et al., 2018).

Deleted: on

96	Atmospheric deposition provides new nutrients to the surface waters (Guieu et al., 2010b;	><	Deleted:
97	Kouvership et al. 2001, Madrahi et al. 2002, Didense and Cuiou. 2002). Ex (Dennet and Cuiou	-	Formatted: Indent: First line: 1.27 cm
97	Kouvarakis et al., 2001; Markaki et al., 2003; Ridame and Guieu, 2002), Fe (Bonnet and Guieu,		Formatted: French
98	2006) and other trace metals(Desboeufs et al., 2018; Guieu et al., 2010b; Theodosi et al., 2010),		Field Code Changed
99	that represent significant inputs likely supporting the primary production especially during the		
100	stratification period (Bonnet et al., 2005; Ridame and Guieu, 2002), although no clear correlation		
101	between dust and ocean color could be evidenced from long series of satellite observation in that		
102	part of the basin (Guieu and Ridame, 2020).		
103	Experimental approaches have shown that wet dust deposition events in the Northwestern	*****	Deleted: →
104	Mediterranean Sea (the dominant deposition mode in that basin) present a higher impact as a		
105	source of bioavailable fertilizing nutrients compared to dry deposition. Indeed, wet deposition		
106	provides both new N and P while dry deposition supplies only P and does not allow to stimulate		
107	the autotrophic community (except diazotrophs; Ridame et al., 2013), resulting in no increase in	*****	Formatted: English (US)
108	chlorophyll <i>a</i> concentrations and primary production (Guieu et al., 2014a), This so-called	*****	Formatted: Font: Italic
		\square	Formatted: English (US)
109	fertilizing effect has been experimentally shown using <u>both micro- and mesocosms</u> where the	1/)	Formatted: English (US)
110 111	wet deposition of Saharan dust analog strongly stimulated primary production and phytoplankton biomass (Guieu et al., 2014a; Ridame et al., 2014) while also modifying phytoplankton diversity		Deleted: Experimental approaches have shown that wet dust deposition events in the Northwestern Mediterranean Sea (the dominant deposition mode in that basin) present a highest positive impact, by supplying bioavailable new nutrients,
112	(Giovagnetti et al., 2013; Lekunberri et al., 2010; Romero et al., 2011). <u>In addition</u> , besides		compared to dry deposition on all tested parameters and processes (Guieu et al., 2014a), except for N ₂ fixation (Ridame et al., 2014).
113	phytoplankton, dust deposition also modified also the bacterial community assemblage and led to		Formatted: English (US)
113	phytopiankton, dust deposition <u>also</u> mounted also the bacterial community assemblage and led to		Deleted: cosms or
114	even stronger enhancements of production and/or respiration rates (Pulido-Villena et al., 2014).		Deleted: but also modified
hic			Deleted: the
115	The <u>carbon</u> budget established from four artificial seeding experiments during the DUNE project		Deleted: However
116	(Guieu et al., 2014a) showed that by stimulating predominantly heterotrophic bacteria,		Formatted: English (US) Deleted: s
117	atmospheric dust deposition can enhance the heterotrophic biological behavior of these		
118			
110	oligotrophic waters. This has the potential to reduce the fraction of organic carbon that can be		
118	oligotrophic waters. This has the potential to reduce the fraction of organic carbon that can be exported to deep waters during the winter mixing period (Pulido-Villena et al., 2008) and		

135	Another effect induced by Saharan dust deposition is the export of particulate organic	
136	carbon (POC) ₂ as lithogenic particles can aggregate and ballast dissolved organic matter (Bressac	
137	et al., 2014; Desboeufs et al., 2014; Louis et al., 2017a; Ternon et al., 2010), This so-called	(
138	lithogenic carbon pump can represent a major part of the carbon export following a dust	
139	deposition event (up to 50% during the DUNE experiment; Bressac et al., 2014). Recently, Louis	
140	et al. (2017a) showed that Saharan dust deposition triggers the abiotic formation of transparent	
141	exopolymeric particles (TEP), leading to the formation of organic-mineral aggregates, a	
142	formation process that is highly dependent on the quality and quantity of TEP-precursors initially	
143	present in seawater.	
144	In response to ocean warming and increased stratification, nutrient cycling in the open	< (
145	ocean is being and will continue to be perturbed in the next decades resulting very likely in	
146	regionally variable impacts (IPCC, 2019). Overall, LNLC areas are expected to expand in the	M
147	future (Irwin and Oliver, 2009; Polovina et al., 2008) due to a thermal stratification related	
148	reduction of nutrients supply from sub-surface waters (Behrenfeld et al., 2006), As such, the role	
149	of atmospheric deposition might increase as an alternative source of new nutrients to surface	
150	waters. Ongoing warming and acidification of the global ocean (IPCC, 2019) are also evidenced	N
151	in the Mediterranean Sea (e.g. Kapsenberg et al., 2017; The Mermex group, 2011). Whether or	X
152	not plankton communities will respond differently to dust deposition in future conditions is still	
153	largely unknown. Although dependent on resource availability, it is well known that	
154	remineralisation by bacteria is subject to positive temperature control (López-Urrutia and Morán,	
155	2007). As under severe nutrient limitation, warming has no effect on primary productivity	\leq
156	(Marañón et al., 2018), <i>it will most likely</i> further push, the balance towards net heterotrophy in	
157	oligotrophic areas.	

158 With respect to ocean acidification, an *in situ* mesocosm experiment conducted during159 the summer stratified period in the Northwestern Mediterranean Sea showed that the plankton

Formatted: French

Deleted: open ocean	
Deleted: cycles	
Deleted: are	
Deleted: with a high confidence of having regionariable impacts on primary producers	onally
Deleted: very likely	
Deleted: ing very likely	
Deleted: lower	
Deleted: ,	
Deleted: likely further	
Deleted: increasing the role of	
Deleted: a	
Deleted: significant	
Deleted: The o	
Deleted: , both	
Deleted: raise the question on whether plankto communities will react differently to dust deposi warmer and acidified environment	
Deleted: , both Deleted: raise the question on whether plankto communities will react differently to dust deposi	
Formatted: English (US)	
Deleted: U	

	Tornatted. English (03)
(Deleted: U
Ľ	Formatted: English (US), Not Highlight
$\langle \rangle$	Deleted: there is no evidence that
	Deleted: will lead to an enhancement of
	Formatted: English (US), Not Highlight
	Deleted:
	Formatted: Not Highlight
Ì	Deleted: ing

183	community was rather insensitive to this perturbation under strong nutrient limitation
184	(Maugendre et al., 2017, and references therein). This is coherent with results from Maugendre et
185	al. (2015), based on a batch experiment, showing that, under nutrient-depleted conditions in late
186	winter, ocean acidification has a very limited impact on the plankton community and that small
187	species (e.g. Cyanobacteria) might benefit from warming with a potential decrease of the export
188	and energy transfer to higher trophic levels. In contrast, in more eutrophic coastal conditions,
189	Sala et al. (2016) showed that ocean acidification exerted a positive effect on phytoplankton,
190	especially on pico- and nano-phytoplankton. Similarly, Neale et al. (2014) showed in a coastal
191	ecosystem of the Alboran Sea that ocean acidification could lead, although moderately, to high
192	chlorophyll levels under low light conditions with an opposite effect under high irradiance.

193 To date and to the best of our knowledge, there have, been no attempts to evaluate the 194 behavior of plankton communities after the deposition of atmospheric particles in the context of 195 future levels of temperature and pH. Yet, following the recommendation from Maugendre et al. 196 (2017), any perturbation experiment for future climate conditions in the Mediterranean Sea should consider atmospheric deposition as a source of new nutrients and consider both 197 198 temperature and pH as external forcings. Such experiments were conducted in the frame of the 199 PEACETIME project (ProcEss studies at the Air-sEa Interface after dust deposition in the 200 MEditerranean sea; http://peacetime-project.org/) during the cruise on board the R/V "Pourquoi Pas?" in May/June 2017. The project aimed at extensively studying and parameterizing the chain 201 202 of processes occurring in the Mediterranean Sea after atmospheric deposition and to put them in 203 perspective of on-going environmental changes (Guieu et al., 2020). During that cruise, three 204 perturbation experiments were conducted in climate reactors (300 L tanks) filled with surface 205 water collected in the Tyrrhenian Sea (TYR), Ionian Sea (ION) and in the Algerian basin (FAST; 206 Fig. 1). Six tanks were used to follow simultaneously and with a high temporal resolution, the 207 evolution of biological activity and stocks, nutrients stocks, dissolved organic matter as well as

Formatted: English (US) Deleted: s

Deleted: , especially of Saharan dust,

- 210 particles dynamics and export, following a dust deposition event simulated at their surface, both
- 211 under present environmental conditions and following a realistic climate change scenario for
- 212 2100 (ca. +3 °C and -0.3 pH units; IPCC, 2013). In this manuscript, we will present the general
- 213 setup of the experiments and the evolution of nutrient and biological stocks (heterotrophic and
- autotrophic prokaryotes, photosynthetic eukaryotes as well as micro- and meso-zooplankton).
- 215 <u>Several</u> other manuscripts, related to these experiments, and currently submitted to or published
- 216 <u>in this special issue, focus on plankton metabolism (primary production, heterotrophic</u>
- prokaryote production) and carbon export (Gazeau et al., 2021), on the microbial food web
- (Dinasquet et al., 2021), on nitrogen fixation (Céline Ridame, unpublished results) and on the
- 219 release of insoluble elements (Fe, Al, REE, Th, Pa) from dust (Roy-Barman et al., 2020)

	ed:, the impacts of dust seeding and/or future climate scenario on
Delete	ed: s
Forma	tted: English (US)
Delete	ed: Among several
Delete	ed: currently
Forma	tted: English (US), Not Highlight
Forma	tted: English (US), Not Highlight
Forma	tted: English (US), Not Highlight
Forma	tted: Not Highlight
Delete be	d: that are introduced here, a companion paper will
Delete	ed: ing
Delete	ed: as well as on carbon budget
Forma	tted: English (US)
Delete	ed: (Ridame et al., in preparation)
Delete	d:

231 **2. Material and Methods**

232 **2.1. General setup**

233 Six experimental tanks (300 L; Fig. 2), in which the irradiance spectrum and intensity can 234 be finely controlled and in which future ocean acidification and warming conditions can be fully 235 reproduced, were installed in a temperature-controlled container. The tanks are made of high-236 density polyethylene (HDPE) and are trace-metal free in order to avoid contaminations, with a height of 1.09 m, a diameter of 0.68 m, a surface area of 0.36 m² and a volume of 0.28 m³. All 237 tanks were cleaned before the experimental work following the protocol described by Bressac 238 and Guieu (2013). A weak turbulence was generated by a rotating PVC blade (9 rpm) in order to 239 mimic natural conditions. Each tank was equipped with a lid containing six rows of LEDs 240 241 (Alpheus©). Each of these rows were composed of blue, green, cyan and white units in order to mimic the natural sun spectrum. At the conical base of each tank, a polyethylene (PE) bottle 242 collecting the exported material from above was screwed onto a polyvinyl chloride (PVC) valve 243 that remained open during the duration of the whole experiment. Photosynthetically active 244 245 radiation (PAR; 400-700 nm) and temperature were continuously monitored in each tank using respectively QSL-2100 Scalar PAR Irradiance Sensors (Biospherical Instruments©) and pt1000 246 temperature sensors (Metrohm©) connected to a D230 datalogger (Consort©). 247 248 The experimental protocol comprised two unmodified control tanks (C1 and C2), two tanks enriched with Saharan dust (D1 and D2) and two tanks enriched with Saharan dust and 249 maintained under warmer (+3 °C) and acidified (-0.3 pH unit) conditions (G1 and G2). The 250 atmosphere above tanks C1, C2, D1 and D2 was flushed with ambient air (ca. 400 ppm, 6 L min-251 2.52 ¹) and tanks G1 and G2 were flushed with air enriched with CO₂ (ca. 1000 ppm, 6 L min⁻¹) in 253 order to prevent CO₂ degassing from the acidified tanks. CO₂ partial pressure (pCO₂) in both

Deleted: were

255	ambient air and CO ₂ -enriched air was monitored using two gas analysers (LI-820, LICOR $\mbox{\sc CO}$).	
256	The CO ₂ concentration in the CO ₂ -enriched air was manually controlled through small injections	
257	of pure CO ₂ (Air Liquide [©]) using a mass flow controller.	
258	Three experiments were performed at the long duration stations TYR, ION and FAST.	
259	The tanks were filled by means of a large peristaltic pump (Verder© VF40 with EPDM hose,	
260	flow of 1200 L $h^{\text{-}1})$ collecting seawater below the base of the boat (depth of ~ 5 m), used to	
261	supply continuously surface seawater to a series of instruments during the entire campaign. In	
262	order to homogeneously fill the tanks, the flow was divided into six HDPE pipes distributing the	
263	water simultaneously into the different tanks. Overall, the filling of the six tanks took \sim 2 h	
264	(including rinsing and initial sampling, see thereafter). At the three stations, tanks were always	
265	filled at the end of the day before the start of the experiments: TYR (17/05/2017), ION	
266	(25/05/2017) and FAST (02/06/2017). While filling the tanks, this surface seawater was sampled	
267	for the measurements of selected parameters (sampling time = $t-12h$ <u>before dust seeding</u> , see	
268	Table 1). After filling the tanks, seawater was slowly warmed using 500 W heaters, controlled by	
269	temperature-regulation units (COREMA©), in G1 and G2 overnight to reach an offset of +3 °C.	
270	¹³ C-bicarbonate was added to all tanks at 4:00 am (local time; Gazeau et al., 2021) and G1 and	Deleted: (local time; Gazeau et al., in preparation, this issue)
271	G2 were acidified by addition of CO2-saturated filtered (0.2 $\mu m)$ seawater (~1.5 L in 300 L;	
272	collected when filling the tanks at each station) at 4:30 am to reach a pH offset of -0.3. Sampling	
273	for <u>most</u> parameters took place prior to dust seeding (sampling time = t0, see Table 1). Dust	Deleted: many
274	seeding was performed right after to between 7:00 and 9:00 (local time) in tanks D1, D2, G1 and	
275	G2. The same dust analog was used and the same dust flux was simulated as for the DUNE 2009	
276	experiments described in Desboeufs et al. (2014). Briefly, the fine fraction (< 20 $\mu m)$ of Saharan	
277	soils collected in southern Tunisia, which is a major source of dust deposition over the	
278	northwestern Mediterranean basin, was used in the seeding experiments. The particle size	
279	distribution showed that 99% of particles had a size smaller than 0.1 μ m, and that particles were	

282	mostly made of quartz (40%), calcite (30%) and clay (25%; Desboeufs et al., 2014). This	
283	collected dust underwent an artificial chemical aging process by addition of nitric and sulfuric	
284	acid (HNO3 and H2SO4, respectively) to mimic cloud processes during atmospheric transport of	
285	aerosol with anthropogenic acid gases (Guieu et al., 2010a, and references therein). To mimic a	
286	realistic wet flux event of 10 g m ⁻² , 3.6 g of this analog dust were quickly diluted into 2 L of	
287	ultrahigh-purity water (UHP water; 18.2 M Ω cm ⁻¹ resistivity), and sprayed at the surface of the	
288	tanks using an all-plastic garden sprayer (duration = 30 min). The N and P total contents in the	
289	dust were 1.36 \pm 0.09% of N and 0.055 \pm 0.003% of P (see Desboeufs et al., 2014, for a full	
290	description of dust chemical composition). The experimental protocol included the analysis of an	
291	extensive number of biogeochemical parameters and processes, not all shown and discussed in	
292	this paper, and are listed in Table 1. The experiment at stations TYR and ION lasted 72 h (3	Deleted: that
293	days) whereas the last experiment at station FAST was extended to four days. This relatively	
294	short duration of the experiments was constrained by the time available between stations and the	
295	time needed to properly clean the tanks between the experiments, following the protocol	
296	described by Bressac and Guieu (2013). As a larger time window was possible at the end of the	
297	cruise, the experiment at FAST was extended to four days. Seawater sampling was conducted 1	
298	h (t1h), 6 h (t6h), 12 h (t12h), 24 h (t24h), 48 h (t48h) and 72 h (t72h) (+ 96 h = t96h for station	
299	FAST) after dust addition. Acid-washed silicone tubes were used for transferring the water	
300	collected from the tanks to the different vials or containers. For some parameters (e.g. micro- and	
301	macro-nutrients), sampled seawater was directly filtered at the exit of the sampling tubes	Deleted: , dissolved organic carbon
302	connected to each tank on sterile membrane filter capsules (gravity filtration with Sartobran®	Deleted: online Deleted: of the tanks
303	300; 0.2 μm).	

308 2.2. Analytical methods

309 **2.2.1. Carbonate chemistry**

310 Seawater samples for pH measurements were stored in 300 mL glass bottles with a glass stopper, pending analysis on board (within 2 h). Samples were transferred to 30 mL quartz cells 311 and absorbances at 434, 578 and 730 nm were measured at 25 °C on an Cary60 UV-312 Spectrophotometer (Agilent©) before and after addition of 50 µL of purified meta-cresol purple 313 provided by Robert H. Byrne (University of South Florida, USA) following the method 314 described by Dickson et al. (2007). pH on the total scale (pH_T) was computed using the formula 315 and constants of Liu et al. (2011). The accuracy of pH measurements was estimated to 0.007 pH 316 units, using a TRIS buffer solution (salinity 35, provided by Andrew Dickson, Scripps 317 318 university, USA). 319 Seawater samples for total alkalinity (AT; 500 mL) measurements were filtered on GF/F membranes and analyzed onboard within one day. AT was determined potentiometrically using a 320 321 Metrohm© titrator (Titrando 888) and a glass electrode (Metrohm©, ecotrode plus) calibrated 322 using first NBS buffers (pH 4.0 and pH 7.0, to check that the slope was Nernstian) and then 323 using a TRIS buffer solution (salinity 35, provided by Andrew Dickson, Scripps university, 324 USA). Triplicate titrations were performed on 50 mL sub-samples at 25 °C and AT was calculated 325 as described by Dickson et al. (2007). Titrations of standard seawater provided by Andrew 326 Dickson (Scripps university, USA; batch 151) yielded A_T values within 5 µmol kg⁻¹ of the nominal value (standard deviation = $1.5 \mu mol kg^{-1}$, n = 40). 327 328 All parameters of the carbonate chemistry were determined from pH_T, A_T, temperature, 329 salinity, as well as phosphate and silicate concentrations using the R package seacarb.

330 Propagation of errors on computed parameters was performed using the new function "error" of

331 this package, considering errors associated with the estimation of A_T , pH_T as well as errors on

332 dissociation constants (Orr et al., 2018).

333 **2.2.2. Nutrients**

334 Seawater samples for dissolved nutrients were filtered directly at the exit of the sampling 835 tubes connected to each tank (Sartobran© 300; 0.2 µm), collected in polyethylene bottles and 336 immediately analyzed on board. Nitrate + nitrite (NOx) and silicate (Si(OH)4) measurements 337 were conducted using a segmented flow analyzer (AAIII HR Seal Analytical©) according to 338 Aminot and Kérouel (2007) with a limit of quantification of 0.05 µmol L⁻¹ for NO_x and 0.08 339 μ mol L⁻¹ for Si(OH)₄. In addition, for t-12h samples, the analysis of NO_x was also performed by 340 a spectrometric method in the visible at 540 nm, with a 1 m Liquid Waveguide Capillary Cell 341 (LWCC). The limit of detection was ~ 10 nmol L⁻¹ and the reproducibility was $\sim 6\%$. Also from 342 samples taken at t-12h, the measurement of ammonium concentrations was performed on board 343 using a Fluorimeter TD-700 (Turner Designs©) according to Holmes et al. (1999). This 344 fluorimetric method is based on the reaction of ammonia with orthophtaldialdehyde and sulfite 345 and has a limit of quantification of 0.01 µmol L⁻¹. Dissolved inorganic phosphorus (DIP) concentrations were quantified using the Liquid Waveguide Capillary Cell (LWCC) method 346 according to Pulido-Villena et al. (2010). The LWCC was 2.5 m long and the limit of detection 347 348 was 1 nmol L⁻¹.

349 **2.2.3. Pigments**

A volume of 2.5 L of sampled seawater was filtered onto GF/F filters, immediately frozen in liquid nitrogen and stored at -80 °C pending analysis at the SAPIGH analytical platform at the Institut de la Mer de Villefranche (IMEV, France). Filters were extracted at -20 °C in 3 mL methanol (100%) containing an internal standard (vitamin E acetate, Sigma©), disrupted by Deleted: online

Deleted: <0.2 µm

sonication and clarified one hour later by vacuum filtration through GF/F filters. The extracts
were rapidly analyzed (within 24 h) on a complete Agilent© Technologies 1200 series HPLC
system. The pigments were separated and quantified as described in Ras et al. (2008).

359 2.2.4. Flow cytometry

360 For the enumeration of autotrophic prokaryotic and eukaryotic cells, heterotrophic 361 prokaryotes and heterotrophic nanoflagellates (HNF) by flow cytometry, subsamples (4.5 mL) 362 were fixed with glutaraldehyde grade I 25% (1% final concentration), and incubated for 30 min 363 at 4 °C, then quick-frozen in liquid nitrogen and stored at -80 °C until analysis. Samples were 364 thawed at room temperature. Counts were performed on a FACSCanto II flow cytometer (Becton 365 Dickinson[©]) equipped with 3 air-cooled lasers: blue (argon 488 nm), red (633 nm) and violet 366 (407 nm). The separation of different autotrophic populations was based on their scattering and fluorescence signals according to Marie et al. (2010). Synechococcus spp. was discriminated by 367 its strong orange fluorescence (585 ± 21 nm), and pico- and nano-eukaryotes were discriminated 368 369 by their scatter signals of red fluorescence (> 670 nm). For the enumeration of heterotrophic 370 prokaryotes, cells were stained with SYBR Green I (Invitrogen - Molecular Probes) at 0.025% 371 (vol / vol) final concentration for 15 min at room temperature in the dark. Stained prokaryotic cells were discriminated and enumerated according to their right-angle light scatter (SSC) and 372 373 green fluorescence at 530/30 nm. In a plot of green versus red fluorescence, heterotrophic 374 prokaryotes were distinguished from autotrophic prokaryotes. For the enumeration of HNF, 375 staining was performed with SYBR Green I (Invitrogen-Molecular Probes) at 0.05% (v/v) final 376 concentration for 15-30 min at room temperature in the dark (Christaki et al., 2011). Cells were discriminated and enumerated according to their SSC and green fluorescence at 530/30 nm. 377 378 Fluorescent beads (1.002 µm; Polysciences Europe©) were systematically added to each 379 analyzed sample as internal standard. The cell abundance was determined from the flow rate,

which was calculated with TruCount beads (BD biosciences©). Biomasses of each group were
estimated based on conversion equations and/or factors found in the literature (see section 2.3.2).

382 2.2.5. Micro-phytoplankton and -heterotrophs

At t-12h (i.e. seawater sampled during the filling of the tanks), a volume of 500 mL was sampled in glass vials and immediately preserved in a 5% acidic Lugol's solution pending analysis. At the Laboratoire d'Océanographie de Villefranche (LOV, France), 100 mL aliquots were transferred to sedimentation chambers (Utermohl) and counted under an inverted microscope at 200 to 400 magnifications.

388 2.2.6. Mesozooplankton

389	At the end of each experiment (t+72h for TYR and ION and t+96 h for FAST, after	
390	artificial dust seeding), the sediment traps were removed, closed and stored with formaldehyde	
391	4% (see Gazeau et al., 2021). The value at the base of the tanks was then reopened to let the	Deleted: (see Gazeau et al., in preparation, this issue)
392	remaining water inside the tanks (TYR 165-180 L; ION = 172.5 L and FAST = 150 L) pass	
393	through a large PVC sieve (100 μm). The organisms retained on that mesh were gently removed	
394	from the sieve using a washing bottle filled with filtered seawater (0.2 μ m), and transferred	
395	directly inside a 250 mL bottle. The bottle was filled with the sample (1/3 of the volume), and	
396	was completed with formaldehyde 4%, The zooplankton digital images were obtained using a	Deleted:
397	ZooSCAN (Hydroptic©; Gorsky et al., 2010) at the PIQv-platform of EMBRC-France. The	
398	identification of species was performed by automatic classification with a reference dataset in	
399	EcoTaxa, (https://ecotaxa.obs-vlfr.fr/, last access: 17/04/2020) and then all validated and	Deleted: by automatic comparison with the library data set EcoTaxa
400	corrected <u>manually</u> .	Formatted: English (US)
		Deleted: by a human operator
		Formatted: English (US)

406	2.3 <u>. Data analyses</u>		Deleted: Computations
407	2.3.1. Nutrient inputs from dust		Formatted: Font: Bold
			Formatted: Font colour: Black
408	The maximum percentage of dust-born dissolved N and P, was calculated considering that		Formatted: Font: Bold
			Formatted: English (US)
409	these evapo-condensated dust contain $1.36\pm0.09\%$ of N and $0.055\pm0.003\%$ of P (Desboeufs et		Deleted: The maximum percentage of dissolution from dust
410	al., 2014). Based on maximal concentrations observed in the D and G tanks after seeding (two		observed with respect to N and P
411	discrete sampling within 6 h. following dust seeding, t1h and t6h), one can estimate the maximal		Formatted: English (US)
412	% of dissolution of dust in seawater during the three experiments:		
413	$\%_{dissolution} = \frac{CONC_{max} - CONC_{init}}{CONC_{dust}}.100$ (1)		Deleted: →
414	where CONC _{init} is the concentration of the corresponding nutrient in each tank before seeding		
415	(t0), CONC_{max} corresponds to the concentration of the corresponding nutrient in each tank when		
416	nutrient concentration was at a maximum over the first 6 h after seeding as observed based on		
417	our discrete sampling procedure, and CONC _{dust} is the maximum addition, corresponding to a		
418	100% dissolution of its total concentration in the dust analog (as estimated based on dust	~	Formatted: English (US)
419	chemical composition; Desboeufs et al., 2014; see above).		Deleted: corresponds to the maximum input of each nutrient, if 100% of its total concentration in the dust analog dissolves
420	2.3.2. Autotrophic and heterotrophic biomass		Deleted: →
421	As micro-phytoplankton counting was not performed throughout the experiment, as a		Formatted: Indent: First line: 1.27 cm
422	first approximation, autotrophic biomass was calculated as the sum of carbon contained in		
423	Synechococcus, pico-eukaryotes and nano-eukaryotes (abundances based on flow cytometry) and		
424	is therefore restricted to the fraction \leq 20 μ m. For <i>Synechococcus</i> , conversion to carbon units		
425	was done considering 250 fg C cell ⁻¹ (Kana and Glibert, 1987), while the equation proposed by		Deleted: were
426	Verity et al. (1992; 0.433 BV ^{0.863} where BV refers to the biovolume) was used for pico- and		(Formatted: English (US)
427	nano-eukaryotes assuming a spherical shape and a diameter of 2 and 6 μm for the two groups,		

- 438 respectively. Percentages of these different groups were calculated in order to estimate the
- 439 composition of the communities at the start and its evolution during the experiments.
- 440 Furthermore, heterotrophic biomass was computed as the sum of heterotrophic prokaryotes
- 441 biomass and heterotrophic nanoflagellates biomass. For heterotrophic prokaryotes, conversion to
- 442 carbon units were done considering 20 fg C cell⁻¹ (Lee and Fuhrman, 1987) and for heterotrophic
- 443 nanoflagellates assuming 220 fg C μ m⁻³ (Børsheim and Bratbak, 1987), a spherical shape and a
- $444 \qquad \text{diameter of 3} \ \mu\text{m}. \ \text{The ratio of autotrophic and heterotrophic biomass during the experiments was}$
- 445 used to evaluate the trophic status of the investigated communities and its evolution. Finally, a
- 446 proxy for micro-phytoplankton biomass (B_{micro}) was estimated following Vidussi et al. (2001), as
- the sum of Fucoxanthin and Peridinin.

3. Results

3.1. Initial conditions

450	Initial conditions of various measured parameters at the three sampling stations while	
451	filling the tanks <u>(t-12h before seeding)</u> are shown in Table 2. pH_T and total alkalinity	Formatted: English (US)
452	concentrations followed a west to east increasing gradient (8.03, 8.04 and 8.07; 2443, 2529 and	Deleted: observed when pumping seawater for the experiments (before ¹³ C-bicarbonate addition and dust
453	2627 μ mol kg ⁻¹ at FAST, TYR and ION, respectively). NO _x concentrations were maximal at	seeding: t-12h)
454	station FAST with a NO _x :DIP molar ratio of ~ 4.6. Very low NO _x concentrations were observed	
455	at stations TYR and ION (14 and 18 nmol L-1, respectively). DIP concentrations were the highest	
456	at station TYR (17 nmol L^{-1}) and the lowest at the most eastern station (ION, 7 nmol L^{-1}).	
457	Consequently, the lowest NOx:DIP ratio was measured at TYR (0.8), compared to ION and	
458	FAST (2.8 and 4.6, respectively). Ammonium concentrations were maximal at TYR (0.045 μmol	
459	L^{-1}), intermediate at ION (0.022 µmol L^{-1}), and minimal at FAST (below detection limit).	
460	Silicate concentrations were similar at stations TYR and ION (~ 1 $\mu mol~L^{\text{-1}})$ and higher than at	
461	station FAST (0.64 μ mol L ⁻¹).	
462	Very low and similar concentrations of chlorophyll <i>a</i> were measured at the three stations	
463	(0.063 - 0.072 μg L $^{-1}).$ The proportion of the different major pigments (Fig. 3) showed that	
464	phytoplankton communities at stations TYR and ION were very similar with a dominance of	
465	Prymnesiophytes (i.e. 19'-hexanoyloxyfucoxanthin; Ras et al., 2008) followed by Cyanobacteria	
466	(i.e. Zeaxanthin; Ras et al., 2008). In contrast, at station FAST, the plankton, community was	Deleted: ic
467	clearly dominated by photosynthetic prokaryotes (i.e. Zeaxanthin and Divinyl-chlorophyll a;	
468	Cyanobacteria and Prochlorophytes, respectively; Ras et al., 2008). At all three stations, the	
469	proportion of pigments representative of larger species (i.e. Fucoxanthin and Peridinin; diatoms	
470	and dinoflagellates respectively; Ras et al., 2008) were very small (< 5% for each pigment).	Formatted: English (US)

475	Cellular abundances of all studied microorganisms (phytoplankton, micro-grazers,
476	heterotrophic bacteria) were the highest at FAST (Table 2). Picoeukaryotes, Synechococcus and
477	heterotrophic prokaryotes abundances followed an east to west increasing trend (ION $<$ TYR $<$
478	FAST). In contrast, nano-eukaryotes abundance was similar at FAST and ION, and minimal at
479	TYR. The abundance of heterotrophic nanoflagellates (HNF) were similar at TYR and FAST
480	(~110-125 cells mL ⁻¹), twice as high as the one observed at station ION. This east to west
481	increasing trend was also observed for micro-phytoplankton and micro-heterotrophs abundances
482	(microscopic analyses; Table 2). The ratio between autotrophic biomass and heterotrophic
483	biomass was clearly in favor of the heterotrophic compartment at stations TYR and FAST (~0.6
484	at the two stations) but the opposite was found at station ION (ca. 1.3).

485 **3.2. Conditions of irradiance, temperature and pH during**

486 the experiments

487 Irradiance levels, during the experiments in the control tanks (C1, C2), were maximal at 488 station ION and minimal at station FAST (daily average maximum levels in controls: ~ 1050, ~ 1130 and \sim 1020 μmol photons $m^{\text{-}2} \, \text{s}^{\text{-}1}$ at TYR, ION and FAST, respectively; Fig. 4). Decreases 489 490 of water transparency after dust addition was observed at all three stations with a maximum dust impact at station ION and the lowest impact at station FAST where irradiance levels decreased 491 by only 60 µmol photons m⁻² s⁻¹ after dust addition (average between tanks D and G). At station 492 TYR, a more pronounced decrease was observed in acidified and warmed tanks (G1 and G2) 493 494 with a decrease of daily average maximum irradiance of ~ 60 and ~ 160 μ mol photons m⁻² s⁻¹ as 495 compared to dust-amended tanks D and controls, respectively. Temperature control (Fig. 4) was 496 not optimal showing deviations between replicates of treatment G of up to 1.5 °C (station ION). 497 Temperature in controls and D tanks displayed a daily cycle with an increase during the day and

Deleted: Experimental c Formatted: English (US) Formatted: English (US)

Formatted: English (US)	
Formatted: English (US)	
Formatted: English (US)	
Deleted: s	

a decrease at night. Overall, the differences between the warmed treatment (G) and the other
tanks were +3, +3.2 and +3.6 °C at TYR, ION and FAST, respectively.

502	Addition of CO2-saturated filtered seawater led to a decrease of pH_{T} from 8.05 ± 0.004
503	(average \pm SD between C1, C2, D1 and D2 at t0) to 7.74 (average between G1 and G2) at station
504	TYR, from 8.07 \pm 0.002 to 7.78 at station ION and 8.05 \pm 0.001 to 7.72 at station FAST (Fig. 5).
505	$pH_{\ensuremath{\mathbb{T}}}$ levels remained more or less constant in ambient pH levels tanks during all three
506	experiments with no clear impact of dust addition in tanks D1 and D2. In lowered pH tanks, pH
507	levels gradually increased during the experiments with a systematic larger increase in one of the
508	duplicates (G1). Yet pH_T increases remained moderate thanks to the flushing of CO ₂ -enriched air
509	above the tanks (pCO_2 of 1017 ± 11 , 983 ± 96 , 1023 ± 25 ppm at TYR, ION and FAST,
510	respectively; data not shown). Partial pressure of CO2 in ambient air was similar at the three
511	stations, i.e. 410 ppm (data not shown). At all three stations, the addition of ¹³ C-bicarbonate to
512	all tanks before t0 led to an increase of total alkalinity between 6 and 11 µmol kg ⁻¹ at t0, Dust
513	addition, performed right after t0 in tanks D and G, led to a A_{TL} decrease in these tanks between 8
514	and 16 µmol kg ⁻¹ at t24h with no apparent effects of warming and acidification. Overall, no large
515	changes in this parameter were observed during the experiments (Fig. 5).

516 3.3. Changes in nutrient concentrations

517 Dust addition in tanks D and G led to a rapid and maximum input of NO_x (as observed 518 during the first 6 h; Fig. 6; Table 3) of ~ 11 μ mol L⁻¹ at all three stations with no differences 519 between both treatments. The corresponding dissolution percentage of N contained in the dust 520 analog was between 94 and 99%. In contrast, maximum DIP release (within 6 h after dust 521 addition) from the dust analog was much smaller and comprised between 20 and 37 nmol L⁻¹, 522 with slightly higher release at FAST (31-37 nmol L⁻¹) as compared to the other stations. 523 Dissolution percentages for DIP were estimated between 9.2 and 17.3% of total phosphorus

Formatted: English (US)

Formatted:	English (US)
Deleted: ¹³ C	C-addition
Formatted:	Not Superscript/ Subscript
Formatted:	English (US), Not Superscript/ Subscript
Formatted:	Not Superscript/ Subscript
Deleted: an	d d
Formatted:	English (US)
Deleted:	
Formatted:	Font: Italic, English (US)
Formatted:	English (US), Subscript
Formatted:	English (US)
Deleted: tar	nks D and G
Formatted:	English (US)
Formatted:	English (US)

contained in dust. As a consequence of these contrasted dissolution of N and P, NO_x:DIP ratios
increased from initial values below 5 to above 300, within 6 h after dust seeding, in the dust
amended (D and G) tanks (Fig. 6).

531 After these rapid increases due to N and P releases in dust amended tanks, both variables decreased with time. While nutrient variability was small in control tanks over the duration of the 532 experiments (NO_x and DIP variations below 20 and 3 nmol L⁻¹, respectively), large decrease of 533 both elements was measured in dust amended tanks (D and G; Table 4). For NO_x, similar linear 534 535 decreases were observed throughout the experiments at stations TYR and ION with no visible 536 differences between tanks D and G. In contrast, at station FAST, a more pronounced decrease in 537 NO_x was observed in dust-amended (D and G) tanks as compared to the other stations, with 538 detectable larger decreases in warmed and acidified tanks relative to the D treatment. 539 Nevertheless, at all stations, NOx concentrations in D and G treatments remained far above 540 ambient levels throughout the experiments (> 9 µmol L⁻¹). Abrupt decreases in DIP were 541 observed during the three experiments after the initial increase. At station TYR, after 24 h, all 542 DIP released from dust decreased to initial levels in tanks G while it took two more days to reach 543 initial levels in tanks D. In contrast, at station ION, no clear difference in DIP dynamics was 544 observed between treatments D and G, with concentrations that decreased rapidly during the first 545 24 h but that remained above initial levels until the end of the experiment. At station FAST, 546 similarly to station TYR, DIP decreased rapidly from t12h in treatment G, reaching levels close 547 to initial conditions at the end of the experiment. DIP decrease was much lower in treatment D 548 (Table 4) with concentrations maintained far above ambient levels throughout the experiment. 549 As a consequence of these differences between NOx and DIP dynamics as well as differences 550 among stations, NOx:DIP ratio increased during the experiments with clear differences between 551 stations (Fig. 6) and remained much higher than that in the controls over the duration of the three 552 experiments.

553	Silicate dynamics showed at all stations higher concentrations in dust amended (D and G)
554	tanks relative to the controls. At TYR, while concentrations remained stable in control tanks
555	they increased linearly with time in the other tanks (D and G) with no apparent effect of the
556	imposed increase in temperature and decrease in pH (i.e. tanks G). Difference of Si(OH) ₄
557	concentration between dust amended treatments (D and G) and controls was ~0.1 $\mu mol \ L^{\text{-1}}$ at the
558	end of the experiment. At station ION, after an initial decrease of concentrations between t-12h
559	and t0, concentrations increased in all tanks until the end of the experiment with higher
560	concentration in dust amended tanks (D and G) than in controls (no difference between D and G
561	treatments). In contrast, at FAST, concentrations increased between t-12h and t0, and continued
562	to increase in all tanks (with higher values in dust amended tanks) until t48h and then decreased
563	until the end of the experiment. At the end of the experiment (t96h), Si(OH) ₄ concentration was
564	higher in the G treatment than in the D treatment which was similar to the controls.

565 3.4. Changes in biological stocks

566 Regarding biological stocks, temporal dynamics showed very different patterns amongst 567 the three studied stations. At TYR, total chlorophyll a concentrations did not change in dust 568 amended tanks maintained under ambient levels of temperature and pH (Fig. 7) and even led to 569 slightly decreased values 24 h after dust addition (e.g. -35 to -38% in D1 and D2, respectively as 570 compared to controls; Table 5). No clear effect of dust addition (tanks D vs. C) were detectable 571 for all groups based on pigment analyses (Fig. 7). Results obtained based on flow cytometry counting (Fig. 8) were coherent with these observations and showed stronger decreases in cell 572 573 abundances for < 20 µm autotrophic groups in tanks D1 and D2 (-77 to -80%). In contrast, at this 574 station, the abundance of heterotrophic prokaryotes (HP) increased rapidly after dust addition both under ambient (+53-68%) and future (+68%) environmental conditions, with no clear 575 576 difference among those treatments. In warmed and acidified tanks, strong discrepancies between

Formatted: English (US)

Deleted: concentrations remained stable,

Deleted: temporal dynamics showed very different patterns with respect to the sampling station

580	the duplicates were observed for pigments and autotrophic cell abundances. Indeed, tank G1			
581	showed moderately higher levels for all variables as compared to tanks C with the exception of		ormatted: English (US)	
582	pico-eukaryotes, while in G2 all variables responded strongly to dust addition with maximum	ſ	Deleted: at	
583	relative changes of $> 300\%$ (with the exception of nano-eukaryotes: +119%). While HNF		Deleted: at	
584	abundances responded positively to the treatments in D1, D2 and G2 (+100-352%), abundances	F	ormatted: English (US)	
585	increased sharply in tank G1 towards the end of the experiment (+1095%).			
586	At ION, a clear distinction between treatments could be observed for almost all pigments		Peleted:	
587	and cell abundances (Fig. 7, Fig. 8). With the exception of nano-eukaryotes and HNF, all	-(F	ormatted: English (US)	
588	variables (pigments and cell abundances) increased as a response to both dust addition and		Peleted: At	
589	warmed/acidified conditions (i.e. $C \le D \le G$). As an example (Table 5), the maximum relative			
590	changes as compared to controls observed for total chlorophyll a were 109-183% and 399-426%			
591	in tanks D and G, respectively. The highest stimulation to dust addition was observed for			
592	Synechococcus with a +317-390% increase and +805-1425% increase in D and G tanks			
593	respectively (Table 5). Abundances of nano-eukaryotes and HNF suggested no impact of dust			
594	addition under ambient conditions but a positive impact in treatment G. In contrast to what was			
595	observed at TYR for HP abundances, an effect of temperature and pH was observed at station			
596	ION with a higher impact of dust addition under future environmental conditions.			
597	At station FAST, all above mentioned variables related to biological stocks increased		Peleted:	
598	strongly after dust addition (Fig. 7, Fig. 8 and Table 5). For instance, total chlorophyll a			
599	increased following an exponential trend until the end of the experiment reaching maximal			
600	values at t96h with slightly lower values observed under ambient environmental conditions			
601	(+237-318% in D tanks vs. ~ +400% in G tanks). Prymnesiophytes (i.e. 19'-			
602	hexanoyloxyfucoxanthin) and diatoms (i.e. Fucoxanthin) appeared as the groups benefiting the			
603	most from dust addition with no large impacts of warming/acidification. In contrast,			
604	Pelagophytes (i.e. 19'-butanoyloxyfucoxanthin) and green algae (i.e. Total Chlorophyll b)			

610	responded much more in treatment G than in treatment D. Finally, although Cyanobacteria (i.e.
611	Zeaxanthin) responded faster to dust addition under future environmental conditions (tanks G),
612	this effect tended to attenuate towards the end of the experiment. In contrast to estimates based
613	on HPLC data, increases in cell abundances did not generally take place until the end of the
614	experiment. While abundances in pico-eukaryotes increased until t96h in treatment D,
615	abundances sharply declined between t72h and t96h for this group in treatment G. The same
616	trend was observed for Synechococcus during this experiment, although discrepancies between
617	duplicates in treatment D at sampling time t96h did not allow drawing conclusions on the
618	behavior of this group at the end of the experiment. Both under ambient and future conditions,
619	abundances of nano-eukaryotes declined sharply between t72h and t96h. The decline in HP
620	abundances appeared even earlier during the experiment with moderate maximum relative
621	differences as compared to controls observed at t48h. HP abundances declined very sharply
622	between t48h and t96h in treatment G, reaching control levels, while this decline was less sharp
623	under ambient environmental levels. Finally, HNF dynamics during this experiment was hard to
624	evaluate with no clear effects of dust addition or pH/temperature conditions and with a large
625	increase in abundances in only one duplicate of treatment G (t24h) followed by a gradual
626	decrease.
627	Abundances of meso-zooplankton at the end of the experiments showed relatively similar
628	values at stations TYR and ION while much higher levels were observed at station FAST (Fig.

9). As a consequence of large variability between duplicates at stations TYR and ION, no clear

effects of treatments were detected. At station FAST, although the sample size was too low to

observed in the dust-amended tanks with no differences between ambient and future conditions

statistically test for differences, higher total abundances of meso-zooplankton species were

of temperature and pH. However, differences in abundance were visible between these two

629 630

631

632 633

- 634 treatments for specific groups, with respectively higher abundance of Harosa and lower
- 635 abundance of Crustacea (other than copepods) and Mollusca in warmed and acidified tanks.

636 **4. Discussion**

637 4.1. Initial conditions

638	Over the transect, the mixed layer occupied the first 20 m. It was shallower at TYR as
639	compared to ION and FAST (mixed layer depth, MLD of ~ 10 vs ~ 15 m, respectively) at the
640	time of the sampling (Van Wambeke et al., 2020a). Such shallow MLD is well representative of
641	stratified conditions encountered in the western Mediterranean basin in late spring/early summer
642	(D'Ortenzio et al., 2005), Overall, the three experiments were conducted with surface seawater
643	collected during oligotrophic conditions typical of the open Mediterranean Sea at this period of
644	the year (late spring). Although direct measurements of NOx and DIP concentrations using
645	nanomolar techniques (as performed in our study) are scarce in the Mediterranean Sea, the low
646	levels measured during the cruise are in agreement with DIP values reported for the three studied
647	basins (Djaoudi et al., 2018), and with NO _x and DIP concentrations measured in coastal waters of
648	Corsica in late spring/early summer (Louis et al., 2017b; Pulido-Villena et al., 2014; Ridame et
649	al., 2014). Furthermore, at all three stations, NOx:DIP molar ratios in the tested surface waters
650	were well below the Redfield ratio (16:1) and are consistent with ratios found in these previously
651	cited studies. Both low NO _x :DIP ratio and low nutrient concentrations suggest that communities
652	found at the three stations experienced N and P co-limitation at the start of the experiments, as
653	previously shown by Tanaka et al. (2011). <u>A side nutrient enrichment experiment confirmed that</u>
654	at the three sites, heterotrophic bacteria were mainly N-P co-limited (Van Wambeke et al.,
655	2020b), In contrast to N and P, initial concentrations of dissolved Fe in the sampled seawater,
656	ranging from 1.5 nmol L ⁻¹ at TYR to 2.5 nmol L ⁻¹ at JON (Roy-Barman et al., 2020), were
657	unlikely limiting for biological activity as previously shown in the Mediterranean Sea <u>under</u>
658	stratified conditions (Bonnet et al., 2005; Ridame et al., 2014),

1	Formatted	([1])
I	Field Code Changed	
	Formatted	([2])
	Deleted: typical stratified	
1	Formatted	([3])
	Deleted: However, at all three stations, initial concer of NO _x (14, 18 and 59 nmol L ⁻¹ at TYR, ION and FAS respectively; Table 2) were lower that the ones report Manca et al. (2004) in surface waters (5 m) in these at spring (0.036 \pm 0.10, 0.275 \pm 0.358 and 0.183 \pm 0.282 L ⁻¹ for the areas corresponding to TYR, ION and FAS respectively; http://¶ doga.ogs.trieste.it/mcdar/climatologies/, last access: 28/04/2020). Similarly, surface DIP concentrations as measured at the three stations were lower than values extracted from the compilation of Manca et al. (2004) same period (0.072 \pm 0.072, 0.054 \pm 0.035 and 0.115 µmol L ⁻¹ in the areas corresponding to TYR, ION and respectively). However, d	ST, ed by reas in μ µmol T, for the ± 0.078
A	Formatted	[4]
1	Deleted: , limiting our ability to compare our results these published values which, in any case, show large interannual variability. the	
	Formatted	([5]
	Deleted: measured during PEACETIME	
1	Formatted	([6]
1	Field Code Changed	
	Formatted: French	
	Deleted: Djaoudi et al. (2018) reported low DIP valu the three studied basins. Furthermore, low observed concentrations of NO _x and DIP at all three stations du study were also in agreement with reported concentrat the coastal waters of Corsica during experiments using mesocosms in June, whether during the DUNE projec ~5 nmol L ⁻¹ ; Pulido-Villena et al., 2014; NO _x < 30 nm	ring our tions in g <i>in situ</i> t (DIP
	Formatted	([8]
\mathbb{Z}	Deleted: Some enrichment experiments in DIP, NO ₃	
ļĮ	Formatted	([10]
1	Deleted: I	([10])
!]	Formatted	([11])
7	Deleted:anged	([12])
	Formatted: English (US)	
Ż	Deleted: (\rightarrow
_	Formatted: English (US)	\longrightarrow
_	Deleted:)to 2.5 nmol L ⁻¹ HYPERLINK	([13])
>	Formatted: English (US)	
1	Deleted: (ION; Roy-Barman et al., 2020)et al., in	([14])
//	Formatted: English (US)	<u>[+]</u>
$\left(\right)$	Deleted: . Such concentrations	\rightarrow
1	Formatted	([15]

758	Low total chlorophyll a concentrations in the tested waters were representative of surface
759	concentrations reported for the Western and Central Mediterranean Sea in late spring/early
760	summer, both from remote sensing images (Bosc et al., 2004), and from in situ measurements
761	provided in a database from Manca et al. (2004), While large species (i.e. diatoms,
762	dinoflagellates) represented only $\sim 10\%$ of the total chlorophyll <i>a</i> biomass of the tested waters,
763	the composition of the smaller size phytoplankton communities differed substantially. Indeed,
764	communities were clearly dominated by nano-eukaryotes at stations TYR and ION and a larger
765	contribution from pico-eukaryotes and Cyanobacteria was observed at station FAST. Due to their
766	low competitiveness under nutrient limitation, the small contribution of large phytoplankton cells
767	at the start of the experiment is a fingerprint of LNLC areas in general, and of surface
768	Mediterranean waters in late spring and summer (Siokou-Frangou et al., 2010).
769	As biomass of both heterotrophic nanoflagellates and prokaryotes followed a west to east
770	gradient (FAST > TYR > ION), the ratio of autotrophic vs heterotrophic biomass appeared
771	clearly in favor of the heterotrophic compartment at stations TYR and FAST (ratio of 0.6) while
772	a value above 1 was estimated at ION (ratio of 1.3). This is coherent with the highest net
773	community production (NCP) rates being reported at this station by Gazeau et al. (2021)
774	showing that the initial community at the start of this experiment was very close to metabolic
775	balance (mean \pm SE: -0.06 \pm 0.09 $\mu mol~O_2~L^{-1}~d^{-1}).$ The highest community respiration rates and
776	consequently lowest NCP rates were measured at station TYR (-1.9 $\mu mol~O_2~L^{-1}~d^{-1})$ further
777	suggesting that the autotrophic plankton community was not very active and relying on
778	regenerated nutrients, as shown by the highest level of $\rm NH_{4^+}$ measured at the start of this
779	experiment. In contrast, although slightly heterotrophic (Gazeau et al., 2021) and limited by the
780	low amount of nutrients, the community of the tested waters at FAST, was the most active as
781	shown by the highest levels of ¹⁴ C production and heterotrophic prokaryote production (Gazeau
782	et al., 2021), as well as N ₂ fixation, (Céline Ridame, unpublished results), Altogether, the
1	· / /

(
Deleted: T	$ \longrightarrow $
Formatted	([16])
• Deleted: of ~ 0.06 - 0.07 μ g L ⁻¹ (Table 2)	$ \longrightarrow $
Formatted	[18]
Deleted: typical of	
Formatted	([17])
Formatted	([19])
Deleted: chlorophyll <i>a</i> levels found	
Deleted: in these areas of the surface Mediterranean	(
Formatted	([20])
Formatted	
Deleted: as seen by	([22])
Formatted	
Deleted: satellite (Bosc et al., 2004) or from a dat	([23])
V	
Formatted	([25])
Deleted: (Manca et al., 2004) During the DUNE	
Formatted	[27]
Deleted: ,)
Formatted	[28]
Deleted: ,based on HPLC pigment analyses,iff	^{fe} ([29])
Formatted	([30])
Deleted: . Indeed, while the communities were dom	ii([31])
Formatted	([32])
Deleted: eukaryotic	<u>([==]</u>)
Formatted	[33]
>	([33]
Deleted: species	
Deleted: species Formatted	([34]
Deleted: species Formatted Deleted: , both HPLC and flow cytometry data sugg	([34]) ;•([35])
Deleted: species Formatted Deleted: , both HPLC and flow cytometry data sugg Formatted	([34]
Deleted: species Formatted Deleted: , both HPLC and flow cytometry data sugg Formatted Deleted: and	([34]) ([35]) ([36])
Deleted: species Formatted Deleted: , both HPLC and flow cytometry data sugg Formatted Deleted: and Deleted:t station FAST. Micro-autotrophs (e.g. 1	([34]) ([35]) ([36]) ([38])
Deleted: species Formatted Deleted: , both HPLC and flow cytometry data sugg Formatted Deleted: and Deleted:t station FAST. Micro-autotrophs (e.g. 1 Formatted	([34]) ([35]) ([36])
Deleted: species Formatted Deleted: , both HPLC and flow cytometry data sugg Formatted Deleted: and Deleted:t station FAST. Micro-autotrophs (e.g. 1 Formatted Formatted	([34]) ([35]) ([36]) ([38])
Deleted: species Formatted Deleted: , both HPLC and flow cytometry data sugg Formatted Deleted: and Deleted:t station FAST. Micro-autotrophs (e.g. 1 Formatted	([34]) ([35]) ([36]) ([36]) ([37])
Deleted: species Formatted Deleted: , both HPLC and flow cytometry data sugg Formatted Deleted: and Deleted:t station FAST. Micro-autotrophs (e.g. I Formatted Formatted Deleted: at this period of the year Formatted	([34]) (x [35]) ([36]) (x [38]) (x [37]) (x [39]) (x [40])
Deleted: species Formatted Deleted: , both HPLC and flow cytometry data sugg Formatted Deleted: and Deleted:t station FAST. Micro-autotrophs (e.g. 1 Formatted Formatted Deleted: at this period of the year	([34]) (x [35]) ([36]) (x [38]) (x [37]) (x [39]) (x [40])
Deleted: species Formatted Deleted: , both HPLC and flow cytometry data sugg Formatted Deleted: and Deleted:t station FAST. Micro-autotrophs (e.g. I Formatted Formatted Deleted: at this period of the year Formatted	([34]) (x [35]) ([36]) (x [38]) (x [37]) (x [39]) (x [40])
Deleted: species Formatted Deleted: , both HPLC and flow cytometry data sugg Formatted Deleted: and Deleted:t station FAST. Micro-autotrophs (e.g. 1 Formatted Formatted Deleted: at this period of the year Formatted Deleted: Autotrophic biomasses, as estimated based	([34]) ([34]) ([35]) ([35]) ([35]) ([36]) ([37]) ([39]) ([40]) ([41])
Deleted: species Formatted Deleted: , both HPLC and flow cytometry data sugg Formatted Deleted: and Deleted:t station FAST. Micro-autotrophs (e.g. I Formatted Formatted Deleted: at this period of the year Formatted Deleted: Autotrophic biomasses, as estimated based Formatted Deleted: Autotrophic biomasses, as estimated based	([34]) ([34]) ([35]) ([35]) ([35]) ([36]) ([37]) ([39]) ([40]) ([41])
Deleted: species Formatted Deleted: , both HPLC and flow cytometry data sugg Formatted Deleted: and Deleted:t station FAST. Micro-autotrophs (e.g. I Formatted Formatted Deleted: at this period of the year Formatted Deleted: Autotrophic biomasses, as estimated based Formatted Deleted: the metabolic balance	([34]) (4([35]) ([36]) (4([37]) ([37]) ([40]) ([41]) ([42])
Deleted: species Formatted Deleted: , both HPLC and flow cytometry data sugg Formatted Deleted: and Deleted:t station FAST. Micro-autotrophs (e.g. I Formatted Formatted Deleted: at this period of the year Formatted Deleted: Autotrophic biomasses, as estimated based Formatted Deleted: the metabolic balance Formatted	(
Deleted: species Formatted Deleted: , both HPLC and flow cytometry data sugg Formatted Deleted: and Deleted:t station FAST. Micro-autotrophs (e.g. I Formatted Formatted Deleted: at this period of the year Formatted Deleted: Autotrophic biomasses, as estimated based Formatted Deleted: the metabolic balance Formatted Deleted: the metabolic balance Formatted Deleted: (in preparation, this issue)	([34] ([35]) ([35]) ([36]) ([37]) ([40]) ([41]) ([41]) ([41]) ([43])
Deleted: species Formatted Deleted: , both HPLC and flow cytometry data sugg Formatted Deleted: and Deleted:t station FAST. Micro-autotrophs (e.g. 1 Formatted Formatted Deleted: at this period of the year Formatted Deleted: Autotrophic biomasses, as estimated based Formatted Deleted: the metabolic balance Formatted Deleted: (in preparation, this issue) Formatted	([34] ([35]) ([35]) ([36]) ([37]) ([40]) ([41]) ([41]) ([41]) ([41]) ([44]) ([44]) ([44])
Deleted: species Formatted Deleted: , both HPLC and flow cytometry data sugg Formatted Deleted: and Deleted:t station FAST. Micro-autotrophs (e.g. l Formatted Formatted Deleted: at this period of the year Formatted Deleted: Autotrophic biomasses, as estimated based Formatted Deleted: the metabolic balance Formatted Deleted: (in preparation, this issue) Formatted Deleted: (in preparation, this issue) at Formatted Deleted: (Ridame et al., in preparation, this issue) at Formatted	([34]) ([35]) ([35]) ([35]) ([35]) ([35]) ([37]) ([40]) ([40]) ([41]) ([41]) ([42]) ([43]) ([45]) ([45]) ([46])
Deleted: species Formatted Deleted: , both HPLC and flow cytometry data sugg Formatted Deleted: and Deleted:t station FAST. Micro-autotrophs (e.g. I Formatted Formatted Deleted: at this period of the year Formatted Deleted: at this period of the year Formatted Deleted: Autotrophic biomasses, as estimated based Formatted Deleted: the metabolic balance Formatted Deleted: (in preparation, this issue) Formatted Deleted: (Ridame et al., in preparation, this issue) at Formatted Deleted: (Table 2)as the most active as shown by	([34]) ([35]) ([37]) ([40]) ([41]) ([41]) ([41]) ([44]) ([45])
Deleted: species Formatted Deleted: , both HPLC and flow cytometry data sugg Formatted Deleted: and Deleted:t station FAST. Micro-autotrophs (e.g. I Formatted Formatted Deleted: at this period of the year Formatted Deleted: Autotrophic biomasses, as estimated based Formatted Deleted: the metabolic balance Formatted Deleted: (in preparation, this issue) Formatted Deleted: (in preparation, this issue) Formatted Deleted: (Ridame et al., in preparation, this issue) al Formatted Deleted: (Table 2)as the most active as shown by Formatted	([34]) ([35]) ([35]) ([35]) ([35]) ([35]) ([37]) ([40]) ([40]) ([41]) ([41]) ([42]) ([43]) ([45]) ([45]) ([46])
Deleted: species Formatted Deleted: , both HPLC and flow cytometry data sugg Formatted Deleted: and Deleted:t station FAST. Micro-autotrophs (e.g. I Formatted Formatted Deleted: at this period of the year Formatted Deleted: Autotrophic biomasses, as estimated based Formatted Deleted: the metabolic balance Formatted Deleted: (in preparation, this issue) Formatted Deleted: (Ridame et al., in preparation, this issue) al Formatted Deleted: (Table 2)as the most active as shown by Formatted Deleted:	(
Deleted: species Formatted Deleted: , both HPLC and flow cytometry data sugg Formatted Deleted: and Deleted:t station FAST. Micro-autotrophs (e.g. I Formatted Formatted Deleted: at this period of the year Formatted Deleted: Autotrophic biomasses, as estimated based Formatted Deleted: the metabolic balance Formatted Deleted: (in preparation, this issue) Formatted Deleted: (in preparation, this issue) Formatted Deleted: (Ridame et al., in preparation, this issue) al Formatted Deleted: (Table 2)as the most active as shown by Formatted	([34]) ([35]) ([37]) ([40]) ([41]) ([41]) ([41]) ([44]) ([45])

heterotrophic signature of the three investigated stations, although closer to metabolic balance <u>at</u>
ION, reflected typical <u>biogeochemical conditions in the Mediterranean Sea during late spring to</u>
early summer (Regaudie-de-Gioux et al., 2009).

917 4.2. Critical assessment of the experimental system and

918 <u>methodology</u>

919 The experimental tanks used in this study have been successfully validated in previous 920 studies designed to investigate the inputs of macro- and micro-nutrients (e.g. NO_x, DIP, DFe) 921 and the export of organic matter, under close-to-abiotic conditions (seawater filtration onto 0.2 922 $\mu m)$ following simulated wet dust events using the same analog as used in our study (Bressac 923 and Guieu, 2013; Louis et al., 2017a, 2018), Louis et al. (2017a, 2018) further investigated these 924 impacts under lowered pH conditions, although no control of atmospheric pCO2 was performed 925 resulting in a rapid increase of pH levels in the acidified filtered seawater due to CO₂ outgassing (from ~7.4 to ~7.7 in six days). Since those above-mentioned studies, in order to avoid this, we 926 927 improved our experimental system to allow mimicking future conditions by controlling 928 atmospheric pCO₂ in addition to light and temperature (i.e. climate reactors). This allowed to 929 significantly reduce CO₂ outgassing and maintain pH levels close to experimental targets. Still, 930 as <u>illustrated</u> in Fig. 5, the regulation of atmospheric CO2 was consistently more efficient in tank 931 G2 compared to G1, resulting in a small discrepancy in terms of pH (highest difference of 0.04 932 pH units between the two G tanks at FAST), possibly due to a potential leak or a longer flushing 933 time above tank G1. Nevertheless, as no systematic differences in terms of biological response 934 were observed between these two tanks, we believe that these small differences in terms of 935 regulated pH had no consequences on the obtained results, 936 The lids above tanks, equipped with LEDs in order to reproduce sunlight intensity and

p37 spectrum, were used for the first time during these experiments, <u>While simulated intensities were</u>

Deleted: natural	
Formatted: English (US)	
Deleted: Experimental	
Formatted: English (US)	
Deleted: already	
Formatted: English (US)	
Deleted: several	
Formatted	([50]
Field Code Changed	
Deleted: . During these experiments,	
Formatted: English (US)	
Deleted: and	
Deleted: rapidly increased ue to CO ₂ degassing	([51]
Formatted: English (US)	
Formatted	([52]
Deleted: Prior to the cruise,e improved our expessive to allow mimicking future conditions by condatmospheric <i>p</i> CO ₂ in addition to light and temperatu	rolling

Deleted: for

Formatted: English (US)

1	Deleted: we ignificantly reduced	[54]
//(Formatted: English (US)	
$\ $	Deleted: deassing and maintainedpH levels clo experimental targets. However	ose to
1	Formatted: English (US)	
Ż	Deleted: can be seen	
Ά	Formatted	[56]
	Deleted: asompared to G1.	[57]
	Formatted: English (US)	
	Deleted: We attribute this	
\rightarrow	Formatted	[58]
	Deleted: to	
	Formatted	[59]
΄)	Deleted: we do not anticipate this as an issue.	
1	Deleted: The maximal intensity reached under cont conditions (C1, C2) was between 900 and 1000 μ mol $m^2 d^4$. Although slightly lower than actimates for the	l photons

climate reactors). During our experiments, thanks to the control of atmospheric pCO_2 (~ 1000 ppm), (

Formatted: English (US)

.. [53])

conditions (C1, C2) was between 900 and 1000 μ mol photons $m^2 d^1$. Although slightly lower than estimates for the Northwestern Mediterranean Sea at 5 m depth in June (~1100 μ mol photons $m^2 d^1$; Bernard Gentili, personal communication, 2017)

Formatted: English (US) Deleted: .

1001	close to estimates for the Northwestern Mediterranean Sea at 5 m depth in June (~1100 µmol	-7
1002	photons m ² s ⁻¹ ; Bernard Gentili, personal communication, 2017) and fairly consistent between	/
1003	duplicates under control and dust-amended conditions, larger differences were observed between	
1004	the two warmed and acidified tanks, The reasons of these discrepancies could result from small	<
1005	differences in terms of light intensity regulation between lids, of PAR sensors calibration and/or	
1006	of different turbidity related to the amount of particles remaining in the tanks. As for pH	
1007	discussed above, replication in terms of biological response appeared satisfactory for this	
1008	treatment (except at station TYR; see below), and we believe these technical issues had no	
1009	significant impacts on our results,	
1010	<u>Continuous measurements in the tanks showed that temperature was not spatially</u>	
1011	homogeneous, leading to significant differences among replicates. This was especially the case	
1012	for warmed tanks (treatment G) for which a maximal average difference over the experimental	
1013	period of 0.7 °C was observed during the FAST experiment. As for the other controlled	
1014	parameters discussed above, these discrepancies did not systematically lead to observable	
1015	differences in the investigated stocks and processes between duplicates (except at TYR, see	
1016	below),	
1017	The relatively low number of experimental units that could be installed inside an	
1018	embarkable clean container restrained our possibility to consider more than two replicates per	
1019	treatment. Fortunately, as already said, differences between duplicates were, for the vast majority	
1020	of studied variables and processes, lower than differences between treatments and appear	
1021	acceptable considering the difficulty to incubate plankton communities for which slight	
1022	differences in their initial composition can translate into very important differences in dynamics	
1023	(Eggers et al., 2014). <u>Nevertheless, we have to note that important discrepancies were detected</u>	
1024	regarding autotrophic stocks and processes (Gazeau et al., 2021) for tanks of the warmed and	
1025	acidified treatment at station TYR. The reasons behind these differences are not fully understood	
1		

Formatted	[60]
Deleted: conditions (C1, C2)nd underust-am conditions (D1, D2)	
Deleted: . In contrast,	([61]
Formatted: English (US)	\rightarrow
Formatted	
Deleted: (G1 and G2; maximal differences of 100 µmol photons m ² d ⁻¹ depending on the experiment) generally increased during each experimentThe r	that
these discrepancies are not clear and	[63]
Formatted: English (US)	
Deleted: of	
Formatted: English (US)	
Deleted: light intensity generated by the lids of l sensors sensitivity	PAR ([64]
Formatted	[65]
Deleted: Unfortunately, a	
Formatted: English (US)	
Deleted: lthough r	
Formatted	[66]
Deleted:), we can not fully exclude	
Formatted	[67]
Deleted: a potential	
Formatted	[68]
Deleted: of these technical issues n our results for warmer and acidified treatment	or this [69]
Deleted: A similar conclusion can be drawn regard temperature regulation in the container where	ling
Formatted: Indent: First line: 1.27 cm	
Formatted	[70]
Deleted:	
Formatted	[71]
Deleted: After this study, experimental tanks were in a new container in order to solve these problems.	installed
Formatted: English (US)	
Deleted: The experimental strategy chosen during	thi [72]
Formatted: English (US)	
Deleted: considering three	
Formatted: English (US))
Deleted: different treatments: control, simulation of	of ([73]
Formatted: English (US)	
Deleted: ery	
Formatted: English (US)	
Deleted: the different behavior of the autotrophic	([74]
2	

	1144	but we strongly suspect that	heterotrophic nano-flagellates,	feeding mainly on prokaryotic	
--	------	------------------------------	---------------------------------	-------------------------------	--

1145 picoplankton (Sherr and Sherr, 1994), exerted a strong top-down control on this group in tank G1

- 1 46 in which HNF abundance sharply increased during the experiment, <u>All in all, while the</u>
- 1 47 methodology used in this study allowed to successfully evaluate the impacts of dust addition
- 1 48 under both present and future environmental conditions at two out of three tested waters, these
- discrepancies at station TYR prevent us from drawing any strong conclusion on the effect of dust
- 1 150 addition on the dynamics of the community <u>under future environmental conditions at</u> that station.

1 4.3. Impact of dust addition <u>under present environmental</u>

1152 conditions

1153	During the three experiments, the observed increases in $\ensuremath{\text{NO}_x}$ and DIP few hours after
1154	dust addition <u>under present environmental conditions</u> were rather similar to the enrichment levels
1155	obtained during the DUNE experiments at the surface of the mesocosms ($\sim 50~\text{m}^3)$ after the
1156	simulation of a wet dust deposition using the same dust analog and the same simulated flux
1157	(Pulido-Villena et al., 2014; Ridame et al., 2014). The intensity of this simulated wet deposition
1158	event (i.e. 10 g m ⁻²) represents a high but realistic scenario, as several studies reported even
1159	higher short wet deposition events in this area of the Mediterranean Sea (Bonnet and Guieu,
1160	2006; Loÿe-Pilot and Martin, 1996; Ternon et al., 2010). Furthermore, based on previous studies
1161	reporting the mixing between dust and polluted air masses during the atmospheric transport of
1162	dust particles (e.g. Falkovich et al., 2001; Putaud et al., 2004), we chose to use an evapo-
1163	condensed dust analog that mimics the processes taking place in the atmosphere prior to
1164	deposition, essentially the adsorption of inorganic and organic soluble species (e.g. sulfate and
1165	nitrate; see Guieu et al., 2010a, for further details). The imposed evapo-condensation processes
1166	are responsible for the large nitrate releasing capacity of the dust particles used in our study. As a
1167	consequence, the addition of new nutrients from dust in our study and during the P and R DUNE

Deleted: (+1100% in G1 vs. + 300% in G2)

. .

Deleted: Interestingly, while autotrophic prokaryotes were clearly impacted, no differences between the two tanks G1 and G2 were observed for heterotrophic prokaryotes although nanoflagellates are known to feed to this group as well (Sherr and Sherr, 1994). Heterotrophic nano-flagellates were likely not the only group of grazers which abundance increased during this experiment in tank G1 as the biomass of diatoms (i.e. Fucoxanthin) did not increase in this tank. Nevertheless, as no analyses of micro-grazer abundances were performed during the experiments, this hypothesis can not be verified. All in all

Formatted: English (US)	1
Formatted: English (US)	
Deleted: our	
Deleted: for this treatmer	ıt
Deleted: remain an issue	and
Formatted: English (US)	
Deleted: combined effect	of temperature and pH
Formatted: English (US)	
Deleted:	
Deleted: for	
Formatted: English (US)	
Formatted: English (US)	
Formatted: English (US)	I
Formatted: English (US)	l .
Formatted: English (US)	
Formatted: English (US)	
Formatted: English (US)	, Not Superscript/ Subscript
Formatted: English (US)	

Formatted: English (US) Deleted: P and R

1187	experiments were much higher, especially for NO _x , than those observed by Pitta et al. (2017, and
1188	references therein) and Ridame et al. (2014), following the simulation of a dry Saharan dust
1189	deposition event. This confirms that wet dust deposition is a more efficient source of
1190	bioavailable nutrients compared to dry dust deposition.
1191	Although NO _x and DIP increases after dust addition were rather similar during our three \checkmark
1192	experiments, the subsequent dynamics of these elements and the impacts on plankton community
1193	composition and functioning were drastically different. While NOx levels decreased moderately
1194	over the course of our experiments due to biological uptake, more abrupt decreases were
1195	observed for DIP released by dust, reaching values close to the ones observed in the controls,
1196	except at station FAST where concentrations were still above ambient levels at the end of the
1197	experiment.
1198	Regarding biological stocks, most experiments reporting on the effect of dust addition in
1199	the Mediterranean Sea showed significant increases in chlorophyll a concentrations (mean ~90%
1200	increase; Guieu and Ridame, 2020). Interestingly, no stimulation of autotrophic biomass and
1201	primary production rates (Gazeau et al., 2021) was observed in dust-amended tanks under
1202	present conditions at station TYR. To the best of our knowledge, this is the first experimental
1203	evidence of a complete absence of response from an autotrophic community following dust wet
1204	deposition. The absence of response from autotrophic stocks could be due to a tight top-down
1205	control from grazers hiding potential responses from the autotrophic community (Lekunberri et
1206	al., 2010; Marañón et al., 2010) and/or a competition for nutritive resources with heterotrophic
1207	prokaryotes (Marañón et al., 2010). Regarding the first hypothesis, Feliú et al. (2020), have
1208	shown that the mesozooplankton assemblage at TYR was clearly impacted by a dust event that
1209	took place nine days before sampling at that station as evidenced from particulate inventory of
1210	lithogenic proxies (Al, Fe) in the water column (Bressac et al., in preparation). This dust
1211	deposition likely stimulated phytoplankton growth and consequently increased the abundance of

Formatted: English (US)
Formatted: English (US)
Formatted: English (US)
Field Code Changed
Formatted: English (US)
Deleted: {Citation}
Formatted: English (US)
Deleted: 00/00/0000 00:00:00

1274	herbivorous grazers (copepods) and attracted carnivorous species. With respect to the second	
1275	hypothesis, it is well known that not only phytoplankton but also heterotrophic bacteria are	
1276	limited by inorganic nutrients, mainly DIP, in oligotrophic systems (Obernosterer et al., 2003;	
1277	Van Wambeke et al., 2001). Indeed, many recent studies have shown significant increase in	
1278	heterotrophic bacterial abundance, respiration and/or production following dust deposition (and	
1279	nutrient enrichment) in these areas (Lekunberri et al., 2010; Pitta et al., 2017; Pulido-Villena et	Formatted: French
1000	al. 2009. Demors et al. 2011) Most of the time, betweetrachie are seened and the betweet	Field Code Changed
1280	al., 2008; Romero et al., 2011), Most of the time, heterotrophic processes appear to be more	Formatted: French
1281	stimulated by dust pulses compared to autotrophic processes with increasing degree of	
1282	oligotrophy, the dominant response being modulated by the competition for nutrients between	
1283	phytoplankton and bacteria (Marañón et al., 2010). This is clearly what was observed at this	
1284	station, with heterotrophic prokaryotes reacting quickly and strongly to nutrient addition both in	
1285	terms of abundances and production rates (Gazeau et al., 2021), These two aforementioned	Formatted: English (US)
1286	hypotheses are not mutually exclusive, and the quick response of heterotrophic prokaryotes to	
1287	dust addition is coherent with the strongest net heterotrophy of the tested waters at this station	
1288	(see 4.1). The strong stimulation of heterotrophic prokaryotes and the absence of detectable	
1289	effects on the autotrophic compartment drove the community towards an even stronger net	Formatted: English (US)
1290	heterotrophic state as illustrated by the decrease in the autotrophic to heterotrophic biomass ratio	Formatted: English (US)
1291	following dust addition (data not shown), This was further shown by increases in community	Formatted: English (US)
1292	respiration and decreases in net community production rates in dust-amended as compared to	
1293	control tanks (Gazeau et al., 2021), and suggest that dust addition to surface waters strongly	Formatted: English (US)
1294	dominated by heterotrophs leads to a reduction of the capacity of these waters to export organic	
1295	matter and sequester atmospheric CO ₂ ,	Formatted: Subscript
		Formatted: Font colour: Auto
1296	In contrast to what was observed at TYR, fertilization of primary producers was observed at	Deleted: Such
1007		Formatted: English (US)
1297	stations ION and FAST under present conditions with overall relative changes much higher than	Deleted: indeed
1298	from previous studies compiled by Guieu and Ridame (2020), The largest increase in chlorophyll	Formatted: English (US)
		Deleted: (maximum change in total chlorophyll <i>a</i> relative to the controls was ~280% at FAST and ~150% at ION)

1803	a concentrations at station FAST is coherent with the largest NO_x decrease observed in our
1304	study, which occurred at this station. Interestingly, following dust addition at this station,
1305	autotrophic production did not lead to DIP exhaustion throughout the experiment as DIP
1306	concentrations were still above ambient conditions at the end of the experiment. Maximal
1307	primary production rates (14C-incorporation) at this station at the end of the experiment suggest a
1308	strong DIP recycling and the dominance of regenerated production towards the end of the
1309	experiment (Gazeau et al., 2021), Although, in some cases, Synechococcus appeared stimulated
1310	by dust addition (Herut et al., 2005; Lagaria et al., 2017; Paytan et al., 2009), Guieu et al.
1311	(2014b) showed that, based on the analysis of several aerosols addition studies, this group had
1312	generally weak responses to aerosol addition in contrast to nano- and micro-phytoplankton,
1313	suggesting that aerosol deposition may lead to an increase in larger size class phytoplankton.
1314	Yet, at stations ION and FAST, the increase in Synechococcus abundance in dust-amended tanks
1315	was the highest relative to those of pico- and nano-eukaryotes, This was especially true at station
1316	ION where no clear response to nutrient enrichment was observed for nano-eukaryotes
1317	throughout the experiment. However, it must be stressed that our experiments were performed
1318	over a relatively short period (3 to 4 days), and the sharp increase in Fucoxanthin paralleled by a
1319	decrease in silicates, at the end of the experiment at station FAST where DIP limitation was not
1320	yet apparent, suggests a delayed response of diatoms as compared to smaller groups (i.e.
1321	autotrophic prokaryotes, pico- and nano-eukaryotes). Although this was not observed based on
1322	pigment analyses, the sharp decline in nano-eukaryote abundances in dust-amended tanks at the
1323	end of the FAST experiment, further suggests that this group, reacting quickly to nutrient
1324	enrichment was progressively grazed and/or outcompeted by larger phytoplankton species.
1825	In contrast to what was observed at TYR, at station FAST, the competition for nutrients

1923	in contrast to what was observed at 11K, at station FAST, the competition for nutrients
1326	between autotrophs and heterotrophs was clearly in favor of autotrophs, with a clear increase in
1327	the ratio between autotrophic and heterotrophic biomass reaching values of up to 4 (data not

-(Deleted: with	
~(Formatted: Subscript	
(Deleted: the largest observed NO _x decrease following addition at this station	dust
)(Formatted: English (US)	
Á	Formatted: English (US)	
//	Deleted:	
//	Deleted: (Gazeau et al., in preparation, this issue)	
A	Formatted: English (US)	
/	Formatted: English (US)	
-(Deleted: Synechococcus	
(Deleted: were	
\mathcal{I}	Formatted: English (US)	
Ì(Deleted: well stimulated	
X	Deleted: in some	
$\langle \rangle$	Deleted: dust	
)(Deleted: addition	
) (Deleted: experiment	
/(Formatted: English (US)	
	Formatted: French	
Ì	Field Code Changed	
(Formatted: English (US)	
(Deleted: eight	
(Formatted: English (US)	
(Deleted: that Synechococcus	
(Formatted: English (US)	
(Deleted: in most of the cases a	
(Formatted: English (US)	
(Deleted: , similar to what was observed	
(Deleted: both	
(Formatted: English (US)	
(Formatted: English (US)	
(Formatted: English (US)	
ĺ	Deleted: where <i>Synechococcus</i> abundance was clearly enhanced by dust deposition. The increase in <i>Synechol</i>	/ [76]
X	Formatted	[77]
) (Deleted: following dust addition	
-(Formatted	[78]
(Deleted: In contrast to what was observed at stations([79]
(Formatted	[80]
$\langle \rangle$	Deleted: A	
Ň	Formatted	[81]
X	Formatted	[82]

1412	<u>shown</u>). While, as discussed above, all groups of primary producers benefited from nutrient
1413	enrichment at this station, the increases in heterotrophic prokaryote abundances were rather
1414	limited following dust deposition, leading to an increase of net community production rates
1415	throughout this experiment to reach positive levels while control tanks remained below
1416	metabolic balance (Gazeau et al., 2021), At station ION, the situation was somewhat
1417	intermediate with a similar enhancement of both autotrophic and heterotrophic stocks and no
1418	clear changes in the ratio between autotrophic and heterotrophic biomass (data not shown),
1419	although the system appeared in favor of net autotrophy at the end of the experiment in dust -
1420	amended tanks under present environmental conditions (Gazeau et al., 2021),
1421	Transfer of newly produced organic matter to higher trophic levels in the different
1422	treatments was evaluated through the quantification of meso-zooplankton abundance at the end
1423	of each experiment. Although we are fully aware that such an approach is certainly criticizable
1424	considering the low incubation times (3 to 4 days), it may still be representative of lowered
1425	mortality or faster growth. Altogether it does not appear as a surprise that an increase in meso-
1426	zooplankton abundances was only detected at station FAST where the strongest enhancement of
1427	primary production was observed. Such an increase in meso-zooplankton abundance in the dust-
1428	amended as compared to control treatment was observed during land-based mesocosm
1429	experiments in the Eastern Mediterranean Sea (Pitta et al., 2017).
1430	Finally, although no clear effects of dust deposition under present conditions were
1431	detectable on autotrophic prokaryotes at station TYR, the strongest increase in $N_{\rm 2}$ fixation rates
1432	was recorded at this station (Céline Ridame, unpublished results), However, the potential impact
1433	of this process on NO_x concentration is highly negligible compared to the very large stock of
1434	NOx present in the dust-amended tanks, as less than 1 nmol L ⁻¹ d ⁻¹ of NOx can be produced by

1435 this process (Céline Ridame, unpublished results).

Del	leted:
For	matted: English (US)
Del	leted: (Gazeau et al., in preparation, this issue)
Del	leted: parallel
For	matted: English (US)
For	matted: English (US)
Del	leted:
Del	leted: and processes
Del	leted: was
For	matted: English (US)
Del	leted: slightly
Del	leted:
For	matted: English (US)
Del	leted: (Gazeau et al., in preparation, this issue)

A	Deleted: (+434-503%, as compared to +173-256% and +41- 49% at ION and FAST, respect
Å	Formatted: English (US)
1	Formatted: English (US)
1	Deleted: ively; see Ridame et al., in preparation, this issue, for more details)
1	Commented [C1]: Je pense qu'il faut remplacer par "personal communiation, 2021"
Å	Deleted:
1	Formatted: English (US)
(Formatted: English (US)
1	Formatted: English (US)

Deleted: (Ridame et al., in preparation, this issue)

1451 4.4. Impact of dust addition under future environmental

1452 conditions

1453 Very few past studies have investigated the release and fate of nutrients from atmospheric 1454 particles under climate conditions as expected for the end of the century, and, to the best of our 1455 knowledge, our study represents the first attempt to test for the combined effect of ocean 1456 warming and acidification on these processes. Louis et al. (2018) have already shown from an 1457 experiment performed under close-to-abiotic conditions (seawater filtration onto 0.2 µm) that 1458 even an extreme ocean acidification scenario (~ -0.6 pH units) does not impact the bioavailability 1459 of macro- and micro-nutrients (NOx, DIP and DFe) from dust addition for surface phytoplankton 1460 communities in the oligotrophic Northwestern Mediterranean Sea, using the same dust analog 1461 and simulated flux as used during our experiments. Similar results were presented by Mélançon 1462 et al. (2016) regarding the release of DFe from dust in high-nutrient low-chlorophyll (HNLC) 1463 waters of the Northeastern Pacific, following a mild ocean acidification scenario of -0.2 pH 1464 units. As no differences were observed for NOx and DIP concentrations within few hours 1465 following dust addition under present and future environmental conditions, our results agree with 1466 these previous findings and further highlights the absence of direct effect of ocean warming (+3 1467 °C) on the release of nutrients from atmospheric particles. In contrast, following these similar nutrient releases, different nutrient consumption 1468 1469 dynamics were observed between ambient and warmed/acidified tanks, These differences were 1470 substantially dependent on the considered nutrient and investigated station. Regarding NOx, no 1471 impacts of warming and acidification could be observed at stations TYR and ION due to low net 1472 decreasing rates compared to the large increase following dust addition. In contrast, at the most

1473 productive station $FAST_{e}$ as a consequence of strongly enhanced biological stocks (see

Formatted: English (US) Deleted: warming and acidification Formatted: English (US)

Formatted: French	
Field Code Changed	
Formatted: French	
Formatted: French	
Deleted: abiotic dust	
Formatted: French	
Formatted: English (US)	
Formatted: Subscript	
Deleted: O	
Formatted: English (US)	
Deleted: highlighted	
Formatted: English (US)	
Formatted: English (US)	
Deleted: The differences	
Formatted: English (US)	
/ Deleted: in	_
Formatted: English (US)	_
Deleted: between	_
Formatted: English (US)	_
Formatted: English (US)	_
Deleted:	_
Deleted: while	_
Formatted: English (US)	_
Deleted:	_
Deleted: increase following additiono large variability between the duplicates (Table 4),	
Formatted: English (US)	
Deleted: a	
Formatted: English (US)	

1488	under future environmental conditions.
1489	The differences in DIP dynamics between the two dust-amended treatments were more
1490	complex to interpret depending on the investigated station. A clear feature of our experiments is
1491	that, in contrast to present day pH and temperature conditions, all the stock of DIP released from
1492	dust was consumed at the end of the three experiments under future conditions, suggesting a
1493	much faster consumption by autotrophs and heterotrophic prokaryotes. That being said, the rate
1494	of decrease under future environmental conditions differed depending on the station. While DIP
1495	dynamics were <u>quite</u> similar between <u>tanks maintained under present and future environmental</u>
1496	conditions at ION, warming and acidification induced a faster decrease of DIP at TYR and
1497	FAST, with a full consumption of the released DIP within 24 h, An interesting outcome at station
1498	TYR was that, despite the important discrepancies observed for autotrophic stocks and metabolic
1499	rates between the duplicates G1 and G2 (see section 4.2), a very similar dynamics was observed
1500	for DIP concentrations in these tanks. As heterotrophic prokaryote biomass and production rates
1501	(Gazeau et al., 2021), did not differ between these duplicate tanks, this further highlights the clear
1502	dominance of heterotrophic processes at this station, a dominance which was exacerbated by dust
1503	addition under future environmental conditions, leading to an even stronger heterotrophic state at
1504	the end of this experiment (Gazeau et al., 2021)
1505	At station ION, Jarge impacts of warming and acidification have been observed,
1506	especially for primary producers, as shown by almost doubled chlorophyll a concentrations as
1507	compared to dust amended tanks (D). At this station, all autotrophic groups benefited from ocean
1508	acidification and warming. Synechococcus and to a lesser extent pico-eukaryotes appeared as the
1509	most impacted ones. Yet these differences of sensitivity among autotrophs did not lead to

thereafter) and metabolic rates (Gazeau et al., 2021), larger NOx consumption rates were shown

1487

- 1510 detectable changes in the composition of the autotrophic assemblage as compared to ambient
- 1511 conditions, with still a large dominance of nano-eukaryote carbon biomass at the end of this

Deleted: (Gazeau et al., in preparation, this issue)

Deleted: climate	
Formatted: English (US)	
Formatted: English (US)	
Deleted:	
Formatted: Indent: First line: 1.27 cm	

Formatted: English (US)

Formatted: English (US)	
Deleted: decreasing rates of	
Formatted: English (US)	
Deleted: DIP concentrations for that	
Formatted: English (US)	
Formatted: English (US)	
Deleted: treatment	
Deleted: (Table 4)	
Deleted: quite	
Deleted: treatments	
Formatted: English (US)	
Deleted: a clear effect of	
Formatted: English (US)	
Formatted: English (US)	
Deleted: was shown	
Deleted: station	
Formatted: English (US)	
Deleted: where the vast majority of released DIP was consumed within 24 h (Δ DIP = -1.3 and -1.1 to -1.5 m h ⁻¹ at TYR and FAST, respectively)	
Deleted:	
Deleted: (Gazeau et al., in preparation, this issue)	
Deleted: and	
Formatted: English (US)	
Deleted: climate	
Formatted: English (US)	
Formatted: English (US)	
Formatted: English (US)	
Deleted: .	
Deleted: DIP consumption rates were similar followi	ng dust

Deleted: DIP consumption rates were similar following du addition under present and future conditions. This results appears surprising as

1535	experiment (62% in treatment G vs. 64% in treatment D). Interestingly, although the ratio
1536	between autotrophic and heterotrophic biomass appeared impacted positively under future
1537	environmental conditions, reaching values of up to 2 at the end of this experiment (data not
1538	shown), warming and acidification led to a decrease in net community production (Gazeau et al.,
1539	2021) suggesting that in the coming decades the capacity of surface seawater to sequester
1540	anthropogenic CO ₂ will be lowered
1541	Similarly, at FAST, all phytoplankton, groups were impacted positively by warming and
1542	acidification with the strongest changes detected for Synechococcus as compared to present
1543	environmental conditions. However, in contrast to station ION, all groups reached maximal
1544	abundances (and carbon biomass) after 3 days of incubations, thereafter drastically decreasing
1545	most likely as a consequence of DIP limitation (see above). It must be stressed that this pattern
1546	could not be observed through pigment dynamics as no sampling was performed for these
1547	analyses after 3 days of incubation. Also, in contrast to station ION, the abundance of
1548	heterotrophic prokaryotes in the warmer and acidified treatment reached a maximum after 2 days
1549	of incubations and then strongly decreased to reach levels observed in the control treatment. This
1550	suggests that the heterotrophic compartment was the first to suffer from DIP limitation and
1551	further highlights the dominance of the autotrophic compartment in terms of nutrient
1552	consumption at this station. As observed at station ION, although the ratio between autotrophic
1553	and heterotrophic biomass increased under future environmental conditions, Gazeau et al. (2021)
1554	reported on a decrease in net community production rates in this treatment as compared to
1555	ambient environmental conditions, suggesting that, in the future, nutrient release from dust will
1556	lead to a lesser sequestration capacity of surface waters for atmospheric CO2*
1557	These positive effects of warming and acidification on the abundance of phytoplankton cells,
1558	especially for small species, as observed at ION and FAST are in line with previously published
1559	studies. Indeed, although very contrasted results have been shown on the effect of ocean

Deleted: that in the coming decades the

Formatted: Not Superscript/ Subscript Deleted: will be lowered

Deleted. will be lowered

Deleted: Very contrasted results have been shown on the effect of ocean acidification on small autotrophic species (e.g. Dutkiewicz et al., 2015) while there are increasing evidences that small phytoplankton species will be favored in a warmer ocean (e.g. Chen et al., 2014; Daufresne et al., 2009; Morán et al., 2010). As mentioned earlier, our experimental protocol was not conceived to discriminate temperature from pH effects, however results concur with those of Maugendre et al. (2015) which further suggested temperature over elevated CO₂ as the main driver of increased picophytoplankton abundance. As heterotrophic prokaryotes were also positively impacted by future environmental conditions, the similarity of DIP dynamics between ambient and future conditions suggests a tight coupling between the autotrophic and heterotrophic compartments at this station. This is further evidenced by the absence of differences detected over the relatively short time duration of our experiment on meso-zooplankton abundance and carbon export efficiency (Gazeau et al., 2021)(Gazeau et al., in preparation, this issue).

Formatted: Subscript

Deleted: A

Formatted: English (US) Deleted: similar to what was observed at station ION, Deleted: ic Deleted: positively Formatted: English (US) Deleted: ambient Formatted: English (US) **Deleted:** The differential dynamics of these two compartments under warmer and acidified conditions most likely led to an excess production of organic matter that translated, for instance, in higher dissolved organic carbon concentrations in this treatment Formatted: English (US) Formatted: English (US) Deleted: (Gazeau et al., 2021)(Gazeau et al., in preparation, this issue) Formatted: English (US) Deleted: in the future Deleted: Deleted: release from Deleted: involve/ Deleted: lead to Formatted: Subscript Deleted: Deleted: in line

1600	acidification on small autotrophic species (e.g. Dutkiewicz et al., 2015), there is increasing
1601	evidence that small phytoplankton species will be favored in a warmer ocean (e.g. Chen et al.,
1602	2014; Daufresne et al., 2009; Morán et al., 2010), As mentioned earlier, our experimental
1603	protocol was not conceived to discriminate temperature from pH effects, however results concur
1604	with those of Maugendre et al. (2015) which further suggested temperature over elevated CO ₂ as
1605	the main driver of increased picophytoplankton abundance in the Mediterranean, Sea.
1606	These enhanced fertilizing effects on primary producers at ION and FAST, under future
1607	as compared to present environmental conditions, did not seem to reach higher trophic levels as
1608	no clear differences in meso-zooplankton abundances were observed between ambient and
1609	warmed/acidified tanks at the end of the experiments. We fully acknowledge that the duration of
1610	our experiments was certainly too short to carefully assess the proportion of newly formed
1611	organic matter consumed by meso-zooplankton, species and its effect on their abundances, yet
1612	group-specific variations were observed. Similarly, Gazeau et al. (2021), did not observe an
1613	additional impact of future environmental conditions on the export of organic matter after dust
1614	addition
1615	•

Formatted: English (US) Formatted: English (US) Field Code Changed

Formatted: French

Deleted: (in the Mediterranean Sea?)

_					
1	Deleted: This				
F	ormatted: English (US)				
F	ormatted: English (US)				
F	ormatted: English (US)				
	Formatted: Indent: First line: 1.27 cm, Line spacing: Double				
C	Deleted: excess production				
C	Deleted: ambient				
F	ormatted: English (US)				
F	ormatted: English (US)				
F	Formatted: English (US)				
Deleted: ic					
C	Deleted: Finally				
F	ormatted: English (US)				
F	ormatted: English (US)				
n c	Deleted: it appeared that at least part of this excess organ natter was exported to the bottom of the tanks as a higher arbon export efficiency was observed at this station under varmer and acidified conditions				
	Deleted: (Gazeau et al., 2021)(Gazeau et al., in preparation his issue)				
F	ormatted: English (US)				
F	ormatted: English (US)				
C	Deleted: .				
_					

Formatted: Indent: First line: 1.27 cm

1629 **5. Conclusion**

1630 These experiments conducted during the PEACETIME cruise represent the first attempt 1631 to investigate the impacts of atmospheric deposition on surface plankton communities both under 1632 present and future environmental conditions. Despite few experimental issues that are discussed, 1633 the three experiments provided new insights on these potential impacts in the open 1634 Mediterranean Sea. Interestingly, the effect of dust deposition was highly different between the 1635 three investigated stations in the Tyrrhenian Sea, Ionian Sea and in the Algerian basin. As the 1636 initial conditions in the sampled surface seawater at the three stations were very similar in terms 1637 of nutrient availability and chlorophyll content, these differences rather seem to be a 1638 consequence of the initial metabolic states of the community (autotrophy vs. heterotrophy). In all 1639 three cases, nutrient addition from dust deposition did not strongly modify but rather exacerbated 1640 this initial state. Relative changes in main parameters presented in this manuscript and processes 1641 presented in Gazeau et al. (2021) as a consequence of dust addition under present and future 1642 environmental conditions are shown in Fig. 10, and compared to the compilation of published 1643 data for the Mediterranean Sea from Guieu and Ridame (2020). At station TYR, under 1644 conditions of a clear dominance of heterotrophs on the use of resources and potentially a higher 1645 top-down control from grazers, dust addition drove the community into an even more 1646 heterotrophic state with no detectable effect on primary producers. At station ION, where the 1647 community was initially closer to metabolic balance, both heterotrophic and autotrophic 1648 compartments benefited from dust derived nutrients. At FAST, the most active station in terms 1649 of autotrophic production, addition of nutrients boosted both compartments but heterotrophic 1650 prokaryotes became quickly P-limited and overall larger effects were observed for 1651 phytoplankton. Ocean acidification and warming did not have any detectable impact on the 1652 release of nutrients from atmospheric particles. Furthermore, these external drivers did not

Deleted: (in preparation, this issue) **Formatted:** English (US)

1654	drastically	modify the	e composition c	of the autotrophic	assemblage w	ith all groups	benefiting from
------	-------------	------------	-----------------	--------------------	--------------	----------------	-----------------

1655	warmer and acidified conditions.	However,	although	for two	out of the three station	S
------	----------------------------------	----------	----------	---------	--------------------------	---

- 1656 investigated, larger increases were observed for autotrophic as compared to heterotrophic stocks
- 1657 under future environmental conditions, a stronger impact of warming and acidification on
- 1658 <u>mineralization processes (Gazeau et al., 2021)</u> suggests that, in the future, the plankton
- 1659 communities of Mediterranean surface waters will have <u>a decreased capacity to sequester</u>
- atmospheric CO₂ following the deposition of atmospheric particles,

Deleted: very
Deleted: both
Deleted: and
Formatted: English (US)
Deleted: and processes
Deleted: ing an exacerbation of effects from atmospheric dust deposition in the future, rather than a change in the
Formatted: English (US)
Formatted: English (US)
Formatted: Subscript
Deleted: as a source or a sink of CO ₂ to or from the atmosphere
Formatted: English (US)

Deleted:

Formatted: English (US)

1670 Data availability

- 1671 All data and metadata will be made available at the French INSU/CNRS LEFE CYBER database
- 1672 (scientific coordinator: Hervé Claustre; data manager, webmaster: Catherine Schmechtig).
- 1673 INSU/CNRS LEFE CYBER (2020)

1674 Author contributions

- 1675 FG and CG designed and supervised the study. FG, CG, CR and KD sampled seawater from the
- 1676 experimental tanks during the experiments. JMG and GDL participated in the technical
- 1677 preparation of the experimental system and all authors participated in sample analyses. FG, CR
- 1678 and CG wrote the paper with contributions from all authors.

1679 Financial support

- 1680 This study is a contribution to the PEACETIME project (http://peacetime-project.org), a joint
- 1681 initiative of the MERMEX and ChArMEx components supported by CNRS-INSU, IFREMER,
- 1682 CEA, and Météo-France as part of the programme MISTRALS coordinated by INSU.
- 1683 PEACETIME is a contribution to SOLAS and IMBER international programme. The project was
- 1684 endorsed as a process study by GEOTRACES. PEACETIME cruise
- 1685 (https://doi.org/10.17600/17000300). The project leading to this publication has also received
- 1686 <u>funding from the European FEDER Fund under project 1166-39417</u>

1687 Acknowledgments

- 1688 The authors thank the captain and the crew of the RV Pourquoi Pas ? for their professionalism
- 1689 and their work at sea. We thank Julia Uitz, Céline Dimier and the SAPIGH HPLC analytical
- 1690 service at Institut de la Mer de Villefranche (IMEV) for sampling and analysis of phytoplankton
- 1691 pigments, John Dolan for microscopic countings as well as Lynne Macarez and the PIQv-

Formatted: Font: Not Italic	
Formatted: Font: Not Italic	
Formatted: English (US)	
Formatted: Font: Not Italic	
Formatted: English (US)	

- 1692 platform of EMBRC-France, a national Research Infrastructure supported by ANR, under the
- 1693 reference ANR-10-INSB-02, for mesozooplankton analyses.

References

1695	Aminot, A. and Kérouel, R.: Dosage automatique des nutriments dans les eaux marines :	Formatted: French
1696	méthodes en flux continu, Editions Ifremer, méthodes d'analyse en milieu marin., 2007.	
1697	Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G.	
1698	C., Milligan, A. J., Falkowski, P. G., Letelier, R. M. and Boss, E. S.: Climate-driven trends	
1699	in contemporary ocean productivity, Nature, 444(7120), 752-755, 2006.	
1700	Bergametti, Gi., Dutot, AL., Buat-Ménard, P., Losno, R. and Remoudaki, E.: Seasonal	
1701	variability of the elemental composition of atmospheric aerosol particles over the	
1702	Northwestern Mediterranean, Tellus B: Chemical and Physical Meteorology, 41(3), 353-	
1703	361, https://doi.org/10.3402/tellusb.v41i3.15092, 1989.	
1704	Bonnet, S. and Guieu, C.: Atmospheric forcing on the annual iron cycle in the western	
1705	Mediterranean Sea: A 1-year survey, Journal of Geophysical Research: Oceans, 111(C9),	
1706	https://doi.org/10.1029/2005JC003213, 2006.	
1707	Bonnet, S., Guieu, C., Chiaverini, J., Ras, J. and Stock, A.: Effect of atmospheric nutrients on the	
1708	autotrophic communities in a low nutrient, low chlorophyll system, Limnology and	
1709	Oceanography, 50(6), 1810–1819, https://doi.org/10.4319/lo.2005.50.6.1810, 2005.	
1710	Børsheim, K. Y. and Bratbak, G.: Cell volume to cell carbon conversion factors for a	
1711	bacterivorous Monas sp. enriched from seawater, Marine Ecology Progress Series, 36(2),	
1712	171–175, 1987.	
1713	Bosc, E., Bricaud, A. and Antoine, D.: Seasonal and interannual variability in algal biomass and	
1714	primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS	
1715	observations, Global Biogeochemical Cycles, 18(1),	
1716	https://doi.org/10.1029/2003GB002034, 2004.	
1717	Bressac, M. and Guieu, C.: Post-depositional processes: What really happens to new atmospheric	
1718	iron in the ocean's surface?, Global Biogeochemical Cycles, 27(3), 859-870,	
1719	https://doi.org/10.1002/gbc.20076, 2013.	

1720	Bressac, M., Wagener, T., Tovar-Sanchez, A., Ridame, C., Albani, S., Fu, F., Desboeufs, K. and
1721	Guieu, C.: Residence time of dissolved and particulate trace elements in the surface
1722	Mediterranean Sea (Peacetime cruise), Biogeosciences, in preparation.
1723	Bressac, M., Guieu, C., Doxaran, D., Bourrin, F., Desboeufs, K., Leblond, N. and Ridame, C.:
1724	Quantification of the lithogenic carbon pump following a simulated dust-deposition event
1725	in large mesocosms, Biogeosciences, 11(4), 1007-1020, https://doi.org/10.5194/bg-11-
1726	1007-2014, 2014.
1727	Chen, B., Liu, H., Huang, B. and Wang, J.: Temperature effects on the growth rate of marine
1728	picoplankton, Marine Ecology Progress Series, 505, 37-47,
1729	https://doi.org/10.3354/meps10773, 2014.
1730	Christaki, U., Courties, C., Massana, R., Catala, P., Lebaron, P., Gasol, J. M. and Zubkov, M. V.:
1731	Optimized routine flow cytometric enumeration of heterotrophic flagellates using SYBR
1732	Green I, Limnology and Oceanography: Methods, 9(8), 329-339,
1733	https://doi.org/10.4319/lom.2011.9.329, 2011.
1734	Daufresne, M., Lengfellner, K. and Sommer, U.: Global warming benefits the small in aquatic
1735	ecosystems, PNAS, 106(31), 12788-12793, https://doi.org/10.1073/pnas.0902080106,
1736	2009.
1737	Desboeufs, K., Leblond, N., Wagener, T., Bon Nguyen, E. and Guieu, C.: Chemical fate and
1738	settling of mineral dust in surface seawater after atmospheric deposition observed from
1739	dust seeding experiments in large mesocosms, Biogeosciences, 11(19), 5581-5594,
1740	https://doi.org/10.5194/bg-11-5581-2014, 2014.
1741	Desboeufs, K., Bon Nguyen, E., Chevaillier, S., Triquet, S. and Dulac, F.: Fluxes and sources of
1742	nutrient and trace metal atmospheric deposition in the Northwestern Mediterranean,
1743	Atmospheric Chemistry and Physics, 18(19), 14477-14492, https://doi.org/10.5194/acp-

1744 18-14477-2018, 2018.

- 1745 Dickson, A. G., Sabine, C. L. and Christian, J. R.: Guide to best practices for ocean CO2
- 1746 measurements, PICES, Sydney., 2007.
- 1747 Dinasquet, J., Bigeard, E., Gazeau, F., Marañón, E., Ridame, C., Van Wambeke, F.,
- 1748 Obernosterer, I. and Baudoux, A.-C.: Impact of dust enrichment on the microbial food web
- 1749 under present and future conditions of pH and temperature, Biogeosciences Discussions,1750 2021.
- 1751 Djaoudi, K., Van Wambeke, F., Coppola, L., D'Ortenzio, F., Helias-Nunige, S., Raimbault, P.,
- 1752 Taillandier, V., Testor, P., Wagener, T. and Pulido-Villena, E.: Sensitive Determination of
- 1753 the Dissolved Phosphate Pool for an Improved Resolution of Its Vertical Variability in the
- 1754 Surface Layer: New Views in the P-Depleted Mediterranean Sea, Front. Mar. Sci., 5,
- 1755 https://doi.org/10.3389/fmars.2018.00234, 2018.
- 1756 D'Ortenzio, F., Iudicone, D., Montegut, C. de B., Testor, P., Antoine, D., Marullo, S., Santoleri,
- 1757 R. and Madec, G.: Seasonal variability of the mixed layer depth in the Mediterranean Sea
- as derived from in situ profiles, Geophysical Research Letters, 32(12),
- 1759 https://doi.org/10.1029/2005GL022463, 2005.
- 1760 Duce, R. A., Liss, P. S., Merrill, J. T., Atlas, E. L., Buat-Menard, P., Hicks, B. B., Miller, J. M.,
- 1761 Prospero, J. M., Arimoto, R., Church, T. M., Ellis, W., Galloway, J. N., Hansen, L.,
- 1762 Jickells, T. D., Knap, A. H., Reinhardt, K. H., Schneider, B., Soudine, A., Tokos, J. J.,
- 1763 Tsunogai, S., Wollast, R. and Zhou, M.: The atmospheric input of trace species to the
- 1764 world ocean, Global Biogeochemical Cycles, 5(3), 193–259,
- 1765 https://doi.org/10.1029/91GB01778, 1991.
- 1766 Dutkiewicz, S., Morris, J. J., Follows, M. J., Scott, J., Levitan, O., Dyhrman, S. T. and Berman-
- 1767 Frank, I.: Impact of ocean acidification on the structure of future phytoplankton
- 1768 communities, Nature Climate change, 5, 1002–1006, https://doi.org/10.1038/nclimate2722,
- 1769 2015.

- 1770 Emerson, S., Quay, P., Karl, D., Winn, C., Tupas, L. and Landry, M.: Experimental 1771 determination of the organic carbon flux from open-ocean surface waters, Nature, 389(6654), 951-954, https://doi.org/10.1038/40111, 1997. 1772 Falkovich, A. H., Ganor, E., Levin, Z., Formenti, P. and Rudich, Y.: Chemical and mineralogical 1773 1774 analysis of individual mineral dust particles, Journal of Geophysical Research: Atmospheres, 106(D16), 18029-18036, https://doi.org/10.1029/2000JD900430, 2001. 1775 1776 Feliú, G., Pagano, M., Hidalgo, P. and Carlotti, F.: Structure and function of epipelagic 1777 mesozooplankton and their response to dust deposition events during the spring 1778 PEACETIME cruise in the Mediterranean Sea, Biogeosciences, 17, 5417-5441, 1779 https://doi.org/10.5194/bg-17-5417-2020, 2020. 1780 Gazeau, F., Van Wambeke, F., Marañón, E., Pérez-Lorenzo, M., Alliouane, S., Stolpe, C., 1781 Blasco, T., Leblond, N., Zäncker, B., Engel, A., Marie, B., Dinasquet, J. and Guieu, C.: 1782 Impact of dust addition on the metabolism of Mediterranean plankton communities and 1783 carbon export under present and future conditions of pH and temperature, Biogeosciences 1784 Discussions, 2021. 1785 Giovagnetti, V., Brunet, C., Conversano, F., Tramontano, F., Obernosterer, I., Ridame, C. and 1786 Guieu, C.: Assessing the role of dust deposition on phytoplankton ecophysiology and 1787 succession in a low-nutrient low-chlorophyll ecosystem: a mesocosm experiment in the 1788 Mediterranean Sea, Biogeosciences, 10(5), 2973-2991, https://doi.org/10.5194/bg-10-1789 2973-2013, 2013. 1790 Gorsky, G., Ohman, M. D., Picheral, M., Gasparini, S., Stemmann, L., Romagnan, J.-B., 1791 Cawood, A., Pesant, S., García-Comas, C. and Prejger, F.: Digital zooplankton image 1792 analysis using the ZooScan integrated system, J Plankton Res, 32(3), 285-303, https://doi.org/10.1093/plankt/fbp124, 2010. 1793
- 1794 Guieu, C. and Ridame, C.: Impact of atmospheric deposition on marine chemistry and
- 1795 biogeochemistry, in Atmospheric Chemistry in the Mediterranean Region: Comprehensive

1796 Diagnosis and Impacts, edited by F. Dulac, S. Sauvage, and E. Hamonou, Springer, Cham,

1797 Switzerland, , 2020.

- 1798 Guieu, C., Dulac, F., Desboeufs, K., Wagener, T., Pulido-Villena, E., Grisoni, J.-M., Louis, F.,
- 1799 Ridame, C., Blain, S., Brunet, C., Bon Nguyen, E., Tran, S., Labiadh, M. and Dominici, J.-
- 1800 M.: Large clean mesocosms and simulated dust deposition: a new methodology to

1801 investigate responses of marine oligotrophic ecosystems to atmospheric inputs,

1802 Biogeosciences, 7(9), 2765–2784, https://doi.org/10.5194/bg-7-2765-2010, 2010a.

1803 Guieu, C., Loye-Pilot, M. D., Benyahya, L. and Dufour, A.: Spatial variability of atmospheric

- 1804 fluxes of metals (Al, Fe, Cd, Zn and Pb) and phosphorus over the whole Mediterranean
- 1805 from a one-year monitoring experiment: Biogeochemical implications, Marine Chemistry,
- 1806 120(1-4), 164-178, https://doi.org/10.1016/j.marchem.2009.02.004, 2010b.
- 1807 Guieu, C., Ridame, C., Pulido-Villena, E., Bressac, M., Desboeufs, K. and Dulac, F.: Impact of
 1808 dust deposition on carbon budget: a tentative assessment from a mesocosm approach,
- 1809 Biogeosciences, 11(19), 5621–5635, 2014a.

1810 Guieu, C., Aumont, O., Paytan, A., Bopp, L., Law, C. S., Mahowald, N., Achterberg, E. P.,

- 1811 Marañón, E., Salihoglu, B., Crise, A., Wagener, T., Herut, B., Desboeufs, K., Kanakidou,
- 1812 M., Olgun, N., Peters, F., Pulido-Villena, E., Tovar-Sanchez, A. and Völker, C.: The
- 1813 significance of the episodic nature of atmospheric deposition to Low Nutrient Low
- 1814 Chlorophyll regions, Global Biogeochemical Cycles, 28(11), 1179–1198,
- 1815 https://doi.org/10.1002/2014GB004852, 2014b.
- 1816 Guieu, C., D'Ortenzio, F., Dulac, F., Taillandier, V., Doglioli, A., Petrenko, A., Barrillon, S.,
- 1817 Mallet, M., Nabat, P. and Desboeufs, K.: Process studies at the air-sea interface after
- 1818 atmospheric deposition in the Mediterranean Sea: objectives and strategy of the
- 1819 PEACETIME oceanographic campaign (May–June 2017), Biogeosciences, 2020(17),
- 1820 5563–5585, https://doi.org/10.5194/bg-17-5563-2020, 2020.

- 1821 Herut, B., Zohary, T., Krom, M. D., Mantoura, R. F. C., Pitta, P., Psarra, S., Rassoulzadegan, F.,
- 1822 Tanaka, T. and Frede Thingstad, T.: Response of East Mediterranean surface water to
- 1823 Saharan dust: On-board microcosm experiment and field observations, Deep Sea Research
- 1824 Part II: Topical Studies in Oceanography, 52(22), 3024–3040,

1825 https://doi.org/10.1016/j.dsr2.2005.09.003, 2005.

- Holmes, R. M., Aminot, A., Kérouel, R., Hooker, B. A. and Peterson, B. J.: A simple and precise
 method for measuring ammonium in marine and freshwater ecosystems, Can. J. Fish.
- 1828 Aquat. Sci., 56(10), 1801–1808, https://doi.org/10.1139/f99-128, 1999.
- 1829 IPCC: Climate Change, The Physical Science Basis., 2013.
- 1830 IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by H.
- 1831 O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K.
- 1832 Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, and N. M. Weyer.,1833 2019.
- 1834 Irwin, A. J. and Oliver, M. J.: Are ocean deserts getting larger?, Geophysical Research Letters,
 1835 36, https://doi.org/10.1029/2009gl039883, 2009.
- 1836 Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J.,
- 1837 Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata, H., Kubilay, N., laRoche, J., Liss, P.
- 1838 S., Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, I. and Torres, R.: Global Iron
- 1839 Connections Between Desert Dust, Ocean Biogeochemistry, and Climate, Science,
- 1840 308(5718), 67–71, https://doi.org/10.1126/science.1105959, 2005.
- 1841 Kana, T. M. and Glibert, P. M.: Effect of irradiances up to 2000 μ E m⁻² s⁻¹ on marine
- 1842 Synechococcus WH7803—I. Growth, pigmentation, and cell composition, Deep Sea
- 1843 Research Part A. Oceanographic Research Papers, 34(4), 479–495,
- 1844 https://doi.org/10.1016/0198-0149(87)90001-X, 1987.

- 1845 Kapsenberg, L., Alliouane, S., Gazeau, F., Mousseau, L. and Gattuso, J.-P.: Coastal ocean
- 1846 acidification and increasing total alkalinity in the northwestern Mediterranean Sea, Ocean
- 1847 Science, 13, 411–426, https://doi.org/10.5194/os-13-411-2017, 2017.
- 1848 Kouvarakis, G., Mihalopoulos, N., Tselepides, A. and Stavrakakis, S.: On the importance of
- 1849 atmospheric inputs of inorganic nitrogen species on the productivity of the Eastern
- 1850 Mediterranean Sea, Global Biogeochemical Cycles, 15(4), 805–817,
- 1851 https://doi.org/10.1029/2001GB001399, 2001.
- 1852 Lagaria, A., Mandalakis, M., Mara, P., Papageorgiou, N., Pitta, P., Tsiola, A., Kagiorgi, M. and
- 1853 Psarra, S.: Phytoplankton response to Saharan dust depositions in the Eastern
- 1854 Mediterranean Sea: A mesocosm study, Front. Mar. Sci., 3,
- 1855 https://doi.org/10.3389/fmars.2016.00287, 2017.
- 1856 Law, C. S., Brévière, E., de Leeuw, G., Garçon, V., Guieu, C., Kieber, D. J., Kontradowitz, S.,
- 1857 Paulmier, A., Quinn, P. K., Saltzman, E. S., Stefels, J. and von Glasow, R.: Evolving
- 1858 research directions in Surface Ocean Lower Atmosphere (SOLAS) science, Environ.
- 1859 Chem., 10(1), 1, https://doi.org/10.1071/EN12159, 2013.
- 1860 Lee, S. and Fuhrman, J. A.: Relationships between Biovolume and Biomass of Naturally Derived
- 1861 Marine Bacterioplankton, Appl Environ Microbiol, 53(6), 1298–1303, 1987.
- 1862 Lekunberri, I., Lefort, T., Romero, E., Vázquez-Domínguez, E., Romera-Castillo, C., Marrasé,
- 1863 C., Peters, F., Weinbauer, M. and Gasol, J. M.: Effects of a dust deposition event on
- 1864 coastal marine microbial abundance and activity, bacterial community structure and
- 1865 ecosystem function, J Plankton Res, 32(4), 381–396,
- 1866 https://doi.org/10.1093/plankt/fbp137, 2010.
- 1867 Liu, X., Patsavas, M. C. and Byrne, R. H.: Purification and Characterization of meta-Cresol
- 1868 Purple for Spectrophotometric Seawater pH Measurements, Environ. Sci. Technol., 45(11),
- 1869 4862–4868, https://doi.org/10.1021/es200665d, 2011.

1870	Longhurst, A., Sathyendranath, S., Platt, T. and Caverhill, C.: An estimate of global primary
1871	production in the ocean from satellite radiometer data, Journal of Plankton Research, 17(6),
1872	1245–1271, https://doi.org/10.1093/plankt/17.6.1245, 1995.
1873	López-Urrutia, A. and Morán, X. A. G.: Resource limitation of bacterial production distorts the
1874	temperature dependence of oceanic carbon cycling, Ecology, 88(4), 817-822,
1875	https://doi.org/10.1890/06-1641, 2007.
1876	Louis, J., Pedrotti, M. L., Gazeau, F. and Guieu, C.: Experimental evidence of formation of
1877	transparent exopolymer particles (TEP) and POC export provoked by dust addition under
1878	current and high pCO ₂ conditions, PLOS ONE, 12(2), e0171980,
1879	https://doi.org/10.1371/journal.pone.0171980, 2017a.
1880	Louis, J., Guieu, C. and Gazeau, F.: Nutrient dynamics under different ocean acidification
1881	scenarios in a low nutrient low chlorophyll system: The Northwestern Mediterranean Sea,
1882	Estuarine, Coastal and Shelf Science, 186, 30-44,
1883	https://doi.org/10.1016/j.ecss.2016.01.015, 2017b.
1884	Louis, J., Gazeau, F. and Guieu, C.: Atmospheric nutrients in seawater under current and high
1885	pCO ₂ conditions after Saharan dust deposition: Results from three minicosm experiments,
1886	Progress in Oceanography, 163, 40-49, https://doi.org/10.1016/j.pocean.2017.10.011,
1887	2018.
1888	Loÿe-Pilot, M. D. and Martin, J. M.: Saharan Dust Input to the Western Mediterranean: An
1889	Eleven Years Record in Corsica, in The Impact of Desert Dust Across the Mediterranean,
1890	edited by S. Guerzoni and R. Chester, pp. 191-199, Springer Netherlands, Dordrecht,
1891	https://doi.org/10.1007/978-94-017-3354-0_18, , 1996.
1892	Manca, B., Burca, M., Giorgetti, A., Coatanoan, C., Garcia, MJ. and Iona, A.: Physical and

- 1893 biochemical averaged vertical profiles in the Mediterranean regions: an important tool to
- 1894 trace the climatology of water masses and to validate incoming data from operational

- 1895 oceanography, Journal of Marine Systems, 48(1), 83–116,
- 1896 https://doi.org/10.1016/j.jmarsys.2003.11.025, 2004.
- 1897 Marañón, E., Fernández, A., Mouriño-Carballido, B., MartÍnez-GarcÍa, S., Teira, E., Cermeño,
- 1898 P., Chouciño, P., Huete-Ortega, M., Fernández, E., Calvo-DÍaz, A., Morán, X. A. G.,
- 1899 Bode, A., Moreno-Ostos, E., Varela, M. M., Patey, M. D. and Achterberg, E. P.: Degree of
- 1900 oligotrophy controls the response of microbial plankton to Saharan dust, Limnology and
- 1901 Oceanography, 55(6), 2339–2352, https://doi.org/10.4319/lo.2010.55.6.2339, 2010.
- 1902 Marañón, E., Lorenzo, M. P., Cermeño, P. and Mouriño-Carballido, B.: Nutrient limitation
- 1903 suppresses the temperature dependence of phytoplankton metabolic rates, The ISME
- 1904 Journal, 12(7), 1836–1845, https://doi.org/10.1038/s41396-018-0105-1, 2018.
- 1905 Marie, D., Simon, N., Guillou, L., Partensky, F. and Vaulot, D.: Flow cytometry analysis of
- marine picoplankton, in living color: protocols in flow cytometry and cell sorting, edited
 by R. A. Diamond and S. DeMaggio, pp. 421–454, Springer, Berlin, 2010.
- 1908 Markaki, Z., Oikonomou, K., Kocak, M., Kouvarakis, G., Chaniotaki, A., Kubilay, N. and
- 1909 Mihalopoulos, N.: Atmospheric deposition of inorganic phosphorus in the Levantine Basin,
- 1910 eastern Mediterranean: Spatial and temporal variability and its role in seawater
- 1911 productivity, Limnology and Oceanography, 48(4), 1557–1568,
- 1912 https://doi.org/10.4319/lo.2003.48.4.1557, 2003.
- 1913 Maugendre, L., Gattuso, J.-P., Louis, J., de Kluijver, A., Marro, S., Soetaert, K. and Gazeau, F.:
- 1914 Effect of ocean warming and acidification on a plankton community in the NW
- 1915 Mediterranean Sea, ICES Journal of Marine Science, 72(6), 1744–1755,
- 1916 https://doi.org/10.1093/icesjms/fsu161, 2015.
- 1917 Maugendre, L., Guieu, C., Gattuso, J.-P. and Gazeau, F.: Ocean acidification in the
- 1918 Mediterranean Sea: Pelagic mesocosm experiments. A synthesis, Estuarine, Coastal and
- 1919 Shelf Science, 186, 1–10, https://doi.org/10.1016/j.ecss.2017.01.006, 2017.

- 1920 Mayot, N., D'Ortenzio, F., Ribera d'Alcalà, M., Lavigne, H. and Claustre, H.: Interannual
- 1921 variability of the Mediterranean trophic regimes from ocean color satellites,
- 1922 Biogeosciences, 13(6), 1901–1917, https://doi.org/10.5194/bg-13-1901-2016, 2016.
- 1923 Mélançon, J., Levasseur, M., Lizotte, M., Scarratt, M., Tremblay, J.-É., Tortell, P., Yang, G.-P.,
- 1924 Shi, G.-Y., Gao, H., Semeniuk, D., Robert, M., Arychuk, M., Johnson, K., Sutherland, N.,
- 1925 Davelaar, M., Nemcek, N., Peña, A. and Richardson, W.: Impact of ocean acidification on
- 1926 phytoplankton assemblage, growth, and DMS production following Fe-dust additions in
- the NE Pacific high-nutrient, low-chlorophyll waters, Biogeosciences, 13(5), 1677–1692,
 https://doi.org/10.5194/bg-13-1677-2016, 2016.
- 1929 Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., Galbraith,
- 1930 E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells, T. D., La Roche, J., Lenton, T. M.,
- 1931 Mahowald, N. M., Marañón, E., Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A.,
- 1932 Saito, M. A., Thingstad, T. F., Tsuda, A. and Ulloa, O.: Processes and patterns of oceanic
- 1933 nutrient limitation, Nature Geoscience, 6(9), 701–710, https://doi.org/10.1038/ngeo1765,
 1934 2013.
- Morán, X. A. G., López-Urrutia, Á., Calvo-Díaz, A. and Li, W. K. W.: Increasing importance of
 small phytoplankton in a warmer ocean, Global Change Biology, 16(3), 1137–1144,
- 1937 https://doi.org/10.1111/j.1365-2486.2009.01960.x, 2010.
- 1938 Neale, P. J., Sobrino, C., Segovia, M., Mercado, J. M., Leon, P., Cortés, M. D., Tuite, P., Picazo,
- 1939 A., Salles, S., Cabrerizo, M. J., Prasil, O., Montecino, V., Reul, A. and Fuentes-Lema, A.:
- Effect of CO2, nutrients and light on coastal plankton. I. Abiotic conditions and biological
 responses, Aquatic Biology, 22, 25–41, https://doi.org/10.3354/ab00587, 2014.
- 1942 Obernosterer, I., Kawasaki, N. and Benner, R.: P-limitation of respiration in the Sargasso Sea
- 1943 and uncoupling of bacteria from P-regeneration in size-fractionation experiments, Aquatic
- 1944 Microbial Ecology, 32(3), 229–237, https://doi.org/10.3354/ame032229, 2003.

- 1945 Orr, J. C., Epitalon, J.-M., Dickson, A. G. and Gattuso, J.-P.: Routine uncertainty propagation for
- 1946 the marine carbon dioxide system, Marine Chemistry, 207, 84–107,
- 1947 https://doi.org/10.1016/j.marchem.2018.10.006, 2018.
- 1948 Paytan, A., Mackey, K. R. M., Chen, Y., Lima, I. D., Doney, S. C., Mahowald, N., Labiosa, R.
- and Post, A. F.: Toxicity of atmospheric aerosols on marine phytoplankton, Proceedings of
 the National Academy of Sciences, 106(12), 4601–4605,
- 1951 https://doi.org/10.1073/pnas.0811486106, 2009.
- 1952 Pitta, P., Kanakidou, M., Mihalopoulos, N., Christodoulaki, S., Dimitriou, P. D., Frangoulis, C.,
- 1953 Giannakourou, A., Kagiorgi, M., Lagaria, A., Nikolaou, P., Papageorgiou, N., Psarra, S.,
- 1954 Santi, I., Tsapakis, M., Tsiola, A., Violaki, K. and Petihakis, G.: Saharan Dust Deposition
- 1955 Effects on the Microbial Food Web in the Eastern Mediterranean: A Study Based on a
- Mesocosm Experiment, Front. Mar. Sci., 4, https://doi.org/10.3389/fmars.2017.00117,
 2017.
- Polovina, J. J., Howell, E. A. and Abecassis, M.: Ocean's least productive waters are expanding,
 Geophysical Research Letters, 35(3), https://doi.org/10.1029/2007gl031745, 2008.
- 1960 Powley, H. R., Krom, M. D. and Cappellen, P. V.: Understanding the unique biogeochemistry of
- 1961 the Mediterranean Sea: Insights from a coupled phosphorus and nitrogen model, Global
- 1962 Biogeochemical Cycles, 31(6), 1010–1031, https://doi.org/10.1002/2017GB005648, 2017.
- 1963 Pulido-Villena, E., Wagener, T. and Guieu, C.: Bacterial response to dust pulses in the western
- 1964 Mediterranean: Implications for carbon cycling in the oligotrophic ocean, Global
- 1965 Biogeochemical Cycles, 22(1), https://doi.org/10.1029/2007gb003091, 2008.
- 1966 Pulido-Villena, E., Rerolle, V. and Guieu, C.: Transient fertilizing effect of dust in P-deficient
- 1967 LNLC surface ocean, Geophysical Research Letters, 37,
- 1968 https://doi.org/10.1029/2009gl041415, 2010.
- 1969 Pulido-Villena, E., Baudoux, A.-C., Obernosterer, I., Landa, M., Caparros, J., Catala, P.,
- 1970 Georges, C., Harmand, J. and Guieu, C.: Microbial food web dynamics in response to a

- 1971 Saharan dust event: results from a mesocosm study in the oligotrophic Mediterranean Sea,
- 1972 Biogeosciences, 11(19), 5607–5619, 2014.
- 1973 Putaud, J.-P., Dingenen, R. V., Dell'Acqua, A., Raes, F., Matta, E., Decesari, S., Facchini, M. C.
- 1974 and Fuzzi, S.: Size-segregated aerosol mass closure and chemical composition in Monte
- 1975 Cimone (I) during MINATROC, Atmospheric Chemistry and Physics, 4(4), 889–902,
- 1976 https://doi.org/10.5194/acp-4-889-2004, 2004.
- 1977 Ras, J., Claustre, H. and Uitz, J.: Spatial variability of phytoplankton pigment distributions in the
- 1978 Subtropical South Pacific Ocean: comparison between in situ and predicted data,
- 1979 Biogeosciences, 5(2), 353–369, https://doi.org/10.5194/bg-5-353-2008, 2008.
- 1980 Regaudie-de-Gioux, A., Vaquer-Sunyer, R. and Duarte, C. M.: Patterns in planktonic
- 1981 metabolism in the Mediterranean Sea, Biogeosciences, 6(12), 3081–3089,
- 1982 https://doi.org/10.5194/bg-6-3081-2009, 2009.
- 1983 Richon, C., Dutay, J.-C., Dulac, F., Wang, R., Balkanski, Y., Nabat, P., Aumont, O., Desboeufs,
- 1984 K., Laurent, B., Guieu, C., Raimbault, P. and Beuvier, J.: Modeling the impacts of
- 1985 atmospheric deposition of nitrogen and desert dust-derived phosphorus on nutrients and
- 1986 biological budgets of the Mediterranean Sea, Progress in Oceanography, 163, 21–39,
- 1987 https://doi.org/10.1016/j.pocean.2017.04.009, 2018.
- 1988 Ridame, C. and Guieu, C.: Saharan input of phosphate to the oligotrophic water of the open
- 1989 western Mediterranean Sea, Limnology and Oceanography, 47(3), 856–869, 2002.
- 1990 Ridame, C., Guieu, C. and L'Helguen, S.: Strong stimulation of N 2 fixation in oligotrophic
- Mediterranean Sea: results from dust addition in large in situ mesocosms, Biogeosciences,
 10(11), 7333–7346, 2013.
- 1993 Ridame, C., Dekaezemacker, J., Guieu, C., Bonnet, S., L'Helguen, S. and Malien, F.: Contrasted
- 1994 Saharan dust events in LNLC environments: impact on nutrient dynamics and primary
- 1995 production, Biogeosciences (BG), 11(17), 4783–4800, 2014.

- 1996 Romero, E., Peters, F., Marrasé, C., Guadayol, Ò., Gasol, J. M. and Weinbauer, M. G.: Coastal
- 1997 Mediterranean plankton stimulation dynamics through a dust storm event: An experimental
- simulation, Estuarine, Coastal and Shelf Science, 93(1), 27–39,
- 1999 https://doi.org/10.1016/j.ecss.2011.03.019, 2011.
- 2000 Roy-Barman, M., Folio, L., Douville, E., Leblond, N., Gazeau, F., Bressac, M., Wagener, T.,
- 2001 Ridame, C., Desboeufs, K. and Guieu, C.: Contrasted release of insoluble elements (Fe, Al,
- 2002 REE, Th, Pa) after dust deposition in seawater: a tank experiment approach,
- 2003 Biogeosciences Discussions, 1–27, https://doi.org/10.5194/bg-2020-247, 2020.
- 2004 Sala, M. M., Aparicio, F. L., Balagué, V., Boras, J. A., Borrull, E., Cardelús, C., Cros, L.,
- 2005 Gomes, A., López-Sanz, A., Malits, A., Martínez, R. A., Mestre, M., Movilla, J., Sarmento,
- 2006 H., Vázquez-Domínguez, E., Vaqué, D., Pinhassi, J., Calbet, A., Calvo, E., Gasol, J. M.,
- 2007 Pelejero, C. and Marrasé, C.: Contrasting effects of ocean acidification on the microbial
- 2008 food web under different trophic conditions, ICES Journal of Marine Science, 73(3), 670–
- 2009 679, https://doi.org/10.1093/icesjms/fsv130, 2016.
- 2010 Sherr, E. B. and Sherr, B. F.: Bacterivory and herbivory: Key roles of phagotrophic protists in
- 2011 pelagic food webs, Microb Ecol, 28(2), 223–235, https://doi.org/10.1007/BF00166812,
- 2012 1994.
- 2013 Siokou-Frangou, I., Christaki, U., Mazzocchi, M. G., Montresor, M., Ribera d'Alcalá, M.,
- 2014 Vaqué, D. and Zingone, A.: Plankton in the open Mediterranean Sea: a review,
- 2015 Biogeosciences, 7(5), 1543–1586, https://doi.org/10.5194/bg-7-1543-2010, 2010.
- 2016 Tanaka, T., Thingstad, T. F., Christaki, U., Colombet, J., Cornet-Barthaux, V., Courties, C.,
- 2017 Grattepanche, J.-D., Lagaria, A., Nedoma, J., Oriol, L., Psarra, S., Pujo-Pay, M. and
- 2018 Wambeke, F. V.: Lack of P-limitation of phytoplankton and heterotrophic prokaryotes in
- 2019 surface waters of three anticyclonic eddies in the stratified Mediterranean Sea,
- 2020 Biogeosciences, 8(2), 525–538, https://doi.org/10.5194/bg-8-525-2011, 2011.

- 2021 Ternon, E., Guieu, C., Loÿe-Pilot, M.-D., Leblond, N., Bosc, E., Gasser, B., Miquel, J.-C. and
- 2022 Martín, J.: The impact of Saharan dust on the particulate export in the water column of the
- 2023 North Western Mediterranean Sea, Biogeosciences, 7(3), 809–826,
- 2024 https://doi.org/10.5194/bg-7-809-2010, 2010.
- 2025 The Mermex group: Marine ecosystems' responses to climatic and anthropogenic forcings in the
- 2026 Mediterranean, Progress in Oceanography, 91(2), 97–166,
- 2027 https://doi.org/10.1016/j.pocean.2011.02.003, 2011.
- 2028 Theodosi, C., Markaki, Z., Tselepides, A. and Mihalopoulos, N.: The significance of atmospheric
- 2029 inputs of soluble and particulate major and trace metals to the eastern Mediterranean
- 2030 seawater, Marine Chemistry, 120(1), 154–163,
- 2031 https://doi.org/10.1016/j.marchem.2010.02.003, 2010.
- 2032 Van Wambeke, F., Goutx, M., Striby, L., Sempéré, R. and Vidussi, F.: Bacterial dynamics
- 2033 during the transition from spring bloom to oligotrophy in the northwestern Mediterranean
- 2034 Sea: relationships with particulate detritus and dissolved organic matter, Marine Ecology
- 2035 Progress Series, 212, 89–105, 2001.
- 2036 Van Wambeke, F., Taillandier, V., Deboeufs, K., Pulido-Villena, E., Dinasquet, J., Engel, A.,
- 2037 Marañón, E., Ridame, C. and Guieu, C.: Influence of atmospheric deposition on
- 2038 biogeochemical cycles in an oligotrophic ocean system, Biogeosciences Discussions, 1–51,
- 2039 https://doi.org/10.5194/bg-2020-411, 2020a.
- 2040 Van Wambeke, F., Pulido, E., Dinasquet, J., Djaoudi, K., Engel, A., Garel, M., Guasco, S.,
- 2041 Nunige, S., Taillandier, V., Zäncker, B. and Tamburini, C.: Spatial patterns of biphasic
- 2042 ectoenzymatic kinetics related to biogeochemical properties in the Mediterranean Sea,
- 2043 Biogeosciences Discussions, 1–38, https://doi.org/10.5194/bg-2020-253, 2020b.
- 2044 Verity, P. G., Robertson, C. Y., Tronzo, C. R., Andrews, M. G., Nelson, J. R. and Sieracki, M.
- 2045 E.: Relationships between cell volume and the carbon and nitrogen content of marine

2046	photosynthetic	nanoplankton,	Limnology and	Oceanography,	37(7),	1434–1446,
------	----------------	---------------	---------------	---------------	--------	------------

- 2047 https://doi.org/10.4319/lo.1992.37.7.1434, 1992.
- 2048 Vidussi, F., Claustre, H., Manca, B. B., Luchetta, A. and Marty, J.-C.: Phytoplankton pigment
- 2049 distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea
- 2050 during winter, Journal of Geophysical Research: Oceans, 106(C9), 19939–19956,
- 2051 https://doi.org/10.1029/1999JC000308, 2001.

2053	Table 1. List of parameters and processes investigated during the three experiments at stations									
2054	TYR, ION and FAST. Related manuscripts are indicated. pH _T : pH on the total scale, A_T : total									
2055	alkalinity, ${}^{13}C-C_T$: ${}^{13}C$ signa	ture of dissolved in	norganic carb	on, NO _x : nit	rate + niti	rite, DII	D :			
2056	dissolved inorganic phospho	orus, Si(OH)4: silic	ate, DFe: dis	solved iron, I	DAl: diss	olved				
2057	aluminium, Th-REE-Pa: The	orium (²³⁰ Th and ²³	³² Th), Rare E	arth element	s and Pro	otactiniu	m			
2058	(²³¹ Pa), POC: particulate org	ganic carbon, DOC	: dissolved or	rganic carbo	n, ¹³ C-DC	DC: ¹³ C				
2059	signature of dissolved organ	ic carbon, TEP: tra	ansparent exo	polymer, par	ticles, NC	CP/CR:	net			
2060	community production and c	community respira	tion (oxygen	based), ¹⁴ C-1	PP: prime	ary prod	uction			
2061	based on ¹⁴ C incorporation.									
2062	Ł	Acidification and	Dust seeding							
2063		addition of ¹³ C bicarbonate		Temperat		-1				
2064	<u>Filling tanks</u>	1	++	Temperat						
	Sampling time	<u>t-12h</u>	- <u>t</u> 0	tl <u>h t6h</u>	<u>t12h</u>	<u>t24h</u>	<u>t48h</u>	<u>t72h/t96h</u>		
İ		X	▼		Hours	post du	st seedin	<u>a</u>		
									Related manuscript	
	Temperature			Continu	ious				This manuscript	
	Irradiance			Continu	ious				This manuscript	
									1	

Carbonate chemistry

pH _r	This manuscript	
		Formatted: Font: 12 pt
A.	This manuscript	
		Formatted: Font: 12 pt
$\delta^{13}C-C_T$	Gazeau et al. (2021)	Formatted: Font: 12 pt
		Deleted: in preparation
Macro-nutrients		Formatted: Font: 12 pt
NO _x	This manuscript	
	This manuscript	Formatted: Font: 12 pt
DIP	This manuscript	
	This manuscript	
Si(OH)4	This manuscript	
(/	T	Formatted: Font: 12 pt
Micro-nutrients		
DFe	Roy-Barman et al. (2020)	Deleted: in preparation
DAI	Pay Perman et al. (2020)	
DAI	Roy-Barman et al. (<u>2020</u>)	Deleted: in preparation
Th-REE-Pa	 Rov-Barman et al. (2020)	
		Deleted: in preparation
Biological stocks		
Discussion	This succession	
Pigments	This manuscript	
Flow cytometry	This manuscript	
riow cytometry	This manuscript	

Microscopy	This manuscript	
Diazotroph abundance	Céline Ridame (unpublished)	
		Deleted: Ridame et al. (in preparation)
Virus abundance	Dinasquet et al. (2021)	Formatted: French
Meta-transcriptomics	Dinasquet et al. (2021)	Deleted: (in preparation)
		Deleted: Dinasquet et al. (in preparation)
Bacterial diversity	Dinasquet et al. (2021)	
		Deleted: Dinasquet et al. (in preparation)
Micro-eukaryote	Dinasquet et al. (2021)	
diversity		Deleted: Dinasquet et al. (in preparation)
Meso-zooplankton	This manuscript	
POC (incl. δ^{13} C)	Gazeau et al. (2021)	Deleted: in preparation
		Formatted: Font: 12 pt
POC sediment traps	Gazeau et al. (2021)	
		Deleted: Gazeau et al. (in preparation)
DOC	Gazeau et al. (2021)	
		Deleted: Gazeau et al. (in preparation)
¹³ C-DOC	Gazeau et al. (2021)	
		Formatted: Font: 12 pt
TEP	Gazeau et al. (2021)	Deleted: Gazeau et al. (in preparation)
		Deleted: Gazeau et al. (in preparation)
Amino acids	Gazeau et al. (2021)	Deleted: Gazeau et al. (in preparation)
		Denteu. Gazeau et al. (in preparation)
Carbohydrates	Gazeau et al. (2021)	Deleted: Gazeau et al. (in preparation)
Processes		

Ι	NCP/CR		Gazeau et al. (2021)		Deleted: Gazeau et al. (in preparation)
	¹⁴ C-PP	 	Gazeau et al. (2021)		
l	Hetenotiophic		Gazeau et al. (2021)		Formatted: Font: 12 pt Deleted: Gazeau et al. (in preparation)
	Freezensteine				Deleted: Gazeau et al. (in preparation)
	Ectoenzymatic activity		Gazeau et al. (2021)		Deleted: Gazeau et al. (in preparation)
	Ne fixation	 	Céline Ridame (unpublished)		
I					Formatted: Font: 12 pt
	¹³ CO ₂ -fixation		Citinue Rillad) Gazepuldi sile (10212)	· / ·	Deleted: Ridame et al. (in preparation)
I					Formatted: French
	Virus production,		Dinasquet et al. (2021)		Deleted: ¹³
	lysogeny				Formatted: Font: 12 pt
2107					Formatted: Font: 12 pt

Deleted: in preparation

Deleted: Ridame et al. (in preparation)

Deleted: Dinasquet et al. (in preparation)

2117	Table 2. Initial conditions as measured while filling the tanks (initial conditions in pumped		
2118	surface water; sampling time: t-12h). pH _T : pH on the total scale, NO _x : nitrate + nitrite, NH ₄ :		
2119	ammonium, DIP: dissolved inorganic phosphorus, Si(OH) ₄ : silicate, TChla: total chlorophyll a,		
2120	HNF: heterotrophic nanoflagellates. The three most important pigments in terms of concentration		
2121	are also presented (19'-hexanoyloxyfucoxanthin, Zeaxanthin and Divinyl Chlorophyll a).		
2122	Biomasses of the different groups analyzed through flow cytometry were estimated based on		
2123	conversion equations and/or factors found in the literature (see section 2.3). Autotrophic biomass		
2124	was, as a first approximation, estimated only based on flow cytometry data and therefore		
2125	corresponds to the fraction $< 20 \ \mu m$. Heterotrophic biomass was estimated as the sum of		
2126	heterotrophic prokaryote and HNF biomasses (see section 2.3,2). Values below detection limits	 Formatte	ed: Englis
2127	are indicated as < dl		

2127 are indicated as < dl.

	Sampling station	TYR	ION	FAST
	Coordinates (decimal)	39.34 N, 12.60 E	35.49 N, 19.78 E	37.95 N, 2.90 N
	Bottom depth (m)	3395	3054	2775
	Day and time of sampling (local time)	17/05/2017 17:00	25/05/2017 17:00	02/06/2017 21:00
	Temperature (°C)	20.6	21.2	21.5
	Salinity	37.96	39.02	37.07
Carbonate	pH _T	8.04	8.07	8.03

glish (US)

chemistry	Total alkalinity (µmol kg ⁻¹)	2529	2627	2443
Nutrients	NO _x (nmol L ⁻¹)	14.0	18.0	59.0
	NH_4^+ (µmol L ⁻¹)	0.045	0.022	< dl
	DIP (nmol L ⁻¹)	17.1	6.5	12.9
	Si(OH)4 (µmol L ⁻¹)	1.0	0.96	0.64
	NO _x /DIP (molar ratio)	0.8	2.5	4.6
Pigments	$TChla (\mu g L^{-1})$	0.063	0.066	0.072
	19'-hexanoyloxyfucoxanthin (µg L ⁻¹)	0.017	0.021	0.016
	Zeaxanthin (µg L ⁻¹)	0.009	0.006	0.036
	Divinvl Chlorophvll a (µg L ⁻¹)	~ 0	0	0.014
Flow cytometry	Pico-eukaryotes (abundance in cell mL ⁻¹ ; biomass in $\mu g \mathrel{\rm C} L^{\text{-1}}$)	347.8; 0.5	239.9; 0.4	701.0; 1.0
	Nano-eukaryotes (abundance in cell mL-1; biomass in $\mu g \mathrel{C} L^{-1}$)	150.5; 3.9	188.8; 4.8	196.6; 5.0
	Synechococcus (abundance in cell mL ⁻¹ ; biomass in μ g C L ⁻¹)	4972; 1.2	3037; 0.8	6406; 1.6
	Autotrophic biomass (µg C L ⁻¹)	5.6	6.0	7.7
	Heterotrophic prokaryotes abundance (x 10 ⁵ cell mL ⁻¹)	4.79	2.14	6.15
	HNF (abundance in cell mL ⁻¹)	110.1	53.6	126.2
	Heterotrophic biomass (µg C L ⁻¹)	9.9	4.5	12.7
Microscopy	Pennate diatoms (abundance in cell L ⁻¹)	140	520	880
	Centric diatoms (abundance in cell L-1)	200	380	580

Dinoflagellates (abundance in cell L ⁻¹)	2770	3000	3410	
Autotrophic flagellates (abundance in cell L ⁻¹)	0	60	650	
Ciliates (abundance in cell L ⁻¹)	270	380	770	

Table 3. Maximum input of nitrate + nitrite (NO_x) and dissolved inorganic phosphorus (DIP) released from Saharan dust in tanks D and G as observed from the two discrete samplings performed over the first 6 h after seeding. The estimated maximal percentage of dissolution is also presented (see section 2.3_{c1} for details on the calculations).

	NO _x			DIP				
	D1	D2	G1	G2	D1	D2	G1	G2
Maximum input	μmol L ⁻¹			nmol L ⁻¹				
TYR	11.0	11.1	11.1	11.0	24.6	20.4	24.6	23.9
ION	11.2	11.6	11.2	11.3	23.3	22.0	19.6	22.9
FAST	11.3	11.1	11.1	11.2	30.8	31.3	36.9	29.8

Percenta	age of dissolution (%)								
	TYR	95	96	95	94	12	10	12	11
	ION	96	99	96	97	11	10	9	11
	FAST	97	97	95	97	15	15	17	14

1	Table 4. Removal rate of nitrate + nitrite (NO _x) and dissolved inorganic phosphorus (DIP) in
2	tanks D and G during the three experiments (TYR, ION and FAST). For NO _x , decreasing rates
3	were estimated based on linear regressions between maximal concentrations (i.e. after dust
4	enrichment, at t1h or t6h) and final concentrations (t72 h for TYR and ION and t96h for FAST).
5	For DIP, decreasing rates were estimated based on linear regressions between maximal
6	concentrations (i.e. after dust enrichment at t1h or t6h) and concentrations measured at sampling
7	times after which a stabilization was observed. This sampling time is shown in parentheses. All
8	rates are expressed in nmol L ⁻¹ h ⁻¹ .

		NO _x			DIP	
	TYR	ION	FAST	TYR	ION	FAST
D1	-6.5	-8.6	-14.3	-0.4 (t72h)	-0.5 (t48h)	-0.2 (t96h)
D2	-1.0	-8.6	-13.5	-0.3 (t72h)	-0.8 (t24h)	-0.2 (t96h)
G1	-6.7	-13.1	-21.6	-1.3 (t24h)	-0.8 (t24h)	-1.5 (t24h)
G2	-0.8	-1.6	-25.2	-1.3 (t24h)	-1.6 (t24h)	-1.1 (t24h)

10	Table 5. Maximum relative changes in tanks D and G as compared to controls (average between
11	C1 and C2), expressed as a %, for the three experiments (TYR, ION and FAST). The sampling
12	time at which these maximum relative changes were observed is shown in brackets. Tchla refers
13	to the concentration of total chlorophyll a and B_{micro} to the biomass proxy of micro-
14	phytoplankton (sum of Fucoxanthin and Peridinin, see Material and Methods) based on high
15	performance liquid chromatography (HPLC). HP and HNF refer to heterotrophic prokaryote and

16 heterotrophic nanoflagellate abundances, respectively, as measured by flow cytometry.

Experiment	Tank	HP	LC	Flow cytometry				
		TChla	B _{micro}	Pico-eukaryotes	Nano-eukaryotes	Synechococcus	HP	HNF
TYR	D1	-35 (t24h)	-33 (t12h)	-75 (t72h)	-80 (t1h)	-71 (t48h)	68 (t72h)	352 (t72h)
TYR	D2	-38 (t12h)	-39 (t24h)	-75 (t72h)	-80 (t1h)	-72 (t48h)	53 (t72h)	100 (t72h)
TYR	Gl	60 (t72h)	52 (t72h)	-75 (t1h)	89 (t72h)	76 (t72h)	67 (t72h)	1095 (t72h)
TYR	G2	359 (t72h)	392 (t72h)	323 (t72h)	119 (t72h)	700 (t72h)	68 (t48h)	298 (t72h)
ION	D1	183 (t72h)	157 (t72h)	126 (t72h)	89 (t72h)	317 (t72h)	128 (t72h)	44 (t72h)
ION	D2	109 (t72h)	156 (t72h)	117 (t72h)	-59 (t1h)	390 (t72h)	133 (t72h)	27 (t72h)
ION	Gl	399 (t72h)	454 (t72h)	458 (t72h)	256 (t72h)	805 (t72h)	176 (t72h)	175 (t72h)

ION	G2	426 (t72h)	612 (t72h)	510 (t72h)	292 (t72h)	1425 (t72h)	161 (t72h)	129 (t72h)
FAST	D1	318 (t96h)	356 (t96h)	113 (t96h)	208 (t72h)	348 (t96h)	27 (t96h)	-38 (t96h)
FAST	D2	237 (t96h)	322 (t96h)	91 (t96h)	219 (t72h)	197 (t96h)	40 (t48h)	-49 (t96h)
FAST	G1	399 (t96h)	415 (t96h)	198 (t72h)	274 (t72h)	357 (t48h)	61 (t48h)	243 (t24h)
FAST	G2	395 (t96h)	421 (t96h)	129 (t72h)	202 (t96h)	344 (t48h)	67 (t48h)	74 (t24h)

Figure captions

 Fig. 1. Location of the sampling stations in the Mediterranean Sea onboard the R/V "Pourquoi
 Deleted: Loc

 Pas ?" during the PEACETIME cruise, on map of satellite-derived surface chlorophyll a
 Deleted: Loc

 concentration averaged over the entire duration of the cruise (Courtesy of Louise Rousselet),
 Formatted: I

 Fig. 2. Scheme of an experimental tank (climate reactor).
 Deleted: Mai Mediterranear R/V "Pourquoi

 Fig. 3. Proportion of the different pigments, as measured by high performance liquid
 chromatography (HPLC) in pumped surface seawater for the three experiments (t-12h).

 Fig. 4. Continuous measurements of temperature and irradiance level (PAR) in the six tanks
 during the three experiments. The dashed vertical line indicates the time of dust seeding (after t0).

 Fig. 5. p.H on the tatel coole (of H) and tested climativity (4) measured in the six tanks during the tatel coole (of H) and tested climativity (4) measured in the six tanks

Fig. 5. pH on the total scale (pH_T) and total alkalinity (A_T) measured in the six tanks during the three experiments. The dashed vertical line indicates the time of dust seeding (after t0). Error bars correspond to the standard deviation based on analytical triplicates.

Fig. 6. Nutrients (nitrate + nitrite: NO_x , dissolved inorganic phosphorus: DIP, silicate: Si(OH)₄ as well as the molar ratio between NO_x and DIP, measured in the six tanks during the three experiments. The dashed vertical line indicates the time of seeding (after t0).

Fig. 7. Concentrations of total chlorophyll *a* and major pigments, measured by high performance liquid chromatography (HPLC), in the six tanks during the three experiments. The dashed vertical line indicates the time of seeding (after t0).

Fig. 8. Abundance of <u>autotrophic</u> pico-eukaryotes, <u>autotrophic</u> nano-eukaryotes, *Synechococcus*, heterotrophic prokaryotes (HP), and heterotrophic nano-flagellates (HNF), measured by flow cytometry, in the six tanks during the three experiments. The evolution of autotrophic biomass

Deleted: Location of	
Deleted: , on a	
Formatted: Font colour: Black	

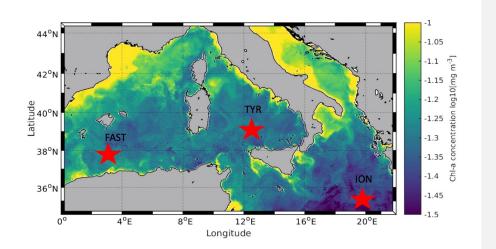
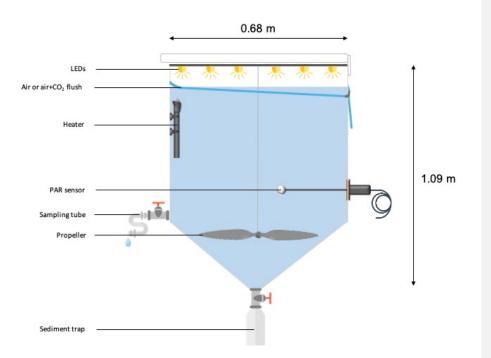
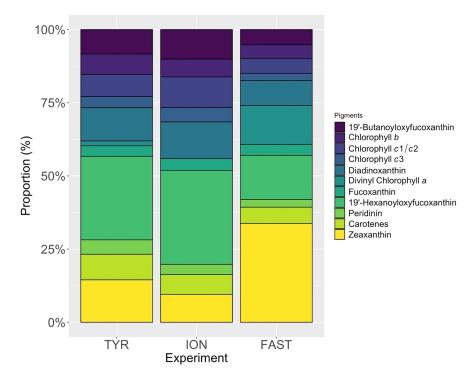
Deleted: Map showing the sampling stations in the Mediterranean Sea along the transect performed onboard the R/V "Pourquoi Pas ?" during the PEACETIME cruise.¶

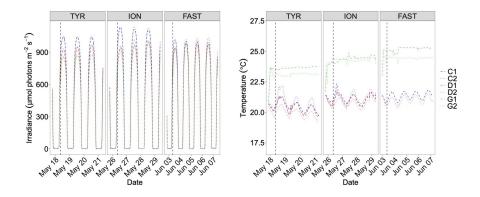
(see Material and Methods for details on the calculation) is also shown. The dashed vertical line indicates the time of seeding (after t0).

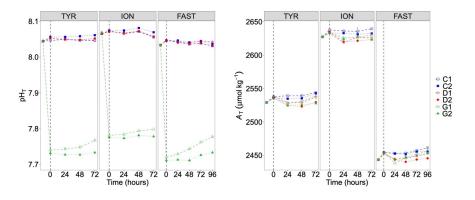
Fig. 9. Abundances of meso-zooplankton species as measured at the end of each experiment.

Fig. 10. Maximal relative change (%) of main biological stocks (TCHl*a*: total chlorophyll *a*, HP: heterotrophic prokaryotes) and processes (BP: bacterial production; PP: ¹⁴C-based primary production; see Gazeau et al. 2021; BR: bacterial respiration (no data from this study); and N₂ fixation, <u>Céline Ridame, unpublished results</u>) as obtained during the present study at the 3 stations (TYR, ION and FAST) under ambient conditions of pH and temperature (open red squares) and future conditions (full green squares). Squares are delimited by the range of responses observed among the duplicates for each treatment. The dotted green squares for station TYR denote the large variability observed between duplicates for some parameters and processes that prevented drawing solid conclusions. Box-plots represent the distribution of responses observed from studies conducted in the Mediterranean Sea, as compiled by Guieu and Ridame (2020).

Deleted: in preparation, this issue
Formatted: English (US)
Deleted: see
Formatted: English (US)
Formatted: English (US)
Deleted: et al., in preparation, this issue


Fig. 1.



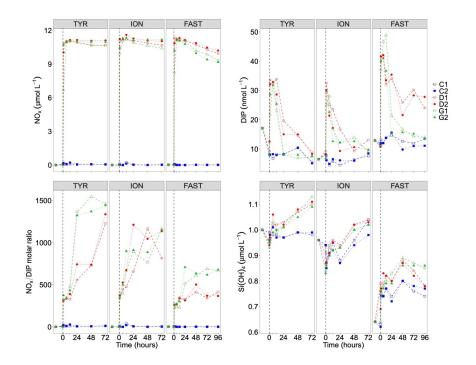


Fig. 6.

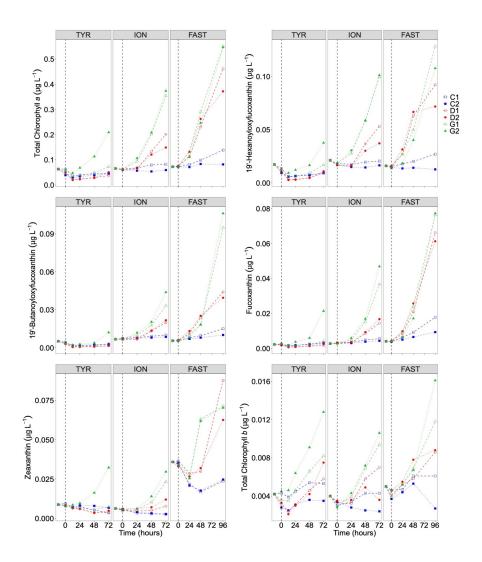
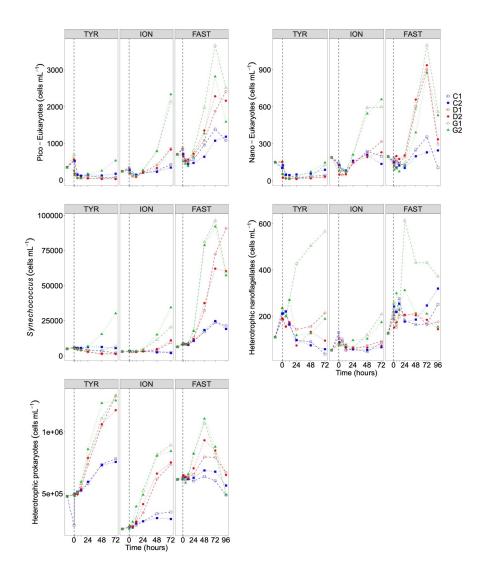



Fig. 7.

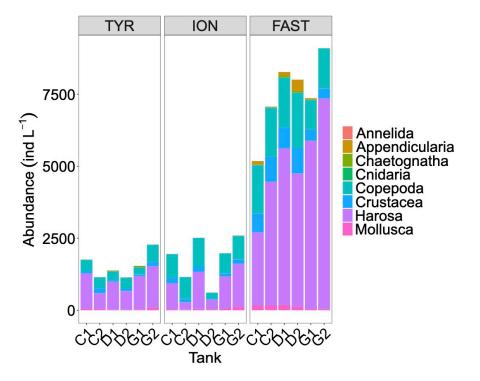


Fig. 9.

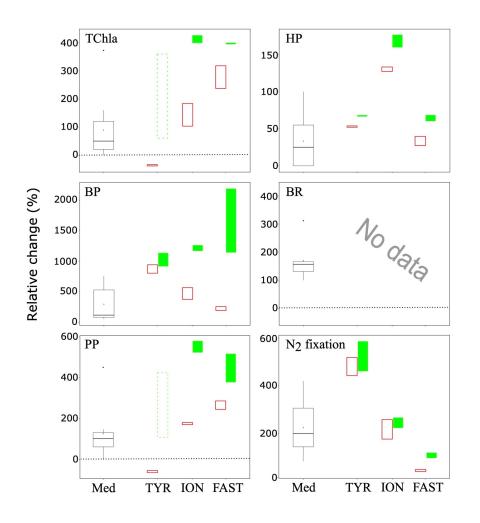


Fig. 10.

Page 26: [1] Formatted	Frederic GAZEAU	12/02/2021 11:57:00
English (US)		
Page 26: [1] Formatted	Frederic GAZEAU	12/02/2021 11:57:00
English (US)		
Page 26: [1] Formatted	Frederic GAZEAU	12/02/2021 11:57:00
English (US)		
Page 26: [1] Formatted	Frederic GAZEAU	12/02/2021 11:57:00
English (US)		
Page 26: [1] Formatted	Frederic GAZEAU	12/02/2021 11:57:00
English (US)		
Page 26: [1] Formatted	Frederic GAZEAU	12/02/2021 11:57:00
English (US)		
Page 26: [2] Formatted	Frederic GAZEAU	12/02/2021 11:58:00
English (US)		
Page 26: [2] Formatted	Frederic GAZEAU	12/02/2021 11:58:00
English (US)		
Page 26: [2] Formatted	Frederic GAZEAU	12/02/2021 11:58:00
English (US)		
Page 26: [2] Formatted	Frederic GAZEAU	12/02/2021 11:58:00
English (US)		
Page 26: [2] Formatted	Frederic GAZEAU	12/02/2021 11:58:00
English (US)		
Page 26: [2] Formatted	Frederic GAZEAU	12/02/2021 11:58:00
English (US)		
Page 26: [3] Formatted	Frederic GAZEAU	12/02/2021 15:52:00
English (US)		
Page 26: [3] Formatted	Frederic GAZEAU	12/02/2021 15:52:00
English (US)		
Page 26: [4] Formatted	Frederic GAZEAU	11/02/2021 11:24:00
English (US)		
Page 26: [4] Formatted	Frederic GAZEAU	11/02/2021 11:24:00
English (US)		
Page 26: [5] Formatted	Frederic GAZEAU	11/02/2021 11:24:00
English (US)		
Page 26: [5] Formatted	Frederic GAZEAU	11/02/2021 11:24:00
English (US)		
Page 26: [6] Formatted	Frederic GAZEAU	11/02/2021 11:24:00
English (US)		11/02/2021 11.24.00
Page 26: [6] Formatted	Frederic GAZEAU	11/02/2021 11.24.00
raye 20. [0] Formatted		11/02/2021 11:24:00

•		
Page 26: [6] Formatted	Frederic GAZEAU	11/02/2021 11:24:00
English (US)		
Page 26: [6] Formatted	Frederic GAZEAU	11/02/2021 11:24:00
English (US)		
Page 26: [6] Formatted	Frederic GAZEAU	11/02/2021 11:24:00
English (US)		
Page 26: [7] Deleted	Frederic GAZEAU	10/02/2021 14:33:00
X		
Page 26: [8] Formatted	Frederic GAZEAU	12/02/2021 12:03:00
English (US)		
Page 26: [8] Formatted	Frederic GAZEAU	12/02/2021 12:03:00
English (US)		
Page 26: [8] Formatted	Frederic GAZEAU	12/02/2021 12:03:00
English (US)		
Page 26: [8] Formatted	Frederic GAZEAU	12/02/2021 12:03:00
English (US)		
Page 26: [8] Formatted	Frederic GAZEAU	12/02/2021 12:03:00
English (US)		,,
Page 26: [8] Formatted	Frederic GAZEAU	12/02/2021 12:03:00
English (US)		
Page 26: [8] Formatted	Frederic GAZEAU	12/02/2021 12:03:00
English (US)		
Page 26: [8] Formatted	Frederic GAZEAU	12/02/2021 12:03:00
English (US)		
Page 26: [8] Formatted	Frederic GAZEAU	12/02/2021 12:03:00
English (US)		
Page 26: [9] Deleted	Frederic GAZEAU	02/02/2021 12:10:00
-		02/02/2021 12:10:00
·		
Page 26: [10] Formatted	Frederic GAZEAU	11/02/2021 11:24:00
Font colour: Text 1	Frederic GAZEAO	11/02/2021 11.24.00
A	Fundaria CA7EAU	11/02/2021 11-24-00
Page 26: [10] Formatted Font colour: Text 1	Frederic GAZEAU	11/02/2021 11:24:00
A	Enderic CAZEALL	11/02/2021 11/24/00
Page 26: [10] Formatted Font colour: Text 1	Frederic GAZEAU	11/02/2021 11:24:00
A		11/02/2021 11 21 20
Page 26: [10] Formatted Font colour: Text 1	Frederic GAZEAU	11/02/2021 11:24:00
A		
Page 26: [11] Formatted	Frederic GAZEAU	11/02/2021 11:24:00

Page 26: [11] Formatted	Frederic GAZEAU	11/02/2021 11:24:00
English (US)		
Page 26: [12] Deleted	Frederic GAZEAU	10/02/2021 14:31:00
have 26. [12] Deleted	Fradaria CA7EAU	10/02/2021 14-21-00
age 26: [12] Deleted	Frederic GAZEAU	10/02/2021 14:31:00
Page 26: [13] Deleted	Frederic GAZEAU	11/02/2021 11:15:00
Page 26: [13] Deleted	Frederic GAZEAU	11/02/2021 11:15:00
Page 26: [13] Deleted	Frederic GAZEAU	11/02/2021 11:15:00
Page 26: [14] Deleted	Frederic GAZEAU	11/02/2021 11:15:00
Page 26: [15] Formatted	Frederic GAZEAU	11/02/2021 16:38:00
English (US)		,
age 26: [15] Formatted	Frederic GAZEAU	11/02/2021 16:38:00
English (US)		
Page 27: [16] Formatted	Frederic GAZEAU	10/02/2021 15:09:00
English (US)		
Page 27: [17] Formatted English (US)	Frederic GAZEAU	10/02/2021 15:09:00
Page 27: [18] Formatted English (US)	Frederic GAZEAU	12/02/2021 12:05:00
Page 27: [19] Formatted	Frederic GAZEAU	12/02/2021 12:06:00
English (US)		
age 27: [20] Formatted	Frederic GAZEAU	12/02/2021 12:06:00
English (US)		
Page 27: [21] Deleted	Frederic GAZEAU	12/02/2021 12:05:00

Page 27: [22] Formatted	Frederic GAZEAU	12/02/2021 12:06:00
English (US)		
Page 27: [23] Formatted	Frederic GAZEAU	03/02/2021 15:53:00
English (US)		
Page 27: [23] Formatted	Frederic GAZEAU	03/02/2021 15:53:00
English (US)		
Page 27: [24] Deleted	Frederic GAZEAU	03/02/2021 15:53:00
.		•
	F 1 . 647540	
Page 27: [24] Deleted	Frederic GAZEAU	03/02/2021 15:53:00
ſ		
k		
Page 27: [25] Formatted	Frederic GAZEAU	03/02/2021 15:54:00
English (US)		
Page 27: [25] Formatted	Frederic GAZEAU	03/02/2021 15:54:00
English (US)		
Page 27: [26] Deleted	Frederic GAZEAU	03/02/2021 15:54:00
		•
L		
Dago 27. [26] Delated	Frederic CA75AU	02/02/2021 15-54-00
Page 27: [26] Deleted	Frederic GAZEAU	03/02/2021 15:54:00
I		
Page 27: [27] Formatted	Frederic GAZEAU	10/02/2021 15:51:00
English (US)		
Page 27: [27] Formatted	Frederic GAZEAU	10/02/2021 15:51:00
English (US)		
Page 27: [28] Formatted	Frederic GAZEAU	10/02/2021 15:51:00
English (US)		
Page 27: [29] Deleted	Frederic GAZEAU	10/02/2021 15:10:00
A		
Page 27: [29] Deleted	Frederic GAZEAU	10/02/2021 15:10:00
Page 27: [29] Deleted	Frederic GAZEAU	10/02/2021 15:10:00
T		
A		

Page 27: [30] Formatted	Frederic GAZEAU	10/02/2021 15:30:00
English (US)	neuenc GAZLAU	10/02/2021 13:30:00
Page 27: [31] Deleted	Frederic GAZEAU	10/02/2021 15:10:00
		•
Page 27: [32] Formatted English (US)	Frederic GAZEAU	10/02/2021 15:31:00
Page 27: [33] Formatted English (US)	Frederic GAZEAU	10/02/2021 15:11:00
		10/02/2024 15 14 00
Page 27: [34] Formatted English (US)	Frederic GAZEAU	10/02/2021 15:11:00
· · · · ·	Fundaria CA7FALL	10/02/2021 15:11:00
Page 27: [35] Deleted	Frederic GAZEAU	10/02/2021 15:11:00
۲		
A		
Page 27: [35] Deleted	Frederic GAZEAU	10/02/2021 15:11:00
۲		
A		
Page 27: [36] Formatted	Frederic GAZEAU	10/02/2021 15:35:00
English (US)		10/02/2021 15:55:00
Page 27: [36] Formatted	Frederic GAZEAU	10/02/2021 15:35:00
English (US)		10,01,101 10.00.00
Page 27: [37] Formatted	Frederic GAZEAU	10/02/2021 15:35:00
English (US)		
Page 27: [38] Deleted	Frederic GAZEAU	10/02/2021 15:35:00
A		
Page 27: [38] Deleted	Frederic GAZEAU	10/02/2021 15:35:00
۲		•
<u>۸</u>		
Page 27: [38] Deleted	Frederic GAZEAU	10/02/2021 15:35:00
۲		
A		
Dama 27, (20) Fam. ()	Frederic CATENI	10/00/0004 40.07.00
Page 27: [39] Formatted English (US)	Frederic GAZEAU	12/02/2021 12:07:00
A	Fund to CARPAN	
Page 27: [39] Formatted English (US)	Frederic GAZEAU	12/02/2021 12:07:00
· · · ·	Frederic CATENI	10/00/0001 40 07 00
Page 27: [39] Formatted	Frederic GAZEAU	12/02/2021 12:07:00

English (US)		
Page 27: [40] Formatted	Frederic GAZEAU	03/02/2021 15:58:00
English (US)		
Page 27: [41] Deleted	Frederic GAZEAU	10/02/2021 15:36:00
۲		
A		
Page 27: [42] Formatted	Frederic GAZEAU	12/02/2021 09:33:00
English (US)		
Page 27: [43] Formatted	Frederic GAZEAU	10/02/2021 15:37:00
English (US)		
Page 27: [44] Formatted	Frederic GAZEAU	10/02/2021 15:17:00
English (US)		
Page 27: [45] Deleted	Frederic GAZEAU	10/02/2021 15:37:00
V		4
Page 27: [45] Deleted	Frederic GAZEAU	10/02/2021 15:37:00
L		
Page 27: [45] Deleted	Frederic GAZEAU	10/02/2021 15:37:00
۲		
Page 27: [46] Formatted	Frederic GAZEAU	10/02/2021 15:16:00
English (US)		
Page 27: [46] Formatted	Frederic GAZEAU	10/02/2021 15:16:00
English (US)		
Page 27: [47] Deleted	Frederic GAZEAU	12/02/2021 12:07:00
t		
.		
Page 27: [47] Deleted	Frederic GAZEAU	12/02/2021 12:07:00
rage 21. [41] Deleted	Frederic GAZEAO	12/02/2021 12:07:00
۲		
·		
Page 27: [48] Formatted	Frederic GAZEAU	10/02/2021 15:15:00
English (US)		
Page 27: [49] Formatted	Frederic GAZEAU	10/02/2021 15:52:00
English (US)		
Page 28: [50] Formatted	Frederic GAZEAU	03/02/2021 16:02:00
English (US)		

Page 28: [50] Formatted	Frederic GAZEAU	03/02/2021 16:02:00
English (US)		
Page 28: [51] Deleted	Frederic GAZEAU	03/02/2021 16:09:00
۷		
A		
Page 28: [51] Deleted	Frederic GAZEAU	03/02/2021 16:09:00
Page 20: [51] Deleted	Frederic GAZEAU	03/02/2021 16:05:00
▼		
<u>۸</u>		
Page 28: [52] Formatted	Frederic GAZEAU	03/02/2021 16:08:00
English (US)		
Page 28: [52] Formatted	Frederic GAZEAU	03/02/2021 16:08:00
English (US)		
Page 28: [52] Formatted	Frederic GAZEAU	03/02/2021 16:08:00
English (US)		
Page 28: [52] Formatted	Frederic GAZEAU	03/02/2021 16:08:00
English (US)		
Page 28: [53] Deleted	Frederic GAZEAU	03/02/2021 16:10:00
۷		
Page 28: [53] Deleted	Frederic GAZEAU	03/02/2021 16:10:00
۲		•
A		
Page 28: [54] Deleted	Frederic GAZEAU	03/02/2021 16:11:00
A		
Page 28: [54] Deleted	Frederic GAZEAU	03/02/2021 16:11:00
۷		4
<u>۸</u>		
Page 28: [55] Deleted	Frederic GAZEAU	03/02/2021 16:11:00
Y		
<u>۸</u>		
Page 28: [55] Deleted	Frederic GAZEAU	03/02/2021 16:11:00
۷		
A		
Dago 28: [55] Delated	Frederic GAZEAU	02/02/2021 16:11:00
Page 28: [55] Deleted		03/02/2021 16:11:00
▼		

I

Page 28: [56] Formatted	Frederic GAZEAU	03/02/2021 16:11:00
English (US)		
Page 28: [56] Formatted	Frederic GAZEAU	03/02/2021 16:11:00
English (US)		
Page 28: [56] Formatted	Frederic GAZEAU	03/02/2021 16:11:00
English (US)		
Page 28: [56] Formatted	Frederic GAZEAU	03/02/2021 16:11:00
English (US)		
Page 28: [57] Deleted	Frederic GAZEAU	03/02/2021 16:12:00
۲		
<u>ــــــــــــــــــــــــــــــــــــ</u>		
Page 28: [57] Deleted	Frederic GAZEAU	03/02/2021 16:12:00
1 age 20. [31] Beielea		03/02/2021 10.12.00
A		
Page 28: [58] Formatted	Frederic GAZEAU	03/02/2021 16:12:00
English (US)		
Page 28: [58] Formatted	Frederic GAZEAU	03/02/2021 16:12:00
English (US)		
Page 28: [58] Formatted	Frederic GAZEAU	03/02/2021 16:12:00
English (US)		
Page 28: [59] Formatted	Frederic GAZEAU	10/02/2021 17:04:00
English (US), Not Highlight		
Page 28: [59] Formatted	Frederic GAZEAU	10/02/2021 17:04:00
English (US), Not Highlight		
Page 28: [59] Formatted	Frederic GAZEAU	10/02/2021 17:04:00
English (US), Not Highlight		
Page 29: [60] Formatted	Frederic GAZEAU	10/02/2021 18:13:00
English (US)		
Page 29: [60] Formatted	Frederic GAZEAU	10/02/2021 18:13:00
English (US)		
Page 29: [60] Formatted	Frederic GAZEAU	10/02/2021 18:13:00
English (US)		
Page 29: [61] Deleted	Frederic GAZEAU	10/02/2021 17:08:00
τ		
k		

A		
Page 29: [61] Deleted	Frederic GAZEAU	10/02/2021 17:08:00
۲		
L		
Dama 20. [62] Formattad	Fundaria CA7EAU	10/02/2021 16:42:00
Page 29: [62] Formatted English (US)	Frederic GAZEAU	10/02/2021 16:43:00
	E. J. CATEAU	10/02/2021 10 42 00
Page 29: [62] Formatted English (US)	Frederic GAZEAU	10/02/2021 16:43:00
A	F 1 : 647541	
Page 29: [63] Deleted	Frederic GAZEAU	10/02/2021 17:08:00
Υ		
A		
Page 29: [63] Deleted	Frederic GAZEAU	10/02/2021 17:08:00
Y		
A		
Dame 20: 1641 Delated	Frederic CA75ALL	10/02/2021 10:10 00
Page 29: [64] Deleted	Frederic GAZEAU	10/02/2021 18:18:00
۲		
A		
Page 29: [64] Deleted	Frederic GAZEAU	10/02/2021 18:18:00
۷		
Page 29: [65] Formatted	Frederic GAZEAU	10/02/2021 18:19:00
English (US)		10,01,101110.000
Page 29: [65] Formatted	Frederic GAZEAU	10/02/2021 18:19:00
English (US)		10,02,2021 10.10.00
Page 29: [66] Formatted	Frederic GAZEAU	10/02/2021 16:45:00
English (US)		
Page 29: [66] Formatted	Frederic GAZEAU	10/02/2021 16:45:00
English (US)		,,
Page 29: [67] Formatted	Frederic GAZEAU	10/02/2021 16:45:00
English (US)		,,
Page 29: [67] Formatted	Frederic GAZEAU	10/02/2021 16:45:00
English (US)		
Page 29: [68] Formatted	Frederic GAZEAU	10/02/2021 16:45:00
English (US)		
Page 29: [68] Formatted	Frederic GAZEAU	10/02/2021 16:45:00
English (US)		10, 52, 2021 10.43.00
Page 29: [69] Deleted	Frederic GAZEAU	10/02/2021 16:46:00
- age 23. [03] Deleted		10,02/2021 10.40.00

Page 29: [69] Deleted	Frederic GAZEAU	10/02/2021 16:46:00
Page 29: [70] Formatted	Frederic GAZEAU	11/02/2021 17:06:00
English (US)		
Page 29: [70] Formatted	Frederic GAZEAU	11/02/2021 17:06:00
English (US)		
Page 29: [70] Formatted	Frederic GAZEAU	11/02/2021 17:06:00
English (US)		
Page 29: [71] Formatted	Frederic GAZEAU	11/02/2021 11:41:00
English (US), Not Highlight		
Page 29: [71] Formatted	Frederic GAZEAU	11/02/2021 11:41:00
English (US), Not Highlight		
Page 29: [71] Formatted	Frederic GAZEAU	11/02/2021 11:41:00
English (US), Not Highlight		
Page 29: [71] Formatted	Frederic GAZEAU	11/02/2021 11:41:00
English (US), Not Highlight		
Page 29: [72] Deleted	Frederic GAZEAU	10/02/2021 17:11:00
·		
	En de la CAZEAU	10/02/2021 17 12 0/
Page 29: [73] Deleted	Frederic GAZEAU	10/02/2021 17:13:00
Page 29: [73] Deleted	Frederic GAZEAU	10/02/2021 17:13:00
Page 29: [73] Deleted	Frederic GAZEAU	10/02/2021 17:13:00
Page 29: [73] Deleted	Frederic GAZEAU	10/02/2021 17:13:00
Page 29: [73] Deleted Page 29: [74] Deleted	Frederic GAZEAU Frederic GAZEAU	10/02/2021 17:13:00 10/02/2021 17:22:00
Page 29: [74] Deleted	Frederic GAZEAU	10/02/2021 17:22:00
Page 29: [74] Deleted	Frederic GAZEAU	10/02/2021 17:22:00

V.....

•

Page 33: [77] Formatted	Frederic GAZEAU	11/02/2021 16:10:00
English (US)		
Page 33: [78] Formatted	Frederic GAZEAU	11/02/2021 16:50:00
Indent: First line: 0 cm		
Page 33: [79] Deleted	Frederic GAZEAU	11/02/2021 16:50:00
Page 33: [80] Formatted	Frederic GAZEAU	11/02/2021 16:30:00
English (US)		
Page 33: [81] Formatted	Frederic GAZEAU	11/02/2021 16:32:00
English (US)		
Page 33: [82] Formatted	Frederic GAZEAU	17/02/2021 10:17:00
English (US)		
Page 58: [83] Formatted Table	Frederic GAZEAU	12/02/2021 17:11:00
Formatted Table		
Page 58: [84] Formatted	Frederic GAZEAU	12/02/2021 17:05:00
French		
Page 58: [85] Deleted	Frederic GAZEAU	12/02/2021 17:02:00
Page 58: [86] Deleted	Frederic GAZEAU	12/02/2021 16:56:00
Page 58: [87] Formatted	Frederic GAZEAU	12/02/2021 16:56:00
French		
Page 58: [88] Formatted	Frederic GAZEAU	15/02/2021 14:01:00
English (US)		
Page 58: [89] Formatted	Frederic GAZEAU	12/02/2021 17:05:00
Centred		
Page 58: [90] Formatted	Frederic GAZEAU	15/02/2021 14:02:00
English (US), Superscript		
Page 58: [91] Formatted	Frederic GAZEAU	15/02/2021 14:01:00
English (US)		
Page 58: [92] Formatted	Frederic GAZEAU	15/02/2021 14:01:00
Font colour: Text 1		
Page 58: [93] Formatted	Frederic GAZEAU	12/02/2021 16:51:00
Font colour: Text 1		
Page 58: [94] Formatted	Frederic GAZEAU	12/02/2021 16:51:00
Centred		
Page 58: [95] Formatted	Frederic GAZEAU	12/02/2021 16:51:00
Font colour: Text 1, French		
Page 58: [96] Formatted	Frederic GAZEAU	12/02/2021 17:05:00
Centred		

Page 58: [97] Formatted	Frederic GAZEAU	12/02/2021 16:51:00
Font colour: Text 1, French		
Page 58: [98] Formatted	Frederic GAZEAU	12/02/2021 16:51:00
Centred		
Page 58: [99] Formatted	Frederic GAZEAU	12/02/2021 16:51:00
Font colour: Text 1, French		