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ABSTRACT

Over the last decades, sea surface temperature (SST) reconstructions based on the Mg/Ca of
foraminiferal calcite have frequently been used in combination with the 3'80 signal from the
same material, to provide estimates of 580 of the water (5'80w), a proxy for global ice volume
and sea surface salinity (SSS). However, because of error propagation from one step to the next,
better calibrations are required to increase accuracy and robustness of existing isotope and
element to temperature proxy-relationships. Towards that goal, we determined Mg/Ca, Sr/Ca
and the oxygen isotopic composition of Trilobatus sacculifer (previously referenced as
Globigerinoides sacculifer), collected from surface waters (0-10m), along a North-South
transect in the eastern basin of the tropical/subtropical Atlantic Ocean. We established a new
paleo-temperature calibration based on Mg/Ca, and on the combination of Mg/Ca and Sr/Ca.
Subsequently, a sensitivity analysis was performed in which, one, two, or three different
equations were considered. Results indicate that foraminiferal Mg/Ca allow for an accurate
reconstruction of surface water temperature. Combining equations, 380w can be reconstructed
with a precision of about +0.5%.. However, the best possible salinity reconstruction based on
locally calibrated equations, only allowed reconstruction with an uncertainty of £2.49. This was
confirmed by a Monte Carlo simulation, applied to test successive reconstructions in an ‘ideal
case’, where explanatory variables are known. This simulation shows that from a pure statistical

point of view, successive reconstructions involving Mg/Ca and 8'80c preclude salinity
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reconstruction with a precision better than £1.69 and hardly better than +2.65, due to error
propagation. Nevertheless, a direct linear fit to reconstruct salinity based on the same measured
variables (Mg/Ca and §80c) was established. This direct reconstruction of salinity lead to a

much better estimation of salinity (£0.26) than the successive reconstructions.

. INTRODUCTION

Since Emiliani’s pioneering work (1954), oxygen isotope compositions recorded in fossil
foraminiferal shells became a major tool to reconstruct past sea surface temperature. After
Shackleton’s seminal studies (1967, 1968 and 1974), it became clear that part of the signal
reflected glacial-interglacial changes in continental ice volume and hence sea level variations.
The oxygen isotope composition of foraminiferal calcite (5%Qc) is thus controlled by the
temperature of calcification (Urey, 1947; Epstein et al., 1953) but also by the oxygen isotope
composition of seawater (3'80w)). The relative contribution of these two factors cannot be
deconvolved without an independent measure of the temperature at the time of calcification
such as e.g. Mg/Ca (e.g. Niirnberg et al., 1996; Rosenthal et al., 1997; Rathburn and DeDeckker,
1997; Hastings et al., 1998; Lea et al., 1999; Lear et al., 2002; Toyofuku et al., 2000; Anand et
al., 2003, al., Kisakurek et al., 2008; Duenas-Bohorquez et al., 2009, 2011; Honisch et al., 2013;
Kontakiotis et al., 2016; Jentzen et al., 2018). The sea surface temperature (SST) reconstructed
from Mg/Ca of foraminiferal calcite has, therefore, increasingly been used in combination with
the 880 signal measured on the same material, to estimate 680w, global ice volume and to
infer past sea surface salinity (SSS) (e.g. Rohling 2000, Elderfield and Ganssen, 2000; Schmidt
et al., 2004; Weldeab et al., 2005; 2007). These studies also showed that, because of error
propagation, inaccuracies in the different proxies combined for the reconstruction of past sea
water 880 and salinity obstruct meaningful interpretations. Hence, while there is an
understandable desire to apply empirical proxy-relationships down-core, additional calibrations
appear necessary to make reconstructions more robust. Calibrations using foraminifera sampled
from surface seawater (0-10m deep), provide the best possibility to avoid most of the artefacts
usually seen when using specimen from core tops or culture experiments for calibration
purposes. Here, we report a calibration based on Globigerinoides sacculifer, which should now
and will be referenced in this manuscript as Trilobatus sacculifer (Spezzaferri et al., 2015),
from the Atlantic Ocean. Mg and Sr concentrations were measured on the last chamber of

individual specimens with Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry
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(LA-ICP-MS), while the oxygen isotope composition of the same tests as used for the elemental
analyses was subsequently measured by Isotope ratio Mass Spectrometry (IRMS).
Environmental parameters (temperature: T, salinity: S, dissolved inorganic carbon: DIC and
alkalinity: ALK) but also the isotopic composition (O*8w) of the seawater the foraminifera were
growing in, were measured. The primary objectives of this study are (1) to test and improve the
calibration of both the Mg/Ca and oxygen isotope paleothermometer for the paleoceanographic
relevant species T. sacculifer; (2) to test whether the incorporation of Sr into the Mg-T
reconstruction equation improves temperature reconstruction by accounting for the impact of
salinity; (3) evaluate the agreement between observed and predicted 580w and (4) test potential
for SSS reconstructions of the Atlantic Ocean. Our results indicate that the best possible salinity
reconstruction based on locally calibrated equations from the present study, only allowed
reconstruction with an uncertainty of £2.49. Such an uncertainty does not allow for viable
(paleo)salinity data. This is subsequently confirmed by a Monte Carlo simulation, applied to
test successive reconstructions in an ‘ideal case’, where explanatory variables are known. This
simulation shows that from a pure statistical point of view, successive reconstructions involving
Mg/Ca and 6'80c preclude salinity reconstruction with a precision better than +£1.69 and hardly
better than £2.65, due to error propagation. Nevertheless, a direct linear fit based on the same
measured variables (Mg/Ca and §80c), and leading to much better estimation of salinity
(x0.26), could be established.

2. MATERIAL AND METHODS

2.1. Collection procedure

Foraminifera were collected between October and November 2005, on board of the research
vessel Polarstern (ANT XXII1/1) during a meridional transect of the Atlantic Ocean
(Bremerhaven/Germany - Cape Town/South of Africa; Fig. 1a). Foraminifera were
continuously collected from a depth of ca. 10 m using the ship’s membrane pump (3 m%h). The
water flowed into a plankton net (125 um) that was fixed in a 1000 L plastic tank with an
overflow (Fig 1b). Every eight hours, the plankton accumulated in the net was collected.
Temperature and salinity of surface seawaters were continuously recorded by the ship’s
systems, and discrete water samples were collected for later analyses of total ALK, DIC and
580w (see Tab. 1). Plankton and water samples were poisoned with buffered formaldehyde
solution (20%) and HgCl2 (1.5 ml with 70gLt HgCl2 for 1 L samples), respectively. In total,

more than seventy plankton samples were collected during the transect, covering a large range
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in both temperature and salinity. Specimens of T. sacculifer from thirteen selected stations,
selected as to maximize temperature and salinity ranges, were picked and prepared for analyses.
Salinity, temperature, DIC, ALK and 3'™Ow data reported in this paper represent
October/November values for the selected stations.

2.2. Description of species

Trilobatus sacculifer is a spinose species with endosymbiotic dinoflagellates inhabiting the
shallow (0-80 m deep) tropical and subtropical regions of the world oceans. This species
displays a large tolerance to temperature (14-32°C) and salinity (24-47) (Hemleben et al., 1989;
Bijma et al., 1990). Based on differences in the shape of the last chamber of adult specimens,
various morphotypes can be distinguished. Among others the last chamber can be smaller than
the penultimate chamber, in which case it is called kummerform (kf). This species shows an
ontogenetic depth migration and predominantly reproduces at depth around full moon (Bijma
and Hemleben, 1993). Just prior to reproduction a secondary calcite layer, called gametogenic
(GAM) calcite is added (Bé et al., 1982; Bijma and Hemleben, 1993; Bijma et al., 1994).
Juveniles (<100pm) ascend in the water column and reach the surface after less than
approximately 2 weeks. Pre-adult stages then slowly descend within 9-10 days to the
reproductive depth. In our samples (collected between 0 and 10 m depth), 7. sacculifer
specimens have not yet added the Mg-enriched gametogenic calcite, which generally occurs
deeper in the water column just prior to reproduction. Therefore, only the trilobus morphotype
without GAM calcite is considered in this study, which limits the environmental, ontogenetic
and physiological variability between samples even if a rather wide size fraction (230 to
500um) was selected due to sample size limitation. This should be taken into account when

compared to other calibrations based on core top and/or sediment trap collected specimen

2.3. Seawater analysis

The DIC and ALK analyses of the sea water were carried out at the Leibniz Institute of Marine
Sciences at the Christian-Albrechts University of Kiel, (IFM-GEOMAR), Germany. Analyses
were performed by extraction and subsequent coulometric titration of evolved CO:2 for DIC
(Johnson et al., 1993), and by open-cell potentiometric seawater titration for ALK (Mintrop et
al., 2000). Precision / accuracy of DIC and ALK measurements are 1 umol kg / 2 umol kg*
and 1.5 umol kgt / 3 umol kg, respectively. Accuracy of both DIC and ALK was assured by
the analyses of certified reference material (CRM) provided by Andrew Dickson from Scripps

Institution of Oceanography, La Jolla, USA. Measurements of 380w were carried out at the
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Faculty of Geosciences, Utrecht University, Netherlands. Samples were measured using a
GasBench Il - Delta plus XP combination. Results were corrected for drift with an in-house
standard (RMW) and are reported on V-SMOW scale, with a precision of 0.1%o and accuracy
verified against NBS 19 of 0.2%. respectively. For reconstruction calculations 580w data were
corrected to the PDB scale by subtracting 0.27%. (Hut, 1987).

2.4. Carbonate analysis

2.4.1. Foraminiferal sample preparation

Under a binocular microscope, maximum test diameter of each specimen was measured and
individual tests were weighed on a microbalance (METTLER TOLEDO, precision +0.1pg).
Since the foraminifera were never in contact with sediments, the rigorous cleaning procedure
required for specimens collected from sediment cores, was not necessary. Prior to analysis the
tests were cleaned following a simplified cleaning procedure: All specimens were soaked for
30 min in a 3-7% NaOClI solution (Gaffey and Brénniman, 1993). A stereomicroscope was used
during cleaning and specimens were removed from the reagent directly after complete
bleaching. The samples were immediately and thoroughly rinsed with deionised water to ensure
complete removal of the reagent. After cleaning, specimens were inspected with scanning
electron microscopy and showed no visible signs of dissolution. This cleaning procedure
preserves original shell thickness and thus maximises data acquisition during laser ablation.
Foraminifera were fixed on a double-sided adhesive tape and mounted on plastic stubs for LA-
ICP-MS analyses.

2.4.2. Elemental composition analysis

For each station, 5-13 specimens were analysed. Their last chambers were ablated using an
Excimer 193 nm deep ultraviolet laser (Lambda Physik) with GeolLas 200Q optics (Reichart et
al, 2003) creating 80 um diameter craters. Pulse repetition rate was set at 6 Hz, with an energy
density at the sample surface of 1 J/cm?. The ablated material was transported on a continuous
helium flow into the argon plasma of a quadrupole ICP-MS instrument (Micromass Platform)
and analysed with respect to time. Ablation of calcite requires ultraviolet wavelengths as an
uncontrolled disruption would result from higher wavelengths. By using a collision and reaction
cell spectral interferences on the minor isotopes of Ca (**Ca, “*Ca and “*Ca) were reduced and
interferences of clusters like 2C*600 were prevented. Analyses were calibrated against NIST
(U.S. National Institute of Standards and Technology) 610 glass using the concentration data

of Jochum et al. (2011) with Ca as internal standard. For Ca quantification, mass 44 was used
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while monitoring masses 42 and 43 as internal check. In the calcite, the Ca concentration was
set at 40%, allowing direct comparison to trace metal/Ca from traditional wet-chemical studies.
Mg concentrations were calculated using masses 24 and 26; Sr concentrations were calculated
with mass 88. One big advantage in using LA-ICP-MS measurements is that single laser pulses
remove only a few nanometers of material, which allows high resolution trace elements profiles
to be acquired (e.g. Reichart et al., 2003; Regenberg et al., 2006; Duefias-Bohorquez et al.,
2009, 2010, Hathorne et al., 2009; Munsel et al., 2010; Dissard et al., 2009; 2010a and b; Evans
et al., 2013; 2015; Steinhardt 2014, 2015; Fehrenbacher et al., 2015; Langer et al., 2016; Koho
etal., 2015; 2017; Fontanier et al., 2017; De Nooijer et al., 2007, 2014, 2017a and b; Jentzen et
al., 2018, Schmitt et al., 2019; Levi et al., 2019). Element concentrations were calculated for
the individual ablation profiles integrating the different isotopes (glitter software). Even though
the use of a single or very few specimens, can be criticised when determining foraminifera
Mg/Ca and 580 in order to perform paleoclimate reconstructions instead of more traditional
measurements, Groeneveld et al., (2019) recently demonstrated that for both proxies, single
specimen variability is dominated by seawater temperatures during calcification, even if the
presence of an ecological effect leading to site-specific seasonal and depth habitat changes is

also noticeable.

2.5. Stable isotope analysis

The specimens used for elemental composition analyses using LA-ICP-MS were subsequently
carefully removed from the plastic stubs and rinsed with deionised water before measuring their
stable isotope composition. Depending on shell weight, 2 to 3 foraminifera were necessary to
obtain a minimum of 20ug of material, required for each analysis. Analyses were carried out in
duplicate for each station. The results, compiled in table 2, represent average measurements.
The analyses were carried out at the Department of Earth Sciences of Utrecht University (The
Netherlands), using a Kiel-111 -Finnigan MAT-253 mass spectrometer combination. The §80c
results are reported in %o PDB. Calibration was made with NBS-19 (precision of 0.06-0.08 %o
for sample size 20-100 pg, accuracy better than 0.2%o).

2.6. Statistical analysis
Within this manuscript, all statistical analyses with regards to elemental and isotopic data, were

carried out using the program R with default values (R Development Core Team (2019).

3. RESULTS
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3.1. Elemental composition

Overall values of the Mg/Ca and Sr/Ca ratios in the tests of T. sacculifer varied from 1.78 to
5.86 mmol/mol (Fig. 2a) and 1.41 to 1.52 mmol/mol (fig. 2b), respectively (Tab. 2). These
Mg/Ca concentrations compare well with results found in literature for this species from either
culture experiments, plankton tow, or surface sediment, growing at the same temperatures (e.g.
Nirnberg et al., 1996; Anand et al. 2003, Regenberg et al., 2009, Fig. 3). Similarly, the overall
variation in Sr/Ca-values reported in this study is comparable to that observed in core top and
cultured G. ruber and T. sacculifer combined, for comparable salinity and temperature
conditions, (varying between 1.27 to 1.51mmol/mol; e.g. Cleroux et al., 2008; Kisakirek et al.,
2008; Duefias-Bohorquez et al., 2009).

The relationship between both Mg/Ca and Sr/Ca ratios and measured temperatures were
calculated using least square differences. Both show a good correlation with surface water
temperature (Fig. 2, Tab. 3). The Mg/Ca ratio increases exponentially by 8.3%/°C (best fit)
(Mg/Ca and Sr/Ca ratios given in mmol/mol):

Mg/Ca=(0.42+0.13) exp((0.083+0.001)*T), R?=0.86 pvalue=2,9e-06 (equation 1)

whereas Sr/Ca ratio increases linearly by 0.6%/°C (Fig. 2a and b), best fit:
Sr/Ca=(0.009+£0.002)*T+(1.24+0.05), R?=0.67 pvalue=5.e-04 (equation 2)

Concerning the temperature reconstruction, by inversing the approach, univariate regressions
yields to:

T=(12.3£1.5)+( (10.5+1.2)*log(Mg/Ca), R>=0.86 pvalue=2,9e-06 (equation 1°)
And

T=+(-84.14£22.9)+( (71.7+£15)*Sr/Ca, R?=0.67 pvalue=5e-04 (equation 2”)

Combining Mg and Sr data for a non-linear multivariate regression allows improvement of the

correlation with temperature, best fit:

T=-(27+15)+(8+1)*In(Mg/Ca)+(28+11)*Sr/Ca, pvalue Mg/Ca: 2.10"-4 (equation 3)
R2=0.92 pvalue= 2.e-04
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For comparison, with regression found in the literature, Mg/Ca is estimated below as a function
of temperature and Sr/Ca:
Mg/Ca = exp ((0.98£1.89)+(0.09+0.02)*T+ (-1.43+1.45)* Sr/Ca)
R?=0.86 pvalue=2.05e-05 (equation 3”)

Regression for the relationship between salinity and Mg/Ca ratios does not show any clear
correlation (R?=0.09, p-value=0.32). This is in good agreement with previous culture
experiments studies which only report a minor sensitivity of Mg/Ca to salinity in planktonic
foraminifera (e.g. Duefias-Bohdrquez et al., 2009; Honisch et al., 2013; Kisakurek et al., 2008;
Nurnberg et al., 1996). The correlation observed between Sr/Ca ratios and salinity (R?=0.29, p-
value=0.053) is better compared to that between Mg/Ca and salinity, but remains relatively
weak. Nevertheless, recalculated regressions of Mg/Ca, incorporating salinity, show an

improvement of the correlation with temperature, best fit:

Mg/Ca = exp ((-5.02+2)+(0.09+0.009)*T+(0.11+0.05)*S),
R2=0.91 pvalue = 5e-06

This result is in good agreement with the recent study of Gray and Evans (2019), who reported
the minor Mg/Ca sensitivity of Trilobatus sacculifer to salinity (3.6 = 0.01% increase per
salinity unit) and described, based on previously published culture experiments’ data (Duenas-
Bohorquez et al., 2009; Honisch et al., 2013; Kisakiirek et al., 2008; Lea et al., 1999; Niirnberg
et al., 1996), a similar fit allowing to assess the sensitivity of foraminiferal Mg/Ca of T.

sacculifer to temperature and salinity combined.

Mg/Ca= exp(0.054(S—35) + 0.062T—0.24) RSE: 0.51 Gray and Evans (2019)

Applying the equation of Gray and Evans (2019), to our data, leads to a correlation of 0.90,
which is identical than our findings. In order to further compare both equations, Mg/Ca values
from our study were used to reconstruct temperature and salinity using the fit established per
Gray and Evans (2019), versus reconstructed temperature and salinity using our fit. The
observed R? are then 0.99 and 0.48 for temperature and salinity, respectively. We can conclude,
that if the equation of Gray and Evans (2019), is in perfect agreement with our equation with
regards to the temperature parameter, this is not the case for salinity, which shows a strong
difference between the two equations, most probably explained by the weak correlation of

Mg/Ca to salinity in our data. Subsequently, the Bayesian model of Tierney et al. (2019)
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considering the group-specific core-top model for 7. sacculifer was applied to our data. In that
aim, Q2 and pH, were calculated using Alk and DIC data presented in table 1. Because

foraminifera in our studies were not submitted to cleaning protocol with a reductive step, the

clean parameter was set to 0. It led to the following correlation:
Mg/Ca= exp (-11.66+0.06*T-0.21 Q>+1.40pH) R2?=0.82

Here we can conclude, that despite the difference in sampling strategy and samples
geographical distribution, our regression models are in line with the previous work of Gray and

Evans (2019) and Tierney et al. (2019).

3.2. Stable isotopes concentration

The 580 (PDB) values of the tests (§'80c) and of the seawater (5'80w) vary from -0.70 to -
2.98%0 and from 0.74 to 1.25%., respectively (Tab. 1 and 2). The relationship between
temperature and the foraminiferal 580 (expressed as a difference to the 530w of the ambient

seawater) was estimated with a linear least squares regression:

T=(11.82 +1.3) — (4.82 +£0.45)*(5'80c - 6'80w) [%o]; R>=0.90 (equation 4)

The oxygen isotope fractionation (6'80c - §*80w) shows a strong correlation with in situ surface

water temperature (linear increase of 0.17%0/°C).

3.3. Comparison with previously established T. sacculifer temperature reconstruction
equations

As mentioned above, average juvenile and pre-adult T. sacculifer specimen only spend between
9 to 10 days in surface waters. Therefore, measured in situ temperature is representative of the
calcification temperatures. This is supported by the strong correlation between measured
temperature and 50 analyses (R?=0.90, equation 4), and measured temperature vs. Mg/Ca,
(R?=0.87, equation 1). Nevertheless, diurnal variations in temperatures cannot be discarded and
may induce a slight offset between measured average temperature and mean calcification

temperature.

For comparison, three Mg/Ca temperature calibrations for T. sacculifer were considered in this
manuscript. The equation of Nirnberg et al. (1996) based on laboratory cultures, (2) the

equation established by Anand et al. (2003) based on sediment trap samples and (3) the equation
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derived by Regenberg et al. (2009) based on surface sediment samples of the Tropical Atlantic
Ocean. In each of these studies only T. sacculifer without SAC chamber were considered, (Tab.
3).

Similarly, in addition to equation 4 established in this study, three 520 based paleo-temperature
equations for T. sacculifer were used for comparison with our data set: (1) Erez and Luz, (1983)
and, (2) Spero et al. (2003), both based on cultured specimens, and (3) Mulitza et al. (2003)

based on surface water samples (Fig. 4; Tab. 3).

3.4. Correlation between measured 8'80/Salinity

Salinity and the oxygen isotope composition of surface seawater were measured for 23 stations
located between 33°N and 27°S of the Eastern Atlantic Ocean (Tab. 4), including the thirteen
stations represented in figure 1, where foraminifera were sampled. The &%O0w-salinity

relationship (equation 5) is plotted in figure 5.

§180w = (0.194+0.04)*S — (5.8 +1.5), R?=0.53 (equation 5)

For comparison, the §80w-salinity relationship for the tropical Atlantic Ocean calculated by
Paul et al. (1999) (from 25°S to 25°N) based on GEOSECS data, and by Regenberg et al.
(2009), based on data from Schmidt 1999 (30°N-30°S), are plotted in the same figure.
Temporal, geographical and depth differences in sampling, as well as analytical noise, are most

probably responsible for the observed variations.

4. DISCUSSION

4.1. Intra-test variability

The Mg/Ca and Sr/Ca composition of foraminiferal calcium carbonate was determined using
laser ablation ICP-MS of the final (F) chamber of size-selected specimen. Eggins et al., (2003)
report that the Mg/Ca composition of sequentially precipitated chambers of different species
(including T. sacculifer) are consistent with temperature changes following habitat migration
towards adult life-cycle stages. As described for T. sacculifer in the Red Sea (Bijma and
Hemleben, 1994), juvenile specimens (<100um) migrate to the surface, where they stay about
9-10 days, before descending to the reproductive depth (80m). The addition of GAM calcite
proceeds immediately prior to gamete release (Hamilton et al., 2008). The specimens
considered in this study were collected between 0 and 10 meters depth, and in agreement with

measurements on specimens from culture experiments (Duefias-Bohorquez, 2009), Mg-rich

10
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external surfaces (GAM calcite) were not observed in our samples. This indicates limited
vertical migration (see section 2.2. for reproduction cycle), reducing therewith potential
ontogenic vital effects responsible for inter-chamber elemental variations (Duefias-Bohorquez,
2010) and, limited, if any, GAM calcite precipitation (Nirnberg et al., 1996). If the exact
calcification depth of the last chambers of our T. sacculifer specimen can still be questioned,
the lack of GAM-calcite, together with the strong correlation observed between measured
surface temperature vs. Mg/Ca-reconstructed temperature, support the idea that calcification of
the last chamber of our specimen occurred around 10 meters depth. It should be noted that Lessa
et al. (2020) recently confirmed that T. sacculifer calcifies in the upper 30 m. Because the
diameter of the laser beam used in this study was 80um, it represents a reliable mean value of
elemental concentration of the last chamber wall, for every analysis of a single shell a full
ablation of the wall chamber was performed (until perforation was completed). For comparison,
results from traditional ICP-OES Mg/Ca analyses (Regenberg et al., 2009), electron microprobe
(Nurnberg et al., 1996) and laser ablation ICP-MS (this study) are plotted in figure 3a and
suggest comparable foraminiferal Mg/Ca ratios for T. sacculifer at similar temperatures.

4.2. Incorporation of Sr into Mg/Ca-Temperature calibrations

Combining Mg and Sr data to compute temperature was first suggested by Reichart et al. (2003)
for the aragonitic species Hoeglundina elegans. It has been demonstrated that variables other
than temperature, such as salinity and carbonate chemistry (possibly via their impact on growth
rate) are factors influencing Sr incorporation into calcite (e.g. Lea et al., 1999, Duefias-
Bohdrquez et al., 2009; Dissard et al., 2010a; Dissard et al., 2010b). The good correlation of
Sr/Ca with temperature in our results (R?>=0.67, p value= 5.e-04, Fig 2b), also suggests that
temperature exerts a major control on the amount of Sr incorporated into 7. sacculifer’ tests.
However, Sr/Ca concentration also shows a correlation with salinity (R?=0.29, p-value=0.053),
which is not observed for Mg (R?=0.09, p-value=0.32). Therefore, the incorporation of Sr into
the Mg-T reconstruction equation might improve temperature reconstruction by accounting for
the impact of salinity. It has recently been suggested that the Sr incorporation in benthic
foraminiferal tests is affected by their Mg contents (Mewes et al., 2015; Langer et al.; 2016).
However, as pointed out in Mewes et al., (2015), calcite’s Mg/Ca needs to be over 30-50mmol
in order to noticeably affect Sr partitioning. There is no obvious reason to assume that
planktonic foraminifera should have a different Mg/Ca threshold. Therefore, with a
concentration between 2 to 6 mmol/mol (Sadekov et al., 2009), the observed variation in Sr

concentration in T. sacculifer’ tests can be safely considered to be independent of the Mg/Ca

11
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concentrations. Hence, other environmental parameters such as temperature, salinity and/or

carbonate chemistry, potentially via an impact on calcification rates, must control Sr/Ca values.

The standard deviation of measured temperatures versus reconstructed temperature was
calculated for each of the three Mg-temperature equations established in this study. For
equation (1), based on Mg/Ca only, SD=1.37, for equation (3), based on both Mg/Ca and Sr/Ca,
SD=0.98, and for equation (4), based on Mg/Ca ratio and salinity, SD=1.03. Incorporation of
Sr into the Mg-Temperature reconstruction equation resulted in the standard deviation the
closest to 1 (SD=0.98), indicating that this statistically improved reconstructions possibly by
attenuating the salinity effect as well as potentially other environmental parameters such as
variations in carbonate chemistry or the effect of temperature itself. Therefore, the combination
of Mg/Ca and Sr/Ca should be considered to improve temperature reconstructions (Tab. 3). For
the remainder of this discussion, and in order to compare our data with previously established
calibrations for T. sacculifer, the equation based on Mg/Ca alone (equation 1) will be

considered.

4.3 Comparison with previous T. sacculifer Mg/Ca-Temperature calibrations.
Mg/Caratios measured on T. sacculifer from our study show a strong correlation with measured
surface water temperature (R?=0.86, p value=2.9e-06) (Fig. 2a), increasing exponentially by
8.3% per °C. The relation with temperature (equation 1) is comparable to the one published by
Nirnberg et al., (1996) and within the standard error of the calibration (Fig. 3a). This implies
that the temperature controlled-Mg incorporation into T. sacculifer tests is similar under culture
conditions as it is in natural surface waters. The equation established by Duenas-Bohorquez et
al., (2010) based on T. sacculifer specimen from culture experiments integrates ontogenetic
(chamber stage) effects. Even though incorporating the ontogenetic impact may improve
temperature reconstructions based on Mg/Ca ratios, this is not routinely done for paleo-
temperature reconstruction using T. sacculifer. Therefore, the equation of Nurnberg et al.,
(1996) is used in our study for comparison of various reconstruction scenarios.

A comparable regression (similar slope) has been established for T. sacculifer from tropical
Atlantic and Caribbean surface sediment samples by Regenberg et al. (2009) (Fig 3a). This
regression predicts Mg concentrations that are about 0.15 mmol/mol higher compared to our
study. Because the Mg-T calibration from Regenberg et al. (2009) is based on sediment-surface
samples, Mg concentrations were correlated with reconstructed mean annual temperatures. This

potentially leads to an over or under-estimation of temperatures depending on the seasonality
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of the growth period and might explain the observed difference between the two regressions.
Due to sample limitation, we analysed foraminifera from a wider size fraction (230pm to
500um), compared to Regenberg et al. (2009) (355-400um), introducing an additional bias
between the two datasets (Duenas-Bohorquez et al., 2010; Friedrich et al., 2012). Finally,
Regenberg et al. (2009), compiled data of samples from the tropical Atlantic and Caribbean
Ocean, while we collected samples from the Eastern tropical Atlantic. All of these potential
biases can easily explain the small discrepancy observed between our regression and the one
from Regenberg et al., (2009). Interestingly, Jentzen et al., (2018), were able to compare Mg/Ca
ratios measured on T. sacculifer from both surface sediment samples of the Caribbean sea and
specimen sampled with a plankton net nearby. They observed a similar systematic increased
Mg/Ca ratio in fossils tests of T. sacculifer (+0.7 mmol/mol-1) compared to living specimens,
arguing that different seasonal signals were responsible for the observed difference. However,
it is interesting to note that the Mg/Ca differences observed between living T. sacculifer (e.g.
this study and Jentzen et al., 2018) and fossils specimens (e.g. Regenberg et al., 2009 and
Jentzen et al., 2018) could also be explained by the presence of GAM calcite on T. sacculifer
from sediment samples, as GAM calcite is enriched with Mg compared to pre-gametogenetic
calcite precipitated at the same temperature (Nurnberg et al., 1996). If Jentzen et al., (2018) and
Regenberg et al. (2009) do not describe the presence or absence of GAM calcite on T. sacculifer
specimens analysed in their studies, a study on the population dynamics of T. sacculifer from
the central Red Sea Bijma and Hemleben (1990) concluded that the rate of gametogesis
increased exponentially between 300 and 400pum to reach a maximum of more than 80% at
355um (sieve size =500um real test length). It can therefore safely be assumed that the Mg/Ca
difference between living specimens from the plankton and empty shells from the sediment is
due to GAM calcite.

The Mg-Temp data obtained by Jentzen et al., (2018) is however, in good agreement with the
equation established by Regenberg et al., (2009), and will therefore not be considered separately
in this study. The overall strong similarity observed between our regression and the one from
Regenberg et al. (2009), indicates nevertheless that Mg-temp calibrations established on T.
sacculifer specimen from plankton tow, can be applied to T. sacculifer (without Sac) from the
surface-sediment, even if these applications have to be considered with care and only on
sediment samples showing no sign of dissolution.

In contrast, the equation of Anand et al., (2003) based on sediment trap samples, is appreciably
different (Fig. 3b). This may be due to: (1) difference in cleaning and analytical procedures, (2)

addition of GAM calcite at greater depth and (3) uncertainty in estimated temperature, indeed,
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as mentioned in Gray et al., (2019): “Note the calibration line of Dekens et al. (2002) and Anand
etal. (2003) does not fit the data of Anand et al. (2003) when climatological temperature, rather

than the 8180ca|cite78180vvater temperature, is used. As shown by Gray et al., (2019), we show
the calibrations of Anand et al (2003) are inaccurate due to seasonal changes in the §'0 of sea
water at that site.

Anand et al., (2003) fixed the intercept of the exponential regression for T. sacculifer to the
value obtained for a multispecies regression and subsequently recalculated for each species the
pre-exponential coefficients. Using this approach their new equation for T. sacculifer is:
Mg/Ca= 0.35 exp (0.09*T), which is identical to Nirnberg et al., (1996) and equation 1 from
our study. Still, this implicitly assumes a common temperature dependence exists for all
species, which is not realistic. To avoid a priori assumptions only the primary equation of
Anand et al., (2003) (see Tab. 3) is considered in this study.

4.4. Comparison with previous 8'80-Temperature calibrations.

As for Mg/Ca, the oxygen isotope composition also shows a strong correlation with measured
surface water temperature (R>=0.90). The T. sacculifer 5'80-temperature equation of Spero et
al., (2003), based on a culture experiment, is very similar to equation 4 in our study. However,
sensitivity (slope) differs within the uncertainties calculated for equation 4. As no uncertainties
are given for the Spero et al., (2003) equation, it is difficult to determine whether these
equations are statistically different or not. In contrast, the equation of Mulitza et al., (2003), has
a similar slope (within uncertainties) but a higher intercept (Fig. 4a). The equation of Erez and
Luz, (1983) differs considerably from equation 4, for both slope and intercept parameters.
Bemis et al., (1998) suggested a bias in the calibration due to uncontrolled carbonate chemistry
during the experiments of Erez and Luz (1983) (a decrease in pH, e.g. due to bacterial growth
in the culture medium or to a higher CO2 concentration in the lab (air conditioners, numerous
people working in the same room etc), would quickly lead to an increase in 3*20 of culture-
grown foraminifera). This could explain the observed effect between our study (equation 4) and
the calibration from Erez and Luz (1983). Although the equation of Mulitza et al., (2003) is
also based on T. sacculifer collected from surface waters, their equation is significantly different
from equation (4). This deviation could possibly be due to a difference in size fractions
considered in the two studies (230 to 500 um, and 150 to 700 pm for this study and Mulitza et
al., (2003), respectively). Berger et al. (1979), already reported that large T. sacculifer tests are
enriched in 8'80 relative to smaller ones (variation of 0.5%. between 177 and 590um).
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Similarly, in culture experiments, larger shells of Globigerina bulloides are isotopically heavier
relative to smaller specimens (variation of approximatively 0.3%o0 between 300 to 415um,
Bemis et al., 1998). Jentzen et al., (2018) reported that: ‘Enrichment of the heavier '*0O isotope
in living specimens below the mixed layer and in fossil tests is clearly related to lowered in situ
temperatures and gametogenic calcification’. Gametogenic calcite has been shown to enrich
5180 signatures by about 1.0-1.4%. relative to pregametogenic T. sacculifer (Wyceh et al.,
2018). Finally, variation in light intensity (e.g. due to different sampling period and/or sampling
location), may have influenced the 80 composition via an impact on symbiont activity (Spero
and DeNiro, 1987). Bemis et al. (1998) demonstrated that in seawater with ambient [CO3%],
Orbulina universa shells grown under high light level (> 380 pEinst m2s?) are depleted in 20
by on average 0.33%o relative to specimens grown under low light levels (20-30 pEinst m2s?).
The different correlation between 580 and temperature reported by Mulitza et al., (2003) may
be caused by size fraction differences, different sampling time, light intensity, differences in
calcification depth or hydrography, or a combination of factors. These are all potential biases

that could explain the steeper intercept observed by Mulitza et al., (2003) relative to our study.

5. Reconstructions
A few scenarios are considered in the following section, in which one, two or three proxy

equations are combined to solve for salinity.

Three Mg/Ca-paleo-temperature equations (Nurnberg et al., 1996; Regenberg et al., 2009; and
Anand et al., 2003) were used to compare “reconstructed” temperatures to the known in situ
surface waters temperatures. The mean foraminiferal Mg/Ca ratio measured at each of our
stations was inserted into each of the three equation and solved for temperature (Fig. 3b.). The
linear regression of reconstructed temperatures based on Nirnberg et al. (1996) overlaps almost
perfectly with the theoretical best fit. This confirms that calibrations based on culture
experiments (the primary geochemical signal recorded in the tests) are very well-suited for
reconstructing surface water temperature. The regression from Regenberg et al., (2009)
reconstructed surface temperature that are too warm. This is in agreement with the fact that the
Mg/Ca ratio from surface sediment foraminifera are slightly higher than for living specimen
(Jentzen et al. 2018). The offset increases with decreasing temperature (0.5°C and 1.5°C
respectively at 30°C and 16°C). Finally, the reconstructed temperature using the equation from
Anand et al. (2003), shows a strong systematic offset. Because the equation of Nirnberg et al.,

(1996) matched our measured temperatures almost perfectly, their equation will be used to
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analyse further reconstruction. Still, we acknowledge that downcore reconstructions will
inevitably also involve GAM calcite and hence other calibrations established using specimens
collected deeper in the water column or in the sediment should be better suitable. Similarly,
three §'80-paleo temperature equations (Erez and Luz, 1983; Mulitza et al., 2003; Spero et al.,
2003) were tested to reconstruct §*20c-6'80w. The equation of Erez and Luz, (1983), shows a
significant systematic overestimation of 3*80c- §'80w, and will therefore not be considered any
further. Measured surface water temperatures at our 13 stations were inserted into the equations
of Mulitza et al., (2003) and Spero et al., (2003) to derive 8*%0c-3*0w (Fig. 4). The §'8Oc-
580w reconstructions based on the equation of Mulitza et al. (2003) and Spero et al. (2003),
are both slightly more positive, than the theoretical best fit. In order to test the robustness of
5180w reconstructions from paleoceanographic literature (e.g. Niirnberg and Groeneveld, 2006;
Bahr et al., 2011), we use the reconstructed temperatures based on the Mg/Ca-paleo-
temperature equation from Niirnberg et al., (1996) to predict 580w using measured *¥Oc and
the equations from Mulitza et al., (2003) and Spero et al. (2003). The reconstructed §*80c-
580w from inserting the Mg/Ca temperature into these equations is slightly overestimated

(0.5%o), but the offsets remain small enough to consider these as reasonable reconstructions.

When reconstructing §80w by inserting the Mg/Ca temperature and measured §'8Oc in both
equations, the correlation coefficients of the linear regressions are weak (R?2=0.19 and 0.13 for
Spero et al., 2003 and Mulitza et al., 2003, respectively) demonstrating that the reconstructed
5180w is not very reliable, therefore no reconstruction of salinity using these equations will be

further tested in this manuscript.

Nevertheless, to test the robustness of theoretical and empirical salinity reconstructions, we
have the perfect data set at hand, as every parameter is known from in situ measurement or
sampling. We will use the equations 1, 4 and 5 established in this study and presented in table

3, for demonstration purposes.

Mg/Ca = ae®” Eq. 1
with a=0.42(+0.13) and b= 0.083(0.001)

T =c+d(6%0c—680w) Eq. 4
with ¢=12.08(£1.46) and d=-4.73(x0.51)
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580w =eS+f Eq.5
with e=0.171(+0.04) and f = -4.93(x1.66)
Classically, from those equations it is possible to extract variables estimated from the

observation Mg/Ca and §'80c through the equations:
T = %(log (Mg/Ca) — log(a)) Eq.1’
— 1 /4 .
5180W=51806—E(T—C) Eq. 4

§=§(8ﬁﬁw—f) Eq. 5

Given that T is estimated from the fit from Eq. 1’ (fig. 3a) and 6780w is estimated from Eq. 4’,
S is finally calculated from Eq. 5° (figure 5). Hence, the error in S is an accumulation of errors
from successive fits. In this study the standard deviation of the fit between S and the measured
salinity for the 13 stations is £2.49 and the R2 is 0.33 (p-value 0.04) (Fig. 6a and b). In
conclusion, even the best possible salinity reconstruction based on locally calibrated equations
1, 4 and 5 from the present study only allows salinity reconstructions with a precision of £2.49.
In the modern Atlantic Ocean, and based on recent sea surface salinity estimation (Vinogradova
et al., 2019), such a variability would not allow to distinguish water masses between 60°N to
60°S. Similarly, on a temporal timescale, given the regional salinity variations expected in most
of the ocean over glacial-interglacial cycles is less than =1, 26 (Gray and Evans, 2019), such an
incertitude on salinity reconstruction would not even allow to distinguish modern versus last

glacial maximum water masses.

In the following steps, we quantify the error propagation more precisely. In simple cases, error
accumulation in an equation can be assessed by calculating the partial derivatives and by
propagating the uncertainties of the equation with respect to the predictors (Clifford, 1973).
However, for complex functions the calculation of partial derivatives can be tedious. Here, error
propagation related to S was computed by a Monte Carlo simulation, which is simple to
implement (Anderson, 1976), and in line with the method applied by Thirumalai et al., (2019)
on sediment samples G. Ruber (W) specimen. It is important to note that the propagated error
with a reconstructed salinity is a combination of fitting errors and errors associated with
measurement inaccuracies (Mg/Ca and §'80c). First, we will only consider the error related to

the fitting procedure, (Eq. 1°,4” and 5°, assuming that variables (i.e. the data) are perfectly
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known without uncertainties). For example, the fitting error related to Eq. 4’ is computed by
fitting 6180w from measured §'80c and measured Temperature, i.e. the data are known and
not approximated. This is done by adding random Gaussian noise, with standard deviation
corresponding to the RMSE (Root Mean Square error) of each fit (respectively 1.32°C for
Eq.1’, 0.15%o for Eq. 4* and 0.55 for Eq. 5°). The resulting standard deviation error for the
reconstructed Salinity based on 10000 fits following the Monte-Carlo approach amounted to
+1.69 (each fit using sampling from random distributions defined above). Hence, £1.69 is the
smallest possible error for salinity reconstructions, using the three steps above, only due to its
mathematics. We can also estimate the error propagation at each step: T+1.32°C (Eq.1’),
5T80w=+0.45%0 (Eq.4’) and $+1.69 (Eq.5”). Now we will include the uncertainties related to
estimating the variables using proxy data. Hereto, some Gaussian noises simulating the
uncertainties of measured variables (Mg/Ca and &§'80c) were introduced with standard
deviations taken from Table 2. The resulting standard deviation error increased to *2.65.
Therefore, it can be concluded that statistically speaking, 78 Ow cannot be reconstructed to a
precision better than +£0.45%., while salinity cannot be reconstructed to a precision better than

+1.69 (fitting errors only) and, in reality hardly better than +2.65 (full to error propagation).

Finally, to complete this analysis, a direct linear fit to estimate salinity using exp (—620c)

and Mg/Ca was performed and led to an error of £0.26 and a R? = 0.82 (p-value 2.104):
$ = —0.16(£0.02) e=9"°0¢ + 0.28(+0.1) % +35.80(+0.33) (R?=0.81, p-value ~ 2.10%)  EQ. 6

This demonstrates that the direct reconstruction using the exact same variables as those initially
measured (Mg/Ca and §180c), led to a much better estimation of salinity that the successive

reconstruction.

Finally, to complete this analysis, a direct linear fit to estimate salinity using exp (—620c)

and Mg/Ca was performed and led to an error of £0.26 and a R? = 0.82 (p-value 2.104):

§ = —0.16(+0.02) e=97°0¢ 4 0.28(i0.1)% +35.80(+0.33) (R?=0.81, p-value ~ 2.10%)  EQ. 6
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This demonstrates that the direct reconstruction using the exact same variables as those initially
measured (Mg/Ca and §80c), led to a much better estimation of salinity that the successive

reconstruction.

6. Implications

We analyzed shell Mg/Ca and Sr/Ca ratios, and 880 in T. sacculifer collected from surface
water along a North-South transect of the Eastern Tropical Atlantic Ocean. We find a strong
correlation between Mg/Ca ratios and surface water temperature, confirming the robustness of
surface water temperature reconstructions based on T. sacculifer Mg/Ca.

Insertion of the Sr/Ca ratio into the paleo-temperature equation improves the temperature
reconstruction. We established a new calibration for a paleo-temperature equation based on

Mg/Ca and Sr/Ca ratios for live T. sacculifer collected from surface water:

T=(-27£15)+(8+1)*In(Mg/Ca)+(28+11)*Sr/Ca
Scenarios were tested using previously published reconstructions. Results were compared to
reconstructions performed using local calibrations established in this study and therefore
supposed to represent the best possible calibration for this data set:
(1) Mg/Ca ratios measured in T. sacculifer specimens collected in surface water allow accurate
reconstruction of surface water temperature.
(2) 880w can be reconstructed with an uncertainty of £0.45%o. Such §*0w reconstructions
remain a helpful tool for paleo-reconstructions considering the global range of variation of
surface 680w (from about -7 to 2%o, LeGrande and Schmidt 2006; ).

(3) In contrast, the best possible salinity reconstruction based on locally calibrated equations 1,
4 and 5 from the present study, only allowed reconstruction with an uncertainty of £2.49. Such
an uncertainty renders these reconstructions meaningless and does not allow for viable
(paleo)salinity data.

This is confirmed by a Monte Carlo simulation, applied to test successive reconstructions in an
‘ideal case’, where explanatory variables are known. This simulation shows that from a pure

statistical point of view, successive reconstructions involving Mg/Ca and §*Oc preclude
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salinity reconstruction with a precision better than +1.69 and hardly better than £2.65, due to
error propagation.

Nevertheless, a direct linear fit to reconstruct salinity based on the same measured variables
(Mg/Ca and §80c) was established (Eq. 6) and presented in table 3. This direct reconstruction
of salinity should lead to a much better estimation of salinity (x0.26) than the successive

reconstructions.
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910
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913
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916
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918 Table 1. Measured temperature, salinity, DIC, ALK, and 580w of the stations selected for this
study (October/November 2005).
919
920
Salinity Alkalinity
Stations Latitude Longitude Measured (x0.05) DIC (umol/kg) (umol/kg) 580w (PDB)
T°C precision precision 1.5 precision 0.1
(x0.05) 1um/Kg pum/Kg %0
accuracy 2 accuracy 4 accuracy 0.2
Oct/Nov. um/Kg um/Kg %0
25 22°38.640'N  20°23.578'W 24.91 36.63 2069 2391 1.1
29 18°8.088'N  20°55.851'W 26.09 36.24 2037 2369 0.9
31 14°32.128'N  20°57.251'W 28.24 35.78 2009 2330 0.8
35 10°23.424'N  20°4.869'W 29.73 35.63 1982 2304 1.2
38 7°2.114'N 17°27.818'W 29.43 34.67 1929 2257 0.7
40 4°22.323'N  15°16.911'W 28.47 34.35 1915 2214 0.8
42 2°15.702'N  13°33.854'W 27.56 35.72 2002 2332 1.1
46 1°35.741'S  10°33.846'W 25.91 36.13 2053 2346 1.0
49 4°44.752'S 8°6.641'W 24.59 36.07 2057 2369 0.9
52 8°6.086'S 5°29.077'W 23.80 35.99 2062 2360 0.7
56 11°51.783'S 2°30.743'W 22.18 36.38 2071 2387 1.0
62 17°59.620'S 2°25.321'E 19.11 35.99 2100 2369 1.1
66 22°26.998'S 6°6.922'E 18.71 35.68 2070 2349 1.0
921
922
923
924
925
926
927
928
929
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930

931
932
933
934
935
936
937
938 . .
Table 2. Mean elemental (Mg/Ca and Sr/Ca) and isotopic (§'0c) composition per station, measured
%39 in foraminiferal calcite in mmol/mol and %0 PDB, respectively. Elemental and isotopic compositions
240 were determined on the same material (n varying from 5 to 13 specimens per station); isotopic analyses
22 were done in duplicate for each station. Mean '80c-6'80w measured per stations in %o PDB.
Stations Measured Measured Measured Measured Recons. Recons. Recons.
wcs sica %% UOn chowowow siion i
mmol/mol  mmol/mol pg?ggs(z” % (V-PDB) %o (V-PDB) %o (V-PDB) %o (V-PDB)
25 3.22+051 1.53+0.08 -1.76 -2.82 0.38 0.40 0.88
29 401+024 152+0.06 -1.75 -2.63 1.00 0.87 1.44
31 478+037 156+0.18 -2.51 -3.33 0.73 0.49 1.11
35 5.46+0.38 1.59+0.08 -2.35 -3.59 1.27 0.94 1.62
38 431+114 158+0.14 -2.89 -3.59 0.07 -0.10 0.49
40 4.07+0.64 157+0.07 -2.98 -3.78 -0.18 -0.32 0.25
42 3.79+049 1.53+0.08 -2.38 -3.44 0.21 0.12 0.67
46 3.92+1.24 1.47+0.07 -1.67 -2.66 1.02 0.91 1.46
49 299+039 1.55+0.11 -1.83 -2.74 0.10 0.16 0.62
52 297+030 1.50+0.03 -1.34 -2.08 0.57 0.64 1.09
56 3.31+053 1.50+0.03 -1.06 -2.10 1.15 1.15 1.65
62 220+024  1.47+0.07 -0.70 -1.76 0.38 0.64 0.99
66 1.66+0.17  1.48 +0.09 -0.74 -1.75 -0.46 -0.02 0.23
943
944
945
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949
950
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Table 3. Calibration equations for T. sacculifer.
954
Source R2 p-values
Mg/Ca Relationship with
Temperature
This study Mg/Ca=0.42(+0.13)e”(T*0.083(x0.001)) Eq.1 0.86 2.9e-06
Nirnberg et al., 1996 Mg/Ca=0.37(+0.065)e(T*0.091(+0.007)) 0.93
Anand et al., 2003 Mg/Ca=1.06(+0.021)e"(T*0.048(+0.012))
Regenberg et al., 2009 Mg/Ca=0.6(+0.16)e”(T*0.075(+0.006))
Sr/Ca Relationship with
Temperature
This study Sr/Ca=(0.0094+0.002)*T+(1.29 + 0.05) Eq. 2 0.67 5.e-04
Mg/Ca and Sr/Ca Relationship with
Temperature
This study T=(-27£15)+(8+1)*In(Mg/Ca)+(28+11)*Sr/Ca Eq. 3 0.93 2¢e-04
Me/Ca Relationship with
Temperature and Salinity
This study (Mg/Ca) Mg/Ca=exp((-5.10+2)+(0.09+0.009)*T+(0.11+0.05)*S) 0.91 5.e-06
This study (Sr/Ca) Sr/Ca = (1.81+0.5) + (0.008+0.002) T - (0.01+0.01)*S 0.71 0.002
8180 Relationship with
Temperature
This study T=12.08(+1.46)-4.73(x0.51)*(5'%0, -6'%0y) Eq. 4 0.88 1.6e-06
Erez and Luz, (1983) T=16.06(+0.549)-5.08(+0.32)*(5180c¢ -5180w)
Mulitza et al., (2003) T=15.35(+0.71)-4.22(+0.25)*(8180c¢ -5180w)
Spero et al., (2003) T=12-5.67*(5180c¢ -56180w)
measured $*%0 vs. measured 880y = (0.171+0.04)*S — (4.93 +1.66) Eqg.5 0.38 1.2e-03
Salinity (this study)
direct linear fit to reconstruct S =-0.16 (£0.02) e (- ™80¢)+ 0.28 (+0.1) Mg/Ca+35.80 (+0.33) Eq. 6 0.82 <2e-04

salinity
based on measured variables
(Mg/Ca and $'%Q,)

955
956
957
958
959
960
961
962

30



963
964
965
966

967
968 Table 4. Temperature, salinity and 5'®Ow of the stations used to determine the salinity/ 3'80w

969 relationship (equation 5)

Stations Latitude Longitude T°C(x0.05) Salinity(+0.05) 50w ( SMOW)
precision 0.1%
accuracy 0.2%

19 33°20.14'N 14°38.45'W 22.09 36.83 13
21 30°23.42'N 16°24.99'W 23.01 36.91 14
23 25°20.68'N 18°4.17'W 24.87 37.01 1.8
25 22°38.64'N 20°23.58'W 2491 36.63 13
29 18°8.09'N 20°55.85'W 26.09 36.24 11
31 14°32.13'N 20°57.25'W 28.24 35.78 11
35 10°23.424'N 20°4.869'W 29.73 35.63 15
36 9°5.71'N 19°14.21'W 29.29 35.63 11
37 7°43.88'N 18°5.42'W 29.25 34.92 1.0
38 7°2.11'N 17°27.82'W 29.43 34.67 1.0
39 5°49.51'N 16°29.68'W 29.34 34.34 1.0
40 4°22.32'N 15°16.91'W 28.47 34.35 11
42 2°15.70'N 13°33.85'W 27.56 35.72 13
43 0°57.53'N 12°33.06'W 26.48 36.05 13
46 1°35.74'S 10°33.85'W 25.91 36.13 13
47 2°17.53'S 10°1.35'W 26.16 36.2 1.2
49 4°44.75'S 8°6.64'W 24.59 36.07 1.2
51 6°55.67'S 6°24.31'W 24.28 36.01 11
52 8°6.09'S 5°29.08'W 23.8 35.99 1.0
56 11°51.79'S 2°30.74'W 22.18 36.38 13
62 17°59.62'S 2°25.32'E 19.11 35.99 13
66 22°26.99'S 6°6.92'E 18.71 35.68 1.3
69 25°0.20'S 8°17.16'E 18.19 35.64 0.9
72 27°2.39'S 10°35.53'E 18.5 35.64 1.0
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FIGURE LEGENDS

Fig. 1: Stations used in this study, plotted on gridded data set Reynolds et al., (2002) (a). Set
up for planktonic foraminifera collections (b).

Fig. 2: (a) Mg/Ca and (b) Sr/Ca (mmol/mol) and 95% confidence intervals plotted versus
measured surface temperature (°C). Each point represents an average of the Mg/Ca and Sr/Ca

per station.

Fig. 3 a) Mg/Paleo-temperature equations established in this study (equation 1) (black dots, and
full lines), based on the data of Nirnberg et al., (1996) (Orange diamond and large full orange
line); Anand et al., (2003) (small green dotted line) and Regenberg et al., (2009) (large blue
dotted line) and 3b) Reconstructed Mg-temperatures (Oct/Nov. 2005) plotted versus measured
temperatures (°C) presented in Table 1. For each station mean measured Mg/Ca was inserted
into the equation of Nurnberg et al., (1996) (only cultured specimens of T. sacculifer) (orange
dots, full line), the equation of Anand et al., (2003) (green crosses, small dashed line), and the

equation of Regenberg et al., (2009) (blue triangles, large dashed lines).

Fig. 4: Reconstruction of §*0c-5'0w by inserting the measured temperature into three §'0
based paleo-T-equation: The equation of Spero et al., (2003) (light blue squares, large light blue
dashed line), the equation of Mulitza et al., (2003) (pink dots, small pink dashed line), the
equation sorted by Erez and Luz (1983) (green triangles, green dashed line) plotted versus

measured 5*80c-30w (%o PDB). The diagonal line represents the 1:1 regression.

Fig. 5: Measured surface 530w (% SMOW) plotted versus measured surface salinity (stations
listed in Tab. 4) (black dots and full line). Regression lines of the §80w-salinity relationship
calculated by Paul et al., (1999) for the tropical Atlantic Ocean (from 25°S to 25°N) based on
GEOSECS data (green line), and by Regenberg et al., (2009) (blue dashed line) based on
Schmidt (1999) data for the Atlantic Ocean for the water depth interval of 0—100 m.

Fig. 6: a) Measured salinity (orange triangles) and reconstructed salinity based on equations 1,

4 and 5 from the present study (black dots), plotted versus measured 5'80w.
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b) Reconstructed salinity based on 1) successive reconstructions using equations 1, 4 and 5

from the present study (black dots) and 2) direct linear fit (Eg. 6) based on the same measured

variables (Mg/Ca and §80c) (purple crosses), plotted versus measured salinity.
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