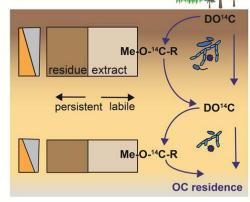

Supplement:

1) As recommended by referee 2, we attempted gaining additional evidence on the origin of NaF-NaOH-extractable and residual OC using the ¹³C data from the AMS of the ¹⁴Claboratory. However, as shown below for the tree forest sites (average of three samples per depth and standard deviation), extracts were neither consistently enriched nor depleted in ¹³C, so that no general conclusion on, e.g., differences in the degree of microbial processing can be drawn. Given the uncertainties of AMS-based ¹³C data, we would prefer not to include them in the manuscript.


2) In order to enable better distinction between the original expectations regarding the effect of desorption on OC persistence and ¹⁴C contents, and the new hypotheses derived from the unexpected results, we suggest adding the following graphical summary to the conclusions of the revised version.

Original expectations:

- **E1**: Persistence of MOC is due to resistance to desorption in NaF/NaOH
- **E2:** OC resistance to desorption is affected by:
 - mineral composition
 - OC loading of minerals
 - vegetation type

Observations and new hypotheses:

For acid to neutral forest and grassland soils:

- **H1:** Similar extractability is due to similar dominant bond types
- **H2:** Differences in ¹⁴C are mostly due to input and exchange with DOC