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Abstract. Ocean acidity extreme events are short-term periods of extremely high [H+] concentrations. The uptake of anthro-

pogenic CO2 emissions by the ocean is expected to lead to more frequent and intense ocean acidity extreme events, not only

due to mean ocean acidification, but also due to increases in ocean acidity variability. Here, we use daily output from ensemble

simulations of a comprehensive Earth system model under a low and high CO2 emission scenario to isolate and quantify the

impact of changes in variability on changes in ocean acidity extremes. We show that the number of days with extreme [H+]5

conditions for surface waters is projected to increase by a factor of 14 by the end of the 21st century under a high CO2 emission

scenario relative to preindustrial levels. The duration of individual events is projected to triple, and the maximal intensity and

the volume extent in the upper 200 m to quintuple. Similar changes are projected in the thermocline. At surface, the changes

are mainly driven by increases in [H+] seasonality, whereas changes in interannual variability are also important in the ther-

mocline. Increases in [H+] variability and extremes arise predominantly from increases in the sensitivity of [H+] to variations10

in its drivers. In contrast to [H+] extremes, the occurrence of short-term extremes in low aragonite saturation state due to

changes in variability is projected to decrease. An increase in [H+] variability and an associated increase in extreme events

superimposed onto the long-term ocean acidification trend will enhance the risk of severe and detrimental impacts on marine

organisms, especially for those that are adapted to a more stable environment.

1 Introduction15

Since the beginning of the industrial revolution, the ocean has absorbed about a quarter of the carbon dioxide (CO2) released

by human activities (Friedlingstein et al., 2019). Oceanic uptake of anthropogenic CO2 mitigates global warming by reducing

atmospheric CO2, but also leads to major changes in the chemical composition of seawater through acidification (Gattuso and

Buddemeier, 2000; Caldeira and Wickett, 2003; Orr et al., 2005; Doney et al., 2009). When CO2 dissolves in seawater, it forms

carbonic acid that dissociates into bicarbonate ([HCO−3 ]) and carbonate ions ([CO2−
3 ]), releasing hydrogen ions ([H+]) and20

thereby reducing pH (pH = -log([H+])). The rise in [H+] is partially buffered by the formation of [HCO−3 ], thereby decreasing

[CO2−
3 ] and the calcium carbonate saturation state (Ω) that describes whether water is supersaturated or undersaturated with

respect to calcium carbonate. Over the last four decades the surface ocean pH has declined by about 0.02 pH units per decade

(Bindoff et al., 2019). Continued carbon uptake by the ocean will further exacerbate ocean acidification in the near future
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(Caldeira and Wickett, 2003; Bindoff et al., 2019) with potential major consequences for marine life (Doney et al., 2009) and25

ocean biogeochemical cycling (Gehlen et al., 2012).

Superimposed onto the long-term ocean acidification trend are short-term extreme events, during which ocean pH or the

calcium carbonate saturation state are extremely low (Hofmann et al., 2011; Joint et al., 2011; Hauri et al., 2013). These

events may be driven by ocean mixing processes, biological production and remineralization, mineral dissolution, temperature30

changes, air-sea gas exchange or a combination thereof (Lauvset et al., 2020). In eastern boundary upwelling systems, for

example, short-term upwelling events and mesoscale processes can lead to low surface pH events and to short-term shoaling

of the saturation horizon (Feely et al., 2008; Leinweber and Gruber, 2013). Ocean pH also rapidly changes as a consequence

of microbial activity (Joint et al., 2011). Phytoplankton blooms and accompanying respiration drastically increase the partial

pressure of CO2 (pCO2) and reduce pH in the thermocline (Sarmiento and Gruber, 2006). Such extreme events may have pH35

levels that are much lower than the mean pH conditions projected for the near future.

The vast majority of scientific literature on ocean acidification has focused so far on gradual changes in the mean state in

ocean chemistry (e.g. Orr et al. (2005); Bopp et al. (2013); Frölicher et al. (2016)). However, to understand the full conse-

quences of ocean acidification for marine organisms and ecosystem services, it is necessary to understand how ocean acidity40

extremes change under increasing atmospheric CO2 (Kroeker et al., 2020). The ability of marine organisms and ecosystems to

adapt to ocean acidification may depend on whether these species have evolved in a chemically stable or a highly variable en-

vironment (Hofmann et al., 2011). If the frequency and intensity of short-term ocean acidity extreme events strongly increases,

one might expect that some organisms may exhibit difficulties to adapt, especially if carbonate chemistry crosses some critical

thresholds. Key plankton species such as coccolithophores (Riebesell et al., 2000), foraminifera and pteropods (Bednaršek45

et al., 2012) were found to be negatively impacted by low carbonate concentrations. After only several days of undersatura-

tion, some species such as pteropods already show reduced calcification, growth and survival rates (Bednaršek et al., 2014;

Kroeker et al., 2013). Carbonate system variability also plays a role in shaping the diversity and biomass of benthic commu-

nities (Kroeker et al., 2011; Hall-Spencer et al., 2008). In laboratory experiments, some deep water corals undergo a decline

in calcification for low-pH conditions over a week, while recovery may be possible when the low-pH condition persists for six50

months, stressing the importance of high-frequency variability and short-term acidification events (Form and Riebesell, 2012).

There is also evidence that the organism response to variability in ocean acidity could change with ocean acidification (Brit-

ton et al., 2016). Understanding the temporal variability of ocean carbonate chemistry and the changes therein is therefore of

critical importance for understanding the impacts of ocean acidification on marine organisms and ecosystems (Hofmann et al.,

2011).55

Changes in extremes arise from changes in the mean, variability, or shape of the probability distribution (Coles, 2001).

Under ongoing long-term ocean acidification (i.e. changes in the mean), one can expect that extreme events in [H+] and Ω

may become more frequent and intense (Hauri et al., 2013). In addition to the changes in the mean, recent studies suggest that
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the seasonal cycles in [H+] and Ω are also strongly modulated under elevated atmospheric CO2 due to non-linear carbonate60

chemistry processes (Kwiatkowski and Orr, 2018; Fassbender et al., 2018; Gallego et al., 2018; Landschützer et al., 2018; Mc-

Neil and Sasse, 2016; Rodgers et al., 2008; Hauck and Völker, 2015). Over the 21st century and under a high greenhouse gas

emission scenario, Earth system model simulations suggest that the winter-summer difference in surface [H+] is projected to

increase by 81%, whereas the seasonal amplitude for aragonite saturation state (ΩA) is projected to decrease by 9 % on global

average (Kwiatkowski and Orr, 2018). Recent observational-based estimates as well as theoretical arguments support these65

projected increases in seasonality for [H+] and pCO2 (Landschützer et al., 2018; Fassbender et al., 2018). We can therefore

expect that changes in variability may also impose changes in the frequency and intensity of extreme events in ocean acidity.

Unlike for marine heatwaves and extreme sea level events (Frölicher et al., 2018; Collins et al., 2019; Oppenheimer et al.,

2019), little is known about the characteristics and changes of extreme ocean acidity events and if so, only on seasonal70

timescales. A global view of how extreme events in ocean chemistry will unfold in time and space and a mechanistic under-

standing of the relevant processes is currently missing. This knowledge gap is of particular concern as it is expected that ocean

acidity extreme events are likely to become more frequent and intense under increasing atmospheric CO2. Given the potential

for profound impacts on marine ecosystems, quantifying trends and patterns of ocean acidity extreme events is a pressing issue.

75

In this study, we use daily output of a five-member ensemble simulation under a low and a high CO2 emission scenario

with a comprehensive Earth system model to investigate how changes in interannual, seasonal, and residual daily variability

under rising atmospheric CO2 levels imprint on the occurrence, intensity, duration and volume of [H+] and Ω extreme events.

The remainder of this paper is organized as follows: Section 2 presents the coupled carbon-climate Earth system model,

the ensemble simulations, analysis methods, and a brief model evaluation. The global and regional changes in ocean acidity80

extremes and their drivers are examined in Sections 3.1-3.4. The discussion and conclusions are given in Section 4.

2 Methods

2.1 Model & experimental design

The simulations used in this study are performed with the CMIP5-generation fully coupled carbon-climate Earth system model

developed at the NOAA Geophysical Fluid Dynamics Laboratory (GFDL ESM2M) (Dunne et al., 2012, 2013). GFDL-ESM2M85

consists of ocean, atmosphere, sea ice, and land models, and includes land and ocean biogeochemistry. The ocean component is

the Modular Ocean Model version 4p1 (MOM4p1), with a nominal 1◦ horizontal resolution increasing to 1/3◦ meridionally at

the equator, with a tripolar grid north of 65◦N, and with 50 vertical depth levels (Griffies, 2009). The dynamical sea ice model

uses the same tripolar grid as MOM4p1 (Winton, 2000). The Atmospheric Model version 2 (AM2) has a horizontal resolution

of 2◦ × 2.5◦ with 24 vertical levels (Anderson et al., 2004). The Land Model version 3 (LM3) simulates water, energy, and90

carbon cycles dynamically and uses the same grid as AM2 (Shevliakova et al., 2009).
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The ocean biogeochemical and ecological component is version two of the Tracers of Ocean Phytoplankton with Allometric

Zooplankton (TOPAZv2) module that parametrizes the cycling of carbon, nitrogen, phosphorus, silicon, iron, oxygen, alkalin-

ity, lithogenic material, and surface sediment calcite (see supplementary material in Dunne et al. (2013)). TOPAZv2 includes95

three explicit phytoplankton groups: small, large, and diazotrophs, and one implicit zooplankton group. The ocean carbon-

ate chemistry is based on the OCMIP2 parametrizations (Najjar and Orr, 1998), with the dissociation constants for carbonic

acid and bicarbonate ions from Mehrbach et al. (1973) and the carbon dioxide solubility from Weiss (1974). TOPAZv2 also

simulates diurnal variability in ocean physics as well as in phytoplankton growth. While diurnal variations in open ocean pH

are therefore simulated to some extent, we do not expect the model to fully capture the high diurnal variability in seawater100

chemistry in coastal regions with large biological activity (Kwiatkowski et al., 2016; Hofmann et al., 2011).

We performed a 220 year spin-up simulation at prescribed preindustrial CO2 concentration started from a quasi-equilibrated

1000 year preindustrial control simulation to ensure stability of the model under a new computing infrastructure. We then ran a

five-member ensemble simulation covering the historical 1861-2005 period, followed by a high (RCP8.5; RCP: Representative105

concentration pathway) and a low greenhouse gas emission scenario (RCP2.6) over the 2006-2100 period with prescribed

atmospheric CO2 concentrations. RCP8.5 is a high emission scenario without effective climate policies, leading to continued

and sustained growth in greenhouse gas emissions (Riahi et al., 2011). In GFDL ESM2M, atmospheric surface temperature

in the RCP8.5 ensemble is projected to increase by 3.24 (ensemble minimum: 3.17 - ensemble maximum: 3.28) ◦C between

preindustrial and 2081-2100. The RCP2.6 scenario represents a low emission and high mitigation future (van Vuuren et al.,110

2011). The RCP2.6 ensemble simulated here undergoes an atmospheric warming of 1.21 (1.18-1.26) ◦C by the end of the

21st century relative to preindustrial levels. The five ensemble members over the historical period were initialized from an

extension of the spin-up simulation, that includes historical land-use over the 1700-1860 period (Sentman et al., 2011). The

five ensemble members were generated by adding different very small SST disturbances of the order 10−5 K to a surface grid

cell in the Weddell sea at 70.5◦ S, 51.5◦W on January 1st 1861 (Wittenberg et al., 2014; Palter et al., 2018). Although the115

ocean biogeochemistry is not perturbed directly, [H+] and Ω differences between the ensemble members spread rapidly over

the globe. On average, the ensemble members can be regarded as independent climate realizations after about three years of

simulation for surface waters and about eight years at 200 m depth (Frölicher et al., 2020). Neither the choice of the perturbation

location nor the choice of the perturbed variable has a discernible effect on the results presented here (Wittenberg et al., 2014).

In addition, an accompanying 500 year long preindustrial control simulation with potential vegetation was performed that120

extends the 220 year long spin-up simulation.

2.2 Analysis methods

2.2.1 Extreme event definition and characterization

We analyze daily data of [H+] and Ω in the upper 200 m of the water column. In this study, we focus on the aragonite

saturation state ΩA. The calcium carbonate saturation state Ω differs between different mineral forms of calcium carbonate,125
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such as aragonite and calcite, that differ in their solubilities. Aragonite is the most soluble form and important for many

calcifying organisms such as pteropods (Bednaršek et al., 2012). We define an event as a [H+] extreme event when the daily

[H+] exceeds the 99th percentile, i.e. a one-in-a-hundred days event. Similarly, we define a ΩA extreme event when the daily ΩA

falls below the 1st percentile. The percentiles are calculated for each grid cell from daily data of the 500-year long preindustrial

control simulation. In contrast to absolute thresholds, relative thresholds, such as those used here, allow the characterization130

of extreme events over regions with different statistical properties. In addition, biases in the simulated variables already alter

the definition of relative thresholds and should thus have a smaller effect on projections of changes in extreme events based on

these thresholds compared to projections based on absolute thresholds (see also Frölicher et al. (2018)).

We calculate four extreme event metrics: (a) the number of extreme event days per year (in days; number of days above the

99th percentile for [H+] and below the 1st percentile for ΩA), (b) the annual mean duration (in days; the average number of135

days above the 99th percentile for [H+] and below the 1st percentile for ΩA of single events within a year), (c) the annual mean

maximal intensity (in nmol kg−1 or ΩA unit; maximum [H+] or ΩA anomalies with respect to the percentile threshold over

the duration of a single ocean acidification extreme event and then averaged over all events within a year), and (d) the mean

volume covered by individual extreme events in the upper 200 meters (in km3; mean of clusters of connected grid cells that are

above the 99th percentile for [H+] or below the 1st percentile for ΩA, calculated using the scikit-image library for Python for140

each day, these daily means are then averaged annually). The number of days, duration, and maximal intensity are calculated

for individual grid cells at the surface and at 200 m depth. While the truncation of extremes between years alters the results for

duration and intensity, it allows for the calculation of annual extreme event characteristics. We focus our analysis not only on

the surface, but also on 200 m depth to study changes in extreme events within the thermocline. In Section 3.1, these grid cell

based characteristics are then aggregated globally.145

The aim of this study is to assess how changes in [H+] and ΩA variability lead to changes in different extreme event char-

acteristics. Therefore, we isolate the effect of changes in variability by subtracting the secular trends at each grid cell and in

each individual ensemble member prior to the calculation of the different extreme event characteristics (Figure 1). The secular

trend is calculated as the five-member ensemble mean, which has been additionally smoothed with a 365-day running mean to

keep the seasonal signal in the data (further information in Appendix A). This calculation process ensures that day-to-day to150

interannual variability can change over the simulation period while the mean state stays approximately constant, as depicted for

one grid cell in Figure 1. Thus, changes in the different extreme event characteristics are only caused by changes in variability.

2.2.2 Decomposition of [H+] variability into different components155

In order to assess whether changes in low or high frequency variability cause changes in extreme events and their characteristics,

we decompose the total variability in [H+] into interannual, seasonal, and residual daily variability. First, we calculate the

climatological seasonal cycle from the daily data by averaging each calendar day over all years in the time period of interest.

Seasonal variability is then identified with the time-series variance and standard deviation of this 365-day long seasonal cycle.
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Figure 1. Simulated daily surface [H+] (a) and ΩA (c) at 40◦N and 30◦W in the North Atlantic for one ensemble member over the prein-

dustrial, the 1861-2005 historical period, and the 2006-2100 period under RCP8.5. (b,d) Same as (a,c), but the ensemble mean has been

subtracted. For [H+], the preindustrial 99th percentile threshold (horizontal blue line in panels a and b) is increasingly exceeded even when

subtracting the ensemble mean change, because [H+] variability increases. In contrast, a reduction in ΩA variability leads to a reduced

undershooting of the preindustrial 1st percentile (panel d).

As described above, the secular trend in the daily data has been removed with the five-member ensemble mean before doing the160

analysis. In a next step, we subtract the seasonal cycle from the data and estimate the spectral density (Chatfield, 1996) of this

residual time series using the periodogram function from the scipy python library. From the spectral density we then calculate

the variance and standard deviation arising from variations on interannual and sub-annual timescales to obtain interannual

and residual daily variability (further information is given in Appendix B). In section 3.3, we use the variance to report the

contributions from interannual, seasonal, and residual daily variability to global-mean variability change, but for the spatial165

changes in Figure 7, we use the standard deviation.

2.2.3 Taylor deconvolution method to identify mechanistic controls of [H+] variability changes

To understand the processes behind the simulated changes in [H+] variability and extremes, we decompose the changes into

contributions from changes in temperature (T), salinity (S), total alkalinity (AT), and total dissolved inorganic carbon (CT).

Assuming linearity, the difference of [H+] from its mean at time step i can be decomposed into contributions from the drivers170

by employing a first order Taylor expansion:
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. (1)

The partial derivatives are evaluated at T, S, CT, and AT, the temporal mean values of the drivers in the period of interest.

While it is important to take into account the climatological total phosphate and total silicate concentrations for calculating the

partial derivatives (Orr and Epitalon, 2015), one introduces only small errors by neglecting variations in phosphate and silicate.

The partial derivatives in Equation 1 are evaluated using the Mocsy 2.0 package (Orr and Epitalon, 2015).175

Using the Taylor decomposition (Equation 1), one can for example express the seasonal variation in [H+] as a function of the

drivers’ seasonal variations (Kwiatkowski and Orr, 2018). In this study however, we analyze the time-series standard deviation

of [H+] that also includes variability on other time scales (see Section 2.2.2) and the drivers of its changes. By making the

Taylor approximation (Equation 1) and from the definition of variance (the squared standard deviation, e.g. Coles (2001)), it

follows that the standard deviation of [H+] can be written as a function of the partial derivatives with respect to the drivers180

(sensitivities), the standard deviations of the drivers, and their pairwise correlation coefficients:

σ2
H+ =

∂H+

∂CT
σ2

CT
+
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AT
+
∂H+

∂T
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T +
∂H+
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S
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∂H+
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∂H+

∂T
cov(CT,T)

+2
∂H+

∂CT
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∂H+

∂T
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+2
∂H+

∂AT
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∂H+

∂T
∂H+

∂S
cov(T,S) , (2)

where the pairwise covariances are functions of the standard deviations and correlation coefficients according to cov(x,y) =

σxσyρx,y and the partial derivatives are again evaluated at the temporal mean values T, S, CT, and AT. We aim at quantifying

the contribution from mean changes in the drivers, which change the sensitivities, compared to the contributions from changes

in the drivers’ standard deviations and correlations to [H+] standard deviation changes. Unfortunately, these contributions can185

not be separated into summable terms because [H+] standard deviation is a nonlinear function of those. However, we can

analyse how much standard deviation change can be explained when considering only parts of the changes in the drivers.

We hence first analyze the change in [H+] standard deviation arising only from mean changes in the drivers. As a next step

we also change the drivers’ standard deviations and identify the additional change in [H+] standard deviation compared to

the case of only changes in the means. Finally, we identify the contribution from changes in the phasing of the drivers as the190

additional change in [H+] standard deviation by also taking into account changes in the drivers’ correlation coefficients (further

information is given in Appendix C).
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Figure 2. (a,b) Seasonal amplitude of [H+] over the period 1982-2015 averaged over five different latitude bands for a) the observation-based

estimate and b) the GFDL ESM2M historical (1982-2005) and RCP8.5 (2006-2015) ensemble simulations. (c,d) The same as (a,b), but for

ΩA. Linear trends in all panels are overlaid as thick lines. The linear trend of the simulated changes is calculated as the mean of the five

individual ensemble trends.

2.3 Model evaluation

The focus of our analysis is on changes in variability in [H+] and ΩA. As observational-based daily data of the inorganic

carbon chemistry at the global scale is not available, we limit the evaluation of the Earth system model simulation to the rep-195

resentation of the seasonal cycles of [H+] and ΩA, and especially on its changes over the 1982-2015 period. To do so, we

created an observation-based dataset for surface monthly [H+] and ΩA covering the 1982-2015 period using monthly surface

salinity, temperature, pCO2, and AT fields. Monthly salinity and temperature data are taken from the Hadley Centre EN.4.2.1

analysis product (Good et al., 2013). AT is then calculated using the LIARv2 total alkalinity regression from salinity and tem-

perature (Carter et al., 2018). For pCO2, we use the neural-network-interpolated monthly data from Landschützer et al. (2016),200

which is based on SOCATv4 (Bakker et al., 2016). Although not fully capturing pCO2 variability in regions with only few

observations (Landschützer et al., 2016), the pCO2 dataset is generally well suited for analyzing pCO2 seasonality and changes

therein (Landschützer et al., 2018). [H+] and ΩA are then calculated from salinity, temperature, AT, and pCO2 using the co2sys

carbonate chemistry package (van Heuven et al., 2011).

205
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The GFDL ESM2M captures the observed trends in the seasonal [H+] and ΩA amplitudes for different latitudinal bands

over the 1982-2015 period relatively well (Figure 2). The simulated ensemble mean trends in the seasonal [H+] amplitude

(calculated as the average of the individual trends in the ensemble) are positive for the northern low and high latitudes as well

as the southern low latitudes (Figure 2, Supplementary Table A1), consistent with the observation-based estimates. In addition,

both the model and the observational-based estimates show no significant change in [H+] seasonality in the equatorial region210

between 10 ◦S and 10 ◦N (purple thick lines in Figure 2a,b). However, the simulated [H+] seasonality trends tend to be smaller

than estimated from observations in the northern (yellow thick lines in Figure 2a,b) and southern high latitudes (red thick

lines in Figure 2a,b), where the trends from the model ensemble are 0.031± 0.030 nmol kg−1 decade−1 (± 90 % confidence

interval for each ensemble member individually and then averaged) and 0.009± 0.010 nmol kg−1 per decade, compared to

the observational-based trends of 0.106± 0.040 nmol kg−1 decade−1 and 0.037± 0.028 nmol kg−1 decade−1, respectively. In215

contrast, the simulated trend in [H+] seasonality in the northern low latitudes (0.047± 0.012 nmol kg−1 decade−1; blue thick

line in Figure 2b) is slightly larger than the observation-based trend (0.034±0.032 nmol kg−1 decade−1; blue thick line in Fig-

ure 2a). For ΩA, the model simulates negative trends in seasonal amplitude that are not seen in the observation-based estimate

in the northern high latitudes (−0.015± 0.010 vs 0.002± 0.009 ΩA units) and in the southern high latitudes (−0.012± 0.004

vs 0.000± 0.005 ΩA units per decade). Conversely, a slight negative trend is seen in northern low latitudes in the observation-220

based estimate (−0.007± 0.006 ΩA units per decade) that is not present in the simulations. In addition, GFDL ESM2M also

captures the observed mean seasonal cycle [H+] and ΩA well in most regions and in particular for ΩA (the mean values of the

seasonal amplitudes in Figure 2). However, potential biases in the mean seasonal amplitudes do not directly have an effect on

projected changes in extreme events, as we base the extreme events definition on relative thresholds.

225

In summary, taking into account additional evaluations not shown here of the mean states of [H+] and ΩA and the underlying

drivers (Bopp et al., 2013; Kwiatkowski and Orr, 2018), the model performs well against a number of key seasonal performance

metrics. However, the model slightly underestimates past changes in seasonal amplitude of [H+], especially in the northern and

southern high latitudes. Furthermore, it overestimates negative trends in ΩA seasonal amplitude in those regions. Even though

we lack the daily observational-based data to undertake a full assessment, we consider our model to be well suited to assess230

changes in open ocean ocean acidification extreme events.

3 Results

We start by discussing the simulated changes in different ocean acidity extreme characteristics at the global scale, before we

analyze changes at the regional scale and identify the drivers of changes. We recall that the large secular increase in [H+] and

the large secular decrease in ΩA was removed for the analysis as we focus on changes in variability and their impact on extreme235

event characteristics.
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3.1 Global changes in ocean acidity extremes

In preindustrial times GFDL ESM2M suggests that a typical surface [H+] extreme event had an intensity of 0.08 nmol kg−1

(Figure 3c, Supplementary Table A2) and lasted 11 days (Figure 3e). Ocean acidity extremes occur coherently with a typical

volume in the upper 200 m of 2.7·103km3 (Figure 3g). Over the historical period (from preindustrial to 1986-2005), the model240

projects that the number of surface [H+] extreme days per year increases from 3.65 days per year to 10.0 days per year (9.5-

10.4 days per year; Figure 3a). The intensity and duration are projected to increase to 0.12 nmol kg−1 and 15 days. Compared

to preindustrial conditions, this corresponds to a 173% (160-184%) increase in number of days per year, a 44% (39-47%)

increase in the intensity and a 45% (41-48%) increase in the duration of [H+] extreme events. The volume of single events is

projected to increase by 20% (14-27%) over the historical period.245

Over the 21st century, ocean acidity extreme events are projected to further increase in frequency, intensity, duration, and

volume (Figure 3). By 2081-2100 under the RCP8.5 scenario, the number of [H+] extreme days per year at surface is projected

to increase to 50.1 days (50.0-50.3 days; corresponding to a 1273% increase). The intensity is projected to increase to 0.38

nmol kg−1 (0.37-0.39 nmol kg−1; 371%), the duration to 32 days (31-32; 199%) and the volume to 13.9·103km3 (13.8-14.1;250

414%).

At 200 m depth, [H+] extreme events are in general more intense (0.17 nmol kg−1; Figure 3d) and longer-lasting (38 days;

Figure 3f) than at surface during preindustrial conditions. The stronger extreme events are caused by the overall larger variabil-

ity at 200 m than at surface. The longer duration is connected to the more pronounced contribution from interannual variability

compared to the surface (see Section 3.3). However, projected changes over the historical period and the 21st century are smaller255

at 200 m depth than at surface and with larger year-to-year variations across the ensembles. Under present-day (1986-2005),

the number of extreme days per year at 200 m depth is 4.3 days per year (3.7-5.1 day per year; corresponding to a 18% increase

since preindustrial), the intensity 0.20 nmol kg−1 (0.19-0.21 nmol kg−1; 18%), and the duration 46 days (43-50 days; 21%).

By the end of the 21st century under the RCP8.5 scenario, the number of [H+] extreme days per year is projected to increase

to 32.1 days per year (30.9-34.8 days per year), the intensity to 0.34 nmol kg−1 (0.33-0.34 nmol kg−1) and the duration to 99260

days (95-102) days. Notably, [H+] extreme events are projected to become less intense at 200 m depth than at surface (0.34

nmol kg−1 vs 0.38 nmol kg−1) by the end of the century under RCP8.5, even though they were more intense in preindustrial

times at depth. In contrast, surface [H+] extreme events remain shorter in duration at the end of the century than at 200 m depth.

Under the RCP2.6 scenario and by the end of the century, the magnitude of changes in the different [H+] extreme event265

characteristics would be substantially reduced. This reduction is especially pronounced at the surface (blue lines in Figure 3).

There, the number of extreme days per year, intensity, and duration under the RCP2.6 are projected to be only 46% (44-47),

43% (43-44) and 75% (73-77) of that under the RCP8.5 scenario. At depth, the differences between the RCP2.6 and RCP8.5

scenario are less pronounced and only emerge in the second half of the 21st century. In contrast to the surface, the number

of [H+] extreme days per year, the intensity, and the volume of events at depth are projected to considerably increase even270
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Figure 3. Simulated changes in globally averaged [H+] extreme event characteristics over the 1861-2100 period following historical (black

lines) and future RCP8.5 (red) and RCP2.6 scenario (blue). Frequency, intensity, and duration are shown for the surface (a,c,e) and for 200 m

depth (b,d,f). Volume is shown in (g). The thick lines display the five-member ensemble means and the shaded areas represent the maximum

and minimum ranges of the individual ensemble members.
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Figure 4. Globally averaged simulated number of extreme ΩA days per year from 1861 to 2100 following historical (black lines) and future

RCP2.6 (blue) and RCP8.5 (red) scenarios at (a) the surface and (b) 200 m depth. The thick lines display the five-member ensemble means

and the shaded areas represent the maximum and minimum range of the individual ensemble members.

after the atmospheric CO2 concentration stabilize in RCP2.6 around year 2050. This delayed response at subsurface is due

to the relatively slow surface-to-deep ocean transport of carbon. However, this is not the case for the duration, which slightly

decreases in the second half of the 21st century at depth.

In contrast to [H+] extreme events, the yearly number of ΩA extreme days is projected to decrease over the historical and275

the 21st century under both the RCP8.5 and RCP2.6 scenario (Figure 4, Supplementary Table A3). The simulated decrease

is slightly stronger under RCP8.5 than under RCP2.6. The number of surface ΩA extreme days per year by the end of the

century is projected to be 63% (-70,-54) smaller under RCP8.5 and 39% (-49,-20) smaller under RCP2.6 than at preindustrial.

Projected changes at depth are less pronounced than at surface, again with larger decreases under RCP8.5 than under RCP2.6.

3.2 Regional changes in ocean acidity extremes280

Surface [H+] extremes are projected to become more frequent in 87% of the surface ocean area by the end of the 21st century

under the RCP8.5 scenario. However, the projected changes in ocean acidity extremes are not uniform over the globe but show

distinct spatial patterns (Figure 5; Supplementary Figure A2). The largest increases in the number of [H+] extreme days per

year are projected in the Arctic Ocean (up to +120 days per year), in the subtropical gyres (up to +60 days per year), in parts of

the Southern Ocean and near Antarctica. There are also some regions including the eastern equatorial Pacific and parts of the285

Southern Ocean, where the number of yearly extreme days in surface [H+] is projected to decrease. These are in general also

the regions where the seasonality in [H+] is projected to decrease (see section 3.3 below). The largest changes in intensity of

surface [H+] extremes (Figure 5c) are projected for the subtropics, especially in the Northern Hemisphere. For example, events

become up to 0.8 nmol kg−1 more intense in the subtropical North Pacific and Atlantic. Large changes are also projected for

the Arctic Ocean and around Antarctica. Regions with large increases in the number of yearly extreme days tend to show also290

large increases in the duration of extreme events (Figure 5e). The Arctic Ocean is an exception. Although the number of yearly

extreme days increases sharply, the increase in duration is not as pronounced. This is because extremes are already long-lasting,
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but rare at preindustrial times (Supplementary Figure A2). So even though extreme events are projected to reoccur annually by

the end of the century under RCP8.5, the absolute increase in duration is relatively small.

295

At 200 m depth, the projected pattern of changes in yearly extreme event days generally resembles the changes at the surface

(Figure 5b). The largest increases in yearly extreme event days are projected for parts of the subtropics, the Southern Ocean,

and the Arctic Ocean. In contrast to the surface, [H+] extremes are projected to become less frequent in the equatorial At-

lantic, the northern Indian Ocean, the North Pacific and in large parts of the Southern Ocean. The regions showing a decline in

[H+] extremes at depth include also some of the eastern boundary current systems, such as the the Humboldt, California, and300

Benguela Current systems. In most of these regions, extreme [H+] days are projected to disappear in the RCP8.5 ensemble by

the end of this century (grey regions in Figure 5b). The largest increases in subsurface event intensity are projected in the sub-

tropics (Figure 5d), whereas the duration of [H+] extremes is projected to strongly increase in many regions of the mid-to-high

latitudes of both hemispheres (Figure 5f). The projected increases in duration at 200m depth are much larger than at surface.

305

The increase in the number of extreme days per year, the intensity, and the duration is smaller under RCP2.6 compared to

RCP8.5 for most of the ocean (Supplementary Figure A1). The largest increases in occurrence of extremes under RCP2.6 are

simulated for the Arctic Ocean, similar as under RCP8.5, and for parts of the Southern Ocean. The regions in the Southern

Ocean where the occurrence of extremes is projected to decrease largely overlap with those for RCP8.5, at surface and at depth.

On the other hand, unlike under RCP8.5, a decrease in extreme event occurrence is only projected for a small fraction of the310

tropical oceans under RCP2.6.

Extreme events in ΩA are projected to become less frequent throughout most of the ocean (89% of surface area under RCP8.5

at the end of the 21st century; Fig 6a). In many regions, ΩA extreme events are projected to disappear by 2081-2100 under the

RCP8.5 scenario (grey regions in Fig 6a). However, the frequency of surface ΩA extremes is projected to increase by 10 or315

more days per year in the subtropical gyres, especially in the western parts of the subtropical gyres. At depth, no extreme events

are projected for most of the ocean during 2081-2100 under RCP8.5 (Fig 6b).

3.3 Decomposing [H+] variability changes into interannual, seasonal, and residual daily variability changes

The underlying changes in [H+] variability and extreme events in [H+] may arise from changes in interannual variability, sea-

sonal variability, and residual daily variability. We therefore decompose the total variability into these three components (see320

Section 2.2.2). Figure 7 shows their contribution to the overall change in variability from preindustrial to 2081-2100 following

the RCP8.5 scenario at surface and at depth. Changes in seasonality clearly dominate the overall change in variability at surface

with 87% contribution to the overall variance change in the global mean (Figure 7b). Changes in interannual variability (3%

contribution to overall variance change; Figure 7a) and residual daily variability (10%; Figure 7c) play a minor role. The largest

increases in variability for all three variability types are projected for the northern high latitudes, where also the number of325

extreme event days increases most strongly. The increases in extreme events around Antarctica and the southern end of South
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Figure 5. Simulated regional changes in [H+] extreme event characteristics from preindustrial to 2081-2100 under the RCP8.5 scenario at

surface and at depth for (a,b) the number of extreme event days in days per year, (c,d) the maximal intensity of events in nmol kg−1, and (e,f)

the duration of events in days. Shown are changes averaged over all five ensemble members. Grey colors represent areas, where no extremes

occur during 2081-2100 and the black lines highlight pattern structures.
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Figure 6. Simulated regional changes in the number of ΩA extreme days per year from preindustrial to 2081-2100 under the RCP8.5 scenario

(a) at the surface and (b) at 200 m depth. Shown are changes averaged over all five ensemble members. The black lines highlight the pattern

structure and grey colors represent regions where no ensemble member simulates extremes during 2081-2100.
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Figure 7. Contribution to projected changes in [H+] standard deviation from (a,d) interannual variability, (b,e) seasonal variability, and (c,f)

residual daily variability between the preindustrial and the 2081-2100 period following the RCP8.5 scenario. Shown are the ensemble mean

changes. The black lines highlight the pattern structure.

America (Figure 5a) are mainly caused by increases in seasonal variability (Figure 7b). The regions that are projected to expe-

rience a decline in extremes (Figure 5a) coincide with those of decreasing interannual and seasonal variability (Figure 7a,b).

In contrast to the surface, changes in interannual and to a lesser extent residual daily variability at 200 m depth are also330

important for explaining the changes in [H+] variability and extremes (Figure 7d,f). Even though the changes in seasonal

variability still dominate the overall changes in variance at the global scale (with 42% contribution), the interannual variability

is almost equally important (37%). Changes in residual daily variability also contribute substantially to changes in total vari-

ability (20%). The patterns of variability changes are very similar across the three types of variability. The largest increases in

[H+] variability are simulated in the subtropics. In those regions the model also projects an increase in [H+] extreme events335

(Figure 5b). Furthermore, these regions tend to be already more variable at preindustrial (see Supplementary Figure A2a).

However, the model also projects an increase in variability for less variable regions at preindustrial, such as the Arctic Ocean,

leading to increases in extremes there. All three variability types are projected to decrease in the tropics and the Southern

Ocean, where the occurrence of extreme events is projected to largely decrease (c.f. Figure 5b). The variability decrease in

those regions is most pronounced for interannual variability (Figure 7d).340

3.4 Drivers of changes in [H+] variability

In this section, we investigate the drivers of variability changes in [H+]. Changes in [H+] variability can be attributed to three

factors: (i) changes in the mean states of the drivers that control the sensitivities (changing the partial derivatives in Equation 2

that affect the amplitude of the variation in [H+] for a given deviation of a driving variable x from its mean (x(i)−x) in

Equation 1), (ii) changes in the variabilities of the drivers (the drivers’ standard deviations in Equation 2), and (iii) changes in345

the phasing between the drivers (the correlation coefficients in Equation 2 that describe the degree to which the drivers co-vary

with each other) (see Section 2.2.3).
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Figure 8. (a) The realized change in [H+] standard deviation at surface from preindustrial to 2081-2100 following the RCP8.5 scenario. It is

decomposed into (b) the change in [H+] standard deviation from changes in the drivers’ mean values, (c) the [H+] standard deviation change

from additionally changing the drivers variabilities, and (d) the contribution from additional changes in the phasing of the drivers (pairwise

correlations between the drivers). (e) The change in [H+] standard deviation obtained when only changing the mean state of CT. (f) The

change in [H+] standard deviation from additionally changing the variability of CT. (g,h) Same as (e,f), but for AT. Temperature and salinity

contributions are small and not shown here. The black contours highlight the pattern structures.

We investigate the first contribution (impact of mean state changes on the sensitivities) by changing only the mean states of

the drivers (in Equation 2) from the preindustrial values to those of the 2081-2100 period following the RCP8.5 scenario. The

drivers’ standard deviations and correlation coefficients stay at the preindustrial levels. Figure 8b shows that the mean changes350

in the drivers cause an overall increase in surface [H+] variability. Global [H+] variability changes due to mean changes

(0.67 nmol kg−1 ; Figure 8b) are more than twice as large as the total realized changes (0.30 nmol kg−1; Figure 8a). Especially
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in the higher latitudes, the changes due to mean changes are much larger than the total realized changes in [H+] variability.

What causes this large increase [H+] variability? In general, an increase in mean CT, temperature, and salinity would lead to355

an increase in [H+] variability, whereas an increase in mean AT would lead to a decrease. GFDL ESM2M projects an increase

in mean CT over the entire surface ocean (Supplementary Figure A4) and therefore an increase [H+] variability (Figure 8e).

Surface AT is projected to increase globally, especially in the low-to-mid latitudes of the Atlantic (Supplementary Figure A4),

and therefore dampens slightly the overall increase in [H+] variability (Figure 8g). This is not the case in the Arctic Ocean,

where AT is projected to decrease and amplifies the increase in [H+] variability caused by changes in CT (Figure 8g). Changes360

in temperature and salinity play a minor role (not shown in Figure 8).

Next, we investigate the second contribution, i.e. the impact of changes in variability of the drivers on [H+] variability (Fig-

ure 8c). At the global scale, the projected change in the variability of the drivers (Supplementary Figure A5) causes a decrease

in [H+] variability and counteracts to some degree the increase in [H+] variability due to increase in the mean drivers. How-365

ever, this decrease due to the drivers’ variability is spatially not uniform. In the low latitudes (except in the eastern equatorial

Pacific), changes in the variability of the drivers lead to a slight increase in [H+] variability, whereas in the high latitudes they

lead to a decrease in [H+] variability. The increase in the low latitudes and the decrease in the high latitudes and the equatorial

Pacific is mainly caused by increases and decreases in CT variability (Figure 8f; Supplementary Figure A5). Again, the contri-

bution from changes in AT variability (Figure 8h) is important in the Arctic Ocean, while temperature and salinity play a minor370

role. The additional variability change from the third contribution (changes in the phasing of the drivers; Figure 8d) is overall

smaller, except in the North Atlantic.

At 200 m depth, the picture looks similar as at the surface. Again, the projected increase in [H+] variability (Figure 9a)

caused by the mean changes in the drivers (Figure 9b; Supplementary Figure A4) is damped by the decrease in the variability375

of the drivers (Figure 9c; Supplementary Figure A5). The changes in mean and variability of CT (Figure 9e,f) are the most

important drivers of changes. Increases in mean AT somewhat dampen the overall increase in the low latitudes (Figure 9g).

Again, changes in temperature and salinity are negligible. In contrast to the surface, however, the individual changes in [H+]

variability due to the mean and variability changes of the drivers, in particular of CT, are much larger at 200 m depth. The

largest individual changes are projected for the southern edges of the subtropical gyres in the north and for the northern edges380

of the subtropical gyres in the south. The changes in the Arctic Ocean at 200 m depth are overall smaller than at the surface.

Changes in the phasing of the drivers are overall less important than changes in the variabilities and mean states.

4 Discussion and conclusions

We provide a first quantification of the historical and future changes in short-term ocean acidity extreme events at global

and regional scale by analyzing daily 3D output from a ensemble simulation of a comprehensive Earth system model. In our385
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Figure 9. Same as Figure 8 but at 200 m depth.

analysis, we focus on changes in extreme events that arise only from changes in daily to interannual variability. Secular CO2

emission-induced trends in the mean state were removed from the model output before the extreme events analysis. We show

that extreme [H+] events are projected to become more frequent, longer lasting, more intense and spatially more extensive

under increasing atmospheric CO2 concentration, both at surface and also within the thermocline. These changes in [H+] ex-

treme event characteristics are substantially reduced under the RCP2.6 scenario compared to RCP8.5. The increase in [H+]390

variability and extreme events is a consequence of its nonlinear dependence on the drivers. It is mainly driven by the projected

increase in mean CT and additionally altered by changes in CT variability and AT mean and variability. Extreme events in ΩA

are projected to become less frequent in the future. This is because ΩA becomes less sensitive to variations in the physical and

biogeochemical state of seawater under elevated atmospheric CO2.

395
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Figure 10. Globally averaged number of extreme event days for [H+] over the historical (black lines), RCP2.6 (blue), and RCP8.5 (red)

simulations for the preindustrial 99th (solid lines) and 99.99th percentile (dotted lines) at (a) the surface and (b) 200m depth

In this study, we use the 99th percentile of the distribution from a preindustrial simulation for the definition of an extreme

[H+] event, but the results may depend on the choice of this threshold. We tested the sensitivity of our results by using also

the 99.99th percentile threshold. The relative increase in the numbers of extreme [H+] days per year is larger for these very

rare extremes (Figure 10). For example, nearly every second day with [H+] exceeding the 99th percentile (red solid lines in

Figure 10) is also a day with [H+] exceeding the 99.99th percentile (red dotted lines in Figure 10) by the end of the 21st century400

under RCP8.5, both at surface and at depth. In other words, an event that occurs every 27 years at preindustrial becomes almost

as frequent in the future as an event that occurs every hundred days at preindustrial. As a result of this large relative increase

in rare extremes, the model projects as many days with [H+] exceeding the 99.99th percentile by the end of the century under

RCP8.5 (red dotted lines in Figure 10) as it projects days exceeding the 99th percentile under RCP2.6 (blue solid lines in Fig-

ure 10).405

The projected increase in [H+] variability and decrease in ΩA variability also alters the occurrence of extreme events based

on absolute thresholds. An often used threshold is ΩA = 1 below which seawater is corrosive with respect to the calcium car-

bonate mineral aragonite (Bednaršek et al., 2012). We assess the influence of the general decline in ΩA variability at the point

in time where a grid cell falls below ΩA = 1 for the first time. To do so, we compare these points in time within the historical410

and RCP8.5 ensemble to the ones for the hypothetical case where ΩA variability stays at the preindustrial level but mean ΩA

undergoes the ensemble mean evolution. We find that the decline in ΩA variability, which is observed in the historical and

RCP8.5 ensemble, leads to an average delay of the first occurrence of undersaturation by about 11 years at the surface and

about 16 years at 200 m depth. At surface, these delays of undersaturation occur throughout the high latitudes (Figure 11a). At

depth, the delays are most pronounced in the tropics (Figure 11b), but delays also occur in the high latitudes. Absolute thresh-415

olds for [H+] are generally not well established. Tests with arbitrarily set absolute thresholds suggest that these thresholds are

generally exceeded a few years earlier because of increasing variability, but the temporal difference is less pronounced than

that for ΩA.
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Figure 11. The temporal difference in years between the first occurrence of aragonite undersaturation in the historical and RCP8.5 ensemble

and a hypothetical simulation with the mean changes observed in the historical and RCP8.5 ensemble but with preindustrial variability.

Positive values (yellow and red) indicate a delayed onset of undersaturation resulting from declines in ΩA variability.

Previous studies have shown that the seasonal cycle of surface ocean pCO2 and surface [H+] will be strongly amplified420

under increasing atmospheric CO2 (Gallego et al., 2018; Landschützer et al., 2018; McNeil and Sasse, 2016; Kwiatkowski and

Orr, 2018). Here we show that the changes in the seasonal cycle of [H+] translate into large increases in short-term extreme

acidity events, at surface as well as at 200 m depth. In addition to earlier studies, we also show that changes in residual daily

variability contribute to changes in extreme [H+] events under increasing atmospheric CO2. It is therefore critical to use daily

temporal output to assess extreme events in ocean biogeochemistry. Currently, ocean biogeochemical variables from models425

that participate in the sixth phase of the Coupled Model Intercomparison Project Phase 6 are routinely stored with a monthly

resolution on the Earth system grid (Jones et al., 2016). We therefore recommend to save out and use higher than monthly

resolution to analyze variability in the surface and sub-surface ocean carbonate systems, in particular for studying extreme

events.

430

Even though we consider our results as robust, a number of potential caveats remain. First, the horizontal resolution of the

ocean model in ESM2M is rather coarse and cannot represent critical scales of small-scale circulation structures (e.g. Turi et al.

(2018)). In addition, the biogeochemical processes included in ESM2M are designed for the open ocean, but do not capture

the highly variable coastal processes (Hofmann et al., 2011). High resolution ocean models with improved process represen-

tations are therefore needed to explore extreme events in ocean carbonate chemistry, especially in coastal regions. However,435

observation-based carbonate system data on daily time scale would also be necessary to thoroughly evaluate the models’ capa-

bility to represent daily variations in carbonate chemistry. Secondly, our results at the local scale might depend on the model

formulation. The GFDL ESM2M is largely able to project [H+] variability changes (Figure 2) arising from the nonlinear de-

pendence on the drivers’ mean states as the ocean carbonate chemistry is known and the mean changes in the drivers match

observational records relatively well over the historical period (Bopp et al., 2013). However, it is currently rather uncertain how440

[H+] variability changes as a result of changes in the drivers’ variabilities. It is well known that current Earth system models

have imperfect or uncertain representations of ocean variability over a range of timescales (Frölicher et al., 2016; Resplandy

et al., 2015; Keller et al., 2014). A possible way forward would be to assess changes in ocean acidity extreme events within

a multi-model ensemble, which would likely provide upper and lower bounds of future changes in these events. Finally, it is
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assumed that physical and biogeochemical changes in the ocean will also increase diurnal variability. In particular in coastal445

areas, such diurnal variations can have amplitudes that are much larger than the projected changes over the 21st century (Hof-

mann et al., 2011). However, GFDL ESM2M does not fully resolve the diurnal variability. In the ocean biogeochemistry model

(TOPAZv2) that is embedded in GFDL ESM2M, for example, phytoplankton growth is not able to consume internal nutrient

stores in the absence of light during night and diel vertical migration is also not simulated. Future studies with Earth system

models that resolve diurnal chemistry extremes are needed to quantify the impacts of changes in the diurnal cycles on extreme450

acidity events.

Our analysis also has important consequences for the impact of ocean acidification on marine ecosystems. It implies that

marine organisms will have less time to recover from very high [H+] events in the future, as the frequency and the duration of

the ocean acidity extremes are projected to increase substantially over the 21st century. While coastal species may be adapted455

to large variability in ocean acidity, the large projected increase in [H+] extreme events in the open ocean may push organisms

and ecosystems that are commonly accustomed to a more steady environment to the limits of their resilience. The risks for

substantial ecosystem impacts are aggravated by the fact that the frequency and intensity of marine heatwaves is also projected

to substantially increase (Frölicher et al., 2018), which also negatively impact marine ecosystems (Wernberg et al., 2016; Smale

et al., 2019). The interactions of intensified multiple stressors has the potential to influence marine ecosystems and the ocean’s460

biogeochemical cycles in an unprecedented manner (Gruber, 2011). However, further research is needed to understand the

combined impacts of short term ocean acidity extremes and marine heatwaves on marine ecosystems.

In conclusion, our analysis reveals that marine organisms and ecosystems are projected to be exposed to less stable [H+]

conditions in the future with more frequent occurrences of extreme [H+] conditions. Such extremes events are projected to last465

longer, to be more intense and to cover larger volumes of seawater and therefore potentially add to the stress on organisms and

ecosystems from mean ocean acidification.

Appendix A: Identifying and removing the secular trend in the model data

In this study, we analyze the changes in short-term extreme events in [H+] and ΩA that arise from day-to-day to interannual

variability changes in these variables. We therefore need to remove the secular trends from the data prior to analysis. We esti-470

mate the secular trends from the five-member ensemble means, assuming that sub-annual and interannual to decadal variations

in the individual ensemble members are phased randomly and do not imprint on the ensemble means because they average out.

A larger ensemble size would be necessary for this assumption to perfectly hold. However, this potential source of error does

not qualitatively alter our results.

475

Unlike sub-annual and interannual variability, the seasonal cycle is a deterministic component within a climate time series.

Its phase is not independent between ensemble members and it doesn’t average out when calculating ensemble means. We
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remove the seasonal cycles from the ensemble means by smoothing the ensemble means with a 365-day running mean filter,

i.e. by calculating the convolution of the time series with a rectangular window of length 365 and height 1/365. This filter

also removes variability on sub-annual and interannual timescales and thereby also reduces the error we make due to the small480

ensemble size that is discussed above. We then subtract the running-mean-filtered ensemble means from the five ensemble

members to remove the secular trends in the individual ensemble members.

Appendix B: Identifying interannual and residual daily variability

The spectral density describes how the variance in a time series is distributed over different frequencies νj . It is proportional to

the absolute value squared of the discrete Fourier transformation (DFT) of the time series. Defining the spectral density only485

for positive frequencies, it is given by

f(νj) = 2
∆t2

T

∣∣∣∣∣
N∑

k=1

xk · exp(−i2πνj ·∆tk)

∣∣∣∣∣

2

,

withN the number of time steps, xk the values of the time series at each time step, ∆t the time interval between two time steps,

T =N ·∆t, and the frequencies νj = j/T . The autocovariance is the inverse Fourier transform of the spectral density (Wiener-

Khintchine theorem, Chatfield (1996))1. As a consequence, the variance within the time series, given by the autocovariance490

at lag zero, is obtained by integrating the spectral density over all positive frequencies, σ2 =
∫∞
0
f(ν)dν. For a discrete time

series, where the maximal resolved frequency is given by νmax = 1/2∆t, the identity reads

σ2 =
N/2∑

j=0

f(νj)
1

N∆t
.

Based on this equation, one can separate the contributions to variance from low-frequency and high-frequency variations. In this

study, we determine interannual variability and the residual (sub-annual) daily variability. Interannual variability is calculated495

by summing over the contributions to variance from all frequencies up to a cycle of once per year, i.e. by evaluating the sum

up to icut for which νcut = 1/365day−1. Accordingly, residual daily variability is obtained by evaluating the sum from icut + 1

to N/2. Prior to this separation, the seasonal variability is removed from the data by subtracting the 365-day climatology. We

use the periodogram function from scipy.signal to estimate the spectral density.
1In the continuous case, the theorem states

γ(τ) =

∞∫
−∞

f̃(ν)exp(i2πντ)dν,

with the autocovariance function γ(τ) and the spectral density f̃ defined for positive and negative frequencies. Since the two-sided spectral density, f̃ , is a

real and even function, one can also use

γ(τ) =

∞∫
0

f(ν)cos(2πντ)dν

with the one-sided spectral density f = 2 · f̃ that is used in this text.
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Appendix C: Decomposition of [H+] standard deviation change500

According to Equation 2 in the main text, the variance in [H+] can be approximated as a function of the four means of the

drivers µ1,..4 (we assume that changes in total phosphate and total silicate are negligible), the four standard deviations of the

drivers σ1,..4, and the six pairwise correlation coefficients ρi6=j=1,..4. The total change in [H+] standard deviation (or variance)

between two periods can thus be obtained by calculating

σH(µ1
i ,σ

1
i ,ρ

1
ij)−σH(µ0

i ,σ
0
i ,ρ

0
ij),505

where the superscript 0 indicates the first period, here preindustrial, and the superscript 1 indicates the second period, here

2081-2100 under RCP8.5.

Based on this relation, we then assess how changes in the drivers’ means, standard deviations, and correlation coefficients

contribute to the change in [H+] standard deviation. Firstly, we investigate how much [H+] standard deviation change can be

explained by solely adjusting the drivers’ mean values to the values simulated for 2081-2100 under RCP8.5,510

σH(µ1
i ,σ

0
i ,ρ

0
ij)−σH(µ0

i ,σ
0
i ,ρ

0
ij).

Changes in the mean values contribute largest to [H+] variability changes. Secondly, we investigate how much standard devi-

ation change can be additionally explained when also taking into account changes in the drivers’ standard deviations,

σH(µ1
i ,σ

1
i ,ρ

0
ij)−σH(µ1

i ,σ
0
i ,ρ

0
ij).

Overall, standard deviation changes have the second largest imprint on [H+] variability changes. Thirdly, the remaining con-515

tribution from changes in the pairwise correlation coefficient is calculated as

σH(µ1
i ,σ

1
i ,ρ

1
ij)−σH(µ1

i ,σ
1
i ,ρ

0
ij).

In analogy to the first two steps, the contributions from mean and standard deviation changes in CT and AT alone are also

assessed.

Latitude Obs. [H+] ESM2M [H+] Obs. ΩA ESM2M ΩA

40◦-90◦ N 0.106± 0.040 0.031± 0.030 1.9± 8.7 −15.1± 9.5

10◦-40◦ N 0.034± 0.034 0.047± 0.012 −6.7± 5.6 −1.8± 4.7

10◦ S-10◦ N 0.001± 0.016 0.006± 0.011 −2.8± 10.7 −0.5± 13.1

40◦-10◦ S 0.055± 0.014 0.035± 0.008 −2.4± 5.1 −1.2± 2.8

90◦-40◦ S 0.037± 0.028 0.009± 0.010 0.1± 4.8 −12.2± 3.9

Table A1. Linear trends in seasonal amplitude of [H+] (in nmol kg−1 decade−1) and ΩA (in 10−3 decade−1) for five latitude bands over the

period 1982-2015. Results are shown for the observational-based data (Obs.) and the five-member ensemble mean of the ESM2M simulations

(ESM2M). The range (±) denotes the 90 % confidence interval.
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PI 1986-2005 EOC RCP2.6 EOC RCP8.5

Number Surf. 3.65 9.97 (9.49-10.38) 22.87 (21.93-23.45) 50.12 (49.98-50.30)

200m 3.65 4.32 (3.72-5.09) 19.88 (16.96-22.53) 32.10 (30.91-34.75)

Duration Surf. 10.64 15.38 (15.04-15.72) 23.79 (23.40-24.11) 31.78 (31.23-32.13)

200m 38.00 45.95 (42.84-49.96) 62.94 (60.49-66.11) 98.66 (95.06-102.01)

Intensity Surf. 0.08 0.12 (0.11-0.12) 0.17 (0.16-0.17) 0.38 (0.37-0.39)

200m 0.17 0.20 (0.19-0.21) 0.28 (0.25-0.30) 0.34 (0.33-0.34)

Volume 2709 3247 (3082-3451) 7654 (6873-8464) 13927 (13836-14109)
Table A2. Simulated global mean [H+] extreme event characteristics for the preindustrial, present day (1986-2005), RCP2.6 end of century

(EOC; 2081-2100), and RCP8.5 end of century (2081-2100) periods. Numbers of yearly extreme days are given in days per year, durations

in days, intensities in nmol kg−1, and the volumes in km3. The first values represent ensemble means, values in brackets denote ensemble

minima and maxima.

PI 1986-2005 EOC RCP2.6 EOC RCP8.5

Number Surf. 3.65 1.75 (1.50-2.20) 2.24 (1.86-2.93) 1.36 (1.09-1.69)

200m 3.65 1.98 (1.51-2.77) 3.01 (2.28-3.71) 1.72 (1.38-2.02)

Duration Surf. 19.70 17.84 (16.84-18.92) 19.37 (18.07-21.13) 29.28 (27.37-32.57)

200m 38.61 66.06 (59.74-18.92) 98.71 (89.01-109.01) 111.56 (106.62-122.70)

Intensity Surf. 2.92 3.42 (3.26-3.64) 3.21 (3.07-3.48) 1.51 (1.42-1.63)

200m 3.26 4.96 (3.87-6.67) 7.90 (6.05-11.06) 6.02 (2.85-9.13)

Volume 3640 3158 (2888-3460) 3662 (3021-4215) 3378 (3086-3714)
Table A3. The same as Table A2, but for ΩA . Intensity is given in 10−3 ΩA units. The remaining units are identical to those in Table A2.

Data availability. The GFDL ESM2M simulations are available upon request.520
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Figure A1. Simulated regional changes in (a,b) the number of extreme [H+] days per year, (c,d) the maximal intensity extreme [H+] events,

and (e,f) the duration of extreme [H+] events between preindustrial and 2081-2100 following the RCP2.6 scenario. Left panels show changes

for the surface, whereas right panels show changes for 200 m depth. Shown are changes averaged over all five ensemble members. The black

contours highlight the pattern structures. Grey areas represent areas with no extremes.
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Figure A2. Simulated characteristics of surface [H+] extreme events for preindustrial (a,b), present-day ensemble mean (1986-2005, c-e),

RCP8.5 end of century ensemble mean (2081-2100, f-h), and RCP2.6 end of century ensemble mean (2081-2100, i-k). Grey colors represent

regions where no ensemble member simulates extremes. The black contours highlight the pattern structures.
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Figure A5. Simulated ensemble mean changes in the standard deviations of CT (a,e), AT (b,f), T (c,g), and S (d,h) from preindustrial to

2081-2100 under the RCP8.5 scenario. Shown are changes for (a-d) the surface and (e-h) at 200 m depth. The black contours highlight the

pattern structures.
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