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Abstract 9 

The prediction of nitrous oxide (N2O) and of dinitrogen (N2) emissions formed by biotic denitrification in 10 

soil is notoriously difficult, due to challenges in capturing co-occurring processes at microscopic scales. 11 

N2O production and reduction depend on the spatial extent of anoxic conditions in soil, which in turn are 12 

a function of oxygen (O2) supply through diffusion and O2 demand by respiration in the presence of an 13 

alternative electron acceptor (e.g. nitrate).  14 

This study aimed to explore controlling factors of complete denitrification in terms of N2O and (N2O+N2) 15 

fluxes in repacked soils by taking micro-environmental conditions directly into account. This was 16 

achieved by measuring micro-scale oxygen saturation and estimating the anaerobic soil volume fraction 17 

(ansvf) based on internal air distribution measured with X-ray computed tomography (X-ray CT). O2 18 

supply and demand was explored systemically in a full factorial design with soil organic matter (SOM, 19 

1.2 and 4.5%), aggregate size (2-4 and 4-8mm) and water saturation (70, 83 and 95% WHC) as factors. 20 

CO2 and N2O emissions were monitored with gas chromatography. The 
15

N gas flux method was used to 21 

estimate the N2O reduction to N2.  22 

N-gas emissions could only be predicted well, when explanatory variables for O2 supply and oxygen 23 

demand were considered jointly. Combining ansvf and CO2 emission as proxies of O2 supply and demand 24 

resulted in 83% explained variability in (N2O+N2) emissions and together with the denitrification product 25 

ratio [N2O/(N2O+N2)] (pr) 72% in N2O emissions. O2 concentration measured by microsensors was a 26 

poor predictor due to the variability in O2 over small distances combined with the small measurement 27 

volume of the microsensors. The substitution of predictors by independent, readily available proxies for 28 

O2 supply (diffusivity) and O2 demand (SOM) reduced the predictive power considerably (50% and 58% 29 

for N2O and (N2O+N2) fluxes, respectively). 30 
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The new approach of using X-ray CT imaging analysis to directly quantify soil structure in terms of ansvf 31 

in combination with N2O and (N2O+N2) flux measurements opens up new perspectives to estimate 32 

complete denitrification in soil. This will also contribute to improving N2O flux models and can help to 33 

develop mitigation strategies for N2O fluxes and improve N use efficiency. 34 

 35 

Keywords: anaerobic soil volume fraction, air distance, diffusivity, nitrous oxide, dinitrogen, oxygen 36 

microsensors, product ratio, X-Ray computed tomography (X-ray CT) 37 

1. Introduction 38 

Predicting emissions of the greenhouse gas nitrous oxide (N2O) is important in order to develop 39 

mitigation strategies. Agriculture accounts for approximately 60% of anthropogenic N2O emissions, most 40 

likely because high amounts of substrates for N2O producing processes result from nitrogen (N) 41 

fertilization on agricultural fields (Syakila and Kroeze, 2011; Thompson et al., 2019). The required 42 

process understanding is hindered, since various microbial species are capable of N2O production via 43 

several pathways and these may co-exist due to different micro-environmental conditions within short 44 

distances in soil (Hayatsu et al., 2008; Braker and Conrad, 2011). Denitrification is one of the major 45 

biological pathways for N2O production, which describes the reduction of nitrate (NO3
-
) as the alternative 46 

electron acceptor into the trace gas nitrous oxide (N2O) as an intermediate and molecular nitrogen (N2) as 47 

the final product (Knowles, 1982; Philippot et al., 2007). Although it is well known that not all microbial 48 

species are capable of denitrification pathway, it is particularly widespread among bacteria, but also 49 

several fungi and even archaea can denitrify (Shoun et al., 1992; Cabello et al., 2004).  50 

N2O emissions from soils are often considered to be erratic in nature due to their high variability in space 51 

and time (Butterbach-Bahl et al., 2013). The low predictability is caused by the mechanisms that regulate 52 

microbial denitrification at the pore scale which are concealed from measurement techniques that average 53 

across larger soil volumes. This experimental study is designed to reveal the drivers of oxygen (O2) 54 

supply and demand at the microscale that govern microbial denitrification at the macroscale.  55 

In general, there are several controlling factors for microbial denitrification in soil. Proximal factors, 56 

such as N and carbon (C) are needed to ensure the presence of electron acceptors and electron supply. In 57 

addition, the absence of oxygen is required to express the enzymes for the reduction of reactive nitrogen. 58 

Distal factors, i.e. physical and biological factors like soil structure, soil texture, pH or microbial 59 

community, on the other hand affect the proximal factors (Groffman and Tiedje, 1988; Tiedje, 1988). The 60 

main physical controlling factors that regulate O2 supply are water saturation and soil structure, because 61 

they determine the pathways through which gaseous and dissolved oxygen, but also NO3
-
 and dissolved 62 
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organic matter may diffuse towards the location of their consumption. Likewise they determine the 63 

pathways through which denitrification products may diffuse away from these locations. In addition, both, 64 

saturation and soil structure, contribute to the regulation of O2 demand through their impact on substrate 65 

accessibility and thus microbial activity (Keiluweit et al., 2016). Studies have shown microbial activity, 66 

described by microbial respiration, to increase with increasing water saturation, but it also decreased 67 

when water saturation exceeded a certain optimal value at intermediate conditions (Davidson et al., 2000; 68 

Reichstein and Beer, 2008; Moyano et al., 2012). Low water saturation causes C substrate limitations 69 

whereas high water saturation causes limited oxygen diffusion (Davidson et al., 2000). This observation 70 

goes along with an increase of anaerobic respiration in microbial hot spots when O2 demand exceeded O2 71 

supply and denitrification is favoured (Balaine et al., 2015).  72 

These physical processes that govern denitrification at the microscale have to be effectively described 73 

by macroscopic bulk soil properties in order to improve the predictability of denitrification activity at 74 

larger scales. It has been shown repeatedly that soil diffusivity can be used to predict the impact of O2 75 

supply on N2O and N2 emissions (Balaine et al., 2016; Andersen and Petersen, 2009). First N2O emissions 76 

increase with decreasing diffusivity, but then it dramatically decreases due to N2 production when 77 

diffusivity is extremely low.  78 

Diffusivity is not routinely measured in denitrification studies as it is more difficult to measure than air 79 

content or water saturation, but there are many empirical models to estimate diffusivity based on air filled 80 

pore volume (Millington and Quirk, 1961; Moldrup et al., 1999; Deepagoda et al., 2011; Millington and 81 

Quirk, 1960). All of these metrics are only indirect metrics of the anaerobic soil volume fraction (ansvf) 82 

as direct measurements are difficult to obtain. Either it is measured locally via oxygen sensors with 83 

needle-type microsensors (Sexstone et al., 1985; Højberg et al., 1994; Elberling et al., 2011) or with foils 84 

(Keiluweit et al., 2018; Elberling et al., 2011), which requires to average or to extrapolate measured O2 85 

saturation for the entire soil volume. Or it is estimated for the entire sample volume from pore distances 86 

in X-ray CT images of soil structure assuming that there is a direct relationship between pore distances 87 

and anaerobiosis (Kravchenko et al., 2018; Rabot et al., 2015).  88 

Completeness of denitrification is another important controlling factor that modulates the relationship 89 

between oxygen availability and N2O emissions (Morley et al., 2014) which has previously been 90 

neglected in similar incubation studies (Rabot et al., 2015; Porre et al., 2016; Kravchenko et al., 2018) 91 

due to methodological challenges imposed by measuring N2 emissions from soil (Groffman et al., 2006). 92 

Complete denitrification generates N2 as the final product although it is assumed that 30% of denitrifying 93 

organisms lack the N2O reductase (Zumft, 1997; Braker and Conrad, 2011; Jones et al., 2008). Thus the 94 

denitrification product ratio [N2O/(N2O+N2)] (pr) was found to be very variable in soil studies covering 95 

the whole range between 0 and 1 (Senbayram et al., 2012; Buchen et al., 2016). Decreasing pr, i.e. 96 
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relative increasing N2 fraction compared to that of N2O, were found with lower oxygen availability in 97 

consequence of higher water saturations and denitrification activities in soil (van Cleemput, 1998).  98 

In this paper, we will reconcile all these metrics, i. e. soil structure, bulk respiration, diffusivity, O2 99 

distribution, ansvf and pr to assess their suitability to predict denitrification activity. This requires well 100 

defined laboratory experiments that either control or directly measure important distal controlling factors 101 

of denitrification activity like microbial activity, anaerobic soil volume and denitrification completeness.  102 

To this end the current study presents a comprehensive experimental setup with well-defined 103 

experimental conditions but also micro-scale measurements of oxygen concentrations, soil structure and 104 

the air and water distribution at the pore scale. The 
15

N tracer application was used to estimate the N2O 105 

reduction to N2 and the N2O fraction originating from denitrification. To our knowledge this is the first 106 

experimental setup analyzing N2O and (N2O+N2) fluxes in combination with X-ray CT derived structure. 107 

Other important factors controlling denitrification like temperature, pH, nitrate limitation or plant-soil 108 

interactions were either controlled or excluded in this study.  109 

The general objective of the present study is to systematically explore bulk respiration and denitrification 110 

as a function of O2 supply and demand in repacked soils under static hydraulic conditions. O2 demand 111 

was controlled by incubating soils with different soil organic matter (SOM) content. O2 supply was 112 

controlled by different water saturations and different aggregate sizes. A novel approach is explored to 113 

assess microscopic O2 supply directly from ansvf estimates based on the distribution and continuity of air-114 

filled pores within the wet soil matrix.  115 

We hypothesize that the combination of at least one proxy for O2 supply (e.g. ansvf, diffusivity, air 116 

content) and one for O2 demand (CO2 production) is required to predict complete denitrification 117 

(N2O+N2), whereas pr as a proxy for denitrification completeness is required in addition to predict a 118 

single component (N2O)., The specific aims of our study were a) to investigate the potential of 119 

microscopic metrics for O2 supply such as ansvf to predict complete denitrification activity and b) to 120 

explore as to how far a substitution of these predictors by classical, averaged soil properties required for 121 

larger scale denitrification models is acceptable. 122 

2. Materials and Methods 123 

2.1 Incubation  124 

Fine-textured topsoil material was collected from two different agricultural sites in Germany 125 

(Rotthalmünster (RM) and Gießen (GI), (Table 1). These soils were chosen for the contrast in properties 126 

potentially affecting denitrification and respiration (SOM contents, pH, texture, bulk density) which 127 
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induces a large difference in microbial respiration and hence O2 demand under identical incubation 128 

settings. The soils were sieved (10 mm), air-dried and stored at 6°C for several months before sieving into 129 

two different aggregate size fractions: small (2-4 mm) and large (4-8mm). Care was taken to remove free 130 

particulate organic matter like plant residues and root fragments during sieving. Other aggregate size 131 

classes were not considered, as sieving yielded in a too low amount of larger aggregates that contained 132 

too much irremovable POM, whereas smaller aggregate classes resulted in a too fragmented pore space at 133 

the chosen scan settings. 134 

Table 1: Basic description of soil materials used for incubation (SOM – soil organic matter). 135 

Site Landuse 

Soil type 

(WRB) 

Bulk density 

[g/cm³] 

Clay           

[%] 

Silt             

[%] 

SOM 

[%] C:N 

pH 

(CaCl2) 

Rotthalmünster (RM) arable Luvisol 1.3 19 71 1.21 8.7 6.7 

Gießen (GI) grassland Gleysol 1.0 32 41 4.46 10.0 5.7 

 136 

The soil material was pre-incubated at 50% water holding capacity (WHC) for two weeks to induce 137 

microbial activity after the long dry spell and let the flush in carbon mineralization pass that occurs after 138 

rewetting the soil. 
15

N labeled NO3
-
 solution was applied when adjusting WHC to 70% before packing by 139 

mixing 99 at% 
15

N-KNO3 (Cambridge Isotope Laboratories, Inc., Andover, MA, USA) and unlabelled 140 

KNO3 (Merck, Darmstadt, Germany) to reach 50 mg N kg
-1

 soil and 60 atom%. This 
15

N-labelled soil was 141 

filled into cylindrical PVC columns (9.4cm inner diameter x10cm height) (Figure 1) and compacted to a 142 

target bulk density that correspond to site-specific topsoil bulk densities (Jäger et al., 2003; John et al., 143 

2005). The incubation of such repacked soils instead of intact soil columns was chosen to i) 144 

systematically investigate the effect of aggregate size and to ii) guarantee thorough mixing of the 
15

N 145 

tracer with the soil.  146 

Packing in five vertical intervals achieved a uniform porosity across the column. However, there were 147 

inevitable porosity gradients within intervals (Figure S4) that affected the air and water distribution and 148 

thus air continuity at high water saturations. Three different saturation treatments were prepared for 149 

subsequent incubation experiments: 70%, 83% and 95% WHC. For the latter two saturation levels 150 

additional NO3
-
 solution was sprayed sequentially onto each layer after packing. In this way, a full 151 

factorial design with twelve treatments and three factors (soil: RM, GI; aggregate size: large, small; 152 

saturation: 70, 83, 95 % WHC) were prepared in triplicates for incubation. WHC was additionally 153 

measured for both soil materials in parallel soil cores. For a better comparability with previous studies the 154 

results will be presented in terms of water-filled pore space (WFPS), which is derived from the known 155 
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mass of soil and water and their respective densities. A detailed description of the experimental setup can 156 

be found in the Supplementary Material. 157 

 158 

 159 
Figure 1: Schematic of the column for repacked soil showing the dimension (10x9.4 cm), the lid with in- and outlet 160 

for technical gas (21% O2 and 2 % N2 in helium), in black O2 microsensors and in gray the temperature sensor located in 161 
soil core. 162 

 163 

The columns containing the packed soil aggregates were closed tightly and were equipped with an in- 164 

and outlet in the headspace (Figure 1). To analyse O2 saturation, needle-type (40x0.8mm) oxygen 165 

microsensors with <140μm flat-broken sensor tip (NFSG-PSt1, PreSens Precision Sensing GmbH, 166 

Regensburg, Germany) were pinched through sealed holes in the lid and PVC column at seven well 167 

defined positions. Three sensors were located at the top by inserting vertically into the soil through the lid 168 

and headspace down to approximately 20mm depth, whereas four sensors were inserted laterally at the 169 

centre of the column in about 36mm depth with angular intervals of 90°. The microsensors were coupled 170 

to a multi-channel oxygen meter (OXY-10 micro, PreSens Precision Sensing GmbH, Regensburg, 171 

Germany) and O2 measurements were stored in 15min intervals. The O2 data were aggregated to 6 hour 172 

means for further analysis. The columns were placed in a darkened, temperature-controlled 20°C water 173 

bath (JULABO GmbH, Seelbach, Germany). Two flow controllers (G040, Brooks® Instrument, Dresden, 174 

Germany) served to flush the columns with technical gas (21% O2 and 2% N2 in helium, Praxair, 175 

Düsseldorf, Germany) through the inlet of the columns at a rate of 5ml min
-1

. Initially, the headspace was 176 

flushed with technical gas for approximately 3 to 5 hours under 6 cycles of mild vacuum (max. 300mbar) 177 

to bring down the N2 concentration within the soil column approximately to that of the technical gas (2%) 178 

and to ensure comparable initial conditions for incubation. Incubation time was 192 hours. Additional 179 

information on a parallel incubation where atmospheric conditions were switched from oxic to anoxic 180 

conditions to calculate the anaerobic soil volume fraction (ansvfcal) can be found in the Supplementary 181 

Material. 182 
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2.2 Gas analysis  183 

Gas chromatography (GC) 184 

The columns outlet was directly connected to a gas chromatograph (Shimadzu 14B) equipped with an 185 

electron capture detector (ECD) to analyse N2O and two flame ionization detectors (FID) to analyse 186 

methane (not reported) and CO2. GC measurements were taken on-line every 6.5 minutes using GC 187 

Solution Software (Shimadzu, GCSolution 2.40). The detection limit was 0.25ppm N2O and 261.90ppm 188 

CO2 with a precision of at least 2 and 1%, respectively. The N2O and CO2 data were aggregated to 6 hour 189 

means for further analysis in order to eliminate the high frequency noise from the otherwise gradually 190 

changing gas concentrations under static incubation conditions. The measurements during an equilibration 191 

phase of 24h were excluded. N2O fluxes derived from GC analysis may include N2O from other processes 192 

than denitrification and is thus referred as the total net N2O fluxes (N2O_total). 193 

 194 

Isotopic analysis  195 

Samples for isotopic analysis of 
15

N in N2O and N2 were taken manually after 1, 2, 4, and 8 days of 196 

incubation in 12 ml exetainers (Labco ©Exetainer, Labco Limited, Lampeter, UK). To elute residual air 197 

from the 12 ml exetainer it was flushed three times with helium (helium 6.0, Praxair, Düsseldorf, 198 

Germany) prior evacuating the air to 180 mbar. The exetainers were flushed with headspace gas for 199 

15min, which amounts to a six-fold gas exchange of the exetainer volume. At the end of the incubation, 200 

technical gas was also sampled to analyze the isotopic signature of the carrier gas. 201 

These gas samples were analysed using an automated gas preparation and introduction system (GasBench 202 

II, Thermo Fisher Scientific, Bremen, Germany, modified according to Lewicka-Szczebak et al. (2013) 203 

coupled to an isotope ratio mass spectrometer (MAT 253, Thermo Fisher Scientific, Bremen, Germany) 204 

that measured m/z 28 (
14

N
14

N), 29 (
14

N
15

N), and 30 (
15

N
15

N) of N2 and simultaneously isotope ratios of 205 

29
R (

29
N2/

28
N2) and 

30
R (

30
N2/

28
N2). All three gas species (N2O, (N2O+N2), and N2) were analysed as N2 206 

gas after N2O reduction in a Cu oven. Details of measurement and calculations for fractions of different 207 

pools (i. e. N in N2O (fp_N2O) or N2 (fp_N2) originating from 
15

N-labelled NO3
-
 pool) were described 208 

elsewhere and are provided in Supplementary Material (Supplementary Material, Figure S3) (Lewicka-209 

Szczebak et al., 2013; Spott et al., 2006; Buchen et al., 2016).  210 

The product ratio (pr) [N2O/(N2O+N2)] was calculated for each sample: 211 

𝑝𝑟 [−] =  
𝑓𝑝_𝑁2𝑂

𝑓𝑝_𝑁2𝑂+𝑓𝑝_𝑁2
 (1) 212 

The calculated average pr [N2O/(N2O+N2)] of each treatment was also used to calculate the average total 213 

denitrification fluxes (N2O+ N2 fluxes) during the incubation: 214 

(𝑁2𝑂 + 𝑁2) [µ𝑔 𝑁 ℎ−1𝑘𝑔−1] =
𝑁2𝑂_𝑡𝑜𝑡𝑎𝑙 

𝑝𝑟
 (2) 215 
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2.3 Microstructure analysis 216 

Directly after the incubation experiment the soil cores were scanned with X-ray CT (X-tek XTH 225, 217 

Nikon Metrology). The temperature sensor was removed, but the oxygen micro-sensors remained in place 218 

during scanning. The scan settings (190 kV, 330 µA, 708 ms exposure time, 1.5mm Cu filter, 2800 219 

projections, 2 frames per projection) were kept constant for all soils and saturations. The projections were 220 

reconstructed into a 3D tomogram with 8-bit precision and a spatial resolution of 60µm using the filtered 221 

back projection algorithm in X-tek CT-Pro. Only macropores twice this nominal resolution were clearaly 222 

detectable in the soil core images. Hence, at the lowest water saturation not all air-filled pores can be 223 

resolved, which will be discussed below. The 3D images were processed with the Fiji bundle for ImageJ 224 

(Schindelin et al., 2012) and associated plugins. The raw data were filtered with a 2D non-local means 225 

filter for noise removal. A radial and vertical drift in grayscale intensities had to be removed (Iassonov 226 

and Tuller, 2010; Schlüter et al., 2016) before these corrected gray-scale images (Figure 2a) were 227 

segmented into multiple material classes using the histogram-based thresholding methods (Schlüter et al., 228 

2014). The number of materials varied between two (air-filled pores, soil matrix) and four (air-filled 229 

pores, water-filled pores, soil matrix, mineral grains) depending on saturation and soil material. By means 230 

of Connected Components Labeling implemented in the MorpholibJ plugin (Legland et al., 2016) the air-231 

filled pore space was further segmented into isolated and connected air-filled porosity, depending on 232 

whether there was a continuous path to the headspace (Figure 2b). Average oxygen supply in the core was 233 

estimated by three metrics: 1) Visible air-filled porosity (εvis) and connected air content (εcon) determined 234 

by voxel counting (Figure2b), 2) average air distance derived from the histogram of the Euclidean 235 

distances between all non-air voxels and their closest connected air voxel (Figure2c,d) (Schlüter et al., 236 

2019) and 3) the ansvf which corresponds to the volume fraction of air distance larger than a certain 237 

threshold. Therefore, in a sensitivity test, air distance thresholds of 0.6, 1.3, 2.5, 3.8 and 5.0mm were used 238 

to estimate the ansvf and to find the best correlation between ansvf and N2O as well as (N2O+N2) fluxes. 239 

This was found with an ansvf at a critical air distance of 5mm when pooling GI and RM soils 240 

(Figure2c,d).  241 

In summary, the εcon is a proxy for the supply with gaseous oxygen coming from the headspace, 242 

whereas the connected air distance and ansvf are proxies for the supply limitation of dissolved oxygen by 243 

diffusive flux through the wet soil matrix. In addition to these averages for entire soil cores, both εcon and 244 

average air distance were also computed locally in the vicinity of oxygen sensor tips (Figure 2b-c), to 245 

compare these metrics with measured oxygen concentrations. Spherical regions of interest (ROI) with 246 

different diameters from 3.6 to 10.8mm were tested with respect to highest correlation of εcon and average 247 

air distance with average oxygen concentration of individual sensors. This was found to occur at a 248 

diameter of 7.2mm, when centered on the sensor tip. 249 
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 250 
Figure 2: (a) 2D slice of packed GI soil with large aggregates and 75% WFPS. One oxygen microsensor is shown on 251 

the left and the hole of the temperature sensor at the top. (b) Material classes including soil matrix (gray), water (blue), 252 
mineral grains (light gray), connected air (red) and isolated air (rose). The green circle around the sensor tip depicts the 253 
diameter of 7.2mm that is used to characterize its environment. (c) Euclidean distance to the closest connected air voxels 254 
(mineral grains are excluded). The green line depicts the connected air distance threshold of 5mm that differentiates 255 
between an anaerobic soil volume fraction (light colors) or aerated volume. (d) Relative frequency of soil volume as a 256 
function of distance to closest connected air [mm] divided into aerobic (red) and anaerobic (green).  257 

 258 

In addition to scans of the entire core, four individual aggregates (4-8mm) of each soil were also 259 

scanned with X-ray CT (80 kv, 75 µA, 1s exposure time, no filter, 2400 projections, 2 frames per 260 

projection), reconstructed in 8-bit at a voxel resolution of 5µm, filtered with a 2D non-local means filter 261 

and segmented into pores and background with the Otsu thresholding method (Otsu, 1975). The largest 262 

cuboid fully inscribed in an aggregate was cut and used for subsequent diffusion modelling as described 263 

below. 264 

2.4 Diffusivity simulations 265 

Diffusivity was simulated for individual aggregates as well as for the entire soil core (bulk diffusivity) 266 

directly on segmented X-ray CT data by solving the Laplace equation with the DiffuDict module in the 267 

GeoDict 2019 Software (Math2Market GmbH, Kaiserslautern, Germany). A hierarchical approach was 268 

used to (1) estimate the effective diffusivity of the wet soil matrix by simulating Laplace diffusion on 269 

individual soil aggregates with the Explicit Jump solver (Wiegmann and Zemitis, 2006; Wiegmann and 270 

Bube, 2000) and (2) model diffusivity (Dsim) with the Explicit Jump solver on the entire soil core 271 

(1550x1550x[1500-1600] voxels). The latter was based on the visible 3D pore space and using the 272 

effective diffusion coefficient of the soil matrix as obtained from the simulation of soil aggregates. We 273 

assumed an impermeable exterior, impermeable mineral grains (GI only) and the diffusion coefficient of 274 

oxygen in air and water (≥75%WFPS only) in the respective material classes (see detailed information in 275 

Supplementary Material). 276 

 277 

 278 
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2.5 Statistical analysis 279 

Statistical analysis was conducted with R (R Core Team, 2018). Figures were produced with package 280 

ggplot2 (Wickham, 2016). In order to estimate the correlation between various variables that do not 281 

exhibit a normal distribution (average values of N2O fluxes, (N2O+N2) fluxes, CO2 fluxes, O2 saturation, 282 

Dsim, εcon, ansvf and pr) Spearman’s rank correlations with pairwise deletion of missing values was 283 

performed pooling data for GI and RM soils. The p-values were corrected for multiple comparison 284 

according to Benjamini and Hochberg (1995) and adjusted p-values≤0.05 were considered as significant.  285 

As described before, there were four missing values for pr due to limitation of the isotopic 286 

measurement at the lowest saturation. For further statistical analysis of the dataset, any missing pr values 287 

were imputed using the chained random forest using more than 100 regression trees, in terms of overall 288 

variable pattern, as this method can handle nonlinear relationships between variables (Breiman, 2001; 289 

Nengsih et al., 2019). It was also required to standardize the data of very different value ranges for further 290 

analysis. Since N2O and/or (N2O+N2) were not detectable for a few samples at the lowest saturation, a 291 

constant of 1 was added to N2O and (N2O+N2) fluxes prior transformation. This changes the mean value 292 

but not the variance of data. In order to get normal distributions and linear relationships, a logarithmic 293 

transformation was applied to metric data (CO2, N2O and (N2O+N2) fluxes, Dsim), whereas a logistic 294 

transform logit(x) = log (x (1 − x))⁄  was applied to dimensionless ratios between 0 and 1 (ansvf).  295 

Since there was a high collinearity among most variables, a partial least square regression (PLSR) 296 

with Leave-One-Out Cross-validated R
2
 was the best method to identify the most important independent 297 

explanatory variables (six predictors: CO2 fluxes, O2 saturation, Dsim, εcon, ansvf and pr) to predict the 298 

response variables N2O or (N2O+N2) fluxes. It has to be emphasized that N2O fluxes and pr were 299 

measured independently of each other using different measuring methods (gas chromatography and 300 

isotopic analysis) what justifies pr as a predictor variable for N2O fluxes. In contrast to this (N2O+N2) 301 

fluxes were calculated from pr and therefore pr was not included in PLSR for the response variable 302 

(N2O+N2) fluxes (resulting in five explanatory variables). Bootstrapping was used to provide confidence 303 

intervals that are robust against deviations from normality (R package boot v. 1.3-24) (Davison and 304 

Hinkley, 1997; Canty and Ripley, 2019). Given the relatively small sample size (36 incubations in total), 305 

the smoothed bootstrap was used by resampling from multivariate kernel density (R package kernelboot 306 

v. 0.1.7) (Wolodzko, 2020). The BCa bootstrap confidence interval of 95% of R
2
 was a measure to 307 

explain the variability in each response variable (Efron, 1987). Components that best explained N2O and 308 

(N2O+N2) fluxes were identified by permutation testing.  309 

To address the second research question of this study concerning substitutions of predictors by 310 

classical, averaged soil properties additional and simplified models with the PLSR approach described 311 
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above were performed using various variables to substitute most important predictors for N2O or 312 

(N2O+N2) fluxes. A detailed description of the substitution is provided in the result section 3.4 and 313 

discussion section 4.2.  314 

3 Results 315 

3.1 Bulk respiration 316 

Time series of CO2 and N2O fluxes (Supplementary Material, Figure S1) show aggregated values for 317 

six hour steps over the complete incubation time of approximately 192 hours, ignoring the first 24 hours 318 

due to initial equilibration of the system. Averages for the whole incubation are reported in Figure3a, 3c 319 

and in Supplementary Material, Table S1, Table S2. The 3.7 times higher SOM content in GI soil than in 320 

RM soil resulted in higher microbial activity so that CO2 fluxes were approximately 3 times higher, for all 321 

saturations. The variability in CO2 fluxes between replicates is much higher than the temporal variability 322 

during incubation. This is probably explained by small differences in packing of the columns that can 323 

have large consequences for soil aeration. CO2 production in both soils was lowest with highest water 324 

saturation (Figure 3a) but were quite similar for both treatments with saturations <80% WFPS. Aggregate 325 

size had a negligible effect on CO2 production. Substantial N2O and (N2O+N2) emissions were detected 326 

for saturations ≥75% WFPS and were again approximately three times higher in SOM-rich GI soil than in 327 

RM soil (Figure 3c, d). The variability between replicates is again higher than the temporal variability 328 

(e.g. in Figure 3d and time series in Supplementary Material, Figure S1) and the effect of aggregate size is 329 

inconsistent due to the large variability among replicates. Mineral N was not analyzed after the incubation 330 

and therefore cumulative (N2O+N2) fluxes were used to estimate the N loss after 192h of incubation. 331 

Considering the N addition of 50mg N kg
-1

 as NO3
-
 and an average natural NO3

-
 background of 34 mg kg

-
332 

1
 substantial N loss was observed for both soils at ≥75% WFPS. In RM soil the N converted to N2O or N2 333 

represents a proportion equal to 2-4% for both aggregate sizes and saturations. With GI soil incubated at 334 

75% WFPS the N loss was on average 5-11% for both aggregate sizes, whereas it reached 14% at 85% 335 

WFPS. 336 

Average O2 saturation was lowest with highest water saturation and roughly the same for saturations 337 

<80%WFPS (Figure 3b). Some sensors showed a gradual decline in O2 concentration, whereas some 338 

showed a drastic reduction or increase in a short period of time, probably due to water redistribution 339 

(Supplementary Material, Figure S2). The average of the final 24h was taken for all subsequent analysis, 340 

as this probably best reflects the water distribution scanned with X-ray CT. Standard errors among the 341 
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seven O2 microsensors were high in each treatment due to very local measurement of O2 that probed very 342 

different locations in the heterogeneous pore structure.  343 

The pr, i.e. the N2O/(N2O+N2) as a measure of denitrification completeness, showed a similar behavior as 344 

a function of water saturation like N2O release with a plateau for saturations ≥75% WFPS at 0.6 and a 345 

lower, but somewhat more erratic pr for the lowest saturation due to a generally low 
15

N gas release 346 

(Figure 3e). Thus, the (N2O+N2) fluxes at ≤65% WFPS could only be calculated for a small number of 347 

samples, due to lacking data of pr (Supplementary Material, Table S1, Table S4). SOM content and 348 

aggregate size had no effect on pr. Time series of pr showed a gradual reduction for all treatments as the 349 

N2 emissions grew faster than the N2O emissions (Supplementary Material, Figure S5). With water 350 

saturations >75% WFPS the pr decreased with time and was in most cases <0.5 at the end of incubation 351 

(Supplementary Material, Figure S5). In summary, for each soil all samples with saturation ≥75% WFPS 352 

showed similar pr (Figure 3e) and N2O release (Figure 3c). This agreed well with subsequent X-ray CT 353 

estimates of air connectivity as shown below.  354 
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 355 

Figure 3: (a) Average CO2 fluxes, (b) average O2 saturation, (c) average N2O and (d) (N2O+ N2) fluxes and (e) average 356 
product ratio (pr) [N2O/(N2O+N2)] as a function of water saturation for soil from Rotthalmünster (RM) and Gießen (GI) 357 
and two aggregate sizes (2-4 and 4-8 mm). Symbols depict the average values for each of three individual replicates with 358 
error bars showing the standard error of the mean; standard error in (a) and (c) of fluxes measured during incubation, in 359 
(b) the standard error from measurements of seven sensors located within the soil core and in (d) and (e) of three 360 
measurements during incubation time (after 2, 4, and 8 days with detectable R29 and R30; n= 3 for two highest WFPS). 361 
The lines (dashed and solid) connect the average value of three replicates at each saturation (large and small aggregates, 362 
respectively).  363 

 364 

3.2 Pore system of soil cores 365 

Due to lower target bulk density in GI soil (1.0 g cm
-3

) compared to that of RM soil (1.3 g cm
-3

) 366 

visible air content (εvis, depicted in red and pink in Figure 2c) was higher independent of aggregate size 367 

(Figure 4a). The εvis decreased with increasing water saturation, but not linearly as would be expected. 368 

The air contents in the very wet range are in fact higher (16-17%), than the target air saturation of 369 

approximately 11 or 15% for RM and GI soil, respectively. It was not possible to remove air more 370 

efficiently during packing and some ponding water might have accidentally been removed with vacuum 371 

application during purging at the beginning of incubation. Additionally, the GI soil was rich in 372 

vermiculite and swelled upon wetting. This increase in soil volume at the end of incubation resulted in a 373 

relative decline in water content. For increasing water content the air content that is connected to the 374 
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headspace (εcon, depicted in red in Figure 2c) was reduced much more strongly as compared to the total 375 

εvis. This was observed for both soils and aggregate sizes and indicates that, a substantial amount of air is 376 

trapped (Figure 4b). According to this observation, average distance to visible air was very small (Figure 377 

4c) and remained below 1.5mm even for the highest water saturation with generally smaller distances for 378 

smaller aggregates. Yet, the average distance to the pore system connected with headspace escalates in 379 

the wet range (Figure 4d) which results in an ansvf of 50-90% (Figure 4f). The huge variability among 380 

replicates comes from the fact that trapping by complete water blockage typically occurs in the slightly 381 

compacted upper part of a packing interval, but the specific interval where this happens varies among 382 

samples (Supplementary Material, Figure S4). The different aggregate sizes did not affect the distance to 383 

connected air as the long-range continuity of air is controlled by bottle-necks in the pore space and not by 384 

aggregate size.  385 

 386 
Figure 4: (a) Visible air content (εvis), (b) connected air content (εcon), (c) average distance to visible air, (d) average 387 
distance to connected visible air, (e) simulated diffusivity (Dsim) and (f) anaerobic soil volume fraction (ansvf) as a function 388 
of water saturation for soil from Rotthalmünster (RM) and Gießen (GI), two aggregate sizes (2-4 and 4-8 mm) and three 389 
replicates each depicted by symbols. The lines (dashed and solid) connect the average value of three replicates (large and 390 
small aggregates, respectively). The horizontal gray lines in (e) reflect material properties. The experiment was performed 391 
at 20°C and according to that diffusivity was calculated at 20°C. 392 

 393 

Water saturation had a dramatic impact on Dsim (Figure 4e) leading to a reduction by five orders of 394 

magnitude in a rather small saturation range. At high saturations it fell below the oxygen diffusion 395 

coefficient in pure water due to the tortuosity of the pore system. 396 

https://doi.org/10.5194/bg-2020-221
Preprint. Discussion started: 17 July 2020
c© Author(s) 2020. CC BY 4.0 License.



15 

 

The correlation of ansvf with average gas fluxes and internal O2 concentrations is shown in Figure 5. 397 

Since the drop in CO2 release at the highest water saturations coincided with an escalating ansvf, the 398 

relation between the two was highly correlated (Spearman’s R>-0.7 and p=0.04) for all soils and 399 

aggregate sizes (Figure 5a), but with different slopes for both soils due to vastly different SOM contents. 400 

The correlation of ansvf with N2O is weaker (Spearman’s 0.6<R<0.77) and on the verge of being 401 

significant (p≤0.1) (Figure 5c). However, the correlation of ansvf with (N2O+N2) release is even worse 402 

(p>0.2), so the mechanisms that govern N2O and (N2O+N2) release must be more complex (Figure 5c, d). 403 

As expected the average O2 saturation decreases with increasing ansvf (Figure 5b). Yet, correlation is 404 

lower than for CO2 (Spearman’s -0.6<R<-0.2, but p>0.2), likely due to limited representativeness of 405 

average O2 concentrations derived from a few point measurements.  406 

 407 

Figure 5: Average (a) CO2, fluxes (b) O2 saturation, (c) N2O and (d) (N2O+N2) fluxes as a function of anaerobic soil 408 
volume fraction (ansvf) for soil from Rotthalmünster (RM) and Gießen (GI) and two aggregate sizes (2-4 and 4-8 mm) for 409 
three individual replicates. The Spearman’s rank correlation coefficient (R) result from Spearman’s rank correlation and 410 
indicate the extent of monotonic relation between the ranks of both variables. The associated p-values (p) were corrected 411 
for multiple comparison according to Benjamini and Hochberg (1995).  412 

 413 

3.3 Microscopic oxygen distribution 414 

The local measurements of O2 using microsensors is demonstrated as an example for two selected 415 

sensors from the same soil column (GI soil incubated at 75% WFPS). They are located in the same depth 416 
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with a separation distance of <2cm. Sensor 1 detected low O2 concentrations (18% air saturation) because 417 

it was located in a compact area with low εcon (4%) and a rather large distance to the closest air-filled pore 418 

(1.6mm) (Figure 6a,b,d). Sensor 2 detected fairly high O2 concentrations (76% air saturation) as it 419 

happened to pinch into a macropore with a high εcon (15%) and a short distance to connected air (0.8mm) 420 

in its vicinity (Figure 6a-c). The green or violet circle with a diameter of 7.2mm depicts the spherical 421 

averaging volume for εcon and distance to connected air that correlated best with the average O2 422 

concentrations when lumped over all soils and saturations (Figure 6b-d). 423 

 424 

Figure 6: Local oxygen distribution in one soil core packed with small aggregates (2-4mm) from Gießen soil (GI) 425 
incubated at 75% WFPS to illustrate as an example the very local measurement of O2. Shown here are (a) O2 saturations 426 
measured by two microsensors as a function of incubation time, (b) a 3D subvolume showing both sensors (connected air 427 
is depicted in red), and 2D images of the corresponding sensor tips (c) the sensor measuring high and (d) the sensor 428 
measuring low O2 saturations. The violet or green circles depict the proximity of the sensor tip (7.2 mm diameter) used to 429 
calculate the averaged local metrics. 430 

The treatment specific correlations between distance to connected air and average O2 concentrations 431 

are shown in Figure 7. At the lowest saturation level there is no correlation at all (Spearman’s -432 

0.4<<R<0.1 and p ≥0.38, Figure 7a,d), because some unresolved pores (<120µm) within the aggregates 433 

are air-filled so that oxygen availability is not limited by visible air. At the intermediate saturation level 434 

the correlations were best (Spearman’s R<-0.7 and p≤0.02) because all unresolved pores are water-filled 435 

(Figure 7b,e). At the highest water saturation the correlation was highest for large aggregates (Spearman’s 436 

R=-0.6 and p =0.08), because the local effect of soil structure might become stronger relative to the non-437 

local effect of air entrapment. With the other three treatments the correlation were worse again 438 

(Spearman’s R between -0.01 and -0.3 and p≥0.58, Figure 7c,f), because distance to connected air ignores 439 

all trapped air which may still contribute a lot to oxygen supply.   440 

  441 
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 442 
Figure 7: Average O2 saturation (at the end of incubation experiment) measured with 4 sensors each located at the 443 

center of soil core as a function of distance to visible connected regression for soil from Rotthalmünster (RM, (a)-(c), red) 444 
and Gießen (GI, (d)-(f), blue), and for two aggregate sizes (2-4mm and 4-8mm). (a) and (d) show results for lowest (b) and 445 
(e) for medium and (c) and (f) for highest water saturation. The inset in (a), (b), and (d) shows a reduced distance range. 446 
The distance to visible connected air is averaged in a spherical region around the sensor tip (7.2 mm diameter). The 447 
Spearman’s rank correlation coefficient (R) result from Spearman’s rank correlation and indicate the extent of 448 
monotonic relation between the ranks of both variables. The associated p-values (p) were corrected for multiple 449 
comparison according to Benjamini and Hochberg (1995).  450 

 451 

3.4 Explanatory variables for denitrification 452 

So far the correlations among different explanatory variables and between explanatory variables and 453 

N-gas release have been shown for individual treatments, i.e. separately for each combination of soil and 454 

aggregate size, in order to focus on the effect of water saturation. However, the true potential of 455 

explanatory variables to predict denitrification can only be explored with the entire pooled data set, so 456 

that the variability in denitrification is captured more representatively.  457 

The PLSR identified two principal components that best explained N2O and N2O+N2 fluxes, while 458 

most variables contributed to the first component (Comp1) and almost exclusively CO2 release 459 

contributed to the second component (Comp2) (see Supplementary Material S7). These principal 460 

components revealed vastly different ability of individual explanatory variables to explain the observed 461 

variability in N2O and (N2O+N2) release. The importance of explanatory variables to predict N2O and 462 

N2O+N2 fluxes varied as follows: CO2 > (pr >) ansvf > Dsim > εcon
 
> O2 (see Supplementary Material 463 

Figure S7). Hereinafter pr shown in brackets illustrates its contribution to PLSR analysis for N2O fluxes 464 
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only. The explanatory variability, expressed in the text as R
2
*100 [%], was 71% for N2O fluxes and 79% 465 

for N2O+N2 fluxes when considering the complex model with all explanatory variables (CO2 flux, O2 466 

saturation, εcon, Dsim, ansvf (and pr)) (Figure 8). The resulting regression equations can be found in 467 

Supplementary Material (Equation 3-6).  468 

Starting from this complex model a series of simplifications and substitutions of explanatory variables 469 

was conducted to assess in how far the resulting loss in predictive power is acceptable. Reducing the 470 

number of explanatory variables to the most important variables resulted in CO2 and ansvf for (N2O+N2) 471 

release (83% explained variability, simplified model in Figure 8). In other words, the combination of 472 

these two predictors (ansvf and CO2) is crucial, as CO2 release explains the different denitrification rates 473 

between the two soils, whereas ansvf explains the differences within a soil due to different saturations. To 474 

predict N2O emissions the simplified model with most important explanatory variables CO2, ansvf and pr 475 

as a third predictor resulted in 71% of explained variability (Figure 8). Average O2 saturation could be 476 

omitted for its small correlation with N2O or (N2O+N2) release in general, whereas εcon and Dsim could be 477 

omitted because of the high correlation with ansvf (Supplementary Material, Figure S6).  478 

Various variables were used to substitute best predictors (CO2 or ansvf) (Figure 8) in PLSR. The 479 

substitution of CO2 by SOM or ansvf by εt, Dsim or empirical diffusivity (Demp) based on total porosity and 480 

air content (Deepagoda et al., 2011) is explained in the discussion section 4.2.  481 
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 482 
Figure 8: Explained variability expressed as R2 with a confidence interval of 95% resulting from partial least square 483 

regression (PLSR) with Leave-One-Out Cross-validation and bootstrapping for response variables N2O (green symbols) 484 
or (N2O+N2) fluxes (violet symbols) for pooled data of both soils (RM and GI), WFPS treatments and aggregate sizes (n= 485 
36). The yellow area shows a complex model including all explanatory variables of the present study (CO2, O2, connected 486 
air content (εcon), diffusivity (Dsim), anaerobic soil volume fraction (ansvf), and product ratio (pr)) (all) and a simplified 487 
model included only most important predictors (CO2+ansvf(+pr)). The blue area shows additional simplified models with 488 
substitutions of the most important predictor for O2 supply (ansvf) by Dsim or diffusivity from calculated from an 489 
empirical model (Demp) (Deepagoda et al., 2011), or theoretical air content (εt). The red area shows a simplified model with 490 
substitutions of the most important predictor for O2 demand (CO2) by SOM. Substitution of both most important 491 
predictors (CO2 and ansvf) by SOM and Demp is shown in the violet area. 492 

4 Discussion  493 

4.1 Which processes govern denitrification in soil?  494 

The onset and magnitude of denitrification is controlled by O2 supply and O2 consumption, which in 495 

turn depends on processes in soil occurring at microscopic scales. This study was designed to examine 496 

different levels of O2 consumptions by comparing soils with different SOM contents and different levels 497 

of O2 supply by comparing different aggregate sizes and different water saturations. Other factors that 498 

would have affected O2 demand (quality of organic matter, temperature, pH, plant-soil interactions), O2 499 

supply (oxygen concentration in the headspace, temperature) or other drivers of denitrification (NO3
-
 500 

concentration, pH) were either controlled or excluded in this study.  501 

N2O release from soil can be low because denitrification does not occur under sufficient oxygen 502 

supply or because it is formed in wet soil but reduced to N2 before it can escape to the atmosphere or 503 

because it is trapped in isolated air pockets (Braker and Conrad, 2011). Trapped N2O is thought to likely 504 
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be reduced to N2 eventually if gaseous N2O is not released after a saturation change, which would open up 505 

a continuous path to the headspace. This is shown in the schematic on the balance between O2 supply and 506 

demand and its effect on denitrification (Figure 9). 507 

  508 

 509 
Figure 9: Conceptual scheme of oxygen supply and demand and its effect on denitrification. Material classes including soil 510 
matrix (gray area), water (blue), mineral grains (light gray), connected air (red) and isolated air (rose). The black line 511 
divides between aerobic (light gray area) and anaerobic (dark gray area) conditions. Oxygen supply and demand regulate 512 
the formation of anaerobic soil volume fraction (ansvf) as an imprint of the spatial distribution of connected air (item 513 
number 1), respiration (item number 2) that would move the boundary between oxic and anoxic zones in the soil matrix 514 
closer towards the pore when soil respiration is high (and vice versa) and N2O reduction to N2 (expressed by the product 515 
ratio (pr), item number 3). The numbered items show how the explanatory variables that best describe N2O release affect 516 
denitrification.  517 

 518 

To our knowledge, the experimental setup of the present study combined for the first time 519 

microstructure analysis of soil (X-ray CT) with measurements of N2O and (N2O+N2) fluxes to explore 520 

controlling factors of the complete denitrification process including N2 formation. The explanatory 521 

variables that contributed the highest predictive power with (N2O+N2) release were ansvf and CO2 release 522 

(Figure 9). The estimated ansvf (item 1) is a sole function of the spatial distribution of connected air in 523 

soil and therefore only reflects soil structural properties related to O2 supply. The dependence of 524 

denitrification on diffusion constraints was demonstrated by several models that were developed to 525 

predict the formation of anoxic centers within soil aggregates (Arah and Smith, 1989; Arah and Vinten, 526 

1995; Greenwood, 1961; Kremen et al., 2005). The distance threshold for anoxic conditions to emerge 527 

was set on an ad-hoc basis at 5mm from connected air, but is likely to vary with O2 demand by local 528 
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microbial activity (CO2 release represented by the green fringe area, item 2) (Kremen et al., 2005; 529 

Keiluweit et al., 2018; Kravchenko et al., 2018; Schlüter et al., 2019; Ebrahimi and Or, 2018; Rabot et al., 530 

2015). In repacked soils it might be distributed rather uniformly and therefore correlated with bulk CO2 531 

release (Aon et al., 2001; Ryan and Law, 2005; Herbst et al., 2016). The fact that aggregate size had no 532 

effect on denitrification indicates that critical distances were larger than the aggregate radii and rather 533 

controlled by air distribution in the macropore system. This is in contrast to the very short critical 534 

distances of 180µm for sufficient soil aeration estimated by Kravchenko et al. (2018) and Kravchenko et 535 

al. (2019) for intact soil cores containing crop residues for which soil respiration was not determined but 536 

likely to be much higher.  537 

A somewhat surprising result is that oxygen concentration measurements did not have an added value 538 

for predicting either N2O release or total denitrification. Best correlation of local O2 concentration with 539 

εcon was with a radial extent of 3.6mm used for averaging around the microsensor (Figure 7). Thus, with 540 

seven microsensors per column we only probed 0.2% of the total soil volume. This is too small to capture 541 

aerobic and anaerobic conditions representatively, especially since they may switch within short distances 542 

(Figure 6). More sensors or sensors with larger support volume could be a means to improve the 543 

predictive power of local oxygen measurements. However, there is always a trade-off between retrieving 544 

more information and disturbing the soil is little as possible. 545 

If only N2O release is concerned, pr as an independent proxy for N2O consumption (Figure 9 (item 546 

3)) was beneficial to predict N2O emissions together with CO2 and ansvf (Figure 8). The N2O reduction to 547 

N2 and thus the pr are complexly controlled, where besides physical factors microbial (the structure of the 548 

denitrifier community) and chemical properties (pH, N oxides, SOM, temperature, salinity) are relevant 549 

(Müller and Clough, 2014; Clough et al., 2005; Smith et al., 2003). With respect to physical factors, 550 

decreasing diffusivity enhances N2O residence time and N2O concentration in the pore space thus 551 

favouring N2O reduction. According to this, Bocking and Blyth (2018) assumed a very small pr in wet 552 

soils, because N2O may be trapped in the soil or completely reduced to N2. This assumption may also 553 

support results of the present study, where the average (N2O+N2) fluxes peaked at the medium water 554 

saturation (particularly with GI soil) while Dsim decreased with increasing water saturations (Figure 4), 555 

which may indicate an entrapment of (N2O+N2) in isolated soil pores (Clough et al., 2005; Harter et al., 556 

2016). However, N2 release increased more strongly with time than the N2O release resulting in 557 

decreasing pr with time (Supplementary Material, Figure S5). The chance of N2O to be released before it 558 

is reduced to N2 depends on the diffusion distance of dissolved (and gaseous) N2O between its formation 559 

sites and the atmosphere. Although diffusion pathways for O2 and N2O are similar just in opposite 560 

direction, ansvf and pr might be a good combination of proxies to predict N2O emissions to capture 561 

physical and microbial properties.  562 
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4.2 How to substitute microscale information by bulk properties?  563 

The aims of this study were to find a minimum set of variables that explain the regulation of 564 

microbial denitrification at microscopic scales in a simplified experimental setup and to explore in how 565 

far this microscopic information can be substituted by readily available bulk properties that are feasible to 566 

measure in a field campaign. The interplay of O2 supply and oxygen demand resulted in CO2 emissions 567 

and CT-derived ansvf being the most important predictors for (N2O+N2) fluxes, while for N2O fluxes pr 568 

was also important (Figure 8, see Supplementary Material Figure S7). Simplified models with most 569 

important predictors only (CO2+ ansvf (+pr)) were sufficient to achieve similar explained variabilities 570 

(71% and 83% for N2O and (N2O+N2) fluxes, respectively) compared to the complex models. The 571 

downside of using CO2 and CT-derived ansvf as predictors for denitrification is that these proxies are 572 

often unavailable and reasonable substitutions by easily available variables would be desirable.  573 

The ansvf could have been replaced with alternative proxies for O2 supply like Dsim, Demp and εt, 574 

which would have led to a reduction in explained variability of (N2O+N2) fluxes to 64-76% and an even 575 

larger drop for N2O fluxes to 43-50% (Supplementary Material, Table S2, Figure S8). The substitution of 576 

ansvf by Dsim would avoid the requirement for an ad-hoc definition of a critical pore distance threshold 577 

but it is gained with the caveat of very time-consuming 3D simulations or laborious measurements. 578 

Therefore, the substitution of ansvf with diffusivity estimated by empirical models (Demp) seems more 579 

viable. Diffusivity is mainly controlled by soil bulk density and water saturation (Balaine et al., 2013; 580 

Klefoth et al., 2014). These empirical models predict diffusivity based on empirical relationships with 581 

total porosity (Φ) and air-filled porosity (ε) (Deepagoda et al., 2011; Millington and Quirk, 1961; 582 

Moldrup et al., 2000; Resurreccion et al., 2010; Deepagoda et al., 2019). As expected the discrepancy 583 

between calculated Demp and simulated Dsim was highest at water saturation >75% WFPS where 584 

discontinuity due to packing procedure took full effect as described earlier (Supplementary Material, 585 

Figure S8, Figure S4). The substitution of CT-derived ansvf by Demp derived from empirical models 586 

(Figure 8, Supplementary Material, Table S2) is perhaps unacceptable for a genuine understanding of 587 

N2O or (N2O+N2) emissions from individual samples since estimated diffusivity ignores the actual 588 

tortuosity and continuity of the air-filled pore space. However, it may be a promising approach to 589 

reasonably predict average N2O or (N2O+N2) fluxes at natural conditions with readily available soil 590 

characteristics (Figure 8, Figure S6). In this particular study, Dsim could even be replaced with the 591 

theoretical air content (εt) adjusted during packing (together with CO2(+pr)) without a reduction in 592 

explained variability in N2O and (N2O+N2) fluxes (Figure 8, Supplementary Material, Table S2), due to 593 

the very strong log-linear relationship between the εt and Dsim (Figure 4e). However, totally neglecting 594 
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any proxy for O2 supply, (i.e. CO2 only to predict N2O fluxes), was insufficient to predict N2O fluxes 595 

(Table S2). 596 

A different strategy to estimate ansvf from bulk measurements is to switch from oxic to anoxic 597 

incubation by replacing the carrier gas under otherwise constant conditions. The difference in (N2O+N2) 598 

release between the two stages will be larger, the smaller the ansvf during oxic incubation. Details about 599 

the calculation of this ansvfcal can be found in the Supplementary Material. The ansvfcal assumes that 600 

actual denitrification is linearly related to ansvf and that the specific anoxic denitrification rate is 601 

homogenous, i.e. would be identical at any location within the soil. Deviations from this assumption 602 

could arise from heterogeneity in the distribution of substrates and microbial communities. However, the 603 

actual soil volume where denitrification may occur, described by the distance to aerated pores, does not 604 

only depend on O2 diffusion, but also on respiration (O2 consumption). Therefore, it could be expected, 605 

that ansvf derived from X-ray CT imaging analysis compared to ansvfcal was overestimated with RM soil 606 

or underestimated with GI soil due to the differences in carbon sources and related O2 consumption. The 607 

average ansvfcal was similar (0.20) to the ansvf (0.21) for RM soil (Supplementary Material, Table S3). 608 

With GI soil, however, the ansvfcal was larger (0.38) than the image-derived ansvf (0.13). This difference 609 

may indeed result from an underestimation of ansvf due to the higher SOM content and respiration rates. 610 

In future experiments it might be recommendable to integrate the O2 consumption into ansvf estimation. 611 

The appeal of this two-stage incubation is that it can be conducted with larger soil columns as there is no 612 

size restriction as with the application of X-ray CT. Evidently, this two-stage incubation approach is not 613 

feasible for field campaigns, for which we would recommend to resort to estimated diffusivities instead.  614 

The use of CO2 production as a proxy for O2 demand to predict N2O and (N2O+N2) release is limited 615 

as it is not fully independent of denitrification, since anaerobic respiration contributes to total respiration. 616 

Therefore, it is appealing to replace it with estimates of microbial activity based on empirical 617 

relationships with temperature, SOM, clay and water content (Smith et al., 2003) as these properties are 618 

routinely measured. When including the SOM measured before the experiment for the bulk soil (Table 1) 619 

to explore N2O or (N2O+N2) emissions, predictive power for (N2O+N2) decreased (57% compared to 83% 620 

with CO2 instead of SOM together with ansvf), just like it was reduced for predicting N2O emissions 621 

(60% compared to 71% with CO2 instead of SOM together with ansvf and pr). The combination of 622 

proxies for O2 supply and demand, SOM and Demp only, to predict N2O and (N2O+N2) fluxes did not 623 

reduce the explained variability too much beyond those of individual substitutions (50 and 58%, 624 

respectively). An improvement might be achieved by accounting for different quality in SOM, e.g. 625 

mineral-associated organic matter, fresh particulate organic matter, microbial pool; all of which will lead 626 

to different mineralisation rates and hence propensity to run into local anoxia (Beauchamp et al., 1989; 627 

Kuzyakov, 2015; Surey et al., 2020), due to the fact that SOM favours denitrification in several ways 628 
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(Ussiri and Lal, 2013; Beauchamp et al., 1989), i.e. by supplying energy, leading to consume O2 via 629 

respiration and supplying mineral N from mineralisation. Thus, in future studies the SOM content of bulk 630 

soil or more involved empirical models that account for temperature and other independent variables 631 

instead of values from the more laborious CO2 measurement could be a promising variable to predict N2O 632 

emissions together with variables describing the soil structure.  633 

4.3 Future directions and implications for modeling  634 

In large-scale effective N-cycling models the ansvf is typically linked to the partial pressure of 635 

oxygen in soil and conveys no explicit spatial information. In the long run these models like DNDC, 636 

CoupModel, MicNiT (Li et al., 1992; Jansson and Karlberg, 2011; Blagodatsky et al., 2011) might benefit 637 

tremendously from incorporating a spatially explicit ansvf as a state variable to predict denitrification. 638 

The estimation of ansvf can be improved by taking O2 consumption into account. Knowledge on spatial 639 

distribution of respiration in combination with pore scale modeling would further improve ansvf 640 

estimations and could be used to validate our approach with oxic/anoxic incubation. However, the 641 

empirical functions to estimate this ansvf from readily available properties similar to empirical diffusivity 642 

models have yet to be developed and validated against a whole suite of intact soil cores with different soil 643 

types and vegetation for which oxic/anoxic incubation and X-ray CT analysis are carried out jointly.  644 

Using intact instead of repacked soils in future experiments will represent more natural conditions, 645 

e.g. larger tortuosity and thus lower diffusivity in undisturbed compared to sieved soil (Moldrup et al., 646 

2001). However, in undisturbed soils diffusivity and soil structure may also vary locally and as a 647 

consequence of this varying O2 supply and demand affect denitrification. Under field conditions this 648 

impact on denitrification is additionally altered by temperature variations, atmospheric gas concentrations 649 

and plant growth.  650 

Conclusions 651 

To our knowledge this is the first experimental setup combining X-ray CT derived imaging and flux 652 

measurements of complete denitrification (i.e. N2O and (N2O+N2) fluxes) to explore the microscopic 653 

drivers of denitrification in repacked soil. We could show that changes in denitrification within different 654 

saturations could be predicted well with the anaerobic soil volume fraction (ansvf) estimated from image-655 

derived soil structural properties. The differences in denitrification (i.e. N2O and (N2O+N2) fluxes) 656 

between two investigated soils were triggered by different respiration rates due to different SOM content. 657 

A combination of CT-derived ansvf and CO2 emission, as proxies for oxygen supply and demand, 658 

respectively, is best in predicting (N2O+N2) emission (83% explained variability) across a large saturation 659 
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range and two different soils. The product ratio (pr), additionally to ansvf and CO2 emissions, was also an 660 

important predictor for emissions of only the greenhouse gas N2O (71% explained variability). 661 

The ansvf can also be replaced by simulated diffusivity (Dsim) (time consuming) or by diffusivity 662 

from empirical models (Demp) but not without losing predictive power. A replacement of CO2 fluxes by 663 

SOM also resulted in lower predictive power, but is recommended for large-scale applications since SOM 664 

is an independent proxy for microbial activity. The full substitution of laborious predictors (ansvf, pr, 665 

CO2) by readily available alternatives (SOM, Demp) reduced the explained variability to 50 and 58% for 666 

N2O and (N2O+N2) fluxes, respectively.  667 

The high explanatory power of image-derived ansvf opens up new perspectives to make predictions 668 

(e. g. by modelling approaches or in pedo-transfer functions) from independent measurements of soil 669 

structure using new techniques (e.g. X-ray CT analysis) available today in combination with biotic 670 

properties, e. g. quantity or quality of SOM. This paves the way for explicitly accounting for changes in 671 

soil structure (e. g. tillage, plants) and climatic conditions (e. g. temperature, moisture) on denitrification. 672 
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