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Abstract. Over the past several decades, jellyfish blooms have intensified spatially and temporally, affecting functions and 

services of ecosystems worldwide. At the demise of a bloom, an enormous amount of jellyfish biomass sinks to the seabed 

and decomposes. This process entails reciprocal microbial and biogeochemical changes, typically enriching the water column 

and seabed with large amounts of organic and inorganic nutrients. Jellyfish decomposition was hypothesized to be particularly 10 

important in nutrient-impoverished ecosystems, such as the Eastern Mediterranean Sea — one of the most oligotrophic marine 

regions in the world. Since the 1970s, this region is experiencing the proliferation of a notorious invasive scyphozoan jellyfish, 

Rhopilema nomadica. In this study, we estimated the short-term decomposition effects of R. nomadica on nutrient dynamics 

at the sediment-water interface. Our results show that the degradation of R. nomadica has led to increased oxygen demand and 

acidification of overlying water as well as high rates of dissolved organic nitrogen and phosphate production. These conditions 15 

favored heterotrophic microbial activity, bacterial biomass accumulation, and triggered a shift towards heterotrophic bio-

degrading bacterial communities, whereas autotrophic pico-phytoplankton abundance was moderately affected or reduced. 

This shift may further decrease primary production in the water column of the Eastern Mediterranean Sea. Deoxygenation, 

acidification, nutrient enrichment and microbial community shifts at the sediment-water interface may have a detrimental 

impact on macrobenthic communities. Based on these findings we suggest that jelly-falls and their decay may facilitate an 20 

additional decline in ecosystem functions and services. 

1 Introduction 

Marine jellyfish often form massive aggregations, known as jellyfish blooms, with profound implications to human health, 

recreation and tourism, fisheries, aquaculture, and coastal installations (Purcell, 2012; Purcell et al., 2007; Richardson et al., 

2009). Over the past three decades, a substantial increase in the frequency and intensity of jellyfish blooms has been 25 

documented worldwide (Attrill et al., 2007; Brotz et al., 2012; Licandro et al., 2010; Lynam et al., 2006; Quiñones et al., 2015; 

Shiganova et al., 2001) and was attributed to the growth in shipping, aquaculture and coastal protection (Duarte et al., 2013) 

or to natural global oscillations (Condon et al., 2013; Sanz‐Martín et al., 2016). These blooms typically occur in ‘boom and 

bust’ cycles, where individuals suddenly appear in large numbers and shortly after disappear (Condon et al., 2013; Hamner 
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and Dawson, 2009; Schnedler-Meyer et al., 2018). This rapid collapse of jellyfish blooms en masse and their sinking to the 30 

seabed is a process commonly termed as ‘jelly-falls’ (Lebrato and Jones, 2011; Lebrato et al., 2012; Sweetman and Chapman, 

2011).  

During the blooms, jellyfish propagate by assimilating organic compounds of their prey, thus acting as a nutrient sink of 

organic carbon (C), nitrogen (N) and phosphorus (P) (Lebrato and Jones, 2011; Lucas et al., 2011; Pitt et al., 2009). The death 

and sinking of jellyfish, followed by bacterial decomposition of their carcasses, lead to microbial community shifts (Kramar 35 

et al., 2019; Tinta et al., 2012; Titelman et al., 2006), resulting in oxygen depletion and acidification (Qu et al., 2015; Sweetman 

et al., 2016; West et al., 2008). On the seabed, jellyfish carcasses can be consumed by scavengers, thus acting as a rich carbon 

source that sustains benthic foodwebs (Hays et al., 2018; Sweetman et al., 2016; Sweetman et al., 2014). Both in the water 

column and on the sediment, jelly-falls undergo bacterial decomposition, directly affecting nutrient cycling (Qu et al., 2015; 

West et al., 2008), potentially altering plankton community composition (Xiao et al., 2019) and stimulating algal blooms 40 

(Møller and Riisgård, 2007). Changes in the sediment conditions may result in migration or mortality of infauna (Chelsky et 

al., 2016), which in turn affect indirectly nutrient cycling (Stief, 2013; Welsh, 2003). The contribution of jellyfish degradation 

to nutrient cycling was hypothesized to be particularly important in nutrient-depleted, oligotrophic ecosystems (Pitt et al., 

2009), such as the ultra-oligotrophic Eastern Mediterranean Sea (EMS), where microbial production is mainly limited by 

organic carbon (Sisma-Ventura and Rahav, 2019), nitrogen (Rahav et al., 2018b), or co-limited by nitrogen and phosphorus 45 

(Kress et al., 2005). 

The most prominent jellyfish blooms in the Mediterranean Sea, particularly in its eastern basin, are caused by the scyphozoan 

Rhopilema nomadica (Edelist et al., 2020; Katsanevakis et al., 2014) (Fig. 1). R. nomadica was first recorded in Israel in 1977 

as a Lessepsian invader, introduced via the Suez Canal (Galil et al., 1990). Since then, it has expanded its distribution 

westwards with more frequent blooming occurrences (Balistreri et al., 2017; Edelist et al., 2020; Yahia et al., 2013). This 50 

species is venomous and its nematocysts contain active toxins, inflicting painful stinging on humans, as well as other adverse 

health problems, negatively affecting coastal recreation and tourism (Galil, 2018; Ghermandi et al., 2015). During blooms, 

clogged intake pipes of power and desalination plants were reported in Israel (Angel et al., 2016; Galil, 2012). Reduced fishing 

harvests were also reported from Israel and Egypt, mostly due to net damage, loss of fishing days, and physical injury to the 

fishermen (Angel et al., 2016; Madkour et al., 2019; Nakar et al., 2011). 55 

Although labeled as one of the worst invasive species in the Mediterranean Sea (Streftaris and Zenetos, 2006; Zenetos et al., 

2010), the post-bloom decomposition dynamics of R. nomadica have never been investigated before. Here, we used incubation 

experiments at the sediment-water interface to estimate the short-term decomposition effects of the invasive jellyfish R. 

nomadica, on (1) organic and inorganic nutrient dynamics and derived benthic fluxes, (2) bacterial abundance and production, 

and (3) microbial community composition, in the nutrient-impoverished EMS. We hypothesize that decomposed R. nomadica 60 

will trigger a rapid release of limiting nutrients, leading to enhanced fluxes to the sediment and overlying water, a substantial 

increase in bacterial abundance and production, and a shift in the microbial community composition and functions. 
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2 Methods and materials 

2.1 Specimen collection and experimental setup 

Three individuals of the scyphozoan jellyfish Rhopilema nomadica (Galil et al., 1990) of medium size (bell diameter 20-25 65 

cm) were collected on the 29th of July 2019, at Tel-Shikmona, Haifa, near the Israel Oceanographic and Limnological Research 

Institute, on the shore of the easternmost Mediterranean Sea (Lat. 32°49'32"N, Lon. 34°57'26"E). The specimens were weighed 

and cut to pieces of 4-5 g to ensure representation of all body parts. Processed 25 g wet weight (ca. 1.25 g dry weight) of R. 

nomadica (including umbrellas, tentacles and oral arms, following Qu et al., 2015) were placed each in three Perspex cylinders 

(9.45 cm internal diameter; 50 cm length) that were filled up to 10 cm height with coastal sediments (Fig. 2), that were collected 70 

one week prior to the experiment, allowing the re-establishment of natural sediment profiles. Three additional cylinders with 

sediments did not include jellyfish and functioned as controls. The set up was completed by topping off the cylinders with 

oxygen saturated Mediterranean coastal water (ca. 3.14 L) pumped from 1 m depth and pre-filtered to remove large-size 

zooplankton (67 µm). The cores were sealed with gas tight sealing caps and placed in a lab with a relatively constant 

temperature of 27-28 °C, which is similar to the summer mean coastal water temperatures of the easternmost EMS (Raveh et 75 

al., 2015). The set up was acclimatized for 24 h to insure similar initial conditions in the chambers before jellyfish addition. 

Nutrient fluxes were measured using the whole core incubation technique previously described by Denis et al. (2001). Although 

restricting this study for testing short term responses, this method follows the best practices for measuring oxygen and nutrient 

fluxes and dynamics at the sediment-water interface (Glud, 2008; Hammond et al., 2004; Pratihary et al., 2014; Skoog and 

Arias-Esquivel, 2009). Pre-filtered coastal water was transferred to a reserve tank, and stored under the same conditions as the 80 

incubated cores. The incubation cores were connected by tubing to the dedicated reserve tank, which replaced the water in the 

incubation chambers during each sampling. The cores were incubated under PAR= 100 µmol photons∙m-2∙s-1 with a 

photoperiodicity of 14:10 (L:D). 

Within each chamber, the overlying water was continuously mixed with a magnetic stirrer fixed 10 cm below the upper cap 

(75 rpm, Hammond et al., 2004), and were sampled at the following intervals: 0, 5, 10, 18, 26, 34, 44h, with dedicated sampling 85 

tubing. The reserve tank was sampled only at three intervals, 0, 20, 44h. At each sampling, 200 ml water samples were 

transferred to acid-washed transparent Nalgene bottles (250 ml), and sub-sampled by filtering (Minisart® 0.45 µm) for the 

following chemical analyses: PO4, NO2+NO3 (NOx), Si(OH)4, NH4, TDP (DOP), TN (DON). Nutrient samples were 

immediately frozen after collection for later analysis. Biological measurements were collected using unfiltered water for pico-

phytoplankton (Synechococcus, Prochlorococcus, pico- and nano-eukaryotes), heterotrophic bacterial abundance and bacterial 90 

production measurements. Oxygen consumption rates at the sediment-water interface were continuously monitored using 

oxygen sensor spots (FireSting, PyroScience, Germany) adapted for measuring oxygen in closed containers through a 

transparent window (plastic or glass). The sensor spots were fixed to the inner side of the window with silicone glue. Four 

optical fibers continuously measured the oxygen in the three jellyfish chambers and one of the control incubations. The system 

was calibrated with saturated DIW. pH was measured with a sensor (MultiLine WTW, Germany) calibrated with NBS buffers. 95 
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Fluxes (mmol m-2 d-1) were determined by regressing the change in overlying water concentration (C) through time multiplied 

by the chamber height (Volume/Area), following Eq. (1): 

𝑓 =  
𝑑𝐶

𝑑𝑡
 × 

𝑉

𝐴
 

A correction for water replacement from the reserve tank was not applied, as the consequent error was less than 5%. 

2.2 Inorganic and organic nutrients analysis 100 

Nutrient concentrations were determined using a three-channel segmented flow auto-analyzer system (AA-3 Seal Analytical) 

following Kress et al. (2014). The limit of detection (LOD), measured as three times the standard deviation of 10 measurements 

of the blank (low nutrient seawater collected from the off-shore EMS), was 8 nM for PO4, 50 nM for total dissolved phosphorus 

(TDP) and Si(OH)4, 80 nM for NO2+NO3 (NOx) 90 nM for NH4, and 0.74 µmol for total dissolved phosphorus (TDN). The 

accuracy of the analyses was determined using certified reference materials (CRM): MOOS 3 (PO4, NOx and Si(OH)4), VKI 105 

4.1 (NOx) and VKI 4.2 (PO4 and Si(OH)4). Results were accepted when measured CRMs were within ±5% of the certified 

values.  

TDN and TDP were measured following potassium persulphate digestion and ultraviolet (UV) photo-oxidation, using a 

digestion block system (Seal Analytical, UK). The reproducibility of the analyses was examined with VKI 4.2 and Deep Sea 

Reference (DSR) material. One of the TDP samples was lost (t= 44 h). DON concentrations were determined by subtracting 110 

NOx and NH4 from TDN concentrations and DOP concentrations were determined by subtracting PO4 from TDP 

concentrations.  

2.3 Pico/nano -phytoplankton and heterotrophic bacterial abundance 

Samples (1.8 ml) were fixed with flow-cytometry grade glutaraldehyde (0.02% final concentration, G7651, Sigma-Aldrich, 

USA), frozen in liquid nitrogen, and stored at -80 °C until analysis within two weeks. Synechococcus and Prochlorococcus , 115 

autotrophic pico/nano-eukaryotes (maximal size ~70 µm), and heterotrophic bacterial abundances were determined using an 

Attune® Acoustic Focusing Flow Cytometer (Applied Biosystems, USA) as described in Bar-Zeev and Rahav (2015). Samples 

of Synechococcus, Prochlorococcus and pico/nano-eukaryotes were run at 100 µL min-1. Their taxonomic discrimination for 

based on the orange fluorescence of phycoerythrin (585 nm), the red fluorescence of chlorophyll.a (630 nm), side-scatter (SSC, 

a proxy of cell volume), and on forward-scatter (FSC, a proxy of cell size.). Heterotrophic bacterial samples were run at 25 µL 120 

min-1 using a discrimination threshold of green fluorescence (520 nm) and FSC. Beads (0.93 µm, Polysciences) were run in 

parallel as a size standard. Blank samples of sterile seawater (0.2 µm) were also run and their reads were removed from the 

total bacterial counts.  
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2.4 Bacterial production (BP) 

Bacterial production was estimated using the 3H-leucine incorporation method (Perkin Elmer, specific activity 123 Ci mmol-125 

1) followed by micro-centrifugation (Simon, 1990). Samples (1.7 ml) were incubated with 10 nmol leucine L-1 for 4-5 h under 

ambient temperature in the dark. Triplicate additions of trichloroacetic acid (TCA) were performed at each time-point and 

served as controls. The incubations were terminated with 100 µL of concentrated (100%) TCA. After adding 1 mL of 

scintillation cocktail (Ultima-Gold, PerkinElmer, USA) to each vial, the samples were counted using a TRI-CARB 2100 TR 

(Packard Biocience, USA) scintillation counter. A conversion factor of 3 kg C mol-1 per every mole leucine incorporated was 130 

used, assuming an isotopic dilution of 2.0 (Simon and Azam, 1989). 

2.5 DNA extraction and sequencing 

Approximately 300 mL of overlying seawater were collected with a sterile syringe and passed through 0.22µm Sterivex filter. 

The membranes were removed from the cases, cut into pieces under sterile conditions and transferred into the extraction tubes. 

250 mg from 0-1 and 1-2 cm sediment sections were transferred into the extraction tube. DNA was extracted from water and 135 

sediment using the DNeasy PowerSoil Kit (Qiagen, California, USA), using the manufacturer's protocol that included a 

FastPrep-24™ (MPBIO, Ohio, USA) bead-beating step (2x40 sec at 5.5 m/s, with a 5 min interval). The V4 region of the 16S 

rRNA gene was amplified using the modified primer pair 515F-806R (Apprill et al., 2015; Parada et al., 2016) in combination 

with CS1/CS2 tags (CS1_515Fc 5’-ACACTGACGACATGGTTCTACA GTGYCAGCMGCCGCGGTAA, CS2_806Rc 5’-

TACGGTAGCAGAGACTTGGTCT GGACTACNVGGGTWTCTAAT), using the following PCR amplification protocol: 140 

initial denaturation at 94 °C for 45 s, 30 cycles of denaturation (94 °C for15 sec), annealing (15 cycles at 50 °C and 15 cycles 

at 60 °C for 20 sec) and extension (72 °C for 30 s). The 18S rRNA gene sequences were amplified using the 1391f-EukBr 

primer pair (Amaral-Zettler et al., 2009; Stoeck et al., 2010) in combination with CS1/CS2 tags (1391fc 5’-

ACACTGACGACATGGTTCTACA GTACACACCGCCCGTC, EukBr 5’- TACGGTAGCAGAGACTTGGTCT 

TGATCCTTCTGCAGGTTCACCTAC), using the following PCR amplification protocol: initial denaturation at 94 °C for 45 145 

s, 30 cycles of denaturation (94 °C for15 sec), annealing (60 °C for 20 sec) and extension (72 °C for 30 s). Library preparation 

from the PCR products and sequencing of 2x250 bp Illumina MiSeq reads was performed at HyLabs (Israel).  

2.6 Statistical and bioinformatic analyses 

Demultiplexed paired-end reads were processed in QIIME2 V2019.7 environment (Bolyen et al., 2018). Reads were truncated 

based on quality plots, checked for chimeras, merged and grouped into amplicon/environmental sequence variants (A/ESVs) 150 

with DADA2 (Callahan et al., 2016), as implemented in QIIME2. After removing the low-quality sequences, a total of 361335 

(106169 in 6 and 255166 in 12 seawater and sediment samples, respectively) high-quality 16S rRNA gene amplicon reads 

with an average length of 260 bp, and a total of 658251 (162313 in 6 and 495938 in 12 seawater and sediment samples, 

respectively) high-quality 18S rRNA gene amplicon reads with an average length of 207 bp, were generated. The 16S and 18S 
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amplicons were classified with the Naïve-Bayes classifiers that were trained on the Silva 132 database, clustered at 99% 155 

(515F/806R region for the 16S and full-length sequences for the 18S rRNA gene amplicons). Downstream statistical analyses, 

calculation of alpha diversity indices (Chao1, Shannon and Simpson) and plotting were performed in R (Core Team, 2020), 

using packages phyloseq (McMurdie and Holmes, 2013), ampvis2 (Andersen et al., 2018) and ggplot2 (Wickham, 2009). 

Systematic changes across experimental conditions were estimated with DESeq2 (Love et al., 2014). The metabolic functions 

and pathways of the bacterial communities were predicted using Tax4Fun2 based on the KEGG database (Wemheuer et al., 160 

2018). Pearson correlations and SIMPER analysis (Similarity Percentages, to assess the contribution of KEGG pathways to 

the dissimilarity between treatments and controls) were performed in R using packages Hmisc (Harrell, 2004) and vegan 

(Oksanen et al., 2010). Principal component analysis (PCA) of the metabolic functions was performed with PAST V4 (Hammer 

et al., 2001). 

3 Results 165 

3.1 Dissolved oxygen and pH dynamics 

Dissolved oxygen (DO) levels in the jellyfish treatments decreased from an initial average concentration of 261.5±4.5 µmol·L-

1 to null within 40 hours, at an average rate of 5.9±0.1 µmol·L-1·h-1, whereas the DO levels in the control chambers decreased 

slightly at an average rate of 0.7±0.1 µmol·L-1·h-1 (mean ±SD, Fig. 3A). The variability within the treatment replicates and 

within the controls was small and non-significant (treatment replicates: F(2,18)=0.017, p=0.98; controls: F(2,18)=0.055, p=0.59). 170 

The calculated average DO flux from the water column in the jellyfish treatment was -56.9±1.0 mmol m-2 d-1 versus -6.7±0.3 

mmol m-2 d-1 in the controls (Table 1). In accordance with the decrease in DO, pH levels in the jellyfish treatments decreased 

from an initial average level of 8.10±0.02 to 7.88±0.01 and remained relatively stable (8.10-8.15) in the controls (Fig. 3B). 

3.2 Nutrient dynamics 

Nutrient levels significantly increased in the jellyfish-enriched chambers, whereas in the controls they remained stable and 175 

low (Fig. 4). These increases were non-linear and characterized by multiple phases, including in some cases changes of the 

flux direction. Therefore, nutrient flux rates were calculated in different linear phases over time. 

Ammonium was the dominant form of dissolved inorganic nitrogen in the experimental chambers. During the first 10 hours 

from the onset of the experiment, NH4 levels increased at a rate of 0.39±0.12 µmol·L-1·h-1, after which (10-26 h) the rate of 

NH4 release slowed to 0.26±0.10 µmol·L-1·h-1 and then (26-44 h) sharply increased to 1.33±0.31 µmol·L-1·h-1 (Fig. 4A). NO2 180 

levels steadily increased at a rate of 5.5·10-3±2.0·10-3 µmol·L-1·h-1, and decreased to background levels after 34 hours (Fig. 

4B). NO3 levels were generally higher in the jellyfish treatment than in the controls, but did not present any significant trend 

over time (Appendix A, Fig. A1). One of the jellyfish treatments (JF2) showed higher (2-fold) concentrations of NO3 

throughout the experiment, likely due to a different initial NO3 content derived from the mixture of jellyfish tissue, as some 

parts have shown to include higher concentrations of dissolved nitrogen (MacKenzie et al., 2017). Nevertheless, this has not 185 
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affected the overall nutrient fluxes nor triggered different responses to the microbial communities (thus, the same direction 

and strength of responses were observed in all jellyfish addition treatments). Silicic-acid concentrations remained overall stable 

throughout the experiment, and higher in two of the jellyfish-enriched chambers (Appendix A, Fig. A1). 

Within the first 5 hours following the jellyfish enrichment, orthophosphate levels increased by two orders of magnitude from 

0.02±0.01 to 1.02±0.13 µmol·L-1 (Fig. 4C). Throughout the rest of the experiment, PO4 was fully consumed and its levels 190 

decreased to the background levels within 34 hours (0.04 µmol·L-1), after which an increase was recorded (0.30 µmol·L-1). 

The majority of TDN and TDP released from the jellyfish was organic, where 84% of the TDN was DON, (Fig. 4D), and 71% 

of the TDP was DOP (Fig. 4E). Both organic nutrient levels significantly increased in the jellyfish enriched chambers, whereas 

their concentrations in the control chambers remained stable and low. During the incubation period, DON concentrations 

increased 12-fold in the jellyfish treatment compared to the controls (Fig. 4D) and DOP concentrations increased 18-fold (Fig. 195 

4E). The ratio between TDN and TDP (TDN:TDP) decreased from an initial average value of 96±18 :1 to an average value of 

23±7 :1 in the jellyfish treatments, whereas in the controls it decreased to 57±3 :1 (Fig. 4F). 

The rates of nutrient release (remineralization rates) standardized to jellyfish biomass are detailed in Table 1, and the calculated 

nutrient fluxes (mmol m-2 d-1) in the jellyfish enriched cylinders and in the controls are summarized in Table 2. 

 200 

3.3 Autotrophic and heterotrophic abundance and bacterial production 

Heterotrophic bacterial abundance increased linearly in the jellyfish treatments (R2=0.98, p<0.01) and reached 1.5·107 ±1.9·105 

cells·mL-1 after 44 hours, whereas the controls remained stable at a concentration of 2.0·106 ±6.7·104 (Fig. 5A). Synechococcus 

abundance dropped in both jellyfish-enriched and control cylinders, however, after 44 hours, the number of Synechococcus 

cells in the jellyfish treatment was 5-fold larger compared to the controls (Fig. 5B). Prochlorococcus cell numbers increased 205 

in both jellyfish-enriched and control cylinders, and after 44 hours was lower in the jellyfish treatment (Fig. 5C). Both cell 

numbers of pico and nano -eukaryotes dropped throughout the experiment, nonetheless, were higher in the jellyfish treatment 

than in the controls by 50% (Figs. 5D-E).  

Bacterial production remained stable in the jellyfish treatments at a rate of 3.1±0.3 µg C ·L-1 ·h-1 during the first 26 incubation 

hours, increased to 4.3±0.1 µg C ·L-1 ·h-1 and after 34 hours decreased again. Contrary, in the controls the bacterial production 210 

decreased immediately from the onset of the experiment, and after 18 hours reached a rate of 0.4±0.2 µg C ·L-1 ·h-1 that 

remained stable until the experiment ended (Fig. 5F). 

The temporal dynamics of DO and nutrient concentrations strongly correlated with total bacterial abundance, but not with 

bacterial production (Appendix B, Table B1). 

3.4 Microbial diversity 215 

Bacterial alpha diversity (Fig. 6), was significantly lower in the jellyfish-enriched seawater than in the controls (p<0.05), but 

in the sediment samples there was no significant difference (p>0.05). The vast majority (93-97%) of the 18S sequence variants 
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in seawater (Appendix C, Fig. C2) belonged to Scyphozoa, hindering alpha diversity evaluation. In the sediment, no significant 

difference (p>0.05) in alpha diversity was observed between treatments (Appendix C, Fig. C1). These findings were confirmed 

with rarefaction curves (Appendix C, Figs. C3, C4). 220 

The distribution of the 30 most abundant bacterial genera measured in seawater in the jellyfish-enriched and control chambers 

is presented in a heatmap (as inferred from read abundance estimates, Fig. 7). Lineages for which significant changes in 

abundance (p<0.05) between the treatment and control were detected by DESeq2 (Fig. 7, yellow star symbols: lineages more 

abundant in the controls, purple star symbols: lineages more abundant in the jellyfish treatment). Nine lineages were 

significantly more abundant in the jellyfish treatment, whereas 12 lineages were significantly more abundant in the controls. 225 

The relative abundance of the common marine bacteria, including the primary producers Synechoccocus and (chemo or photo) 

the heterotrophic bacteria SAR11, HIMB11 and SAR86 (Dupont et al., 2012; Durham et al., 2014; Giovannoni, 2017), have 

all diminished following jellyfish additions. Mostly opportunistic lineages (Kordiimonadaceae, Pseudoalteromonadaceae, 

Saccharospirillaceae and Nitrincolaceae) that use multiple carbon sources, including xenobiotics, were enriched in jellyfish-

amended incubations, and are often associated with oil discharge (Yakimov et al., 2007). Algicola (Pseudoalteromonadaceae) 230 

and Kordiimonas (Kordiimonadaceae) appear to be the most abundant degraders of the jellyfish biomass based on the marked 

change observed in the abundance of their relative amplicon sequence variants. 

Heatmap showing the distribution of the 30 most abundant genera in the sediment, measured in the 0-1 cm below surface layer 

and in the 1-2 cm below surface layer (inferred from 16S sequences), in the jellyfish-enriched and control chambers is 

presented in Fig. C1 (Appendix C). Among the 30 most abundant taxa, only Fusimonas and Algicola genera were significantly 235 

more abundant in the jellyfish treatments in the 0-1 cm layer, however, in the 1-2 cm layer, there was no significant difference 

between the treatments and controls. 

The distribution of the 30 most abundant eukaryotic genera (inferred from the 18S rRNA amplicon read abundance) measured 

in seawater and sediment in the jellyfish-enriched and control chambers is presented in Fig. C2 (Appendix C). Both sediment 

layers showed no difference between treatment and controls, whereas in the seawater samples, four lineages of dinoflagellates, 240 

Ciliophora and Labyrinthulomycetes were more abundant in the jellyfish than the controls. 

Predicted functions were classified as KEGG orthologs (KOs) resulting in the identification of 346 KOs across all samples, 

160 of which were associated with prokaryotic functions. The principal component analysis (including 324 KOs across all 

samples, after removal of rare KOs that appear in only one of the replicates to avoid zero-inflated dimensionality) showed that 

jellyfish-treated and control samples significantly differed based on microbial predicted functions (Fig. 8). Photosynthesis 245 

(ko00195) and carbon fixation in photosynthetic organisms (ko00710) were enriched in controls, while catabolic functions, 

such as fatty acid degradation (ko00071), valine, leucine and isoleucine degradation (ko00362) and xenobiotic degradation 

pathways, benzoate degradation (ko00650) in particular were enriched in jellyfish additions (Fig. 8). SIMPER analysis 

(Appendix D, Table D2) showed that the pathways mostly contributing to the difference between the jellyfish treatments and 

controls were signal transduction 2-component system (ko02020) and ABC transporters (ko02010), contributing to 13% and 250 

10% of the dissimilarity between the groups, respectively.  
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4 Discussion 

4.1 The effects of R. nomadica decomposition on oxygen and nutrient fluxes 

Jellyfish blooms trigger substantial changes in dissolved oxygen, inorganic carbon and nutrient concentrations in the water 

column (Condon et al., 2011; Pitt et al., 2009). Post-bloom processes, by comparison, modify the oxygen, carbon and nutrient 255 

fluxes in the benthic boundary layer and the sediment-water interface (Chelsky et al., 2015; Lebrato and Jones, 2011; Qu et 

al., 2015; West et al., 2008). Here we found that the decomposition of the invasive jellyfish Rhopilema nomadica triggered 

deoxygenation of the seawater overlying the sediment to hypoxic and eventually anoxic levels, although the complete 

dissipation of oxygen is likely due to the experimental conditions. Similarly, increased sediment oxygen demand following 

jellyfish decomposition was measured by West et al. (2008) in Catostylus mosaicus and by Tinta et al. (2016) in the moon 260 

jellyfish Aurelia aurita. Qu et al. (2015) that studied the effects of Cyanea nozakii decomposition in the Yellow Sea using 

incubations found that oxygen was depleted in both sediment and seawater. They hypothesized that the metabolism and 

propagation of heterotrophic bacteria led to enhanced oxygen consumption. Indeed, our experimental results support this 

hypothesis, as bacterial abundance was strongly correlated with oxygen levels, whereas the abundance of autotrophic 

cyanobacteria decreased as they were likely outcompeted by the heterotrophic bacteria (Sisma-Ventura and Rahav, 2019; 265 

Thingstad et al., 2005). Thus, jelly-falls can generate hypoxic areas on the seabed and overlying waters (Pitt et al., 2009), and 

affect the benthic infauna (Chelsky et al., 2016). Although the Eastern Mediterranean coastal waters are well-oxygenated 

(Kress et al., 2014), the collapse of massive R. nomadica blooms could potentially create local hypoxic or even anoxic hotspots 

on the seabed, thereby affecting the surrounding biota (Feely et al., 2010).  

In addition to deoxygenation, our experiment showed a significant reduction in pH, to levels that are considered detrimental 270 

to various organisms, mainly calcifies (Kroeker et al., 2010; Zunino et al., 2017). Acidification as a result of jellyfish 

decomposition was also observed by Qu et al. (2015) that speculated that the release of amino-acids and fatty-acids from 

proteins and lipid metabolism of jellyfish tissue is the root cause for the observed decrease in pH. Nonetheless, hypoxia and 

acidification are biogeochemically coupled via the production of inorganic carbon in the process of respiration (Feely et al., 

2010; Gobler and Baumann, 2016). In addition, increase in NH4, as was measured in our experiment, increases total alkalinity 275 

and pH, whereas nitrate and silicate decrease pH, but they were comparably scarce. Based on oxygen to carbon conversion 

(1:1.3), and alkalinity change due to NH4 addition, it is estimated that the observed decrease in pH in our experiment can be 

solely attributed to inorganic carbon and carbonic acid production (due to bacterial respiration) and ammonium release. The 

combination of hypoxia and acidification may have synergistic additive negative effects on the benthic fauna (Gobler et al., 

2014; Melzner et al., 2013). Furthermore, ammonium in high concentrations may have toxic effects on various marine 280 

organisms, from bacteria to fish (Brun et al., 2002; Eddy, 2005; Ferretti and Calesso, 2011; Müller et al., 2006). 

The decomposition of dead R. nomadica tissue generated an immediate rapid release of organic and inorganic phosphate after 

which the inorganic phosphate (PO4) was completely consumed, while the efflux of organic and inorganic (mostly ammonium) 

nitrogenous compounds gradually increased throughout the experiment. Similar dynamics were observed in C. mosaicus by 
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West et al. (2008) and Chelsky et al. (2015), and by Tinta et al. (2010) in Aurelia solida, where organic and inorganic phosphate 285 

peaked and completely abolished within 24 hours, presumably due to bacterial uptake. The production of NOx in our 

experiment was evident only in the jellyfish treatment while oxygen levels were conducive, suggesting that nitrification plays 

an important role in nutrient dynamics following jellyfish decomposition, as was found in different jellyfish species (Hubot et 

al., 2020; Welsh et al., 2009). The non-linearity of nutrient fluxes that was evident in our experiment (especially in the multi-

rate flux of NH4 and in the bi-directional flux of NO2 and PO4) as well as in other jellyfish degradation studies (Blanchet et 290 

al., 2015; Chelsky et al., 2016; Qu et al., 2015; Tinta et al., 2010), indicate a sequential nature of decomposition, likely due to 

microbial colonization and non-linear growth rates. The shift from nitrate production to nitrate consumption 36 hours from the 

onset of the experiment likely reflects the shift from aerobic to anaerobic processes due to the low, hypoxic (and eventually 

anoxic) levels and may be regarded as an experimental artefact, although such changes were previously showed in surface 

sediments (Chelsky et al., 2016). The stoichiometric relationship between TDN and TDP decreased from 57:1 to 23:1 as a 295 

result of R. nomadica decomposition, as was also found by West et al. (2009) and Qu et al. (2015). This decrease can be 

explained by the elemental body composition of scyphozoan jellyfish, in general, is 2.48 N %DW (dry weight) and 0.22 P 

%DW, hence an N:P ratio of 25:1 (Lucas et al., 2011).  

The rates of nutrient release from R. nomadica decomposition found in this study were comparable to jellyfish decomposition-

driven rates found in former studies (e.g., Blanchet et al., 2015; Pitt et al., 2009; Qu et al., 2015; Tinta et al., 2012; Tinta et al., 300 

2016; Titelman et al., 2006; West et al., 2008). Ammonium release rate in R. nomadica (1.96 µmol g-1 WW d-1) was slightly 

higher than the rate measured by Tinta et al. (2012) in Rhizostoma pulmo (1.6 µmol g-1 WW d-1), another common 

Mediterranean scyphozoan. Reported densities of R. nomadica aggregations from the EMS are 1.6·105 km-2 in the Israeli coast 

(Lotan et al., 1992; Lotan et al., 1994), 1·106 km-2 in the Lebanese coast (Lakkis and Zeidane, 1991), and 9·105 km-2 in the 

Mediterranean Egyptian coast (Madkour et al., 2019). The average wet weight of R. nomadica changes seasonally, 1340 ±953 305 

g ind-1 during summer and 2450 ±1854 g ind-1 during winter (N=40, T.G.-H. unpublished data), yielding ca. 1.3 kt km-2. We 

can, therefore, estimate that the collapse of R. nomadica bloom potentially releases ammonium and phosphate in concentrations 

of 2.5 and 0.8 kmol km-2, respectively. 

Nutrient remineralization during jelly-fall decomposition, as was found in this study and others, can be inhibitory or toxic to 

some organisms (e.g., dissolved sulfides and ammonium in Chelsky et al., 2016), but on the other hand, can stimulate primary 310 

production and induce algal blooms in the water column and on the sediment. Møller and Riisgård (2007) found that following 

blooms of A. aurita, peak concentrations of chlorophyll-a were measured in a heavily eutrophied Danish Fjord. Using 

mesocosm experiments, West et al. (2009) found that excretion of jellyfish C. mosaicus led to a 10-fold increase in diatom 

abundance. In the EMS, R. nomadica typically peaks in the summer months and collapses at the end of July (Edelist et al., 

2020), whereas peak chlorophyll-a concentrations in the water column are measured during wintertime (Ignatiades et al., 2009; 315 

Rahav et al., 2018a; Raveh et al., 2015). This may result from the competitive exclusion of phytoplankton by heterotrophic 

bacteria (Sisma-Ventura and Rahav, 2019). Thus, fertilization of the water column due to nutrient release from R. nomadica 

decomposition may fail to trigger an algal bloom in the EMS. In contrast to the water column, maximum chlorophyll 
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concentrations were measured in the sediment of the shallow Israeli coastal shelf during the late spring-summer (Hyams-

Kaphzan et al., 2009; Tadir et al., 2017). This discrepancy was explained by the spring bloom of benthic primary producers. 320 

However, the results of this study could provide another plausible explanation for the high summer chlorophyll concentrations 

in the sediment, which may be the post-bloom nutrient boost to the benthic ecosystem. 

4.2 Decomposition induced shifts in bacterial community abundance, production, composition and functionality 

Heterotrophic bacteria are major consumers of dissolved organic matter (DOM) in marine ecosystems and can, therefore, 

benefit from jellyfish decomposition. Previous studies have demonstrated a significant increase in bacterial abundance 325 

triggered by jellyfish degradation (Blanchet et al., 2015; Condon et al., 2011; Dinasquet et al., 2012; Frost et al., 2012; Kramar 

et al., 2019; Tinta et al., 2016; Tinta et al., 2010; Titelman et al., 2006; West et al., 2009). Our study found that the 

decomposition of R. nomadica induced an increase in two orders of magnitude in the heterotrophic bacteria abundance. 

Autotrophic cyanobacteria, on the other hand, decreased (Synechococcus), or increased to a lower level than the unamended 

control (Prochlorococcus), likely due to deoxygenation (Bagby and Chisholm, 2015) or out-competition by heterotrophic 330 

bacteria (Sisma-Ventura and Rahav, 2019; Thingstad et al., 2005).  

The fate of jellyfish DOM consumed by bacteria depends on bacterial growth efficiency—the ratio of bacterial production to 

substrate assimilation (i.e., the sum of bacterial production and respiration) (Condon et al., 2011). While some studies have 

found that the succession of bacterial production mirrored bacterial abundance and respiration (Blanchet et al., 2015; Titelman 

et al., 2006), in our study, bacterial production reduced in the controls, whereas under jellyfish enrichment remained at a 335 

steady, eightfold higher, level. This decoupling between bacterial abundance and production may indicate a shift in the 

functional diversity and metabolic demands of the jellyfish-associated bacterial communities during the experiment. In the 

shallow coastal waters of the EMS, bacterial production levels peak in winter and summer (Raveh et al., 2015), coinciding 

with, and potentially contributed by, the seasonal aggregations of R. nomadica (Edelist et al., 2020). 

A significant reduction in the microbial α-diversity indices of seawater during jellyfish decomposition was observed in this as 340 

well as in former studies (Blanchet et al., 2015; Kramar et al., 2019; Tinta et al., 2012). The decline in diversity can be attributed 

to the specialization of surface-colonizing bacteria, having the competitive advantage for settling from the surrounding 

seawater (Kramar et al., 2019), and was thus less evident in the sediment samples. Additionally, changes in bacterial diversity 

may result from bacterial antagonism, i.e. the production of antagonistic compounds and sensitivity or resilience to them 

(Titelman et al., 2006). In this study, we found a significant increase in the relative abundance of the Alphaproteobacterium 345 

Kordiimonas and the Gammaproteobacteria Algicola in the seawater enriched with R. nomadica. Similarly, the predominance 

of Alphaproteobacterium and Gammaproteobacteria stimulated by jellyfish decomposition was found in different studies 

(Basso et al., 2019; Blanchet et al., 2015; Condon et al., 2011; Dinasquet et al., 2012; Kramar et al., 2019; Tinta et al., 2012; 

Titelman et al., 2006). Gammaproteobacteria are conspicuous particle colonizers (Bižić‐Ionescu et al., 2015; Simon et al., 

2002), capable of degrading high molecular weight organic compounds (Cottrell and Kirchman, 2000; Reichenbach, 1992; 350 

Woyke et al., 2009), e.g. hydrocarbons (Niepceron et al., 2013). Kramar et al. (2019) found that Alphaproteobacteria and 
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Gammaproteobacteria dominated the body surface of Aurelia, especially during the senescent phase. Blanchet et al. (2015) 

found a succession of bacterial diversity during the degradation of Aurelia and concluded that Alphaproteobacteria and 

Gammaproteobacteria have a major role in the succession of jellyfish DOM degradation. The link between the bacterial 

diversity of living R. nomadica at different life phases and the diversity of bacteria associated with its decomposed DOM is 355 

yet to be investigated.  

Both genetic and functional diversity analyses of bacterial communities demonstrated a shift under R. nomadica degradation. 

We found that the predicted functions that dominated the decomposed jellyfish communities were signal transduction (2-

component system), catabolic functions, such as fatty acid degradation, valine, leucine and isoleucine degradation, xenobiotic 

degradation pathways, and benzoate degradation. In the control communities, predominating functions were photosynthesis 360 

and carbon fixation in photosynthetic organisms. This functional shift can be explained by the fact that autotrophic 

cyanobacteria may be outcompeted by bio-degrading heterotrophic bacteria. Once the jellyfish bloom decomposes, populations 

of these intrinsic microbial bio-degraders become dominant and active, exploiting the carbon and nutrients released from the 

jellyfish. Using 16S rRNA amplicon data for predicting functional profiles is a powerful tool for assessing bacterial functional 

diversity, nonetheless, its accuracy and resolution are dependent on the representation of sampled organisms in the 16S rRNA 365 

and KEGG databases (Sun et al., 2020; Wemheuer et al., 2018). Likely, jellyfish degraders are under-represented in these 

databases. Further research using omics (e.g., whole-genome sequencing) will elucidate the metabolic potential of microbial 

degraders of the jellyfish necromass. 

Although not to the same extent as bacterial diversity, eukaryotic diversity had too, shifted during the decomposition of R. 

nomadica, to a more flagellate-dominated community. Marine ciliates and parasitic protists (Labyrinthulomycetes) were also 370 

more abundant in the jellyfish decomposed community. Flagellate bacterivory represents the primary mechanism for the 

reintroduction of jellyfish carbon into the planktonic food web (Condon et al., 2011; Gasol and Kirchman, 2018). The increase 

in ciliates can be attributed to a “bottom-up” effect, where with the increase in flagellates, the abundance of their predators 

(e.g., ciliates) also increases (Epstein et al., 1992). Since jellyfish consume ciliates (Kamiyama, 2018; Stoecker et al., 1987), 

the flagellate carbon could be assimilated and recycled by the jellyfish, creating a positive-feedback loop termed as the “jelly-375 

loop” (Condon et al., 2011; Lebrato and Jones, 2011). 

5 Conclusions 

Our study examined, for the first time, the decomposition effects of the bloom-forming invasive jellyfish R. nomadica on the 

oxygen and nutrient fluxes and microbial communities at the sediment-water interface. The geographical distribution of this 

venomous species is continuously expanding, and its outbreaks are becoming more frequent, large, prolonged, with numerous 380 

negative impacts on human health, marine infrastructure, tourism, and fisheries. 

We found that jellyfish degradation had a significant influence on the fluxes of organic and inorganic nutrients at the sediment-

water interface, transforming the microbial community composition and functions. The high rates of organic nitrogen and 



13 
 

phosphate release favored heterotrophic-dominated metabolism, leading to a shift towards heterotrophic bio-degrading 

bacterial communities. This shift may further decrease primary production under the ultra-oligotrophic regime of the Eastern 385 

Mediterranean Sea. On the seabed, hotspots of deoxygenated, acidified, and nutrient-rich sediment may alter microbial and 

macrobenthic communities.  

Future investigations on the decomposition dynamics of R. nomadica should be conducted in larger experimental systems (i.e., 

mesocosms) or in-situ, under more realistic conditions. The effects of environmental change drivers, such as warming, 

acidification, or anthropogenic pollution should also be tested. Additionally, the consumption of jelly-falls by scavengers in 390 

the Eastern Mediterranean Sea should be explored. This and future studies will shed light on the variable effects of the 

reoccurring massive blooms on the ecosystem functions and services in this rapidly changing environment. 
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Figure 1. Jelly-falls (carcasses) of ca. 30 Rhopilema nomadica in the Mediterranean coast of Caesarea, Israel. 8-9 m 675 

depth, photographed on 27 July 2019 after the typical peak summer bloom (Photo: Zvika Fayer). 

 

Figure 2. Experimental set-up. Incubation cylinders including jellyfish treatment (right, N=3) and controls (left, N=3). 
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Figure 3. The decomposition of the jellyfish R. nomadica leads to oxygen depletion and acidification in the seawater 680 

overlying the sediment. A. Continuous dissolved oxygen (DO) record in the experimental cylinders enriched with 

carcasses of the jellyfish R. nomadica (JF1-JF3) and in the controls. B. pH dynamics in the experimental cylinders, 

including jellyfish and in the controls. N=3. The temperature was kept relatively constant at 27-28°C. The slight 

increases in DO concentrations throughout the incubation period indicate water compensation during discrete 

sampling events.  685 
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Figure 4. Changes in the concentrations (µmol L-1) of organic and inorganic nutrients in the experimental cylinders 

enriched with carcasses of the jellyfish R. nomadica and in the controls. A. ammonium. B. nitrite. C. orthophosphate. 

D. DON. E. DOP. F. TDN/TDP ratio. (N=3). 
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 690 

Figure 5. Microbial abundance (cell·mL-1) and production (µg C·L-1·h-1) in the jellyfish R. nomadica -enriched (blue) 

and control (black) experimental cylinders over the experimental period. A. total bacterial abundance. B. 

Synechococcus. C. Prochlorococcus. D. Pico-eukaryotes. E. Nano-eukaryotes. F. bacterial production. N=3, the error 

bars denote standard deviation. 
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 695 

Figure 6. Bacterial alpha diversity indices (Chao, Shannon, Simpson) in water and sediment samples from experimental 

cylinders enriched with carcasses of the jellyfish and in the controls (n=3). 
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Figure 7. Diversity of bacteria in the jellyfish-enriched and control experimental cylinder seawater. The 30 most 

abundant lineages are presented and organized by hierarchical clustering. Color scale denotes the relative abundance 700 

of reads (%). The star symbols on the right-side panel indicate lineages significantly more abundant in the jellyfish 

treatment (in purple) or the controls (in yellow) based on DESeq2 estimations. 
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 705 

 

 

Figure 8. Principle Component Analysis biplot of functional diversity based on taxonomy-based functional predictions 

using Tax4Fun2. JF = jellyfish samples; C = control samples. The vectors present KEGG pathways. The within-group 

similarity is 95% between the jellyfish treatments (red) and 97% between the controls (light blue). The following KEGG 710 

pathways are shown: ko00071 Fatty acid degradation, ko00190 Oxidative phosphorylation, ko00195 Photosynthesis, 

ko00270 Cysteine and methionine metabolism, ko00280 Valine, leucine and isoleucine degradation, ko00362 Benzoate 

degradation, ko00520 Amino sugar and nucleotide sugar metabolism, ko00630 Glyoxylate and dicarboxylate 

metabolism, ko00650 Butanoate metabolism, ko00680 Methane metabolism, ko00710 Carbon fixation in photosynthetic 

organisms, ko00920 Sulfur metabolism, ko01110 Biosynthesis of secondary metabolites, ko01120 Microbial metabolism 715 

in diverse environments, ko01130 Biosynthesis of antibiotics, ko01200 Carbon metabolism, ko01220 Degradation of 

aromatic compounds, ko01230 Biosynthesis of amino acids, ko02010 ABC transporters, ko02020 Two-component 

system. 
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Table 1: Daily oxygen consumption and nutrient release rates standardized to jellyfish (R. nomadica) biomass (µmol·g 720 

WW-1·d-1). The average wet weight of the whole jellyfish was 1.5±0.4 kg. N=3. 

 

 rate (µmol·g WW-1·d-1) SD 

DO -17.9 0.3 

NH4 2.0 0.2 

PO4 0.6 0.1 

DON 4.0 0.7 

DOP 0.2 0.04 

 

Table 2: Calculated oxygen and nutrient fluxes in the seawater of jellyfish (R. nomadica) -enriched and control 

experimental cylinders. Positive flux represents water column enrichment (source), negative flux represent removal 725 

from the water column (sink). N=3. SD denotes standard deviation. N.A – not available. 

 

 Jellyfish (mmol m-2 d-1) Control (mmol m-2 d-1) 

 Mean SD Mean SD 

DO -56.9 1.0 -6.7 0.3 

NH4 (0-36 h) 6.9 0.4 1·10-2 8·10-3 

PO4 (0-5 h) 1.9 0.2 -5·10-3 1·10-2 

DON 12.7 2.4 -4·10-2 N.A. 

DOP 0.6 0.1 5·10-3 N.A. 
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Appendix A: Additional nutrient data 730 

  

Figure A1. Changes in the concentrations (µmol L-1) of A. NO3 and, B. Si(OH)4 in the experimental cylinders enriched 

with carcasses of the jellyfish R. nomadica (JF1-JF3) and in the controls (N=3). 

 

  735 



32 
 

Appendix B: Nutrient--bacteria correlations  

 

Table B1: Pearson correlation coefficients (r) between nutrient concentrations, bacterial abundance and production 

rates. Averages of three replicates per time step were used (N=7). Significant correlations are marked in bold (p<0.05). 

 740 

 Bacterial abundance Bacterial production 

DO -0.995 -0.211 

NH4 0.979 0.236 

NOx -0.765 0.213 

PO4 -0.485 -0.323 

Si(OH)4 0.841 0.055 

DON 0.944 0.038 

DOP  0.912 0.164 

TDN 0.954 0.355 

TDP  0.632 -0.027 
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Appendix C: Bacterial and eukaryotic diversity in water and sediment samples 

 745 

 

Figure C1. Microbial diversity in sediment samples from the jellyfish-enriched and control experimental cylinders, 

from 0-1 cm (left) and 1-2 cm (right) depth layers. The 30 most abundant lineages are presented and organized by 

hierarchical clustering. Color scale denotes the relative abundance of reads (%). The star symbols on the right-side 

panel indicate lineages significantly more abundant in the jellyfish treatment based on DESeq2 estimations. 750 
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Figure C2. Eukaryote diversity of seawater and sediment samples collected from jellyfish-enriched and control 

experimental cylinders. The 30 most abundant lineages are presented and organized by hierarchical clustering.. Color 

scale denotes the relative abundance of reads (%). 
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 755 

Figure C3. Rarefaction curves of observed 16S rRNA sequence variants retrieved from the seawater (upper graph) and 

sediment (lower graph) samples.  
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Figure C4. Rarefaction curves of observed 18S rRNA sequence variants retrieved from the seawater (upper graph) and 

sediment (lower graph) samples.   760 
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Appendix D: SIMPER analysis of main predicted functions based on KEGG orthologs 

 

Table D1: Similarity Percentage (SIMPER) analysis indicating the main predicted functions characterizing the jellyfish 765 

and control communities (N=3). Av. Abund = Average abundance, Av. Sim = Average similarity, Sim/SD = similarity 

standard deviation, Contrib% = percent contribution, Cum.% = Cumulative contribution. 

 

Jellyfish treatments  
     

Average similarity: 95.03 

 

 

     
KEGG ortholog Predicted function Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

ko01110 Biosynthesis of secondary 

metabolites 

0.09 8.19 20.04 8.62 8.62 

ko01120 Microbial metabolism in diverse 

environments 

0.08 7.42 458.33 7.81 16.43 

ko01130 Biosynthesis of antibiotics 0.07 6.87 33.95 7.23 23.66 

ko02020 Two-component system 0.07 6.41 25.99 6.74 30.4 

ko02010 ABC transporters 0.05 3.92 40.15 4.13 34.53 

ko01200 Carbon metabolism 0.04 3.87 44.28 4.08 38.61 

ko01230 Biosynthesis of amino acids 0.03 3.27 18.35 3.44 42.05 

 

Controls 

 

     
Average similarity: 97.47 

 

 

     
KEGG ortholog Predicted function Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

ko01110 Biosynthesis of secondary 

metabolites 

0.09 9.08 91.13 9.32 9.32 

ko01120 Microbial metabolism in diverse 

environments 

0.07 7.37 959.26 7.57 16.88 

ko01130 Biosynthesis of antibiotics 0.07 7.37 242.75 7.56 24.45 
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ko02010 ABC transporters 0.06 5.48 31.5 5.62 30.07 

ko02020 Two-component system 0.05 4.63 6.87 4.75 34.81 

ko01230 Biosynthesis of amino acids 0.04 3.94 129 4.04 38.85 

ko01200 Carbon metabolism 0.04 3.88 1602.51 3.98 42.83 

 

Jellyfish treatments & controls 

 

     

 

Average dissimilarity: 7.01 

 

 

Jellyfish Control 
   

 

KEGG ortholog Predicted function  Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 

ko02020 Two-component system 0.07 0.05 0.93 2 13.19 13.19 

ko02010 ABC transporters 0.05 0.06 0.7 3.51 10.02 23.21 

ko01110 

Biosynthesis of secondary 

metabolites 0.09 0.09 0.35 1.35 5.05 28.27 

ko01230 Biosynthesis of amino acids 0.03 0.04 0.3 2.11 4.34 32.6 

ko01130 Biosynthesis of antibiotics 0.07 0.07 0.19 1.34 2.77 35.37 

ko00260 

Glycine, serine and threonine 

metabolism 0.01 0.02 0.19 3.46 2.68 38.05 

ko00071 Fatty acid degradation 0.01 0.01 0.19 3.94 2.66 40.71 
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