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Abstract. To make predictions about the carbon cycling consequences of rising global surface temperatures, Earth 
system scientists rely on mathematical soil biogeochemical models (SBMs). However, it is not clear which models 14 
have better predictive accuracy, and a rigorous quantitative approach for comparing and validating the predictions 
has yet to be established. In this study, we present a Bayesian approach to SBM comparison that can be incorporated 16 
into a statistical model selection framework. We compared the fits of linear and non-linear SBMs to soil respiration 
data compiled in a recent meta-analysis of soil warming field experiments. Fit quality was quantified using Bayesian 18 
goodness-of-fit metrics, including the Widely Applicable information criterion (WAIC) and Leave-one-out cross-
validation (LOO). We found that the linear model generally out-performed the non-linear model at fitting the meta-20 
analysis data set. Both WAIC and LOO computed higher overfitting risk and effective numbers of parameters for 
the non-linear model compared to the linear model, conditional on the data set. Goodness-of-fit for both models 22 
generally improved when they were initialized with lower and more realistic steady state soil organic carbon 
densities. Still, testing whether linear models offer definitively superior predictive performance over non-linear 24 
models on a global scale will require comparisons with additional site-specific data sets of suitable size and 
dimensionality. Such comparisons can build upon the approach defined in this study to make more rigorous 26 
statistical determinations about model accuracy while leveraging emerging data sets, such as those from long-term 
ecological research experiments. 28 

1 Introduction 

Coupled Earth system models (ESMs) and constituent soil biogeochemical models (SBMs) are used to 30 
simulate global soil organic carbon (SOC) dynamics and storage. As global climate changes, some ESM and SBM 
simulations suggest that substantial SOC losses could occur, resulting in greater soil CO2 emissions (Crowther et al., 32 
2016). However, there is vast divergence between model predictions. For instance, one ESM predicts a global SOC 
loss of 72 Pg C over the 21st century, while another predicts a gain of 253 Pg C (Todd-Brown et al., 2014). 34 

Soil biogeochemical models vary greatly in structure (Manzoni and Porporato, 2009), but can be broadly 
partitioned into two categories: those that implicitly represent soil C dynamics as first-order linear decay processes 36 
and those that explicitly represent microbial control over C dynamics with non-linear Michaelis-Menten functions 
(Wieder et al., 2015a). Explicit models typically include more parameters than linear models because multiple 38 
microbial parameters are needed for each decay process as opposed to a single rate parameter. The additional 
parameters allow explicit models to represent microbial mechanisms, but at the expense of greater model 40 
complexity. 

Rigorous statistical approaches should be applied to investigate how explicit representation of microbial 42 
processes affects predictive model performance. ESM and SBM comparisons involving empirical soil C data 
assimilations have been conducted previously (Allison et al., 2010; Li et al., 2014) but few standardized statistical 44 
methods for ESM and SBM benchmarking and comparison have been developed that would allow for rigorous 
model selection. Prior model comparisons have involved graphical qualitative comparisons or use of basic fit 46 
metrics such as the coefficient of determination, R2, to judge fit quality. However, these simple approaches are 
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insufficient for comparing an increasing number of complex models (Jiang et al., 2015; Luo et al., 2016; Wieder et 48 
al., 2015a). 

R2 on its own provides limited information about goodness-of-fit. In unmodified form, it quantifies the 50 
extent to which the variation of just one chosen model outcome—for instance the mean outcome for a range of 
parameter values—corresponds to the variation in the data set (Gelman et al., 2019). R2 does not capture model 52 
complexity, overfitting, or parameter uncertainty, which is a reason why R2 by itself is not sufficient for model 
evaluation (Kvålseth, 1985). Without accounting for model complexity and parameter count, focusing on optimizing 54 
fit by R2 values alone can easily lead to overfitting (Spiess and Neumeyer, 2010).   

Encouragingly, a rich toolset to further inform quantitative model evaluation and comparison can be drawn 56 
from Bayesian statistics. These tools include information criteria and approximate cross-validation, goodness-of-fit 
metrics designed for the simultaneous comparison of multiple structurally diverse models. Like R2, information 58 
criteria and cross-validation are quantitative measures that estimate the fit quality of a model to a given data set. 
Differing from R2, information criteria and cross-validation are relative rather than absolute measures. These metrics 60 
evaluate the extent to which the data set supports particular distributions of parameter values and in turn, the 
uncertainty of parameter estimates. Consequently, if the distribution of Model A outcomes aligns more closely to the 62 
data set than the distribution of Model B outcomes, we regard Model A as being more likely to explain the data 
compared to Model B. Information criteria and cross-validation metrics also typically include terms penalizing for 64 
model complexity and overfitting as part of their computation (Gelman et al., 2014). Hence, information criteria and 
approximate cross-validation are useful tools for model evaluation because they present a comprehensive summary 66 
of model fit to time series data and can estimate model predictive accuracy for unmeasured and out-of-sample data 
points.  68 

Examples of information criteria popularized by widely used R packages such as lme4 and rjags include the 
Akaike information criterion (AIC), Bayesian information criterion (BIC), and deviance information criterion (DIC) 70 
(Vehtari and Ojanen, 2012). However, these metrics have some limitations. AIC, BIC, and DIC do not use full 
sampled posterior distributions in their computational processes. AIC and BIC both rely on a pointwise maximum 72 
likelihood estimate that cannot be derived from non-uniform Bayesian prior distributions, including normal 
distributions. AIC and BIC (despite BIC’s name) thereby have limited use in Bayesian statistics settings. DIC can 74 
accommodate non-uniform priors but is calculated from pointwise simplified posterior means. The compression of 
full posteriors into pointwise means can prompt DIC to compute an impossible negative effective model parameter 76 
count in select situations (Gelman et al., 2014). Consequently, the original forms of AIC, BIC, and DIC are no 
longer recommended for use in Bayesian model assessment by some statisticians in light of superseding alternatives 78 
(Gelman et al., 2014). 

Three predictive goodness-of-fit metrics address the limitations and stability issues of AIC, BIC, and DIC 80 
by incorporating full, non-uniform posterior distributions in their calculations to better account for overfitting and 
model size (Christensen et al., 2010; Gelman et al., 2014). These metrics include the Widely Applicable information 82 
criterion (WAIC), log pseudomarginal likelihood (LPML), and Pareto-smoothed important sampling leave-one-out 
cross-validation (PSIS-LOO and hereby referred to as LOO). WAIC, LPML, and LOO can estimate the ability of 84 
models to fit unobserved measurements outside of the set of measured data samples (Vehtari et al., 2017). Thus, 
WAIC, LPML, and LOO can be considered as superior barometers for model predictive accuracy compared to AIC, 86 
BIC, and DIC.  
 The overarching goal of this study was to develop a statistically rigorous and mathematically consistent 88 
data assimilation framework for SBM comparison that uses predictive Bayesian goodness-of-fit metrics. We 
pursued three specific objectives as part of that goal. First, we compared the behaviors of two different SBMs, a 90 
linear microbial-implicit model termed the conventional model (CON) and a non-linear microbial-explicit model 
called the Allison-Wallenstein-Bradford model (AWB) (Fig. 1), following data assimilation with soil respiration 92 
data sourced from a meta-analysis of soil warming studies (Romero-Olivares et al., 2017). Second, we characterized 
the parameter spaces of these models using prior probability distributions of parameter values informed by previous 94 
studies and expert judgment. Third, we compared specific Bayesian predictive information criteria in WAIC, LPML, 
and LOO, to the coefficient of determination, R2, for quantifying goodness-of-fit to data. AIC, BIC, and DIC were 96 
not analyzed due to their stability limitations, our usage of non-uniform prior distributions, and redundancy with 
WAIC. 98 

2 Methods 

2.1 Model Structures 100 
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We compared two SBMs, the CON and AWB models (Allison et al., 2010). The models were selected for 
this study due to their relative equation simplicity, their tractable parameter count, and limited biological data input 102 
requirements (Supplemental Index 1). The CON system models three separate C pools as state variables including 
SOC, dissolved organic C (DOC), and microbial biomass C (MIC) pools, while AWB includes SOC, DOC, MIC, 104 
and extracellular enzyme biomass C (ENZ) pools (Fig. 1). Additionally, these models were chosen because they are 
C-only models without nitrogen (N) pools. The increased complexity of N-accounting SBMs will require future 106 
studies with coupled N data sets (Manzoni and Porporato, 2009).  

2.2 Meta-analysis Data 108 

The data set for model fitting was compiled from a recent meta-analysis of 27 soil warming studies that 
measured CO2 fluxes (Romero-Olivares et al., 2017). The experiments reported between 1 and 13 years of CO2 flux 110 
measurements following warming perturbation. The elements of this data set consisted of empirical response ratios 
calculated by dividing CO2 fluxes measured in the warming treatments by time-paired CO2 fluxes measured in the 112 
control treatments. We calculated an annual mean response ratio for each experiment (if data were available for that 
year) after warming treatment began. Using these annual means, we calculated one overall mean response ratio for 114 
each year along with pooled variances and standard deviations. Pooled data points were assumed to be “collected” at 
the halfway point of each year. Because the experiments had variable lengths, the sample size for the pooled annual 116 
mean declines with increasing time since warming perturbation. The warming perturbation was 3°C on average 
across all the studies, and this average was used as the magnitude of warming in the model simulations.  118 

Model-outputted response ratios were calculated by dividing simulated CO2 flux following warming 
perturbation by the CO2 flux at pre-warming steady state. We fit models to flux response ratios rather than raw flux 120 
measurements for several reasons (Wieder et al., 2015b). First, we eliminate the need to convert flux measurements 
from different experiments into a common unit. Second, response ratios represent a standardized metric for warming 122 
response across disparate ecosystem types with varying climate, soil, and vegetation properties. Finally, fitting a 
mean response ratio overcomes data gaps present in individual experiments.  124 

2.3 Hamiltonian Monte Carlo Fitting of Differential Equation Models 

 CON and AWB ordinary differential equation systems were simulated using the CVODE backward 126 
differentiation method (Curtiss and Hirschfelder, 1952) from the SUNDIALS library of equation solvers 
(Hindmarsh et al., 2005). Differential equation models contain parameters that affect state variables, and model-128 
fitting through Markov chain algorithms involves iterating through parameter space one set of parameters at a time. 
We performed model fitting using a Markov chain algorithm called the Hamiltonian Monte Carlo (HMC), using 130 
version 2.18.1 of the RStan interface to the Stan statistical software (Carpenter et al., 2017; Guo et al., 2019) and 
version 3.4.1 of R (R Core Team, 2017). HMC is not a random walk algorithm and uses Hamiltonian mechanics to 132 
determine exploration steps in parameter space. HMC has been theorized to offer more efficient exploration of high-
dimensional parameter space than traditional Random-Walk Metropolis algorithms (Beskos et al., 2013).  134 

Conditional on the meta-analysis data set, the HMC algorithm computed posterior and posterior predictive 
distributions, from which Bayesian statistical inferences on likely ranges of parameter values were then made. 136 
Posterior distributions are the distributions of more likely model parameter values conditional on the data. Posterior 
predictive distributions are the distributions of more likely values for unobserved data points from the data-138 
generating process conditional on the observations. In the case of this study, the experiments constituting the meta-
analysis would be the data-generating process. 140 

For the sake of clarity, it is important to distinguish between the frequentist confidence intervals and 
Bayesian posterior predictive intervals and distributions we describe in our study. Confidence intervals are 142 
calculated from the sample means and standard errors at observed data points and indicate ranges of values that are 
likely to contain the true data values with repeated sample collections using the same methodology. Posterior 144 
predictive intervals and distributions are computed after estimation of the posterior parameter distributions and 
represent the likely distributions of unobserved data values conditional on observed data values. Bayesian credible 146 
intervals, which we will also discuss in this study, are ranges of values that parameters are likely to take with some 
probability that are conditional on the observed data. Credible areas indicate the probability densities of parameter 148 
values across credible intervals. 

We ran four chains for 35,000 iterations each for our HMC simulations, with the first 10,000 iterations 150 
being discarded as burn-in for each chain. Hence, our posterior distributions consisted of 100,000 posterior samples 
per HMC run. In retrospect, because our credible areas displayed sufficient smoothness (Supplemental Fig. 2) and 152 
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Bayesian diagnostics indicated adequate posterior sampling (Supplemental Table 5), we could have reduced 
simulation time without impairing posterior computation by running shorter chains that consisted of 20,000 to 154 
30,000 iterations. To minimize the presence of divergent energy transitions, which indicate issues with exploring the 
geometry of the parameter space specified by the prior distributions, we set the adaptation delta to 0.95, the initial 156 
step size to 0.1, and maximum tree depth to 12. Those parameters determine how the HMC algorithm proposes new 
sets of parameters at each step and were set so that the HMC would begin with smaller exploration steps. The 158 
algorithm varies the step size from its initial value throughout posterior sampling to maintain a desired acceptance 
rate; the tuning sensitivity of the step size is governed by the adaptation delta value, with higher values indicating 160 
reduced sensitivity.  

We further constrained our HMC runs to characterize parameter regimes corresponding to higher biological 162 
realism. Normal informative priors were used to initiate the runs, and the prior distribution parameters were chosen 
based on expert opinion and previous empirical observations (Allison et al., 2010; Li et al., 2014). Prior distributions 164 
had non-infinite supports; supports were truncated to prevent the HMC from exploring parameter space that was 
unrealistic (Supplemental Table 2).  166 

2.4 Model Steady State Initialization 

Because we were mainly interested in testing model predictions of soil warming response, the models were 168 
initiated at steady state prior to the introduction of warming perturbation to isolate model warming responses from 
steady state attraction. We fixed pre-perturbation steady state soil C densities to prevent HMC runs from exploring 170 
parameter regimes corresponding to biologically unrealistic C pool densities and mass ratios. 

To set pre-warming steady state soil C densities, we first analytically derived steady state solutions of the 172 
ordinary differential equations of the models. Then, with the assistance of Mathematica version 12, we re-arranged 
the equations by moving the steady state pool sizes to the left-hand side (Supplemental Appendix 2), such that we 174 
could determine the value of parameters dependent on pool sizes while allowing the rest of the parameters to vary 
for the HMC. Consequently, we could constrain the pre-warming pool sizes from reaching unrealistic values in the 176 
simulations. 

2.5 Sensitivity Analysis of C Pool Ratios 178 

Sensitivity analyses examine how the distributions of model input values influence the distributions of 
model outputs. In our study, we considered pre-warming C-pool densities as a model input. We performed a 180 
sensitivity analysis to observe how the choice of pre-warming C pool densities and C-pool ratios would affect the 
model fits and posterior predictive distribution of C pool ratios.  182 

We compared the model outputs and post-warming response behavior of AWB and CON at equivalent C 
pool densities and ratios. The ratio of soil microbe biomass C (MIC) density to SOC density has been observed to 184 
vary approximately from 0.01 to 0.04 (Anderson and Domsch, 1989; Sparling, 1992), so we used those numbers as 
guidelines for establishing the ranges of the C pool densities and density ratios explored in our simulations. One 186 
portion of the analysis involved running HMC simulations in which we set the pre-warming MIC density at 2 mg C 
g-1 soil and then varied the SOC density from 50 to 200 mg C g-1 soil in increments of 25, stepping from 0.04 to 0.01 188 
with respect to the MIC-to-SOC ratio.  A second portion of the analysis involved observing the effect of varying 
pre-warming MIC from 1 to 8 mg C g-1 soil while holding pre-warming SOC at 100 mg C g-1 soil.  190 

For some combinations of the prior distributions and pre-warming steady state C pool densities 
(Supplemental Table 2), AWB HMC runs wandered into unstable parameter regimes that would prevent the 192 
algorithm from reliably running to completion. Consequently, we do not compare simulation results for AWB and 
CON with pre-warming SOC densities below 50 mg C g-1 soil. Other combinations of prior distribution and pre-194 
warming C pool density choices that were not necessarily biologically realistic allowed stable AWB runs with lower 
pre-warming SOC densities. 196 

2.6 Information Criteria and Cross-validation 

In addition to R2, we used the WAIC, LPML, and LOO Bayesian predictive goodness-of-fit metrics to 198 
evaluate models with the meta-analysis warming response data. LPML is an example of cross validation that is 
calculated similarly to LOO (Gelfand et al., 1992; Gelfand and Dey, 1994; Ibrahim et al., 2001) but differs from 200 
LOO in how the importance ratio sampling portion of its computation is handled. For further explanation regarding 
importance ratios and their role in evaluating approximate cross-validation metrics, refer to the description of the 202 
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LOO algorithm presented in Vehtari and Ojanen (2012). LOO updates LPML by implementing a smoothing process 
in which the largest importance ratios are fitted with a Pareto distribution and then replaced by expected values from 204 
the distribution, which stabilizes the importance ratio sampling.  

Algorithmic differences between WAIC and LPML and LOO render them appropriate for different 206 
statistical modeling goals and make them complementary metrics. WAIC is suitable for estimating the relative 
quality of model fits to hypothetical repeated samples collected at existing experimental time points, whereas LOO 208 
and LPML are suitable for estimating the quality of fits to hypothetical measurements taken between observed time 
points (Vehtari et al., 2017). 210 

We used version 2.0.0 of the loo package available for R to calculate our WAIC and LOO values (Vehtari 
et al., 2019). A lower WAIC and LOO and a higher LPML indicate a more likely model for a given data set. LPML 212 
can be multiplied by a factor of -2 to occupy a similar scale to LOO. 

3 Results 214 

3.1 Parameter Posterior Distributions 

We obtained distributions of posterior predictive fits to the univariate response ratio data for both AWB 216 
and CON across different pre-warming MIC-to-SOC ratios. Posterior samples totaled 100,000 for each simulation. 
Sampler diagnostics for the HMC runs indicated that the statistical models were valid at all pre-warming steady state 218 
values observed (Supplemental Table 6), that model parameter values converged across the four Markov chains 
(Supplemental Fig. 7), and that the posterior parameter space was effectively sampled and explored (Supplemental 220 
Fig. 5) to generate enough independent posterior samples for inference (Supplemental Fig. 6). The ratios of effective 
posterior parameter samples to total samples for parameters were generally satisfactory; across observed MIC-to-222 
SOC ratios, they were all greater than 0.25 and mostly greater than 0.5 (Supplemental Table 5).  

We also tracked divergent transitions, which mark points in chains at which the HMC algorithm was 224 
inhibited in its exploration and posterior sampling, potentially due to the parameter space becoming geometrically 
confined and difficult to navigate. Divergent transitions occurred in the AWB HMC runs (Supplemental Fig. 9), 226 
though the ratios of divergent transitions to sampled iterations was relatively low for all runs. The highest divergent 
transition ratio observed was 0.0217, corresponding to the simulation initiated with pre-warming SOC = 200 mg C 228 
g-1 soil. There were no divergent transitions in the CON runs.  

3.2 Model Behaviors 230 

The CON curve monotonically decreases in response ratio over time, whereas the AWB curve displays 
changes in slope sign (Fig. 2). The difference in curve shape (Fig. 3a, b) is in line with CON’s linear status and 232 
AWB’s non-linear formulation with more parameters (Allison et al., 2010). By 50 years after warming, mean fit 
curves for AWB and CON return to 1.0 after their initial increase (Fig. 3c, d), consistent with prior observations and 234 
expectations at steady state (van Gestel et al., 2018; Romero-Olivares et al., 2017).  

From a cursory visual evaluation, neither of the models clearly out-performs the other across all 236 
prewarming steady states. The 95% confidence interval of the first data point at t = 0.5 years does not include the 
AWB SOC100 posterior predictive mean as it does for the CON SOC100 mean (Fig. 2), which most likely impaired 238 
AWB’s quantitative goodness-of-fit metrics. However, the 95% response ratio posterior predictive interval suggests 
that AWB is able to replicate the response ratio increase in the data from 1.5 to 3.5 years following the warming 240 
perturbation, which CON does not. The shape of the AWB posterior predictive interval also fits the data points and 
confidence intervals occurring eight years or more after the perturbation more closely than that of CON (Fig. 3a, b). 242 

For both AWB and CON, increasing the pre-warming SOC to higher densities from SOC = 50 to 200 mg C 
g-1 soil (hereby labeled from SOC50 to SOC200) while holding pre-warming MIC at 2 mg C g-1 soil, DOC at 0.2 mg 244 
C g-1 soil, and ENZ at 0.1 mg C g-1 soil, corresponded to lower initial mean response ratios in the first year at the t = 
0.5 year time point, which certainly inhibited the quantitative goodness-of-fit (Fig. 3a, b). For CON, increasing pre-246 
warming SOC also reduced the magnitude of the mean fit slope. For AWB, increasing pre-warming SOC had no 
clear effect on the curve slope, but the model needed more time to achieve peak mean response ratio from a lower 248 
start, with the peak being reached at t = 1.5 years in the SOC50 case and t = 3.5 years in the SOC200 case (Fig. 3b). 
At higher pre-warming SOC, CON’s reduced slope magnitude and AWB’s lagging response ratio peak caused both 250 
models to exhibit slower returns to the steady state response ratio of 1.0 (Fig. 3c, d). On their trajectories back to 
steady state, the mean SOC200 CON curve substantially overshoots the data means after t = 7.5 years (Fig. 3a), 252 
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whereas the SOC200 AWB curve exceeds the data means at a more moderate extent through the t = 8.5, 9.5, 10.5 
and 11.5 year time points (Fig. 3b).  254 

Changing the pre-warming MIC-to-SOC steady state pool size ratio by increasing pre-warming MIC from 
1 to 8 mg C g-1 soil (hereby labeled from MIC1 to MIC8) while holding pre-warming SOC at 100 mg C g-1 soil had 256 
marginal to moderate qualitative effects on the mean response ratio curves for CON and AWB. The CON MIC1 and 
MIC8 curves are visually indistinguishable (Supplemental Fig. 1a, b), while the AWB MIC1 and MIC8 curves differ 258 
with the MIC8 curve displaying more gradual changes in slope and lower slope magnitudes (Supplemental Fig. 1c, 
d).  260 

3.3 Sensitivity Analysis of Parameter Distributions to Pre-warming C Pool Densities and Density Ratios 

In addition to response ratio fits, we observed the influence of pre-warming MIC-to-SOC ratios on model 262 
SOC stock response ratios in AWB and CON simulations following warming. Similar to the model flux response 
ratios, SOC response ratios were calculated by dividing evolved post-warming SOC densities by pre-warming 264 
densities. The SOC response ratios at 12.5 years for CON and AWB increased as pre-warming SOC was raised (and 
hence, the MIC-to-SOC ratio decreased) with other pre-warming C densities held constant, indicating reduced 266 
proportional SOC loss when SOC stocks were initiated at higher pre-warming densities (Supplemental Fig. 3a). For 
CON, SOC loss decreased from 27.1% at SOC50 to 9.2% at SOC200. In a similar trend for AWB, SOC loss 268 
decreased from 17.2% at SOC50 to 8.1% at SOC200. In contrast, raising pre-warming MIC densities (and hence, 
increasing the MIC-to-SOC ratio) with other pre-warming C densities held constant did not produce a shared trend 270 
for CON and AWB (Supplemental Fig. 3b). CON SOC loss decreased from 18.8% at MIC1 to 17.4% at MIC8, 
while AWB SOC loss increased from 11.3% at MIC1 to 16.3% at MIC8. 272 
 Truncation of prior supports, or distribution domains, generally did not prevent posterior densities from 
retaining normal distribution shapes. Deformation away from Gaussian shapes for the densities of 𝐸𝑎! from CON 274 
was observed at SOC50 and SOC75. For AWB, deformation was observed for the densities of 𝐸𝑎", 𝐸𝑎#, and 𝐸$!"#. 
All CON and AWB parameter posterior densities were otherwise observed to be Gaussian from SOC100 to 276 
SOC200. Example posterior densities and means for select model parameters at pre-warming SOC100 are presented 
in Fig. 4 and Supplemental Fig. 2. Parameter posterior means corresponding to other pre-warming C pool densities 278 
and ratios are presented in Supplemental Table 3.  

3.4 Sensitivity Analysis of Quantitative Fit Metrics to Pre-warming C Pool Densities and Density Ratios 280 

 For both CON and AWB, LOO, WAIC, LPML, and R2 all worsened as pre-warming steady state SOC 
density was increased from SOC50 to the less biologically realistic SOC200 (Fig. 5). CON’s LOO and WAIC values 282 
increased respectively from -15.704 and -15.818 at SOC50 to -6.891 and -6.966 at SOC200, while AWB’s LOO and 
WAIC values increased respectively from -11.028 and -11.379 at SOC50 to -5.97 and -6.579 at SOC200 284 
(Supplemental Table 4a, b). Compared to AWB’s metrics, CON’s goodness-of-fit metrics deteriorated at a faster 
rate with the increase of pre-warming SOC. Nonetheless, CON outperformed AWB in LOO, WAIC, and LPML 286 
across all observed pre-warming SOC densities. The Bayesian metrics accounted for AWB’s larger model size and 
increased propensity for overfitting as demonstrated by the consistently higher effective parameter counts associated 288 
with AWB (Supplemental Fig. 8a, b). 

Varying pre-warming steady state MIC from MIC1 to MIC8 modestly impaired goodness-of-fit across the 290 
various metrics (Supplemental Fig. 4). CON’s LOO and WAIC values increased respectively from -11.963 and -
12.035 at MIC1 to -11.731 and -11.802 at MIC8, while AWB’s LOO and WAIC values increased respectively from 292 
-8.63 and -9.302 at MIC1 to -8.181 and -8.711 at MIC8 (Supplemental Table 4c, d). CON did not deteriorate in 
goodness-of-fit at a faster rate than AWB with respect to increasing pre-warming MIC. Increasing pre-warming 294 
MIC has the opposite effect on MIC-to-SOC ratio compared to increasing pre-warming SOC, but both changes 
worsened goodness-of-fit across all metrics, indicating that changes to pre-warming MIC-to-SOC ratio did not 296 
produce consistent trends.  

4 Discussion 298 

Our study develops a quantitative, data-driven framework for model comparison that could be applied 
across different research questions, ecosystems, and scales. We demonstrated the novel deployment of WAIC and 300 
LOO, two more recently developed Bayesian goodness-of-fit metrics that estimate model predictive accuracy, to 
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evaluate SBMs using data from longitudinal soil warming experiments. WAIC and LOO improve upon older and 302 
more frequently used metrics, such as AIC and DIC, by accounting for model complexity and overfitting of data in a 
more comprehensive, stable, and accurate fashion. The quantitative agreement between WAIC, LOO, and LPML 304 
reinforces the reliability and validity of information criteria and cross-validation metrics to complement use of 
frequentist R2.  306 

We constrained the fitting of AWB and CON to biologically reasonable parameter space by fixing pre-
warming steady state C pool densities and establishing prior distributions informed by expert judgment 308 
(Supplemental Table 2). We observed that, despite the qualitative difference in the shapes of their mean posterior 
predictive fit curves, CON and AWB could both potentially account for the soil warming response in the meta-310 
analysis data set. For both models, posterior predictive fit distributions overlapped with the confidence intervals of 
the data points (Fig. 2). However, with respect to the Bayesian goodness-of-fit metrics, CON quantitatively 312 
outperformed AWB across all pre-warming SOC and MIC densities observed (Fig. 5 and Supplemental Fig. 4) 
because the Bayesian metrics adjusted for AWB’s larger model size and consistently higher effective parameter 314 
count (Supplemental Fig. 8). For both models, lower pre-warming SOC densities corresponded to better warming 
response fits (Fig. 5).  316 

4.1 Model Responses to Warming over Time 

After fitting, the response ratio curves of CON and AWB both trended toward the pre-warming steady state 318 
response ratio of 1.0 following the soil warming perturbation (Fig. 3). The settling of the curves to the pre-warming 
model steady states aligns with previous literature which demonstrated that the magnitude of CO2 flux tends to fall 320 
after reaching a post-warming maximum (Crowther et al., 2016; Romero-Olivares et al., 2017). In the meta-analysis 
data set, this peak is reached immediately at the first data point at t = 0.5 years (Fig. 2). CON matched this data 322 
pattern in all of our observed simulations in outputting maximum response ratios at the first time point after 
warming (Fig. 3a, c and Supplemental Fig. 1a, b). AWB was unable to output maximum response ratios at the first 324 
time point (Fig. 3b, d) and was therefore penalized in quantitative goodness-of-fit. Examining AWB’s system of 
equations (Supplemental Appendix 1b), we surmise that one reason for the later peak was due to the slower growth 326 
of MIC in the biologically truncated parameter space that AWB was limited to. MIC is a driving force for the 
increase of CO2 flux as a numerator term in the AWB flux equation (Supplemental Appendix 1b, Equation A10). 328 
Unlike MIC biomass in CON (Supplemental Appendix 1a, Equation A3), MIC biomass growth in AWB has two 
loss terms in its differential equation (Supplemental Appendix 1b, Equation A8).  330 

This is not to say that CON was clearly superior from a qualitative standpoint. CON’s mean posterior 
predictive curves were not able to match a subsequent local data maximum in the meta-analysis data set at t = 3.5 332 
years, a trend which AWB’s curves were able to replicate. The mean CON curves also substantially overshoot the 
data at later time points following t = 7.5 years (Fig. 2a, Fig. 3a, c, and Supplemental Fig. 1a, b) because of the 334 
inability of first order linear models such as CON to display oscillatory dynamics (Hale and LaSalle, 1963). 

In contrast, AWB displays damped oscillations in its response ratios following warming due to its non-336 
linear dynamics (Fig. 2 and Fig. 3). AWB was able to match the points after t = 7.5 years more closely than CON. 
The presence of respiration oscillations has been observed in long-term warming experiments, such as the one taking 338 
place at Harvard Forest (Melillo et al., 2017). It is possible AWB would be quantitatively rewarded in goodness-of-
fit metrics over CON for its ability to replicate biologically realistic oscillations in larger, site-specific data sets such 340 
as those from Harvard Forest.  

 342 
4.2 Sensitivity Analyses of C Pool Densities and Density Ratios 
 344 

We performed a goodness-of-fit sensitivity analysis to check whether the response ratio trends stayed 
consistent, biologically realistic, and interpretable across a range of pre-warming, steady state soil C densities and 346 
pool-to-pool density ratios. For instance, we imposed constraints to reflect that MIC-to-SOC density ratios range 
between 0.01 and 0.04 across various soil types (Anderson and Domsch, 1989; Sparling, 1992). CON and AWB 348 
response ratio curves exhibited realistic values and qualitatively consistent shapes across all pre-warming SOC and 
MIC steady state densities, even at less realistic SOC densities above 100 mg C g-1 soil (Fig. 3). There was enough 350 
uncertainty in the data that the 95% posterior predictive intervals for the model output always overlapped with the 
95% confidence intervals of each fitted data point (Fig. 2). In most cases, the posterior mean response ratio curve 352 
also fell within the 95% data confidence interval. 

We were unable to initiate our pre-warming SOC steady state density below SOC50 with the priors and 354 
MIC-to-SOC ratios used for AWB. Under SOC50, AWB HMC runs would not reliably run to conclusion and would 
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terminate due to ODE instabilities. Even at SOC50, we saw a reduction in independent and effective samples for 356 
certain parameters, namely 𝐸𝑎# and 𝐸$!"# (Supplementary Table 5). We did not drop under SOC50 for CON, as we 
sought to compare AWB and CON at similar MIC-to-SOC ranges. Our experience underscores the challenge of 358 
choosing realistic steady state soil C densities, density ratios, and prior distributions to obtain valid model 
comparisons limited to biologically realistic regimes.  360 

The information criteria and cross-validation fit metrics generally indicated higher relative probability and 
predictive performance at lower pre-warming SOC values for AWB and CON (Fig. 5). The fit results suggest that 362 
SOC density of the soil at the sites included in the meta-analysis was likely closer to the lower end of the SOC 
density ranges examined in our sensitivity analysis. A less pronounced trend toward better fits was observed as pre-364 
warming MIC density was decreased while pre-warming SOC density was held constant (Supplemental Fig. 4). No 
clear relationship was observed between MIC-to-SOC ratio and goodness-of-fit in the AWB and CON models.  366 

The worsening IC and CV results at higher SOC densities support the notion that pre-warming steady state 
SOC densities should not be initialized over SOC100 in AWB and CON when fitting to this meta-analysis data set. 368 
Pre-warming SOC density was not observed to exceed 50 mg SOC g-1 soil at sites included in the meta-analysis, 
reaching a maximum of 45 mg SOC g-1 soil for the top 20 cm in one study with alpine wetland soil (Zhang et al., 370 
2014). The majority of the CO2 respired by soil microbes is sourced from surface soil (Fang and Moncrieff, 2005), 
and it is well-documented that SOC densities increase toward the soil surface (Jobbágy and Jackson, 2000). 14C 372 
measurements of CO2 fluxes suggest that SOC densities representing the source of most heterotrophic respiration 
range between 40 to 80 mg SOC g-1 soil (Trumbore, 2000), so the effective SOC densities associated with soil 374 
respiration at some meta-analysis sites may have been in this range. 

Overall, the Bayesian metrics from the goodness-of-fit sensitivity analysis suggest that CON is superior to 376 
AWB at explaining the meta-analysis data set when accounting for model parsimony, particularly when the models 
are initiated in more realistic ranges of pre-warming SOC densities under SOC100. However, we caution against 378 
using these results to conclude that CON is a comprehensively superior predictive model over AWB without 
comparisons involving other longitudinal soil warming data sets. And other data aside, we observe that AWB has a 380 
useful advantage over CON conditional on the meta-analysis data set alone: AWB was more tolerant of changes in 
pre-warming conditions, displaying less IC and CV than CON as pre-warming SOC is increased (Fig. 5a – c). 382 
AWB’s compensatory ability stemming from its larger model size could be more quantitatively rewarding in 
goodness-of-fit sensitivity analyses conducted on data assimilations with larger data sets. 384 

For an additional check on the biological realism and plausibility of our simulations, we conducted a 
sensitivity analysis examining changes in model SOC stocks following warming. The response ratios of post-386 
warming SOC stocks after 12.5 years, evaluated as the ratio of post-warming to pre-warming SOC densities, was 
computed from observed CON and AWB simulations at the posterior parameter means. SOC losses indicated by the 388 
response ratios ranged from 8.13 to 27.1% across both models (Supplemental Fig. 3). These results aligned with a 
recent comprehensive meta-analysis of 143 soil warming studies (Supplemental Fig. 10). The largest loss of 27.1%, 390 
occurring in CON at SOC50, is sizable, but the meta-analysis included 7 studies measuring losses greater than 20%, 
with the maximum loss observed at 54.4% (van Gestel et al., 2018).  392 

Raising pre-warming SOC reduced SOC loss after 12.5 years of warming for both models (Supplemental 
Fig. 3a). For CON, SOC loss decreased from 27.1% at SOC50 to 9.2% at SOC200. For AWB, SOC loss decreased 394 
from 17.2% at SOC50 to 8.13% at SOC200. Varying pre-warming MIC affected the SOC response ratio more 
substantially for AWB than CON (Supplemental Fig. 3b). For AWB, SOC loss increased from 11.4% at MIC1 to 396 
16.3% at MIC8, while SOC loss decreased from 18.8% at MIC1 to 17.4% at MIC8 for CON. The larger effect of 
increasing MIC on the SOC response ratio in AWB is likely due to MIC influence on SOC-to-DOC turnover, which 398 
is not a feedback accounted for in the equations of the CON model (Supplemental Appendix 1a). 

The posterior means for the Arrhenius activation energy parameters 𝐸𝑎 of CON and AWB returned by the 400 
HMC simulations across the observed pre-warming C densities (Supplemental Table 3) differed somewhat from the 
parameter values used in Allison et al. (2010) and Li et al. (2014), which were in turn tuned based on activation 402 
energies estimated in a prior empirical analysis of enzyme-catalyzed soil organic matter decomposition processes 
(Trasar-Cepeda et al., 2007). In Allison et al. (2010), CON parameters 𝐸𝑎!, 𝐸𝑎%, and 𝐸𝑎& were respectively set at 404 
47, 40, and 40 kJ mol-1 and AWB parameters 𝐸𝑎" and 𝐸𝑎"' were both set at 47 kJ mol-1. The AWB Michaelis-
Menten 𝐾&	terms were not parameterized to have Arrhenius temperature dependence in Allison et al. (2010). In Li 406 
et al. (2014), CON parameters 𝐸𝑎!, 𝐸𝑎%, and 𝐸𝑎& were set at 47, 47, and 20 kJ mol-1 and AWB parameters 𝐸𝑎", 
𝐸𝑎"', 𝐸𝑎#, and 𝐸𝑎#' were set at 47, 47, 30, and 30 kJ mol-1. These values were in line with the activation energies 408 
calculated in Trasar-Cepeda et al. (2007), which ranged from 17.0 to 57.7 kJ mol-1, with the energies corresponding 



 9 

to the decomposition of plant litter and protected organic matter being on the higher end and the energies 410 
corresponding to microbial biomass degradation being on the lower. 

Our HMC simulations arrived at higher 𝐸𝑎 values, with the posterior means of 𝐸𝑎!, 𝐸𝑎%, and 𝐸𝑎& 412 
respectively ranging from 51.3 to 77.6 kJ mol-1, 50.1 to 50.3 kJ mol-1, and 51.8 to 52.6 kJ mol-1 in the pre-warming 
SOC-varied simulations for CON, and the posterior means of  𝐸𝑎", 𝐸𝑎"', 𝐸𝑎#, and 𝐸𝑎#' respectively ranging 414 
from 58.5 to 74.8 kJ mol-1, 50.2 to 51.1 kJ mol-1, 25.8 to 42.4 kJ mol-1, and 49.0 to 49.8 kJ mol-1 for AWB. 
However, these values are still within the ranges of organic matter decomposition activation energies, which have 416 
been empirically estimated to exceed 100 kJ mol-1 at their highest in the A-horizons of temperate soils (Steinweg et 
al., 2013), suggesting that the 𝐸𝑎 posterior means, aided by prior truncation, effectively remained within 418 
biologically realistic space across all observed pre-warming C densities. The presence of higher 𝐸𝑎! posterior means 
also agreed with the empirical trends of higher activation energies for the degradation of SOC-related organic 420 
compounds and lower activation energies for the degradation of material associated with microorganisms. 

We found it less useful to compare the posterior means of other fitted parameters including the C pool 422 
transfer coefficients, C use efficiency 𝐸$, and 𝑉()* to empirical estimates for biological benchmarking purposes. 
Unitless parameters like transfer coefficients and 𝐸$ defy straightforward interpretation, measurement, and 424 
estimation from experiments (Bradford and Crowther, 2013). Very different values can be found based on whether 
substrate-specific or substrate-nonspecific assumptions and methods are used (Geyer et al., 2019; Hagerty et al., 426 
2018). 𝑉()* parameters are not unitless but display even higher variance than the bounded C transfer and efficiency 
coefficients. The 𝑉()* parameter corresponding to a specific enzyme can vary over orders of magnitude when the 428 
sensitivity of the enzyme to an interval of temperatures is considered (Nottingham et al., 2016). The process of 
consolidating experimental substrate-specific and substrate-nonspecific measurements into a single number to 430 
correspond to a model 𝑉()* value introduces further complications and uncertainty, rendering comparisons of 
potentially drastically different 𝑉()* values less informative regarding model biological realism.  432 

4.3 HMC Parameter Space Exploration 

Truncating prior and posterior parameter distributions proved useful for establishing biological constraints 434 
and only modestly deformed posterior densities for AWB and CON. From SOC100 to SOC200, CON and AWB 
posterior densities showed little or no deformation from typical normal distribution shapes. Moderate posterior 436 
density deformation was observed for some parameters in both models at SOC50 and SOC75, namely 𝐸𝑎! for CON 
and 𝐸$!"#  for AWB (Supplemental Fig. 11). Even so, most of the other parameter posterior densities still remained 438 
undeformed at those SOC values. Thus, prior truncation generally did not prevent posterior means from falling 
within biologically realistic intervals, suggesting that priors were appropriately informed and chosen. 440 

A small frequency of divergent transitions was detected in the AWB HMC simulations. Divergent 
transitions can be thought of as algorithm trajectory errors arising during the HMC’s exploration of a convoluted 442 
region of parameter space; a more thorough description of the theory, computation, and implications of divergent 
transitions can be found in literature focusing on the Hamiltonian Monte Carlo algorithm (Betancourt, 2016, 2017). 444 
The number of divergent transitions generally increased as the pre-warming MIC-to-SOC steady state ratio was 
reduced (Supplemental Fig. 9). Prior truncation and the fixing of select parameters to constrain the pre-warming 446 
steady state mass values for biological realism could have played a combined role in generating the Markov chain 
divergences by hindering the smooth exploration of parameter space. We were unable to eliminate divergent 448 
transitions by adjusting HMC parameter proposal step size, suggesting that other methods, such as modification of 
the HMC algorithm itself or introduction of auxiliary parameters to AWB that reduce correlation between existing 450 
model parameters may be more applicable in reducing divergent transitions in our case (Betancourt and Girolami, 
2015). Additionally, the interaction between the ranges of values used for the prior distributions and the limited 452 
number of observations in the data set could have contributed to the shaping of geometric inefficiencies (Betancourt, 
2017). 454 

It is possible that the instability that prevented consistent solving and HMC exploration of AWB under 
SOC50 could be traced to the forward Michaelis-Menten formulation of decomposition and uptake kinetics used in 456 
the present version of the AWB model (Supplemental Appendix 1 Equations A7, A8). We initialized the system 
with a small DOC density lower than that of MIC at 0.1 mg C g-1 soil. Since DOC was in the denominator of these 458 
decomposition and uptake expressions, those expressions could become larger than tolerable for the system in 
certain parameter regimes.     460 

Some suggestions for the re-parameterization of AWB to improve model stability have been proposed that 
could reduce or even eliminate divergent transitions by facilitating a smoother and steadier parameter space 462 
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conducive for HMC exploration. One intermediate possibility would be to modify AWB to use reverse Michaelis-
Menten kinetics, which would replace the DOC term in the denominators of the decomposition and uptake 464 
expressions with the larger MIC term. The use of reverse instead of Michaelis-Menten dynamics has been used to 
stabilize and constrain other SBMs (Sulman et al., 2014; Wieder et al., 2015b). A more extensive re-formulation 466 
involves the replacement of Michaelis-Menten expressions with equilibrium chemistry approximation (ECA) 
kinetics, which would increase the number of denominator terms in decomposition expressions for further stability. 468 
ECA equations have been shown to be more consistent in behavior and robust to parameter regime variation than 
their Michaelis-Menten counterparts, and thus have been encouraged as a wholesale replacement for Michaelis-470 
Menten formulations (Tang, 2015; Wang and Allison, 2019). These re-parameterizations should be implemented 
and examined in future work that involves sampling and computation of AWB posteriors. 472 

4.4 Outlook and Conclusions 

Recent SBM comparisons have been unable to demonstrate the superiority of one model over another 474 
because the uncertainty boundaries of the data were not sufficient for distinguishing model outcomes (Sulman et al., 
2018; Wieder et al., 2014, 2015b, 2018). Similar to these previous studies, our results indicate that more data is 476 
needed to constrain and differentiate between model posterior predictive distributions. Conditional on the meta-
analysis data set, CON demonstrates superior quantitative goodness-of-fit over AWB, but we are not confident that 478 
the relative model parsimony of CON and other linear first-order models makes them universally more suitable for 
predictive use. 480 

Consequently, future SBM comparisons would benefit from additional data collection efforts sourced from 
long-term ecological research experiments to globally verify the strengths and limitations of linear versus non-linear 482 
SBMs, including CON and AWB, in Earth system modeling. The limited number of longitudinal soil warming 
studies presents a challenge for facilitating site-specific model comparisons. We addressed this issue by using meta-484 
analysis data to aggregate warming responses across sites, but this approach does not provide site-specific 
parameters. Additional data from ongoing and future field warming studies in the vein of the Harvard Forest and 486 
Tropical Responses to Altered Climate experiments that demonstrate more varied flux dynamics over time than the 
meta-analysis data set will be of critical importance for model testing (Melillo et al., 2017; Wood et al., 2019). 488 
Model parameters could also be better constrained through the use of multivariate data sets, for example microbial 
biomass dynamics in addition to soil respiration.  490 

Our approach can be expanded to compare the predictive accuracies of linear microbial-implicit models to 
those of recently developed non-linear microbial-explicit SBMs that are much larger than AWB, such as CORPSE 492 
(Sulman et al., 2014) and MIMICS (Wieder et al., 2014). Such comparisons will help broadly determine if inclusion 
of more detailed microbial dynamics in models offers predictive advantages that can overcome the overfitting 494 
burdens associated with an increase in parameter count. With the appropriate data sets, our approach can also be 
applied to consider the predictive performance of SBMs that describe the cycling of nitrogen (N), phosphorus (P), 496 
and other limiting nutrients in addition to C dynamics. Models that represent N and P mineralization have yet to see 
extensive head-to-head statistical benchmarking against C-only models with respect to predictive use (Manzoni and 498 
Porporato, 2009). With models growing ever larger in size and specificity, there is a need to verify whether detailed 
representation of microbial processes and the cycling of limiting nutrients are worth the increase in variable, 500 
parameter, and equation counts. After all, “the tendency of more recent models towards more sophisticated (and 
generally more mathematically complex) approaches is not always paralleled by improved model performance or 502 
ability to interpret observed patterns” (Manzoni and Porporato, 2009). 

The data assimilation and posterior sampling of complex models in future work comes with computing 504 
performance challenges. Markov chain Monte Carlo algorithms are effective for exploring multidimensional 
parameter space but are limited by temporal and computational expense, particularly when it comes to fitting non-506 
linear differential equation models (Calderhead et al., 2009; Nemeth and Fearnhead, 2019). Time per Markov chain 
iteration drastically increases with number of parameters and data points. In fact, the present speed limitations of the 508 
family of HMC algorithms make it necessary to use a hybrid approach utilizing Monte Carlo and deep learning 
algorithms for parameter estimation at a global scale; Monte Carlo fitting is used to constrain parameter estimates at 510 
a site-based scale before those estimates are tuned globally by deep learning using spatial information derived from 
satellite maps (Tao et al., 2020). However, Monte Carlo algorithms are still the optimal methods for posterior 512 
computation (Duan et al., 2018) and are necessary for Bayesian model comparisons conditional on site-based data. 
Consequently, recent Monte Carlo algorithm innovations and developments that offer theoretical speed 514 
improvements by trading thorough posterior sampling for numerical efficiency have been encouraging and are ripe 
to be tested in future SBM comparisons involving more complex models and larger data sets. These developments 516 
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include stochastic gradient Monte Carlo sampling methods, a class of techniques in which a posterior is 
approximated by fitting to a small subset of data at each iteration rather than estimated through exhaustive sampling 518 
(Ma et al., 2015), and Gaussian process acceleration, in which a smooth distribution of likely solutions for a 
differential equation system is specified and sampled in place of explicitly solving for the state variables during 520 
every Markov chain iteration (Dondelinger et al., 2013; Wang and Barber, 2014).  

Alongside advances in Monte Carlo algorithms, additional developments in Bayesian cross-validation and 522 
information criteria measures are also available for practical trialing in soil biogeochemical data assimilation. 
Gelman et al. have proposed a stable Bayesian counterpart of frequentist R2 defined as “the variance of the predicted 524 
values divided by the variance of predicted values plus the expected variance of the errors” that allows for more 
intuitive and direct comparison to R2 (Gelman et al., 2019). A Bayesian R2 distribution provides a signal about the 526 
absolute rather than relative goodness-of-fit of an associated posterior predictive distribution to the data. Bürkner et 
al. (2019) have proposed a leave-future-out (LFO) cross-validation metric which is formulated to estimate relative 528 
model predictive accuracy for hypothetical time series data occurring after existing experiment observations. LFO 
and LOO are computed similarly, and LOO can also be used for time series data, as we demonstrated in this study. 530 
However, the algorithmic differences between LFO and LOO make them better suited for different goals. LOO does 
not inform about the quality of model fits for hypothetical samples collected after final reported measurements and 532 
is more appropriate for estimating out-of-sample model predictive accuracy for hypothetical data samples taken 
between the interval of observed measurement times (Vehtari et al., 2017).  534 

The development of our formalized, statistically rigorous approach for model comparison and evaluation is 
a critical step toward the goal of projecting global SOC levels and soil emissions throughout the 21st century. Our 536 
initial results indicate promise in continued refinement and expansion of our approach to evaluate the predictive 
performance of linear and non-linear SBMs. The future integration of updated Markov chain algorithms and 538 
Bayesian predictive accuracy metrics into our framework will expand the ability to efficiently and thoroughly 
compare differential equation models, even if they vary widely in structure and complexity. 540 

Code and Data Availability 

The R scripts, Stan code, and respiration data set used for HMC model fitting along with the original soil respiration 542 
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Figure 1: Diagrams of the pool structures of the (a) CON model; and (b) AWB model. Pools are shown within 748 
circles including soil organic carbon (SOC), dissolved organic carbon (DOC), and microbial (MIC) pools. AWB has 
SOC, DOC, and MIC pools as in CON, but also an extra enzymatic (ENZ) pool. AWB additionally differs from 750 
CON in its non-linear feedbacks and assumption that MIC can influence SOC-to-DOC turnover through the ENZ 
pool. 752 
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 764 
Figure 2: Distribution of fits of (a) CON; and (b) AWB to the meta-analysis data from Romero-Olivares et al., 
(2017). Open circles show the meta-analysis data points. Blue vertical lines mark the 95% confidence interval for 766 
each data point calculated from the pooled standard deviation. The black line indicates the mean model response 
ratio fit. The orange shading marks the 95% posterior predictive interval for the fit. For (a), pre-warming steady 768 
state soil C densities were set at SOC = 100 mg C g-1 soil, MIC = 2 mg C g-1 soil, DOC = 0.2 mg C g-1 soil. For (b), 
pre-warming steady state soil C densities were set at SOC = 100 mg C g-1 soil, MIC = 2 mg C g-1 soil, DOC = 0.2 770 
mg C g-1 soil, and ENZ = 0.1 mg C g-1 soil.  
 772 
 
 774 
 
 776 
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Figure 3: Intra-model comparisons of mean posterior predictive response ratio fits for AWB and CON across 778 
different MIC-to-SOC ratios. Open circles show the meta-analysis data points for reference. The blue, black, and red 
lines indicate model mean fits corresponding to different pre-warming-perturbation steady state SOC values of 50 780 
mg C g-1 soil, 100 mg C g-1 soil, and 200 mg C g-1 soil. The dashed gray line indicates the steady state expectation at 
the response ratio of 1.0. Mean fits are plotted in order of (a) CON; and (b) AWB over the time span of the data and 782 
(c) CON; and (d) AWB over 57 years. 
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 784 
Figure 4: 95% probability density credible areas for model parameters corresponding to pre-warming steady state 
SOC = 100 mg C g-1 soil, DOC = 0.2 mg C g-1 soil, MIC = 2 mg C g-1 soil, and (for AWB) ENZ = 0.1 mg C g-1 soil. 786 
Yellow shaded regions represent 80% credible areas and vertical purple lines indicate distribution mean. (a) CON 
activation energy parameters 𝐸𝑎!, 𝐸𝑎%, and 𝐸𝑎&; (b) CON C pool partition fraction parameters 𝑎%!, 𝑎!%, 𝑎&, and 788 
𝑎&!; (c) AWB activation energy parameters 𝐸𝑎", 𝐸𝑎"', 𝐸𝑎#, and 𝐸𝑎#'; (d) AWB parameters 𝑉+,-, 𝐸$!"#, and 𝑎&!. 
𝑉+,- is the SOC Vmax at the reference temperature 283.15 K, 𝐸$!"# is the carbon use efficiency fraction at the 790 
reference temperature, and like its CON counterpart, the AWB 𝑎&! parameter is the fraction parameter representing 
the proportion of dead microbial biomass C transferred to the SOC pool. Parameter units are displayed in 792 
Supplemental Table 1. Credible areas for AWB parameters 𝑉'!"# and 𝑚. are shown in Supplemental Fig. 2 because 
of differing horizontal axes scales. 794 
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Figure 5: Goodness-of-fit metrics plotted against initial steady state SOC for AWB and CON models for (a) LOO; 796 
(b) WAIC cross-validation; (c) LPML; and (d) R2 values. Pre-perturbation steady state MIC, DOC, and ENZ (for 
AWB) is held constant as pre-perturbation SOC is varied. 798 


