Supplemental Materials

Supplemental Table 1: List of CON and AWB model parameters.

Model	Parameter	Value, if not varied	Units	Parameter Description
CON/AWB	I_S	0.0009	mg C g-1 soil h-1	External SOC input rate
CON/AWB	I _D	0.0001	mg C g-1 soil h-1	External DOC input rate
CON	$k_{S_{ref}}$	Dependent	mg C mg-1 C h-1	SOC decay constant
CON	$k_{D_{ref}}$	Dependent	mg C mg-1 C h-1	DOC decay constant
CON	$k_{M_{ref}}$	Dependent	mg C mg-1 C h-1	MIC decay constant
CON	u_M	0.002	mg C g-1 DOC h-1	DOC uptake rate of microbes
CON	Ea_S	Fitted by HMC	kJ mol-1	SOC activation energy
CON	Ea_D	Fitted by HMC	kJ mol-1	DOC activation energy
CON	Ea_M	Fitted by HMC	kJ mol-1	MIC activation energy
CON	a_{DS}	Fitted by HMC		DOC to SOC transfer coefficient
CON	a_{SD}	Fitted by HMC		SOC to DOC transfer coefficient
CON	a_M	Fitted by HMC		MIC to SOC transfer coefficient
CON	a_{MS}	Fitted by HMC		Fraction of dead MIC transferred
AWB	K _{ref}	Dependent	mg C g-1 soil	SOC reference <i>K</i> _M
AWB	K _{Uref}	Dependent	mg C g-1 soil	DOC uptake into MIC reference KM
AWB	V _{ref}	Fitted by HMC	mg C mg-1 C h-1	SOC reference Vmax
AWB	$V_{U_{ref}}$	Fitted by HMC	mg C mg-1 MIC h-1	DOC uptake into MIC reference Vmax
AWB	Ea_K	Fitted by HMC	kJ mol-1	SOC KM activation energy
AWB	Ea_{KU}	Fitted by HMC	kJ mol-1	DOC uptake <i>K_M</i> activation energy
AWB	Ea_V	Fitted by HMC	kJ mol-1	SOC Vmax activation energy
AWB	Ea_{VU}	Fitted by HMC	kJ mol-1	DOC uptake Vmax activation energy
AWB	r_E	Dependent	mg C mg-1 MIC h-1	Enzyme production rate
AWB	r_L	0.0005	mg C mg-1 C h-1	Enzyme loss rate
AWB	r_M	Dependent	mg C mg-1 C h-1	MIC death rate
AWB	$E_{C_{ref}}$	Fitted by HMC	mg C mg-1 C	Reference temperature C use efficiency (CUE)
AWB	m_t	Fitted by HMC	°C-1	CUE temperature change slope

18 Supplemental Appendix 1

(a) CON ODE system equations

20 The conventional (CON) model consists of three C pools in SOC, DOC, and MIC. The mass transfer of C between these pools is represented as first-order linear decay processes. The CON model obeys the following dynamics:

$$\frac{dS}{dt} = I_S + a_{DS}k_D D + a_M a_{MS}k_M M - k_S S \tag{1}$$

$$\frac{dD}{dt} = I_D + a_{SD}k_SS + a_M(1 - a_{MS})k_MM - u_MD - k_DD$$
(2)

26

$$\frac{dM}{dt} = u_M D - k_M M \tag{3}$$

28

The decay constants k_I vary from their reference values k_{Iref} based on the Arrhenius equation of temperature dependence,

32
$$k_{I} = k_{I_{ref}} exp\left[-\frac{Ea_{I}}{R}\left(\frac{1}{T} - \frac{1}{T_{ref}}\right)\right]$$
(4)

- 34 where *R* is the ideal gas constant 8.314 J mol-1 K-1 and the reference temperature T_{ref} used was 283.15 K.
- 36 CO₂ soil flux is calculated from the CON model by summing the proportion of fluxes that do not enter soil C pools at each time step:
 38

$$CON \text{ flux } = k_S S(1 - a_{SD}) + k_D D(1 - a_{DS}) + k_M M(1 - a_M)$$
(5)

Response ratios are then calculated from the model output flux by dividing the flux calculated at a given time point 42 by the pre-warming steady state flux.

44 **(b)** AWB ODE system equations

The Allison-Wallenstein-Bradford (AWB) model consists of four C pools in SOC, DOC, MIC, and ENZ

- 46 (representing the extracellular enzyme C mass). In the AWB model, MIC accumulation and SOC decomposition follow a non-linear Michaelis-Menten function. Other processes, including ENZ production, ENZ loss, and MIC
 48
- 48 death still follow a first-order linear decay process. The AWB system equations are as follows:

$$\frac{dS}{dt} = I_S + a_{MS}r_M M - \frac{VES}{K+S}$$
(6)

52
$$\frac{dD}{dt} = I_D + (1 - a_{MS})r_M M + \frac{VES}{K+S} + r_L E - \frac{V_U MD}{K_U + D}$$
(7)

$$\frac{dM}{dt} = E_C \frac{V_U M D}{K_U + D} - r_M M - r_E M \tag{8}$$

56 Similar to the CON decay constants, the Michaelis-Menten function parameters K, K_U , V, and V_U vary from their reference values based on the Arrhenius equation. E_c , the AWB microbial C use efficiency parameter, depends

- 58 linearly on temperature, following Li et al., 2014, and operates under the simplifying assumption that higher
- temperatures make C use slightly less efficient:
- 60

$$E_{C} = E_{C_{ref}} - m_t (T - T_{ref}) \tag{9}$$

The loss rate parameters r_I were not made to be temperature dependent.

66	MIC pool:	of that is not partitioned into the	ne	
	A	WB flux = $(1 - E_c) \frac{V_U M D}{K_c + D}$		(10)
68		$K_U + D$		
70				
72				
74				
76				
78				
80				
82				
84				
86				
88				
90				
92				
94				
96				
98				
100				
102				
104				
106				
108				
110				
112				
114				
116				

118

120 Supplemental Appendix 2

122 (a) Re-arranged CON steady state equations

The steady state solutions for the C pools in CON are as follows:

124

$$D_0 = \frac{a_{SD}I_S + I_D}{u_M + k_D + u_M a_M (a_{MS} - a_{MS}a_{SD} - 1) - a_{DS}k_D a_{SD}}$$
(11)

126

$$M_0 = \frac{u_M}{k_M} D \tag{12}$$

128

$$S_0 = \frac{I_S + D(a_{MS}k_D + u_M a_M a_{MS})}{k_S}$$
(13)

130

To set pre-warming steady state soil C densities to desired values, we re-arranged the steady state equations into the following forms to solve for the steady state values of parameters that depend on the soil C densities:

134
$$k_{Mref} = \frac{u_M D_0}{M_0} \tag{14}$$

136
$$k_{Dref} = \frac{-I_D - a_{SD}I_S + u_M D_0 - a_M D_0 u_M + a_M a_{MS} u_M D_0 - a_M a_{MS} a_{SD} u_M D_0}{(a_{DS} a_{SD} - 1)D_0}$$
(15)

138
$$k_{Sref} = \frac{I_S + D_0 (a_{DS} k_{Dref} + u_M a_M a_{MS})}{S_0}$$
(16)

140 (**b**) Re-arranged AWB steady state equations

The steady state solutions for the C pools in AWB are as follows:

142

$$S_{0} = \frac{-r_{L}K\left(I_{S}\left(r_{M}\left(1 + E_{C}(a_{MS} - 1)\right) + r_{E}(1 - E_{C})\right) + E_{C}I_{D}a_{MS}r_{M}\right)}{I_{S}\left(r_{M}\left(r_{L}\left(1 + E_{C}(a_{MS} - 1)\right)\right) + r_{E}(r_{L}(1 - E_{C}) - E_{C}V)\right) + E_{C}I_{D}(a_{MS}r_{M}r_{L} - r_{E}V)}$$
(17)

144

$$M_0 = \frac{E_C(I_D + I_S)}{(1 - E_C)(r_M + r_E)}$$
(18)

146
$$D_0 = \frac{-K_U (r_M + r_E)}{r_M + r_E - E_C V_U}$$
(19)

$$E_0 = \frac{r_E M}{r_L}$$
(20)

150

To set pre-warming steady state soil C densities to desired values, we re-arranged the steady state equations into the following forms:

$$r_{\rm M} = \frac{-E_{C_{ref}}(I_D + I_S) + M_0 r_E \left(1 - E_{C_{ref}}\right)}{M_0 \left(E_{C_{ref}} - 1\right)}$$
(21)

$$K_{U_{ref}} = \frac{-D_0 \left(r_M + r_E - E_{C_{ref}} V_{U_{ref}} \right)}{r_M + r_E}$$
(22)

Supplemental Figure 1: Distribution of AWB fits to meta-analysis data (Romero-Olivares et al., 2017) with (a)

- $MIC = 1 \text{ mg } C \text{ g}_{-1} \text{ soil}; \text{ and (b) } MIC = 8 \text{ mg } C \text{ g}_{-1} \text{ soil. Open circles show the meta-analysis data points. Blue$
- vertical lines mark the 95% confidence interval for each data point calculated from the pooled standard deviation.
- 212 The black line indicates the mean model fit. The orange shading marks the 95% posterior predictive interval for the
- fit. For (a) and (b), the non-MIC pre-warming steady state soil C densities were set at SOC = $100 \text{ mg C } \text{g}_{-1}$ soil, 214 DOC = $0.2 \text{ mg C } \text{g}_{-1}$ soil, and ENZ = $0.1 \text{ mg C } \text{g}_{-1}$ soil.

Supplemental Figure 2: 95% credible areas for (a) AWB V_{Uref}; and (b) mt parameters corresponding to pre warming steady state SOC = 100 mg C g-1 soil, DOC = 0.2 mg C g-1 soil, MIC = 2 mg C g-1 soil, and ENZ = 0.1 mg C g-1 soil.

Supplemental Figure 3: Fraction of SOC remaining 12 years after warming perturbation in AWB and CON
 simulations. (a) Pre-warming steady state SOC varied from 50 to 200 mg C g-1 soil, with pre-warming MIC, DOC

282

and ENZ held constant respectively at 2 mg C g-1 soil, 0.2 mg C g-1 soil, and 0.1 mg C g-1 soil; (b), Pre-warming MIC varied from 1 to 8 mg C g-1 soil, with pre-warming SOC, DOC and ENZ held constant, respectively, at 100 mg C g-1 soil, 0.2 mg C g-1 soil, and 0.1 mg C g-1 soil.

Supplemental Table 2: AWB and CON prior distribution tables. Including σ , the residual error scale term, we fit 10 parameters in our AWB runs and 8 parameters in our CON runs. Normal, Gaussian priors were used for all fitted

322 ODE model parameters. The notation we use for our normal distributions follows an N(mean, standard deviation)

format. The Markov chain guess-scaling parameter, σ , was drawn from a more weakly informative half-Cauchy

324 distribution per recommendations from literature (Gelman, 2006).

326 (a) CON priors

Parameter	Distribution	Parameter Description
Ea _s	N(50,25)	SOC activation energy
Ea_D	N(50,25)	DOC activation energy
Ea _M	N(50,25)	MIC activation energy
a_{DS}	N(0.3,0.15)	DOC to SOC transfer coefficient
a _{SD}	N(0.3,0.15)	SOC to DOC transfer coefficient
a_M	N(0.3,0.15)	MIC to SOC transfer coefficient
a_{MS}	N(0.5,0.25)	Fraction of dead MIC transferred
σ	Cauchy(0,1)	Residual Error Scale

328 (b) AWB priors

Parameter	Distribution	Parameter Description
V _{ref}	N(0.4,0.2)	SOC reference V _{max}
$V_{U_{ref}}$	N(0.01,0.005)	DOC reference V _{max}
Ea_V	N(50,25)	SOC V _{max} activation energy
Ea_{VU}	N(50,25)	DOC V _{max} activation energy
Ea_K	N(50,25)	SOC Km activation energy
Ea_{KU}	N(50,25)	DOC Km activation energy
$E_{C_{ref}}$	N(0.4,0.2)	Reference C use efficiency (CUE)
m_t	N(0.002,0.001)	CUE slope
a_{MS}	N(0.5,0.25)	Fraction of dead MBC transferred to SOC
σ	Cauchy(0,1)	Residual Error Scale

Supplemental Table 3: Posterior means calculated for parameters that were fit in HMC runs are displayed in the following tables.

350 (a) CON posterior distribution means for SOC-varied runs

	Parameter	SOC = 50	SOC = 75	SOC = 100	SOC = 125	SOC = 150	SOC = 175	SOC = 200
	Eas	77.5688	73.5806	66.6395	60.8239	56.6663	53.5904	51.3607
	Ea_D	50.1994	50.327	50.2519	50.1629	50.1603	50.2286	50.1584
	Ea_M	52.4829	52.4331	52.2358	52.0848	51.9255	51.9786	51.7802
	a_{DS}	0.3246	0.3256	0.3271	0.3263	0.3262	0.3263	0.3271
	a_{SD}	0.3337	0.3351	0.3363	0.3363	0.337	0.3364	0.337
	a_M	0.3384	0.3397	0.337	0.3341	0.3333	0.3325	0.3314
	a _{MS}	0.5048	0.5032	0.5006	0.5001	0.4962	0.4971	0.496
	σ	0.1338	0.139	0.1552	0.1677	0.1765	0.183	0.1875
352								
552	(b) AWB po	sterior distributi	on means for SC	DC-varied runs				
	Parameter	SOC = 50	SOC = 75	SOC = 100	SOC = 125	SOC = 150	SOC = 175	SOC = 200
	V _{ref}	0.3792	0.4043	0.4103	0.4154	0.4174	0.4211	0.4225
	$V_{U_{ref}}$	0.0104	0.0104	0.0104	0.0104	0.0104	0.0104	0.0104
	Ea_V	74.5409	70.1111	65.0713	62.2252	60.5653	59.1068	58.3651
	Ea_{VU}	50.2139	50.4011	50.6711	50.8293	50.9639	51.0867	51.0899
	Ea_K	26.0240	30.3601	35.4526	38.3727	40.2573	41.3633	42.1677
	Ea_{KU}	49.8581	49.5998	49.5098	49.2307	49.0796	48.9942	49.0002
	$E_{C_{ref}}$	0.2055	0.2523	0.3381	0.4041	0.4538	0.4905	0.5126
	m_t	0.0018	0.0021	0.0022	0.0022	0.0023	0.0023	0.0023
	a_{MS}	0.494	0.4984	0.5013	0.5064	0.5129	0.521	0.526
254	σ	0.1521	0.1504	0.1601	0.1654	0.1698	0.1741	0.1781
354	(c) CON pos	terior distributio	on means for MI	C-varied runs				
	Parameter	MIC = 1	MIC = 2	MIC = 3	MIC = 4	MIC = 6	MIC = 8	
	Eas	67.3478	66.6395	66.0341	65.2664	64.1673	62.9712	
	Ean	50.0552	50.2519	50.2694	50.5307	50.7564	50.8176	
	Ea_{M}	50.8727	52.2358	53.0678	53.866	54.9957	55.6118	
	ans	0.3271	0.3271	0.3259	0.3265	0.3267	0.3259	
	a_{SD}	0.3328	0.3363	0.3402	0.3414	0.3455	0.3465	
	a_M	0.3347	0.337	0.3371	0.3367	0.3363	0.3348	
	a _{MS}	0.5044	0.5006	0.5	0.498	0.4957	0.494	
	σ	0.155	0.1552	0.1549	0.1556	0.1556	0.1563	
356								
358	(d) AWB po	sterior distributi	on means for M	IC-varied runs				
	Parameter	MIC = 1	MIC = 2	MIC = 3	MIC = 4	MIC = 6	MIC = 8	
	V _{ref}	0.4026	0.4103	0.4149	0.4169	0.422	0.4241	

$V_{U_{ref}}$	0.0104	0.0104	0.0104	0.0104	0.0104	0.0104
Ea_V	65.6762	65.0713	65.1575	65.314	65.6712	66.0533
Ea_{VU}	50.7039	50.6711	50.6658	50.7089	50.5448	50.4471
Ea_K	34.9008	35.4526	35.4906	35.3379	35.1293	34.871
Ea_{KU}	49.4109	49.5098	49.5087	49.4814	49.4972	49.6048
$E_{C_{ref}}$	0.2595	0.3381	0.395	0.4358	0.4959	0.5342
m_t	0.0022	0.0022	0.0022	0.0022	0.0023	0.0023
a_{MS}	0.4867	0.5013	0.5166	0.5348	0.5619	0.581
σ	0.1596	0.1601	0.1604	0.1609	0.1629	0.1643

Supplemental Figure 4: Change in fit metrics for AWB and CON as pre-warming steady state MIC is varied from 1 to 8 mg C g-1 soil. (a) LOO; (b) WAIC; (c) LPML; (d) R₂

Supplemental Figure 5: Trace plots for AWB and CON parameters indicate that the Markov chains were well-430 mixed with appropriate burn-in. Example trace plots depicted in which pre-warming SOC = 100 mg C g-1 soil, MIC = 2 mg C g-1 soil, DOC = 0.2 mg C g-1 soil, and (for AWB) ENZ = 0.1 mg C g-1 soil. (a) CON E_a parameters; (b) 432 CON partition fraction parameters; (c) AWB Ea parameters; (d) AWB parameters Vref, ECref, ams, VUref, and mt.

(a) (b) 0.75 alter ideas stores helder at the block of the deal and the West of the store of the 75 **o**^{20.50} eg 20 0.25 0 25000 20000 25 5000 10000 15000 25000 5000 10000 15000 20000 0.75 and when the still of the state of the state of the a final of the last 0.50 75 0.25 **e** 50 20000 25000 5000 10000 15000 25 0.75 in the own to be the drive the and the address the own the product of the drive of the t and to which a basis is to capital and a capital and a state of a state of the state of the state of the second **c**[≥] 0.50 10000 15000 20000 25000 5000 0.25 5000 10000 15000 20000 75 вд 50 0.75 o^{S2} 0.50 25 0.25 ker Post–warmup iteration 5000 25000 5000 10000 15000 20000 25000 Post-warmup iteration (c) (d) service and a second <75 в[>]50 and the president of the first state of the second state of the second state of the 0.00 25 25000 20000 5000 10000 15000 5000 10000 15000 25000 0.75 EC 0.50 TAY STATEME 75 eg 50 0.24 e, en he ment det el companya de la colta en energe alta complete de constante en energe en el en 0.00 20000 25000 10000 15000 25 sharehouse of the holes of a bold out of the source of the bold of the a_{MS} 0.75 25000 10000 15000 0.50 0.25 75 in which where because the state of the state 25000 10000 20000 5000 15000 æ[¥] 50 0.03 0.02 25 eichligheadd haef e rheadir Mileshahaide a Areart Barthalabhaide alaitean 5000 10000 15000 20000 25000 0.00 25000 10000 15000 20000 wards faith and a start of the second start and the STOCK MI STOCKED & D. Serter 25 eg 50 ⊟ 25 0.006 encertained bearing and with the the bar of main all the second of the second of the second part E 0.004 25 in by the as he leads and We Hich 15000 20000 0.000 20000 25000 10000 25000 10000 15000 5000 Post-warmup iteration Post-warmup iteration

Chain

- 1

-2

- 3 4

434

436

438

440

442

Supplemental Figure 6: Autocorrelation plots for pre-warming SOC = $100 \text{ mg C } \text{g}_{-1}$ soil, MIC = $2 \text{ mg C } \text{g}_{-1}$ soil, DOC = $0.2 \text{ mg C } \text{g}_{-1}$ soil, and (for AWB) ENZ = $0.1 \text{ mg C } \text{g}_{-1}$ soil indicate effective sample collection. For all fitted

- 448 AWB and CON parameters, autocorrelation, or the dependence between values of the same parameter accepted by Markov chains, tends to drop as lag, the distance between MCMC iterations increases. Low autocorrelation indicates
- 450 more independence between samples and more efficient collection of effective samples for inference. (a) CON E_a
- parameters; (b) CON partition fraction parameters; (c) AWB E_a parameters; (d) AWB parameters V_{ref}, E_{Cref}, a_{Ms}, 452 VU_{ref}, and m_t.

Supplemental Figure 7: \hat{R} is a Bayesian diagnostic measure that estimates the degree of convergence between 468 multiple Markov chains. An \hat{R} value that approaches 1 as the number of Markov chain iterations increase is ideal. Plots of \hat{R} values for (a) CON; and (b) AWB parameters corresponding to simulations using pre-warming SOC =

470 100 mg C g-1 soil, MIC = 2 mg C g-1 soil, DOC = 0.2 mg C g-1 soil, and (for AWB) ENZ = 0.1 mg C g-1 soil.

Supplemental Figure 8: Plots of effective parameter counts for CON and AWB in SOC-varied and MIC-varied
 HMC runs. Decreasing SOC in AWB and CON runs increased effective parameter count and over-fitting
 punishment in the LOO and WAIC calculations. Effective parameter counts computed as part of (a) LOO for SOC-

502 Supplemental Figure 9: Ratio of divergent transitions to total posterior samples collected in AWB runs. Decreasing the MIC-to-SOC ratio in AWB runs corresponded to an increase in the number of divergent transitions. Divergent transition frequencies in (a) varied SOC runs; and (b) in varied MIC runs.

Supplemental Figure 10: Fraction change of SOC stocks from 143 field warming studies versus study duration 544 (van Gestel et al., 2018). A statistical analysis not accounting for sample size of each study found that the effect of duration on fraction change was insignificant (p = 0.7822). Fraction change ranged from 0.544 to 1.9. Mean fraction 546 change was 1.03, not accounting for sample sizes.

Supplemental Table 4: N_{eff} / N (effective posterior sample ratio) for model parameters. Ratios of effective posterior
 samples to total posterior samples for each parameter fit to in the AWB and CON runs.

574	(a) CON SO	C-varied runs						
	Parameter	SOC = 50	SOC = 75	SOC = 100	SOC = 125	SOC = 150	SOC = 175	SOC = 200
	Ea_S	0.7708	0.7856	0.7921	0.8446	0.7685	0.8423	0.8359
	Ea_D	1.0000	1.0000	0.8920	1.0000	0.9356	1.0000	1.0000
	Ea_M	1.0000	1.0000	0.9421	1.0000	0.9136	1.0000	1.0000
	a_{DS}	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	a_{SD}	1.0000	1.0000	1.0000	1.0000	0.8226	1.0000	1.0000
	a_M	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	a_{MS}	1.0000	1.0000	0.9226	1.0000	0.9177	1.0000	1.0000
	σ	0.6182	0.6641	0.6166	0.6432	0.6149	0.6821	0.6344
576	(b) AWB SC	C-varied runs						
	Parameter	SOC = 50	SOC = 75	SOC = 100	SOC = 125	SOC = 150	SOC = 175	SOC = 200
	V _{ref}	0.3642	1.0000	1.0000	0.7557	0.7705	0.8939	0.8038
	$V_{U_{ref}}$	0.5190	1.0000	1.0000	0.5679	0.4973	1.0000	0.5206
	Ea_V	0.0689	0.7158	0.6108	0.4743	0.4496	0.4597	0.4079
	Ea_{VU}	0.7576	1.0000	1.0000	0.8374	0.8901	1.0000	0.8460
	Ea_K	0.1994	0.7085	0.6148	0.4702	0.4545	0.4701	0.4287
	Ea_{KU}	0.8343	1.0000	1.0000	0.8575	0.8936	1.0000	0.8390
	$E_{C_{ref}}$	0.3305	0.6603	0.7058	0.5220	0.3752	0.3572	0.2342
	m_t	0.6162	1.0000	1.0000	0.5341	0.5880	1.0000	0.5904
	a_{MS}	0.8619	1.0000	1.0000	0.8114	0.9012	1.0000	0.8356
	σ	0.4510	0.6577	0.6396	0.5424	0.5430	0.5882	0.5105
578	(c) CON MI	C-varied runs						
	Parameter	MIC = 1	MIC = 2	MIC = 3	MIC = 4	MIC = 6	MIC = 8	
	Ea_S	1.0000	0.7921	1.0000	1.0000	0.8201	0.7856	
	Ea_D	1.0000	0.8920	1.0000	1.0000	0.8935	1.0000	
	Ea_M	1.0000	0.9421	1.0000	1.0000	0.9057	0.9182	
	a_{DS}	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
	a_{SD}	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
	a_M	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
	a_{MS}	1.0000	0.9226	1.0000	1.0000	0.9255	1.0000	
	σ	0.6548	0.6166	0.6901	0.6759	0.6148	0.6258	
580	(d) AWB MI	IC-varied runs						
	Parameter	MIC = 1	MIC = 2	MIC = 3	MIC = 4	MIC = 6	MIC = 8	
	V_{ref}	0.6324	1.0000	1.0000	0.8350	0.9067	0.8005	
	$V_{U_{ref}}$	0.7500	1.0000	1.0000	1.0000	1.0000	0.6008	
	Ea_V	0.4216	0.6108	0.5942	0.5510	0.6135	0.5555	

Ea_{VU}	0.7500	1.0000	1.0000	1.0000	1.0000	0.8975
Ea_K	0.4283	0.6148	0.5959	0.5651	0.6101	0.5557
Ea_{KU}	0.7500	1.0000	1.0000	1.0000	1.0000	0.8842
E_{ef}	0.4559	0.7058	0.6996	0.5715	0.5393	0.4942
m_t	0.4294	1.0000	1.0000	0.6233	0.6211	0.6247
a _{MS}	0.7500	1.0000	1.0000	1.0000	1.0000	0.7735
σ	0.4438	0.6396	0.6555	0.5900	0.5916	0.5097