
Comments are in black and responses in blue. 
 
Response to Reviewer #3 
 
Angot and others measure biogenic volatile organic compound fluxes and 
atmospheric concentrations in a tundra environment. The measurements were 
carried out competently and the study is interesting, my comments are only minor. 
 
Line 36: some species have even shorter lifetimes e.g.  
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/95JD00368 
 
We have revised this sentence accordingly: “Despite their relatively short 
atmospheric lifetimes (a few minutes to 1 day for terpenoids) (…)”. 
 
Line 177: Was the 30-minute sampling period in order to ensure that enough 
material was collected? There will be vertical mixing between levels at that time 
scale, even in the arctic, especially because sensible heat flux and convective 
energy is higher than many people realize due to the inefficiency of mosses and 
lichens at moving water vapor to the atmosphere (e.g. 
https://bg.copernicus.org/articles/8/3375/2011/).  
 
Indeed, the manuscript has been revised accordingly: “Once the balloon reached its 
apex (~250-300 m a.g.l.), the five pumps were activated simultaneously and 
samples collected for 30 minutes to ensure that enough material was collected. It 
should be noted that changes in wind speed and turbulence during the 30-min 
sampling period often affected the shape of the tethered line and the sampling 
altitude adding further uncertainty to the vertical profiles presented here”. 
 
(‘Clock’ also probably shouldn’t be capitalized).  
 
Done. 
 
I’m not really sure what ‘Miscellaneous’ means in Figure 8. Perhaps it was 
mentioned in the text but the legend did not define it. I found the used on 216. More 
explanation of what is included in this grouping (which might accurately be called 
‘other’) because it is not a ‘vegetation type’ (line 215) would lead to less confusion. 
Does it combine vascular and non-vascular species for example? 
 
The definition of ‘Miscellaneous’ (mix of different species, including lichens and 
moss tundra) has been added to the caption of Figures 6, 7, and 8. 
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Abstract 10 

Rapid Arctic warming, a lengthening growing season, and increasing abundance of biogenic volatile 11 
organic compounds (BVOC)-emitting shrubs are all anticipated to increase atmospheric BVOCs in the 12 
Arctic atmosphere, with implications for atmospheric oxidation processes and climate feedbacks. 13 
Quantifying these changes requires an accurate understanding of the underlying processes driving BVOC 14 
emissions in the Arctic. While boreal ecosystems have been widely studied, little attention has been paid to 15 
Arctic tundra environments. Here, we report terpenoid (isoprene, monoterpenes, and sesquiterpenes) 16 
ambient mixing ratios and emission rates from key dominant vegetation species at Toolik Field Station 17 
(TFS; 68°38’N, 149°36’W) in northern Alaska during two back-to-back field campaigns (summers 2018 18 
and 2019) covering the entire growing season. Isoprene ambient mixing ratios observed at TFS fell within 19 
the range of values reported in the Eurasian taiga (0-500 pptv), while monoterpene and sesquiterpene 20 
ambient mixing ratios were respectively close to and below the instrumental quantification limit (~2 pptv). 21 
Isoprene surface emission rates ranged from 0.2 to 2250 µgC/m2/h (mean of 85 µgC/m2/h) and monoterpene 22 
emission rates remained on average below 1 µgC/m2/h over the course of the study. We further quantified 23 
the temperature dependence of isoprene emissions from local vegetation including Salix spp. (a known 24 
isoprene emitter), and compared the results to predictions from the Model of Emissions of Gases and 25 
Aerosols from Nature version 2.1 (MEGAN2.1). Our observations suggest a 180-215% emission increase 26 
in response to a 3-4°C warming and the MEGAN2.1 temperature algorithm exhibits a close fit with 27 
observations for enclosure temperatures in the 0-30°C range. The data presented here provide a baseline to 28 
investigate future changes in the BVOC emission potential of the under-studied Arctic tundra environment. 29 
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1. Introduction 30 

As a major source of reactive carbon to the atmosphere, biogenic volatile organic compounds 31 

(BVOCs) emitted from vegetation play a significant role in global carbon and oxidation cycles 32 

(Fehsenfeld et al., 1992). Global emission estimates of BVOCs are in the range of 700-1100 TgC 33 

per year, ~70-80% of which corresponds to terpenoid species: isoprene, monoterpenes (MT), and 34 

sesquiterpenes (SQT) (Guenther et al., 1995, 2006; Sindelarova et al., 2014). Despite their 35 

relatively short atmospheric lifetimes (a few minutes to 1 day for terpenoids), BVOCs affect 36 

climate through their effects on the hydroxyl radical (OH, which dictates the lifetime of 37 

atmospheric methane), tropospheric ozone (O3, a key greenhouse gas), and aerosols (which 38 

influence radiative scattering) (Arneth et al., 2010; Fuentes et al., 2000; Peñuelas and Staudt, 39 

2010). The oxidation of those BVOCs also drives the formation of secondary organic aerosols 40 

(SOA) through both gas- and aqueous-phase mechanisms (Carlton et al., 2009; Lim et al., 2005). 41 

The potential for increased SOA formation, expected to result in climate cooling (Kulmala et al., 42 

2004), complicates the climate feedbacks of BVOC emissions (Tsigaridis and Kanakidou, 2007; 43 

Unger, 2014).  44 

Global models of BVOC emissions assume minimal emissions from the Arctic due to low leaf 45 

area index and relatively cold temperatures (Guenther et al., 2006; Sindelarova et al., 2014). 46 

However, this assumption relies on few observations and has been increasingly challenged by field 47 

data (Tang et al., 2016). Recent measurements have revealed significant BVOC emissions from 48 

Arctic tundra and vegetation, including Sphagnum mosses, wetland sedges, and dwarf shrubs 49 

(Ekberg et al., 2009, 2011; Faubert et al., 2010; Holst et al., 2010; Lindfors et al., 2000; Potosnak 50 

et al., 2013; Rinnan et al., 2011; Schollert et al., 2014; Tiiva et al., 2008). These results are of 51 

importance because BVOC emissions are expected to increase in the Arctic due to climate 52 

warming and associated vegetation and land cover change (Faubert et al., 2010; Potosnak et al., 53 

2013; Rinnan et al., 2011; Tiiva et al., 2008). Field warming studies have shown strong increases 54 

in BVOC emissions from shrub heath (Michelsen et al., 2012; Tiiva et al., 2008). Furthermore, the 55 

temperature dependence of Arctic BVOC fluxes appears to be significantly greater than for tropical 56 

and subtropical ecosystems (Holst et al., 2010; Rinnan et al., 2014), with up to 2-fold increases in 57 

MT emissions and 5-fold increases in SQT emissions by subarctic heath for a 2°C warming 58 

(Valolahti et al., 2015). Similarly, Kramshøj et al. (2016) and Lindwall et al. (2016) examined the 59 
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response of BVOC emissions to an experimental 3-4°C warming and reported a 260-280% 61 

increase in total emissions. Together, the above results emphasize the strong temperature 62 

sensitivity of BVOC emissions from Arctic ecosystems.  63 

Changing BVOC emissions in the Arctic due to climate and land cover shifts can thus be expected 64 

to perturb the overall oxidative chemistry of the region. Previous studies have hypothesized that 65 

BVOCs might already impact the diurnal cycle of ozone in the Arctic boundary layer (Van Dam 66 

et al., 2016). Changing BVOC emissions can also further affect climate through various feedback 67 

mechanisms; Quantifying these changes requires an accurate understanding of the underlying 68 

processes driving BVOC emissions in the Arctic. While BVOC ambient mixing ratios and 69 

emission rates have been studied in boreal ecosystems, less attention has been paid to Arctic tundra 70 

environments (Lindwall et al., 2015). Here, we report BVOC ambient mixing ratios and emission 71 

rates at Toolik Field Station (TFS) in the Alaskan Arctic. This study builds on the previous 72 

isoprene study at TFS by Potosnak et al. (2013), while also providing a major step forward from 73 

that work. In particular, we present the first continuous summertime record of ambient BVOCs 74 

(including isoprene and MT) and their first-generation oxidation products in the Arctic tundra 75 

environment. The data presented here provide a baseline to investigate future changes in the BVOC 76 

emission potential of the under-studied Arctic tundra environment. Due to increasing shrub 77 

prevalence across northern Alaska (Berner et al., 2018; Tape et al., 2006), as well as the Eurasian 78 

(Macias-Fauria et al., 2012) and Russian Arctic (Forbes et al., 2010), the results of this study have 79 

significance to tundra ecosystems across a vast region of the Arctic. We further compare the 80 

observed temperature dependence of isoprene emissions with predictions from the Model of 81 

Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1), a widely used modeling 82 

framework for estimating ecosystem-atmosphere BVOC fluxes (Guenther et al., 2012).  83 

2. Material and Methods 84 

2.1 Study site 85 

This study was carried out at TFS, a Long-Term Ecological Research (LTER) site located in the 86 

tundra on the north flank of the Brooks Range in northern Alaska (68°38’N, 149°36’W; see Fig.1). 87 

Vegetation speciation and dynamics, and their changes over time, have been well documented at 88 

the site. Betula (birch) and Salix (willow) are the most common deciduous shrubs (Kade et al., 89 

2012). Common plant species include Betula nana (dwarf birch), a major player in ongoing Arctic 90 
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greening (Hollesen et al., 2015; Sistla et al., 2013), Rhododendron tomentosum (formerly Ledum 91 

palustre; Labrador tea); Vaccinium vitis-idaea (lowbush cranberry), Eriophorum vaginatum 92 

(cotton grass), Sphagnum angustifolium (peat moss), Alectoria ochroleuca (witches hair lichen), 93 

and many other perennial species of Carex, mosses, and lichens. Vegetation cover at this site is 94 

classified as tussock tundra (see Fig.1), which is the most common vegetation type in the northern 95 

foothills of the Brooks Range (Elmendorf et al., 2012; Kade et al., 2012; Shaver and Chapin, 1991; 96 

Survey, 2012; Walker et al., 1994).  97 

Emission measurements and atmospheric sampling were conducted from a weatherproof 98 

instrument shelter located ~350 m to the west of TFS (see Fig.S.I.1). Winds at TFS are 99 

predominantly from the southerly and northerly sectors (Toolik Field Station Environmental Data 100 

Center, 2019), minimizing any influence from camp emissions at the site. Two field campaigns 101 

were carried out:  the first from mid-July to mid-August 2018, and the second from mid-May to 102 

the end of June 2019. These two back-to-back campaigns cover the entire growing season (Sullivan 103 

et al., 2007), from the onset of snow melt mid-May to the first snow fall mid-August. 104 

2.2 Ambient online measurements of BVOCs and their oxidation products 105 

2.2.1 Gas chromatography and mass spectrometry with flame ionization detector 106 

(GC-MS/FID) 107 

An automated GC-MS/FID system was deployed for continuous measurements of atmospheric 108 

BVOCs at ~2-hour time resolution during the 2018 and 2019 field campaigns. In addition, the 109 

system was operated remotely following the 2018 campaign (through September 15th) to collect 110 

background values at the beginning of autumn. Air was pulled continuously from an inlet on a 4 111 

m meteorological tower located approximately 30 m from the instrument shelter (Van Dam et al., 112 

2013). Air passed through a sodium thiosulfate-coated O3 scrubber for selective O3 removal – to 113 

prevent sampling losses and artifacts for reactive BVOCs (Helmig, 1997; Pollmann et al., 2005) – 114 

and through a moisture trap to dry the air to a dew point of -45°C. The moisture trap was a U-115 

shaped SilcoSteelTM tube (stainless steel treated) cooled using thermoelectric coolers. Analytes 116 

were concentrated on a Peltier-cooled (-40°C) multistage micro-adsorbent trap (50 % Tenax-GR 117 

and 50 % Carboxen 1016). Analysis was accomplished by thermal desorption and injection for 118 

cryogen free GC using a DB-1 column (60 m × 320 µm × 5 µm) and helium as carrier gas. The 119 

oven temperature was set to 40°C for 6 minutes, then increased to 260°C at 20°C/min, and held 120 
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isothermally at 260°C for 13 minutes. The column flow was split between an FID and a MS for 121 

simultaneous quantification and identification. Blanks and calibration standards were regularly 122 

injected from a manifold. Isoprene (m/z 67 and 68), methacrolein (MACR) and methylvinylketone 123 

(MVK) (m/z 41, 55, and 70), MT (m/z 68, 93, 121, and 136), and SQT (m/z 204, 91, 93, 119, and 124 

69) were identified and quantified using the MS in selected ion-monitoring mode (SIM). The 125 

response to isoprene was calibrated using a primary gas standard supplied by the National Physical 126 

Laboratory (NPL), certified as containing 4.01±0.09 ppb of isoprene in a nitrogen matrix. The 127 

analytical uncertainty for isoprene was estimated at 16 % based on the certified uncertainty of the 128 

standard and on the repeatability of standard analysis throughout the campaigns. Instrument 129 

responses for MACR, MVK, α-pinene, and acetonitrile were calibrated with multi-component 130 

standards containing 1007 ppb MACR, 971 ppb MVK, 967 ppb α-pinene, and 1016 ppb 131 

acetonitrile (Apel-Riemer Environmental Inc., Miami, FL, USA) dynamically diluted into a stream 132 

of ultra-zero grade air to ~3 ppb. Quantification of other terpenoid compounds was based on GC 133 

peak area (FID response) plus relative response factors using the effective carbon number concept 134 

(Faiola et al., 2012; Scanlon and Willis, 1985). The limit of quantification (LOQ) was ~2 pptv 135 

(pmol/mol by volume). In order to monitor and correct for long-term trends in the detection system, 136 

including detector drift and decreasing performance of the adsorbent trap, we used peak areas for 137 

long-lived chlorofluorocarbons (CFCs) that were monitored in the air samples together with the 138 

BVOCs as an internal reference standard. The atmospheric trace gases CCl3F (CFC-11) and 139 

CCl2FCCl2F2 (CFC-113) are ideal in this regard because they are ubiquitous in the atmosphere and 140 

exhibit little spatial and temporal variability (Karbiwnyk et al., 2003; Wang et al., 2000).  141 

2.2.2 Proton-Transfer-Reaction Time-of-Flight Mass-Spectrometry (PTR-ToF-MS) 142 

During the summer 2019 campaign, isoprene mixing ratios in ambient air were also measured by 143 

PTR-ToF-MS (model 4000, Ionicon Analytik GmbH, Innsbruck, Austria). The sample inlet was 144 

located on the 4 m meteorological tower, right next to the GC-MS/FID inlet. In brief, ambient air 145 

was continuously pulled through the PTR-ToF-MS drift-tube, where VOCs with proton affinities 146 

higher than that of water (>165.2 kcal/mol) were ionized via proton-transfer reaction with primary 147 

H3O+ ions, then subsequently separated and detected by a time-of-flight mass spectrometer (with 148 

a mass resolving power up to 4000). At TFS, the PTR-ToF-MS measured ions from 17–400 m/z 149 

every 2 minutes. Ambient air was drawn to the instrument at 10–15 L/min via ~30 m of 1/4” O.D. 150 
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PFA tubing maintained at ~55°C, and then subsampled by the instrument through ~100 cm of 151 

1/16” O.D. PEEK tubing maintained at 60°C. The residence time from the inlet on the 4 m 152 

meteorological tower to the drift-tube was less than 5 seconds. Instrument backgrounds were 153 

quantified approximately every 5 hours for 20 minutes during the campaign by measuring VOC-154 

free air generated by passing ambient air through a heated catalytic converter (375 °C, platinum 155 

bead, 1 % wt. Pt, Sigma Aldrich). Calibrations were typically performed every 4 days via dynamic 156 

dilution of certified gas standard mixtures containing 25 distinct VOCs including isoprene (Apel-157 

Riemer Environmental Inc., Miami, FL, USA). Here, we report isoprene mixing ratios to inter-158 

compare with GC-MS measurements; other species will be reported in future work. The 159 

measurement uncertainty for isoprene is ~25%, which includes uncertainties in the gas standards, 160 

calibration method, and data processing.  161 

2.2.3 Instrument inter-comparison  162 

Figure S.I.2 shows a comparison of the GC-MS and PTR-ToF-MS isoprene mixing ratios in 163 

ambient air. With a correlation coefficient of 0.93 and a linear regression slope of 0.7-1.0, the two 164 

measurements agreed within their combined measurement uncertainties, in line with earlier inter-165 

comparison studies (e.g., Dunne et al., 2018; de Gouw et al., 2003). Similarly, we found a 166 

correlation coefficient of 0.96 between GC-MS and PTR-ToF-MS MVK+MACR mixing ratios 167 

(not shown). The good agreement between these two independent techniques gives us confidence 168 

that the ambient air results presented here are robust. 169 

2.3 Ambient air vertical profiles 170 

Vertical isoprene mixing ratio profiles were obtained using a 12-foot diameter SkyDoc tethered 171 

balloon. A total of eight vertical profiles were performed at ~3-hour intervals between 12:30 pm 172 

Alaska Standard Time (AST) on June 15, 2019 and 11:00 am AST on June 16, 2019 in order to 173 

capture a full diurnal cycle (solar noon around 2 pm AST). Sampling packages were connected to 174 

the tether line such that resulting sampling heights were ~30, ~100, ~170, and ~240 m above 175 

ground level. One identical sampling package was deployed at the surface. Each sampling package 176 

contained an adsorbent cartridge for sample collection (see below) connected to a downstream 177 

battery-powered SKC pocket pump controlled using a mechanical relay, a programmable Arduino, 178 

and a real-time clock. Once the balloon reached its apex (~ 250-300 m a.g.l.), the five pumps were 179 

activated simultaneously and samples collected for 30 minutes to ensure that enough material was 180 
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collected. It should be noted that changes in wind speed and turbulence during the 30-min sampling 182 

period often affected the shape of the tethered line and the sampling altitude adding further 183 

uncertainty to the vertical profiles presented here. At the end of the 30-min sampling period, the 184 

balloon was brought back down. The adsorbent cartridges were prepared in house using glass 185 

tubing (89 mm long × 6.4 mm outer diameter, 4.8 mm inner diameter), and loaded with Tenax-186 

GR and Carboxen 1016 adsorbents (270 mg of each), following established practice (Ortega and 187 

Helmig, 2008 and references therein). An inlet ozone scrubber was installed on each cartridge to 188 

prevent BVOC sampling losses. Field blanks were collected by opening a cartridge (with no 189 

pumped airflow) during each balloon flight. Following collection, adsorbent cartridges were sealed 190 

with Teflon-coated brass caps and stored in the dark at ~4°C until chemical analysis. Samples were 191 

analyzed at the University of Colorado Boulder following the method described in S.I. Section 1. 192 

Our previous inter-comparison of this cartridge-GC-MS/FID method with independent and 193 

concurrent PTR-MS observations showed that the two measurements agree to within their 194 

combined uncertainties at ~25% (Hu et al., 2015). Meteorological conditions were monitored and 195 

recorded during each balloon flight with a radiosonde (Met1, Grant Pass, OR, USA) attached to 196 

the tethered line just below the balloon. 197 

2.4 BVOC emission rates 198 

2.4.1 Dynamic enclosure measurements 199 

We used dynamic enclosure systems operated at low residence time to quantify vegetative BVOC 200 

emissions following the procedure described by Ortega et al. (2008) and Ortega and Helmig 201 

(2008). Two types of enclosures were used: branch and surface chambers. For branch enclosures, 202 

a Tedlar® bag (Jensen Inert Products, Coral Springs, FL) was sealed around the trunk side of a 203 

branch. For surface enclosures, the bag was placed around a circular Teflon® base (25 cm wide × 204 

16 cm height; see Fig. 2). For both branch and surface enclosures, the bag was connected to a 205 

purge-air line and a sampling line, and positioned around the vegetation minimizing contact with 206 

foliage. While purging the enclosure (see Section 2.4.3), the vegetation was allowed to acclimate 207 

for 24 hours before BVOC sampling began. Samples were collected from the enclosure air, 208 

concentrated onto solid-adsorbent cartridges (see Section 2.3) with an automated sampler, and 209 

analyzed in-laboratory at the University of Colorado Boulder following the campaign (see S.I. 210 

Section 1). Temperature and relative humidity were recorded inside and outside the enclosure (see 211 
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Fig. 2; S-THB-M002 sensors, Onset HOBO, Bourne, MA, USA) with a data logger (H21-USB, 212 

Onset HOBO, Bourne, MA, USA). Additionally, photosynthetically active radiation (400-700 nm; 213 

S-LIA-M003, Onset HOBO, Bourne, MA, USA) was measured inside the enclosure. Once 214 

installed, enclosures were operated for 2-10 days. The tundra vegetation around TFS is 215 

heterogeneous but most dominant species (except Rubus chamaemorus) were sampled. Table 1 216 

presents the median relative percent cover of plant species in LTER experimental control plots at 217 

TFS (Gough, 2019) and indicates whether plant species were present in surface or bag enclosures. 218 

The complete list of species sampled and pictures of the enclosures are available in Figures S.I.3-219 

S.I.15; the two sampling sectors are highlighted in Fig.S.I.1. Surface enclosures were divided into 220 

three vegetation types: Salix spp. (high isoprene emitter), Betula spp. (e.g., Betula nana 221 

dominance), and miscellaneous (mix of different species, including lichens and mosses). 222 

2.4.2 Emission rates 223 

The emission rate (ER in µgC/m2/h) for surface enclosures was calculated as follows: 224 

𝐸𝑅$%&'()* =
(-./01-23)5

6
,       (1) 225 

where 𝐶89 and 𝐶:%; are the inlet and outlet analyte concentrations (in µgC/L), 𝑄 is the purge air 226 

flow rate (in L/h), and 𝑆 the surface area of the enclosure (in m2).  227 

The ER for branch enclosures (in µgC/g/h) was calculated as follows: 228 

𝐸𝑅>&(9)? =
(-./01-23)5

@ABC
,       (2) 229 

where 𝑚E&F  is the dried mass (in g) of leaves enclosed, determined by drying the leaves – harvested 230 

after the experiment – at 60-70°C until a consistent weight was achieved (Ortega and Helmig, 231 

2008).  232 

Emission rates were standardized to 30°C and to a PAR level of 1000 µmol/m2/s using the 233 

algorithms described in Guenther et al. (1993, 1995). 234 

2.4.3 Enclosure purge air 235 

Purge air was provided by an upstream high-capacity oil-free pump providing positive pressure to 236 

the enclosure, and equipped with an in-line O3 scrubber to avoid loss of reactive BVOCs from 237 
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reaction with O3 in the enclosure air and during sampling (Helmig, 1997; Pollmann et al., 2005). 238 

The purge flow was set to 25 L/min and regularly checked using a volumetric flow meter (Mesa 239 

Labs Bios DryCal Defender, Butler, NJ, USA). Excess air escaped from the open end (tied around 240 

the Teflon® base) while the sample air flow was pulled into the sampling line (see below). 241 

2.4.4 Sample collection 242 

A continuous airflow of 400-500 mL/min was drawn from the enclosure through the sampling line. 243 

A fraction of this flow was periodically collected at 265-275 mL/min on adsorbent cartridges (see 244 

Section 2.3) using a 10-cartridge autosampler (Helmig et al., 2004). During sampling, cartridges 245 

were kept at 40°C, i.e., above ambient temperature, to prevent water accumulation on the adsorbent 246 

bed (Karbiwnyk et al., 2002). Samples were periodically collected in series to verify lack of analyte 247 

breakthrough. Time-integrated samples were collected for 120 min every 2 hours to establish 248 

diurnal cycles of BVOC emission. Upon collection, samples were stored in the dark at ~4°C until 249 

chemical analysis back at the University of Colorado Boulder. 250 

2.4.5 Internal standards 251 

In order to identify potential BVOC losses during transport, storage, and chemical analysis, 255 252 

of the employed cartridges were pre-loaded with a four-compound standard mixture prior to the 253 

field campaigns. These internal standard compounds (toluene, 1, 2, 3-trimethylbenzene, 1, 2, 3, 4-254 

tetrahydronaphtalene, and 1, 3, 5-triisopropylbenzene) were carefully chosen to span a wide range 255 

of volatility (C7-C15) and to not interfere (i.e., coelute) with targeted BVOCs. The recovery of these 256 

four compounds was assessed at the end of the campaign, following the analytical procedure 257 

described in S.I. Section 1. Recovery rates were 101.8 ± 13.5 % (toluene), 95.2 ± 20.1 % (1,2,3-258 

trimethylbenzene), 95.6 ± 26.6 % (1,2,3,4-tetrahydronaphtalene), and 100.9 ± 18.7 % (1,3,5-259 

triisopropylbenzene). These results indicate that, overall, BVOC losses during transport, storage, 260 

and chemical analysis were negligible. Ortega et al. (2008) previously evaluated systematic losses 261 

of analytes to enclosure systems similar to those used here. The same four-component standard 262 

was introduced into the purge air flow of the enclosures to quantify losses as a function of 263 

volatility. That work found median losses of MT and SQT on the order of 20-30%. The emission 264 

rates presented here are therefore possibly biased low by a similar amount. 265 

2.5 Peak fitting algorithm 266 
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The analysis of ambient air and enclosure chromatograms was performed using the TERN 267 

(Thermal desorption aerosol GC ExploreR and iNtegration package) peak fitting tool implemented 268 

in Igor Pro and available online at https://sites.google.com/site/terninigor/ (Isaacman-VanWertz et 269 

al., 2017).  270 

2.6 Ancillary parameters 271 

Meteorological parameters. A suite of meteorological instruments was deployed on the 4 m tower. 272 

Wind speed and direction were measured at ~4 m above ground level with a Met One 034B-L 273 

sensor. As described by Van Dam et al. (2013), temperature was measured at three different heights 274 

using RTD temperature probes (model 41342, R.M. Young Company, Traverse City, MI) housed 275 

in aspirated radiation shields (model 43502, R.M. Young Company, Traverse City, MI). Regular 276 

same-height inter-comparisons were conducted to test for instrumental offsets. Incoming and 277 

reflected solar radiation were recorded with LI200X pyranometers (Campbell Scientific 278 

Instruments).  279 

In addition, historical (1988-2019) meteorological data recorded by TFS Environmental Data 280 

Center are available at: https://toolik.alaska.edu/edc/abiotic_monitoring/data_query.php 281 

Particle measurements. A Met One Instruments Model 212-2 8-channel (0.3 to 10 µm) particle 282 

profiler was operated continuously on the roof of the weatherproof instrument shelter. This 283 

instrument uses a laser-diode based optical sensor and light scatter technology to detect, size, and 284 

count particles (http://mail.metone.com/particulate-Aero212.htm).  285 

Nitrogen oxides. Nitrogen oxides (NOx) were measured with a custom-built, high sensitivity (~5 286 

pptv detection limit) single-channel chemiluminescence analyzer (Fontijn et al., 1970). The 287 

instrument monitors nitric oxide (NO) and nitrogen dioxide (NO2) in ambient air using a photolytic 288 

converter. Automated switching valves alternated between NO and NO2 mode every 30 minutes. 289 

Calibration was accomplished by dynamic dilution of a 1.5 ppm compressed NO gas standard 290 

(Scott-Marrin, Riverside, CA, USA).  291 

2.7 Theoretical response of isoprene emissions to temperature in MEGAN2.1  292 
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We applied our isoprene emission measurements to evaluate the temperature response algorithms 293 

embedded in MEGAN2.1 (Guenther et al., 2012). Theoretical isoprene emission rates (𝐹H) were 294 

calculated for TFS as:  295 

𝐹H 	= 	𝐶-J	𝛾H 	∑ 𝜘NN 𝜀N	       (3) 296 

where 𝐶-J	is the canopy environment coefficient (assigned a value that results in 𝛾H = 1 under 297 

standard conditions), and 𝜀N	is the emission factor under standard conditions for vegetation type 𝑗 298 

with fractional grid box areal coverage 𝜘N. We used ∑ 𝜘NN 𝜀N	= 2766 µg/m2/h at TFS based on the 299 

high resolution (1 km) global emission factor input file available at 300 

https://bai.ess.uci.edu/megan/data-and-code/megan21. The  temperature activity factor (𝛾H) was 301 

calculated as: 302 

𝛾H = 𝐸:Q; ×	
RSS	*TU	V

RSS	1	WX	×(Y1	*Z[[	V)
      (4) 303 

with 304 

𝑥 = 	
]

^._0
1	]^

S.SSabY
          (5) 305 

𝐸:Q; = 	2 × 𝑒S.Sa(H][1	RWe)       (6) 306 

𝑇:Q; = 	313 + 0.6(𝑇YS − 297),     (7) 307 

where 𝑇 is the enclosure ambient air temperature and 𝑇YS the average enclosure air temperature 308 

over the past 10 days. 309 

3. Results and Discussion 310 

3.1 Ambient air mixing ratios 311 

3.1.1 Isoprene and oxidation products 312 

Figure 3 (top panels) shows the time-series of isoprene mixing ratios in ambient air recorded over 313 

the course of this study at TFS with the GC system. Mixing ratios were highly variable and ranged 314 

from below the quantification limit to 505 pptv (mean of 36.1 pptv). The PTR-ToF-MS gave 315 

similar results (see Fig.S.I.16a). These mixing ratios fall within the range of values reported in the 316 

Eurasian taiga (e.g., Hakola et al., 2000, 2003; Lappalainen et al., 2009). For example, Hakola et 317 
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al. (2003) reported a maximum monthly mean mixing ratio of 98 pptv (in July) in Central Finland 318 

while Hakola et al. (2000) observed mixing ratios ranging from a few pptv to ~600 pptv in Eastern 319 

Finland. In general, however, BVOC emissions in the Eurasian taiga are relatively low compared 320 

to forest ecosystems in warmer climates and are dominated by monoterpenes (Rinne et al., 2009).  321 

Isoprene mixing ratios peaked on August 1, 2018 around 4 pm and on June 20, 2019 around 10 322 

pm, respectively. These two peaks occurred 3-5 hours after the daily maximum ambient 323 

temperature was reached (17.8°C in 2019 and 21.8°C in 2019 – see Fig. 3). The isoprene peak on 324 

June 20, 2019 was concomittant with enhanced acetonitrile mixing ratios and particle counts (see 325 

Fig. 4), reflecting unusually hazy conditions that day at TFS. We attribute the particle and 326 

acetonitrile enhancements to intense wildfires occurring across the Arctic Circle at that time – most 327 

of them in southern Alaska and Siberia (Earth Observatory, 2019). Acetonitrile increased by a 328 

factor of 4 during this event, compared to a factor of 21 increase for isoprene. The higher emission 329 

factor for acetonitrile vs. isoprene from biomass burning in boreal forests (Akagi et al., 2011) and 330 

the relatively short lifetime of isoprene (Atkinson, 2000) indicate that the observed isoprene 331 

enhancement was due to fresh local biogenic emissions rather than transported wildfire emissions. 332 

Over the course of this study, we recorded MACR and MVK mixing ratios respectively ranging 333 

from below the quantification limit to 95 pptv (12.4 ± 16.1 pptv; mean ± standard deviation) and 334 

from below the quantification limit to 450 pptv (43.1 ± 66.7 pptv; see Fig. 3, top panels). The PTR-335 

ToF-MS gave similar results (see Fig.S.I.16b). Median NO and NO2 mixing ratios of 21 and 74 336 

pptv, respectively, during the 2019 campaign (not shown) suggest a low-NOx environment, in line 337 

with previous studies at several Arctic locations (Bakwin et al., 1992; Honrath and Jaffe, 1992). 338 

Under such conditions, MACR and MVK mixing ratios should be used as upper estimates as it has 339 

been noted that some low-NOx isoprene oxidation products (isoprene hydroxyhydroperoxides) can 340 

undergo rearragement in GC and PTR-MS instruments and be misidentified as MACR and MVK 341 

(Rivera-Rios et al., 2014). We found a high correlation between MACR and MVK (R2 = 0.95, p < 342 

0.01) and between these two compounds and isoprene (R2 ~ 0.80, p < 0.01). Increases of MACR 343 

and MVK mixing ratios above the background were mostly concomitant with isoprene increases, 344 

suggesting that atmospheric or within-plant oxidation of isoprene was their main source 345 

(Biesenthal et al., 1997; Hakola et al., 2003; Jardine et al., 2012). The mean ratio of MVK to 346 

MACR was 2.7, within the range reported by earlier studies (e.g., Apel et al., 2002; Biesenthal and 347 
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Shepson, 1997; Hakola et al., 2003; Helmig et al., 1998), and no clear diurnal cycle in the ratio 348 

was found. This record of ambient air isoprene, MACR, and MVK mixing ratios is, to the best of 349 

our knowledge, the first in an Arctic tundra environment. The combined measurement of isoprene 350 

and its oxidation products provides a new set of observations to further constrain isoprene 351 

chemistry under low-NOx conditions in atmospheric models (e.g., Bates and Jacob, 2019). 352 

3.1.2 Isoprene vertical profiles 353 

Figure 5 shows vertical profiles (0 to ~250 m a.g.l.) of isoprene mixing ratios derived from the 30-354 

min tethered balloon samples collected on June 15 and 16, 2019. Temperature profiles (see 355 

Fig.S.I.17) indicate that most of the flights were performed in a convective boundary layer (Holton 356 

and Hakim, 2013). A nocturnal boundary layer was, however, observed in the first ~50 m from ~2 357 

am to ~4:30 am (see Fig.S.I.17e-f) – with temperature increasing with elevation. 358 

Except during the last flight, isoprene mixing ratios were in the range of background levels (~0-359 

50 pptv) reported with the GC-MS (see Section 3.1.1). Samples collected from 10-10:30 am on 360 

June 16 (see Fig. 5h) showed a pronounced gradient, with 200 pptv at ground level and decreasing 361 

mixing ratios with elevation. This maximum at ground-level is expected for a VOC with a surface 362 

source (Helmig et al., 1998) while the 200 pptv mixing ratio can likely be attributed to a 363 

temperature-driven increase of isoprene emissions by the surrounding vegetation. Indeed, the 364 

ambient temperature at ground-level was higher during that flight than during the previous ones 365 

(see Fig.S.I.17h). The diurnal cycles of isoprene emissions and temperature are further discussed 366 

in Section 3.2.2.  Interestingly, the GC-MS and the PTR-ToF-MS did not capture this 200 pptv 367 

maximum (see Fig. 3 and Fig.S.I.16), which may be because the balloon flights were performed 368 

at a different location (near sampling sector B, see Fig.S.I.1) surrounded by a higher fraction of 369 

isoprene-emitting shrubs (willow).  370 

Samples collected on June 16, 2019 from 4 to 4:30 am (see Fig. 5f) show decreasing isoprene 371 

mixing ratios with increasing elevation, suggesting higher levels (25-50 pptv) in the nocturnal 372 

boundary layer than above. This result suggests continuing isoprene emissions by the surrounding 373 

vegetation under low-PAR conditions. This is further discussed in Section 3.2.2. 374 

3.1.3 Monoterpenes and Sesquiterpenes 375 
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MT mixing ratios ranged from 3 to 537 pptv (14 ± 18 pptv; median ± standard deviation) during 376 

the 2019 campaign according to the PTR-ToF-MS measurements. Using the GC-MS/FID, we were 377 

able to detect and quantify the following MT in ambient air: α-pinene, camphene, sabinene, p-378 

cymene, and limonene. Mean mixing ratios are reported in Table 2 (for values lower than the LOQ, 379 

mixing ratios equal to half of the LOQ are used). These compounds have been previously identified 380 

as emissions of the widespread circumpolar dwarf birch Betula nana (Li et al., 2019; Vedel-381 

Petersen et al., 2015) and other high Arctic vegetation (Schollert et al., 2014). The quantification 382 

frequency of camphene, sabinene, p-cymene, and limonene was low (see Table 2) and MT mixing 383 

ratios in ambient air were dominated by α-pinene. Several prior studies performed at boreal sites 384 

have similarly identified α-pinene as the most abundant monoterpene throughout the growing 385 

season (e.g., Hakola et al., 2000; Lindfors et al., 2000; Spirig et al., 2004; Tarvainen et al., 2007). 386 

We did not detect any sesquiterpene in ambient air above the 2 pptv instrumental LOQ. 387 

Overall, isoprene and α-pinene dominated the ambient air BVOC profile at TFS, respectively 388 

constituting ~72% and ~24% of total BVOCs quantified in ambient air (on a mixing-ratio basis).  389 

3.2 Emission rates 390 

3.2.1 Branch enclosures 391 

A branch enclosure experiment was performed from July 27 to August 2, 2018 on Salix glauca to 392 

investigate BVOC emission rates per dry weight plant biomass (see Fig.S.I.5). Isoprene emission 393 

rates ranged from <0.01 to 11 µgC/g/h (with a mean enclosure temperature of 16.5°C and mean 394 

PAR of 880 µmol/m2/s), in line with non-normalized emission rates reported at Kobbefjord, 395 

Greenland by Kramshøj et al. (2016; Supplementary Table 5) for the same species under slightly 396 

different environmental conditions (mean temperature of 24.6°C and mean PAR of 1052 397 

µmol/m2/s). Once standardized to 30°C and 1000 µmol/m2/s, our emission rates averaged 5 398 

µgC/g/h, in good agreement with standardized emissions reported at Kobbefjord (mean of 7 399 

µgC/g/h) by Vedel-Petersen et al. (2015). The quantified MTs had emissions averaging two orders 400 

of magnitude lower than those of isoprene (0.01 vs 1 µgC/g/h). Emission rates for the sum of α-401 

pinene, β-pinene, limonene, camphene, and 1,8-cineole ranged from <0.01 to 0.06 µgC/g/h. These 402 

results are again in good agreement with those reported for the same species at Kobbefjord (~0.01 403 

µgC/g/h) by Kramshøj et al. (2016; Supplementary Table 5). 404 

3.2.2 Surface emission rates 405 
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The isoprene surface emission rate, as inferred from surface enclosures, was highly variable and 406 

ranged from 0.2 to ~2250 µgC/m2/h (see Fig. 6). The 2250 µgC/m2/h maximum, reached on June 407 

26, 2019, with an enclosure temperature of 32°C, is higher than maximum values reported at TFS 408 

by Potosnak et al. (2013) (1200 µgC/m2/h at an air temperature of 22°C). It should be noted that 409 

these maximum values were observed at different ambient temperatures; we further investigate the 410 

temperature dependency of isoprene emissions in Section 3.3. Elevated surface emission rates (i.e., 411 

> 500 µgC/m2/h) were all observed while sampling enclosures dominated by Salix spp.. At TFS, 412 

the overall 24-hour mean isoprene emission rate amounted to 85 µgC/m2/h, while the daytime (10 413 

am-8 pm) and midday (11 am-2 pm) means were 140 and 213 µgC/m2/h, respectively. To put this 414 

in perspective, the average isoprene surface emission rate standardized to 30°C and 1000 415 

µmol/m2/s (~ 300 µgC/m2/h) was an order of magnitude lower than emission rates reported for 416 

warmer mid-latitude or tropical forests. For example, average midday fluxes of 3000 µgC/m2/h 417 

were reported in a northern hardwood forest in Michigan (Pressley et al., 2005), while several 418 

reports of isoprene emissions from tropical ecosystems give daily estimates of 2500-3000 419 

µgC/m2/h (Helmig et al., 1998; Karl et al., 2004; Rinne et al., 2002).  420 

Figure 7 shows the measured surface emission rates for α-pinene, β-pinene, limonene, and 1,8-421 

cineole. While p-cymene, sabinene, 3-carene, and isocaryophyllene (SQT) were detected in some 422 

of the surface enclosure samples, we focus the discussion on the most frequently quantified 423 

compounds. It is worth noting that the most frequently observed compounds in enclosure samples 424 

are among the most frequently seen MT in ambient air (see Section 3.1.3). Regardless of the 425 

species, emission rates remained on average below 1 µgC/m2/h over the course of the study (see 426 

Table 3). These results are at the low end of emission rates reported for four vegetation types in 427 

high Arctic Greenland (Schollert et al., 2014), but in line with results reported at Kobbefjord, 428 

Greenland by Kramshøj et al. (2016; Supplementary Table 4).  429 

Figures 8a-c show the mean diurnal cycle (over the two campaigns) of isoprene surface emission 430 

rates for different vegetation types (see Fig.S.I.3-15 for nomenclature). The two field campaigns 431 

were carried out during the midnight sun period, which could possibly sustain BVOC emissions 432 

during nighttime. It should, however, be noted that low sun angles translate to very low PAR and 433 

a typical diurnal pattern is observed in summer at TFS despite 24 hours of light (see Fig. 8h). 434 

Regardless of the vegetation type, isoprene emission rates exhibited a significant diurnal cycle 435 
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with an early afternoon maximum, in line with the mean diurnal cycle of enclosure temperature 436 

and PAR. These results are in line with the well-established diurnal variation of BVOC emissions 437 

in environments ranging from Mediterranean to boreal forests (e.g., Fares et al., 2013; Liu et al., 438 

2004; Ruuskanen et al., 2005; Zini et al., 2001) and with the correlation between isoprene ambient 439 

air mixing ratios and temperature at TFS (see Section 3.1). Despite the relatively low MT emission 440 

rates, a significant diurnal cycle was also observed with peak total MT emissions of ~1 µgC/m2/h 441 

during early afternoon for both Salix spp. and Betula spp. (Fig. 8e-f). A summary of emission rates 442 

per vegetation type and time of day is given in Table 3. As can be seen in Table 3 and Fig. 8, PAR 443 

and BVOC emissions significantly decreased at night but were still detectable. These sustained 444 

BVOC emissions during nighttime confirm observations by Lindwall et al. (2015) during a 24-445 

hour experiment with five different Arctic vegetation communities and explain the higher isoprene 446 

levels observed in the nocturnal boundary layer than above during the diurnal balloon experiment 447 

(see Section 3.1.2). 448 

The ratio of total MT (given by the sum of α-pinene, β-pinene, limonene, and 1,8-cineole) 449 

emissions to isoprene emissions was an order of magnitude higher for Betula spp. (0.22) than for 450 

Salix spp. (0.03). This result, driven by the relatively lower isoprene emissions of Betula spp., is 451 

in line with earlier studies, suggesting similar emission characteristics for Arctic plants (e.g., 452 

Kramshøj et al., 2016; Vedel-Petersen et al., 2015).  453 

4. Insights into future changes 454 

4.1 Response of isoprene emissions to temperature  455 

The Arctic has warmed significantly during the last three decades and temperatures are projected 456 

to increase an additional 5-13°C by the end of the century (Overland et al., 2014). Heat wave 457 

frequency is also increasing in the terrestrial Arctic (Dobricic et al., 2020). For example, western 458 

Siberia experienced an unusually warm May in 2020, with temperatures of 20-25°C (Freedman 459 

and Cappucci, 2020). In that context, numerous studies have pointed out the likelihood of increased 460 

BVOC emissions due to Arctic warming and associated vegetation and land cover change (Faubert 461 

et al., 2010; Potosnak et al., 2013; Rinnan et al., 2011; Tiiva et al., 2008).  462 

Over the course of the two field campaigns at TFS, BVOC surface emission rates were measured 463 

over a large span of enclosure temperatures (2-41°C). While isoprene and MT emissions respond 464 

to leaf temperature (Guenther et al., 1993), air temperature was used here in place of leaf 465 
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temperature – which has been assumed before in the literature for high-latitude ecosystems (e.g., 466 

Olofsson et al., 2005; Potosnak et al., 2013). Several studies have, however, suggested a 467 

decoupling of leaf and air temperature in tundra environments (Lindwall et al., 2016; Potosnak et 468 

al., 2013). With predicted increase of air temperature in the Arctic, it still remains largely unknown 469 

how leaf temperature will change and impact BVOC emissions. As suggested by Tang et al. 470 

(2016), long-term parallel observations of both leaf and air temperature are needed. The response 471 

of BVOC emissions to temperature discussed here should be interpreted with this potential caveat 472 

in mind. 473 

While MT emissions remained low and close to the detection limit thus preventing robust 474 

quantification of any emission-temperature relationship, isoprene emissions significantly 475 

increased with temperature (Fig.9). Figure 9 combines daytime (e.g., with relatively high PAR 476 

values) isoprene emission rates from different surface enclosures, with results normalized to 477 

account for differing total biomass and species distributions (with Salix spp. the dominant emitter). 478 

Specifically, we divided all fluxes by the enclosure-specific mean emission at 20 ± 1°C. Emission 479 

rates are often standardized to 30°C but we employ 20°C here owing to the colder growth 480 

environment at TFS (Ekberg et al., 2009). The isoprene emission-temperature relationship 481 

observed at TFS (in blue) is very similar to that reported by Tang et al. (2016) at Abisko (Sweden; 482 

in pink) for tundra heath (dominated by evergreen and deciduous dwarf shrubs). Results at TFS 483 

and Abisko both point to a high isoprene-temperature response for Arctic ecosystems (Tang et al., 484 

2016). This is further supported by two warming experiments performed in mesic tundra heath 485 

(dominated by Betula nana, Empetrum nigrum, Empetrum hermaphroditum, and Cassiope 486 

tetragona) and dry dwarf-shrub tundra (co-dominated by Empetrum hermaphroditum and Salix 487 

glauca) in Western Greenland (Kramshøj et al., 2016; Lindwall et al., 2016). Kramshøj et al. 488 

(2016) observed a 240% isoprene emission increase with 3°C warming, while Lindwall et al. 489 

(2016) reported a 280% increase with 4°C warming. The observationally-derived emission-490 

temperature relationship derived here for TFS reveals a 180-215% emission increase with 3-4°C 491 

warming.  492 

The MEGAN2.1 modeling framework is commonly used to estimate BVOC fluxes between 493 

terrestrial ecosystems and the atmosphere (e.g., Millet et al., 2018). Here, we apply the TFS 494 

observations to evaluate the MEGAN2.1 emission-temperature relationship for this Arctic 495 
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environment. Figure 9 shows that the model temperature algorithm provides a close fit with 496 

observations below 30°C, with a 170-240% emission increase for a 3-4°C warming. While the 497 

model predicts a leveling-off of emissions at approximately 30-35°C, our observations reveal no 498 

such phenomenon within the 0-40°C enclosure temperature range (Fig. 9). However, given the 499 

limited number of enclosure measurements above 30°C, a leveling-off of emissions cannot be 500 

statistically ruled out. The key result here is that MEGAN2.1 adequately reproduces the 501 

temperature dependence response of Arctic ecosystems in the 0-30°C temperature range – ambient 502 

temperature > 30°C being unlikely. The highest air temperature on record at TFS (1988-2019) is 503 

26.5°C, and the mean summertime (June-August) temperature over that period is 9°C. 504 

Additionally, for each year in the 1988-2019 historical dataset, there were only 1 to 23 days (0 to 505 

4 days) per year with a maximum temperature above 20°C (above 25°C). If global greenhouse gas 506 

emissions continue to increase, temperatures are expected to rise 6-7°C in northern Alaska by the 507 

end of the century (annual average; Markon et al., 2012) while the number of days with 508 

temperatures above 25°C could triple (Lader et al., 2017). Based on current climate conditions and 509 

this rate of change, the MEGAN2.1 algorithm adequately represents the temperature dependence 510 

response of Arctic ecosystems for the near and intermediate-term future.  511 

4.2 Long-term effects of warming 512 

BVOC produced by plants are involved in plant growth, reproduction, and defense, and plants use 513 

isoprene emissions as a thermotolerance mechanism (Peñuelas and Staudt, 2010; Sasaki et al., 514 

2007). The exponential response of isoprene emissions to temperature observed at TFS adds to a 515 

growing body of evidence indicating a high isoprene-temperature response in Arctic ecosystems. 516 

However, observations at TFS do not necessarily reflect long-term effects of warming. Schollert 517 

et al., (2015) examined how long-term warming affects leaf anatomy of individual arctic plant 518 

shoots (Betula nana, Cassiope tetragona, Empetrum hermaphroditum, and Salix arctica). They 519 

found that long-term warming results in significantly thicker leaves suggesting anatomical 520 

acclimation. While the authors hypothesized that this anatomical acclimation may limit the 521 

increase of BVOC emissions at plant shoot-level, Kramshøj et al. (2016) later showed that BVOC 522 

emissions from Arctic tundra exposed to six years of experimental warming increase at both the 523 

plant shoot and ecosystem levels. 524 
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In addition to the direct impact of long-term warming on BVOC emissions, ecosystem-level 525 

emissions are expected to increase in the Arctic due to climate-driven changes in plant biomass 526 

and vegetation composition. For instance, the widespread increase in shrub abundance in the Arctic 527 

– due to a longer growing season and enhanced nutrient availability (Berner et al., 2018; Sturm et 528 

al., 2001) – will likely significantly affect the BVOC emission potential of the Arctic tundra. 529 

Additionally, as mentioned above and as discussed extensively by Peñuelas and Staudt (2010) and 530 

Loreto and Schnitlzer (2010), emissions of BVOCs might be largely beneficial for plants, 531 

conferring them higher protection from abiotic stressors which are predicted to be more severe in 532 

the future. Long-term arctic warming may thus favor BVOC-emitting species even further. 533 

5. Conclusion 534 

While BVOC ambient concentrations and emission rates have been frequently measured in boreal 535 

ecosystems, Arctic tundra environments are under studied. We provide here summertime BVOC 536 

ambient air mixing ratios and emission rates at Toolik Field Station, on the north flank of the 537 

Brooks Range in northern Alaska. We present the first continuous summertime record of ambient 538 

air isoprene and its first-generation oxidation products in the Arctic tundra environment. This 539 

dataset provides a new set of observations to constrain isoprene chemistry in low-NOx 540 

environments. This dataset also provides a baseline to investigate future changes in the BVOC 541 

emission potential of the Arctic tundra environment. While the overall mean isoprene emission 542 

rate amounted to 85 µgC/m2/h, elevated (> 500 µgC/m2/h) isoprene surface emission rates were 543 

observed for Salix spp., a known isoprene emitter. We also show that the reponse to temperature 544 

of isoprene emissions in enclosures dominated by Salix spp. increased exponentially in the 0-40°C 545 

range, likely conferring greater thermal protection for these plants. Given the widespread increase 546 

in shrub abundance in the Arctic (including Salix spp.), our results support earlier studies (e.g., 547 

Valolahti et al., 2015) suggesting that climate-induced changes in the Arctic vegetation 548 

composition will significantly affect the BVOC emission potential of the Arctic tundra, with 549 

implications for atmospheric oxidation processes and climate feedbacks. 550 
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Table 1: Year 2017 median relative percent cover of plant species in moist acidic tundra long-term 916 
ecological research (LTER) experimental control plots at Toolik Field Station. The last column indicates 917 
whether plant species were present in surface or bag enclosure experiments in this study. 918 

Plant name 

Relative land surface 

cover in moist acidic 

tundra (%) (Gough, 

2019) 

Present in surface or 

bag enclosures 

Andromeda polifolia 0.6 yes 

Betula nana 14.4 yes 

Carex bigelowii 1.0 yes 

Cassiope tetragona 2.0 yes 

Empetrum nigrum 3.8 yes 

Eriophorum 
vaginatum 

8.6 yes 

Ledum palustre 10.5 yes 

Mixed Lichens 2.1 yes 

Mixed moss 6.0 yes 

Pedicularis 
lapponica 

0.6 no 

Polygonum bistorta 0.6 no 

Rubus chamaemorus 20.2 no 

Salix pulchra 4.9 yes 

Vaccinium 
uliginosum 

1.9 yes 

Vaccinium vitis-idaea 6.6 yes 

 919 

 920 

 921 

 922 

 923 
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Table 2: Average mixings ratios with standard deviation, along with minimum (min) and maximum (max) 924 
values and quantification frequency (QF) of the measured monoterpenes in ambient air. LOQ stands for 925 
limit of quantification. For values lower than the LOQ, mixing ratios equal to half of the LOQ were used 926 
to calculate the mean. 927 

 
mean ± standard deviation 

(pptv) 
Min (pptv) Max (pptv) QF (%) 

α-pinene 11.7 ± 8.1 < LOQ 61.6 88 

camphene < LOQ < LOQ 21.9 11 

sabinene < LOQ < LOQ 34.2 11 

p-cymene 2.0 ± 1.9 < LOQ 12.3 32 

limonene < LOQ < LOQ 2.9 < 1 

 928 

 929 

 930 

 931 

 932 

 933 

 934 

 935 

 936 

 937 

 938 

 939 

 940 

 941 
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Table 3: Isoprene and monoterpenes (sum of α-pinene, β-pinene, limonene, and 1,8-cineole) surface 942 
emission rates per vegetation type. Miscellaneous refers to a mix of different species, including lichens and 943 
moss tundra (see Fig.S.I.3-15). Daytime refers to 10 am-8 pm, midday to 11 am-2 pm, and nighttime to 11 944 
pm-5 am (Alaska Standard Time). The values in brackets represent the average enclosure temperature for 945 
each emission rate. 946 

 

mean ± standard 

deviation 

(µgC/m2/h) 

daytime mean ± 

standard deviation 

(µgC/m2/h) 

midday mean ± 

standard deviation 

(µgC/m2/h) 

nighttime mean ± 

standard deviation 

(µgC/m2/h) 

isoprene 

Salix spp. 
149 ± 327 

[17.6°C] 

232 ± 400 

[23.9°C] 

334 ± 473 

[27.0°C] 

7 ± 10 

[8.0°C] 

Betula spp. 
12 ± 30 

[13.7°C] 

19 ± 38 

[17.4°C] 

28 ± 37 

[20.1°C] 

5 ± 14 

[5.8°C] 

Miscellaneous 
38 ± 81 

[11.8°C] 

57 ± 100 

[14.8°C] 

104 ± 135 

[16.2°C] 

21 ± 64 

[8.2°C] 

monoterpenes 

Salix spp. 
0.8 ± 1.3 

[17.6°C] 

1.1 ± 1.5 

[23.9°C] 

1.4 ± 1.7 

[27.0°C] 

0.4 ± 1.0 

[8.0°C] 

Betula spp. 
0.5 ± 0.6 

[13.7°C] 

0.7 ± 0.7 

[17.4°C] 

1.0 ± 0.8 

[20.1°C] 

0.2 ± 0.2 

[5.8°C] 

Miscellaneous 
1.1 ± 1.4 

[11.8°C] 

1.3 ± 1.6 

[14.8°C] 

1.7 ± 2.0 

[16.2°C] 

1.0 ± 1.4 

[8.2°C] 

 947 

 948 

 949 

 950 

 951 

 952 



34 
 

 953 

Figure 1: Location of Toolik Field Station (TFS) on the north flanks of the Brooks Range in northern Alaska 954 
along with arctic vegetation type. This Figure was made using the raster version of the Circumpolar Arctic 955 
Vegetation Map prepared by Raynolds et al. (2019) and publicly available at www.geobotany.uaf.edu.  956 
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 967 

Figure 2: Photographs of a surface enclosure experiment setup at Toolik Field Station, Alaska. a) The first 968 
step of the installation consisted in positioning the Teflon® base around the vegetation of interest along 969 
with temperature (T), relative humidity (RH), and photosynthetically active radiation (PAR) sensors. b) 970 
The second step consisted in positioning the Tedlar® bag around the base. The bag was connected to a 971 
purge air and a sampling line. An additional T/RH sensor was also positioned outside the bag. 972 
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 986 

Figure 3: Time-series of isoprene (purple), methylvinylketone (MVK, green), and methacrolein (MACR, 987 
salmon) mixing ratios (in pptv) in ambient air at Toolik Field station (top panels) and of 30-min-averaged 988 
ambient temperature (in °C) at 4 meters above ground level (bottom panels). 989 
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 992 

Figure 4: Time-series of isoprene (green) and acetonitrile (purple) mixing ratios (in pptv) and of 0.3 µm 993 
particle counts (yellow) in ambient air at Toolik Field station in June 2019. 994 
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 1002 

Figure 5: Vertical profiles of isoprene mixing ratios as inferred from 30-min samples collected with a 1003 
tethered balloon. The error bars show the analytical uncertainty for isoprene (20 %). Samples with an 1004 
isoprene mixing ratio lower than blanks were discarded. Hours are in Alaska Standard Time (UTC-9). 1005 
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1006 
Figure 6: Time-series of isoprene surface emission rates (in µgC/m2/h) for different vegetation types. 1007 
Miscellaneous refers to a mix of different species, including lichens and moss tundra. 1008 
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 1019 

Figure 7: Surface emission rates of various monoterpenes (in µgC/m2/h) for different vegetation types. The 1020 
lower and upper hinges correspond to the first and third quartiles. The upper (lower) whisker extends from 1021 
the hinge to the largest (smallest) value no further than 1.5 × 𝐼𝑄𝑅 from the hinge, where 𝐼𝑄𝑅 is the inter-1022 
quartile range (i.e., the distance between the first and third quartiles). The notches extend 1.58 × 𝐼𝑄𝑅 √𝑛⁄  1023 
and give a ~95% confidence interval for medians. Miscellaneous refers to a mix of different species, 1024 
including lichens and moss tundra. 1025 
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 1028 

Figure 8: Mean diurnal cycle of isoprene (a-c) and monoterpenes (MT; e-g) surface emission rates (in 1029 
µgC/m2/h – note the difference scale on the y-axis), d) enclosure temperature (in °C), and h) enclosure 1030 
photosynthetically active radiation (PAR in µmol/m2/s). The dots represent the hourly means. The line is 1031 
the smoothed conditional mean while the grey shaded region indicates the 95% confidence interval. Hours 1032 
are in Alaska Standard Time (UTC-9) and correspond to the end of the 2-hr sampling period for isoprene 1033 
and MT emission rates. MT corresponds here to the sum of α-pinene, β-pinene, limonene, and 1,8-cineole. 1034 
Miscellaneous refers to a mix of different species, including lichens and moss tundra. 1035 
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 1036 

 1037 

Figure 9: Normalized isoprene surface emission rate (emissions at 20°C set equal to 1.0) as a function of 1038 
enclosure temperature (in °C). This figure shows the response to temperature as observed at Toolik Field 1039 
Station (TFS, in blue) and Abisko, Sweden (in pink; Tang et al., 2016), and as parameterized in MEGAN2.1 1040 
(in green). The blue solid line is the exponential fit at TFS. n denotes the number of measurements in each 1041 
enclosure temperature bin. It should be noted that the enclosure temperature was on average 5-6°C warmer 1042 
than ambient air due to greenhouse heating. 1043 
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