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Abstract 13 

Microorganisms are ubiquitous in the atmosphere and some airborne microbial cells were 14 

shown to be particularly resistant to atmospheric physical and chemical conditions (e.g., UV 15 

radiation, desiccation, presence of radicals). In addition to surviving, some cultivable 16 

microorganisms of airborne origin were shown to be able to grow on atmospheric chemicals in 17 

laboratory experiments. Metagenomic investigations have been used to identify specific 18 

signatures of microbial functional potential in different ecosystems. We conducted a 19 

preliminary comparative metagenomic study on the overall microbial functional potential and 20 

specific metabolic and stress-related microbial functions of atmospheric microorganisms in 21 

order to determine whether airborne microbial communities possess an atmosphere-specific 22 

functional potential signature as compared to other ecosystems (i.e. soil, sediment, snow, feces, 23 

surface seawater etc.). In absence of a specific atmospheric signature, the atmospheric samples 24 

collected at nine sites around the world were similar to their underlying ecosystems. In addition, 25 

atmospheric samples were characterized by a relatively high proportion of fungi. The higher 26 

proportion of sequences annotated as genes involved in stress-related functions (i.e. functions 27 

related to the response to desiccation, UV radiation, oxidative stress etc.) resulted in part from 28 

the high concentrations of fungi that might resist and survive atmospheric physical stress better 29 

than bacteria.  30 

 31 

Keywords: atmospheric microorganisms, airborne microbial communities, planetary boundary 32 
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 34 

1 Introduction 35 

Microorganisms are ubiquitous in the atmosphere and reach concentrations of up to 106 36 

microbial cells per cubic meter of air (Tignat-Perrier et al., 2019). Due to their important roles 37 

in public health and meteorological processes (Ariya et al., 2009; Aylor, 2003; Brown and 38 

Hovmøller, 2002; Delort et al., 2010; Griffin, 2007), understanding how airborne microbial 39 

communities are distributed over time and space is critical. While the concentration and 40 

taxonomic diversity of airborne microbial communities in the planetary boundary layer have 41 

recently been described (Els et al., 2019; Innocente et al., 2017; Tignat-Perrier et al., 2019), the 42 

functional potential of airborne microbial communities remains unknown. Most studies have 43 

focused on laboratory cultivation to identify possible metabolic functions of microbial strains 44 

of atmospheric origin, mainly from cloud water (Amato et al., 2007; Ariya et al., 2002; Hill et 45 

al., 2007; Vaïtilingom et al., 2010, 2013). Given that cultivatable organisms represent about 1 46 

% of the entire microbial community (Vartoukian et al., 2010), culture-independent techniques 47 

and especially metagenomic studies applied to atmospheric microbiology have the potential to 48 

provide additional information on the selection and genetic adaptation of airborne 49 
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microorganisms. However, to our knowledge, only five metagenomic studies on airborne 50 

microbial communities at one or two specific sites per study exist (Aalismail et al., 2019; Amato 51 

et al., 2019; Cao et al., 2014; Gusareva et al., 2019; Yooseph et al., 2013). Metagenomic 52 

investigations of complex microbial communities in many ecosystems (for example, soil, 53 

seawater, lakes, feces, sludge) have provided evidence that microorganism functional 54 

signatures reflect the abiotic conditions of their environment, with different relative abundances 55 

of specific microbial functional classes (Delmont et al., 2011; Li et al., 2019; Tringe et al., 2005; 56 

Xie et al., 2011). This observed correlation of microbial community functional potential and 57 

the physical and chemical characteristics of their environments could have resulted from genetic 58 

modifications (microbial adaptation) (Brune et al., 2000; Hindré et al., 2012; Rey et al., 2016; 59 

Yooseph et al., 2010) and/or physical selection. The latter refers to the death of sensitive cells 60 

and the survival of resistant or previously adapted cells. This physical selection can occur when 61 

microorganisms are exposed to physiologically adverse conditions. 62 

The presence of a specific microbial functional signature in the atmosphere has not been 63 

investigated yet. Microbial strains of airborne origin have been shown to survive and develop 64 

under conditions typically found in cloud water (i.e. high concentrations of H2O2, typical cloud 65 

carbonaceous sources, UV radiation etc.) (Amato et al., 2007; Joly et al., 2015; Vaïtilingom et 66 

al., 2013). While atmospheric chemicals might lead to some microbial adaptation, physical and 67 

unfavorable conditions of the atmosphere such as UV radiation, low water content and cold 68 

temperatures might select which microorganisms can survive in the atmosphere. From the pool 69 

of microbial cells being aerosolized from Earth’s surfaces, these adverse conditions might act 70 

as a filter in selecting cells already resistant to unfavorable physical conditions. Fungal cells 71 

and especially fungal spores might be particularly adapted to survive in the atmosphere due to 72 

their innate resistance (Huang and Hull, 2017) and might behave differently than bacterial cells. 73 

Still, the proportion and nature (i.e. fungi versus bacteria) of microbial cells that are resistant to 74 

the harsh atmospheric conditions within airborne microbial communities are unknown. 75 

Our objective was to determine whether airborne microorganisms in the planetary boundary 76 

layer possess a specific functional signature as compared to other ecosystems since this might 77 

indicate that microorganisms with specific functions tend to be more aerosolized and/or 78 

undergo a higher survival in this environment. Our previous study showed that airborne 79 

microbial taxonomy mainly depends on the underlying ecosystems, indicating that the local 80 

environments are the main source of airborne microorganisms (Tignat-Perrier et al., 2019). Still, 81 

we do not know if airborne microbial communities result from random or specific 82 

aerosolization of the underlying ecosystems’ microorganisms. We used a metagenomic 83 

approach to compare the differences and similarities of both the overall functional potential and 84 

specific microbial functions (metabolic and stress-related functions) between microbial 85 

communities from the atmosphere and other ecosystems (soil, sediment, surface seawater, river 86 

water, snow, human feces, phyllosphere and hydrothermal vent). We sampled airborne 87 

microbial communities at nine different locations around the world during several weeks to get 88 

a global-scale view and to capture the between and within-site variability in atmospheric 89 

microbial functional potential.  90 

 91 

2 Material and Methods 92 

2.1 Sites and sampling 93 

Air samples were collected at nine sites in 2016 and 2017. Sites were characterized by different 94 

latitudes (from the Arctic to the sub-Antarctica; Fig 1), elevations from sea level (from 59 m to 95 

5230 m; Fig 1) and environment type (from marine for Amsterdam-Island or AMS, to coastal 96 

for Cape Point or CAP, polar for Station Nord or STN and terrestrial for Grenoble or GRE, 97 

Chacaltaya or CHC, puy de Dôme or PDD, Pic-du-Midi or PDM, Storm-Peak or STP and 98 

Namco or NAM - Table S1). The number of samples collected per site varied from seven to 99 
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sixteen (Table S1). We collected particulate matter smaller than 10 µm (PM10) on quartz fiber 100 

filters (5.9’’ round filter and 8’’ × 10’’ rectangular types) using high volume air samplers 101 

(TISCH, DIGITEL, home-made) installed on roof tops or terraces (roughly 10 m above ground 102 

level). To avoid contamination, quartz fiber filters as well as all the material in contact with the 103 

filters (i.e. filter holders, aluminium foils and plastic bags in which the filters were transported) 104 

were sterilized using strong heating (500 °C for 8 h) and UV radiation, respectively as detailed 105 

in Dommergue et al., 2019. The collection time per sample lasted one week, and the collected 106 

volumes ranged from 2000 m3 to 10000 m3 after standardization using SATP standards 107 

(Standard Ambient Pressure and Temperature). Detailed sampling protocols including negative 108 

control filters are presented in Dommergue et al. 2019. MODIS (Moderate resolution imaging 109 

spectroradiometer) land cover approach (5’ x 5’ resolution) (Friedl et al., 2002; Shannan et al., 110 

2014) was used to quantify landscapes in the 50 km diameter area of our nine sampling sites 111 

(Fig S1). 112 

 113 

 114 

 115 

Fig 1. Sample collection locations. Map showing the geographical location and elevation from 116 

sea level of our nine sampling sites (in yellow), and the geographical position of whose public 117 

metagenomes come from (in orange). Abbreviations of our nine sampling sites are indicated in 118 

brackets. 119 

 120 

2.2 Molecular biology analyses 121 

2.2.1 DNA extraction 122 

DNA was extracted from three circular pieces (punches) from the quartz fiber filters (diameter 123 

of one punch: 38 mm) using the DNeasy PowerWater kit with some modifications as detailed 124 

in Dommergue et al., 2019. During cell lysis, the PowerBead tube containing the three punches 125 

and the pre-heated lysis solution were heated at 65 °C during one hour after a 10-min vortex 126 

treatment at maximum speed. We then separated the filter debris from the lysate by 127 

centrifugation at 1000 rcf for 4 min. From this step on, we followed the DNeasy PowerWater 128 

protocol. DNA concentration eluted in 100 µL of buffer was measured using the High Sensitive 129 

Qubit Fluorometric Quantification (Thermo Fisher Scientific). DNA was stored at -20 °C.  130 

 131 

2.2.2 Real-Time qPCR analyses 132 
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16S rRNA gene qPCR. The bacterial cell concentration was approximated by the number of 133 

16S rRNA gene copies per cubic meter of air. The V3 region of the 16S rRNA gene was 134 

amplified using the SensiFast SYBR No-Rox kit (Bioline) and the following primers sequences: 135 

Eub 338f 5’-ACTCCTACGGGAGGCAGCAG-3’ as the forward primer and Eub 518r 5’-136 

ATTACCGCGGCTGCTGG-3’ as the reverse primer (Fierer et al., 2005) on a Rotorgene 3000 137 

machine (Qiagen). The reaction mixture of 20 µL contained 10 µL of SYBR master mix, 2 µL 138 

of DNA and RNAse-free water to complete the final 20 µL volume. The qPCR 2-step program 139 

consisted of an initial step at 95 °C for 2 min for enzyme activation, then 35 cycles of 5 s at 95 140 

°C and 20 s at 60 °C hybridization and elongation. A final step was added to obtain a 141 

denaturation from 55 °C to 95 °C with increments of 1 °C s-1. The amplicon length was around 142 

200 bp. PCR products obtained from DNA from a pure culture of Escherichia coli were cloned 143 

in a plasmid (pCR™2.1-TOPO® vector, Invitrogen) and used as standard after quantification 144 

with the Broad-Range Qubit Fluorometric Quantification (Thermo Fisher Scientific). 145 

18S rRNA gene qPCR. The fungal cell concentration was estimated by the number of 18S 146 

rRNA gene copies per cubic meter of air. The region located at the end of the SSU 18S rRNA 147 

gene, near the ITS 1 region, was quantified using the SensiFast SYBR No-Rox kit (Bioline) 148 

and the following primers sequences: FR1 5’-AICCATTCAATCGGTAIT-3’ as the forward 149 

primer and FF390 5’-CGATAACGAACGAGACCT-3’ as the reverse primer (Chemidlin 150 

Prévost-Bouré et al., 2011) on a Rotorgene 3000 machine (Qiagen). The reaction mixture of 20 151 

µL contained 10 µL of SYBR master mix, 2 µL of DNA and RNAse-free water to complete the 152 

final 20 µL volume. The qPCR 2-steps program consisted of an initial step at 95 °C for 5 min 153 

for enzyme activation, then 35 cycles of 15 s at 95 °C and 30 s at 60 °C hybridization and 154 

elongation. A final step was added to obtain a denaturation from 55 °C to 95 °C with increments 155 

of 1 °C s-1. The amplicon length was around 390 bp. PCR products obtained from DNA from a 156 

soil sample were cloned in a plasmid (pCR™2.1-TOPO® vector, Invitrogen) and used as 157 

standard after quantification with the Broad-Range Qubit Fluorometric Quantification (Thermo 158 

Fisher Scientific). 159 

 160 

2.2.3 MiSeq Illumina metagenomic sequencing 161 

Metagenomic library preparation. Metagenomic libraries were prepared from 1 ng of DNA 162 

using the Nextera XT Library Prep Kit and indexes following the protocol in Illumina’s 163 

“Nextera XT DNA Library Prep Kit” reference guide with some modifications for samples with 164 

DNA concentrations below 1 ng as follows. The tagmented DNA was amplified over 13 PCR 165 

cycles instead of 12 PCR cycles, and the libraries (after indexing) were resuspended in 30 µL 166 

of RBS buffer instead of 52.5 µL. Metagenomic sequencing was performed using the MiSeq 167 

and V2 technology of Illumina with 2 x 250 cycles. At the end of the sequencing, the adapter 168 

sequences were removed by internal Illumina software. 169 

Reads quality filtering. Reads 1 and reads 2 per sample were not paired but merged in a 170 

common file before filtering them based on read quality using the tool FASTX-Toolkit 171 

(http://hannonlab.cshl.edu/fastx_toolkit/) using a minimum read quality of Q20, minimum read 172 

length of 120 bp and one maximum number of N per read. Samples with less than 6000 filtered 173 

sequences were removed from the dataset. 174 

 175 

2.2.4 Downloading of public metagenomes 176 

Public metagenomes were downloaded from the MGRAST and SRA (NCBI) databases as 177 

quality filtered read-containing fasta files and raw read containing fastq files, respectively. The 178 

fastq files containing raw reads underwent the same quality filtering as our metagenomes (as 179 

discussed above). The list of the metagenomes, type of ecosystem, number of sequences and 180 

sequencing technology (i.e. MiSeq, HiSeq or 454) are summarized in Table S2. The sampling 181 

sites are positioned on the map in Fig 1. 182 
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 183 

2.3 Data analyses 184 

All graphical and multivariate statistical analyses were carried out using the vegan (Oksanen et 185 

al., 2019), ggplot2 (Hadley and Winston, 2019) and reshape2 (Wickham, 2017) packages in the 186 

R environment (version 3.5.1). 187 

 188 

2.3.1 Annotation of the metagenomic reads 189 

Firstly, to access the overall functional potential of each sample, the filtered sequences per 190 

sample were functionally annotated using Diamond, then the gene-annotated sequences were 191 

grouped in the different SEED functional classes (around 7000 functional classes, referred 192 

simply to as functions) using MEGAN version 6 (Huson et al., 2009). Functional classes that 193 

were present ≤ 2 times in a sample were removed of this sample. In parallel, the Kraken software 194 

(Wood and Salzberg, 2014) was used to retrieve the bacterial and fungal sequences separately 195 

from the filtered sequences using the Kraken bacterial database and FindFungi (Donovan et al., 196 

2018) fungal database (both databases included complete genomes), respectively (and using 197 

two different runs of Kraken). Separately, both the bacterial and fungal sequences were also 198 

functionally annotated using Diamond and MEGAN version 6 (number of sequences 199 

functionally annotated in Table S3). 200 

Secondly, for specific metabolic and stress-related functions, we annotated the sequences using 201 

eggNOG-Mapper version 1 (Diamond option), then examined specific GO (Gene Ontology) 202 

terms chosen based on their importance for microbial resistance to atmospheric-like conditions. 203 

The different GO terms used were the following: GO:0042744 (hydrogen peroxide catabolic 204 

activity), GO:0015049 (methane monooxygenase activity) as specific metabolic functions and 205 

GO:0043934 (sporulation), GO:0009650 (response to UV), GO:0034599 (cell response to 206 

oxidative stress), GO:0009269 (response to desiccation) as stress-related functions. The number 207 

of hits of each GO term was normalized per 10000 annotated sequences and calculated from all 208 

sequences, bacterial sequences and fungal sequences for each sample. The number of sequences 209 

annotated by eggNOG-Mapper (Huerta-Cepas et al., 2017) was also evaluated (Table S3). The 210 

putative concentration of a specific function or functional class in the samples is determined as 211 

the concentration of sequences annotated as one of the functional proteins associated to this 212 

function (or functional class). 213 

 214 

2.3.2 Statistical analyses 215 

Observed functional richness and evenness were calculated per sample after rarefaction on all 216 

sequences (rarefaction at 2000 sequences), bacterial sequences (rarefaction at 500 sequences) 217 

and fungal sequences (rarefaction at 500 sequences). The distribution of the samples was 218 

analyzed based on the SEED functional classes (using all sequences). PCoA and hierarchical 219 

clustering analysis (average method) were carried out on the Bray-Curtis dissimilarity matrix 220 

based on the relative abundances of the different SEED functional classes. SIMPER analyses 221 

were used to identify the functions responsible for the clustering of samples in groups. Because 222 

of the non-normality of the data, Kruskal-Wallis analyses (non-parametric version of ANOVA) 223 

and Dunn’s post-hoc tests were used to test the difference between the percentage of fungal 224 

sequences as well as the number of hits of each Gene Ontology term (normalized per 10000 225 

annotated sequences) among the different sites and the different ecosystems. 226 

 227 

3 Results 228 

3.1 Percentage of fungal sequences 229 

The percentage of sequences annotated as belonging to fungal genomes (or fungal sequences, 230 

as opposed to bacterial sequences) was on average higher in air samples compared to soil (P<10-231 
5), snow (P=10-3), seawater (P=0.03) and sediment samples (P=10-3; Fig 2 and Table S4). 232 
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Among the air samples, NAM (19%), STN (24%) and CHC (27%) showed the lowest 233 

percentages of fungal sequences on average while STP (88%), GRE (79%), AMS (71%) and 234 

PDD (62%) showed the highest percentages. For the ecosystems that were only represented by 235 

one sample, and therefore, were not evaluated by the Kruskal-Wallis test, we observed average 236 

percentages of fungal reads of 3% in feces, 9% in hydrothermal vents, 19% in river water 237 

samples and 37% in the phyllosphere. Some samples from soil, sediments and seawater such as 238 

French agricultural soil (61%), Peru sediments (53%) and Celtic seawater (53%) had relatively 239 

high percentages of fungal sequences while other samples had less than 50%. The number of 240 

fungal and bacterial cells was also estimated using 16S rRNA and 18S rRNA gene copy 241 

numbers per cubic meter of air, respectively. qPCR results on air samples are available in 242 

Tignat-Perrier et al., 2019. Air samples had ratios between bacterial cell and fungal cell 243 

concentrations from around 4.5 times up to 160 times lower than soil samples (Table S4). 244 

 245 

 246 

 247 

Fig 2. Percentage of fungal and bacterial sequences in the metagenomes. The percentages 248 

are established as the number of sequences annotated as belonging to fungal and bacterial 249 

genomes over the sum of bacterial and fungal sequences in the metagenomes. The mean was 250 

calculated for the sampling sites including several metagenomes. Air sites (i.e. our 9 sites + 5 251 

sites where public air metagenomes come from) are distinguished by grey hatching lines. 252 

 253 

 254 

3.2 Airborne microbial functional profiles 255 

The fifty most abundant SEED functional classes represented in atmospheric samples are listed 256 

in Table S5. The 5-FCL-like protein, the long chain fatty acid CoA ligase and the TonB-257 

dependent receptor were the top three functions based on number of annotated reads observed 258 

when including all the sequences (Table S5). The atmospheric microbial functional profiles 259 
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based on the SEED functions were compared between samples from the different weeks of 260 

sampling and between different locations. The profiles were graphed using PCo multivariate 261 

analysis to visualize differences and similarities. The different samples (sampled during 262 

sequential weeks) from the same site did not cluster tightly together on the PCo multivariate 263 

analysis. In order to incorporate weekly variation when comparing sites, we used the microbial 264 

functional profile averaged per site in the subsequent multivariate analyses done with the data 265 

from other ecosystems (Fig 3). The PCo multivariate analysis showed that terrestrial 266 

atmospheric sites (GRE, NAM, STP, PDD, PDM, CHC, New York) grouped with the soil, 267 

sediment and snow samples while the marine and coastal atmospheric sites (AMS, CAP, San 268 

Diego) were situated between the datasets from soil, seawater and river water (Fig 3). The polar 269 

site STN did not group with the other sites. When considering only the bacterial sequences (i.e., 270 

excluding the fungal sequences), the distribution of the terrestrial atmospheric sites did not 271 

change, while the marine Amsterdam-Island, coastal Cape Point and polar Station Nord 272 

atmospheric sites were further from the seawater and river water datasets than when the fungal 273 

sequences were included (Fig S2). The distribution of the different datasets underwent further 274 

changes when considering only the fungal sequences. We observed an absence of a clear 275 

separation between soil and seawater since they (for the majority) grouped closely together, and 276 

terrestrial atmospheric datasets did not group with the other non-atmospheric datasets from soil, 277 

sediment and snow (Fig S2). 278 

 279 

 280 

Fig 3. Distribution of the samples based on the microbial functional profile. The PCo 281 

analysis of the Bray-Curtis dissimilarity matrix is based on the functional potential structure of 282 

each site. For the site including several metagenomes, the average profile was calculated. Colors 283 

indicate the ecosystems in which the sites belong to. 284 
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 285 

3.3 Airborne microbial functional richness and evenness 286 

Functional richness and evenness were evaluated using the relative abundance of sequences in 287 

the different SEED categories. The average richness in SEED functional classes (or functions) 288 

in the PBL was lower than the average functional class richness in soil, surface seawater, 289 

hydrothermal vents, river water, phyllosphere and feces (P<0.05) (Table S3). Among the 290 

different atmospheric samples, the functional class richness was highest in Beijing (4060 +/- 291 

112 functional classes) and New York indoor air samples (3302 +/- 299 functional classes) 292 

(P<0.05), and lowest in Station Nord (956 +/- 547 functional classes). When looking at the 293 

bacteria-annotated sequences, almost the same trend was observed, i.e. the functional class 294 

richness in air was lower than in soil, hydrothermal vents, river water, phyllosphere and feces, 295 

and not different from the other ecosystems (P<0.05 and >0.05, respectively) (Table S3). The 296 

functional class richness was higher in Beijing (2835 +/- 59 functional classes) and New York 297 

indoor air samples (2183 +/- 387 functional classes) compared to the other air samples whose 298 

values ranged between 270 +/- 197 functional classes in Amsterdam-Island and 1142 +/- 461 299 

functional classes in Chacaltaya. For fungal sequences, the functional class richness in the 300 

atmosphere was lower than the functional class richness in soil, surface seawater, feces, 301 

hydrothermal vents, river water and phyllosphere (P<0.05) (Table S3). Within air samples, the 302 

functional class richness based on fungal sequences was higher in Beijing (1129 +/- 92 303 

functional classes) and New York indoor air samples (687 +/- 206 functional classes) than in 304 

the other air sites (P<10-5) whose values ranged from 66 +/- 58 functional classes in 305 

Amsterdam-Island and 392 +/- 131 functional classes in Storm Peak (Table S3). The functional 306 

class evenness in air was on average higher than in soil (P=0.03), and not different to the 307 

functional class evenness observed in the other ecosystems (sediment, seawater, snow). When 308 

looking at the bacterial and fungal sequences separately, the functional class evenness in air 309 

was on average higher than in soil, feces, phyllosphere and riverwater (P<0.05) (Table S3). 310 

 311 

3.4 Concentration of specific microbial functions that might have a role under 312 

atmospheric conditions 313 

Two metabolic functions associated with abundant atmospheric chemicals (H2O2 and CH4) 314 

were examined, hydrogen catabolism and methane monoxygenase activity. The concentration 315 

of sequences annotated as hydrogen peroxide catabolic related functional proteins per 10000 316 

sequences varied between air sites (P=2×10-5) with highest values for Amsterdam-Island (27 317 

+/- 1) and Grenoble (27 +/- 1) (Fig S3). It was on average higher in air compared to soil (P=10-318 
4) and surface seawater (P=10-4). The French agricultural soil showed the highest relative 319 

abundance (133 +/- 4). When considering the fungal and bacterial sequences separately, this 320 

concentration was not different between air and the other ecosystems (P>0.05) (Fig S3). The 321 

number of sequences annotated as methane monooxygenase-related functional proteins per 322 

10000 sequences was only detectable when considering all the sequences (i.e. bacterial and 323 

fungal sequences). The number of sequences annotated as methane monooxygenase-related 324 

functional proteins did not vary between air sites (P>0.05) while we observed a high variability 325 

between sampling periods within sites, but on average it was not different from the ecosystems 326 

(P>0.05). 327 

Different stress response functions (sporulation, UV response, oxidative stress cell response, 328 

desiccation response, chromosome plasmid partitioning protein ParA and lipoate synthase) 329 

were examined. The concentration of sequences annotated as sporulation-related functional 330 

proteins per 10000 annotated sequences largely varied between air sites (P=2×10-9), with the 331 

lowest values observed for Station Nord (7 +/- 9), San Diego (9 +/- 6), Namco (17 +/- 15) and 332 

Chacaltaya (26 +/-13), and the highest values observed for Storm Peak (120 +/- 18), Beijing 333 

(126 +/- 22), Grenoble (131 +/- 21) and New York (141 +/- 98) (Fig 4). It was on average higher 334 
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in air compared to soil (P<10-5), sediments (P<10-5) and surface seawater (P=4×10-4) although 335 

the Celtic seawater sample presented a very high concentration (127). Snow showed a relatively 336 

high average concentration (i.e. 36) which was not different from air concentration (P>0.05). 337 

For the ecosystems including one value (i.e. one sample, so not integrated in the Kruskal-Wallis 338 

tests), feces showed a relatively high concentration of sequences annotated as sporulation-339 

related functional proteins (i.e. 41) while hydrothermal vent, phyllosphere and river water 340 

showed relatively low concentrations compared to air (<10). When considering the fungal 341 

sequences separately from the bacterial sequences, the same trend was observed, i.e. the 342 

concentration of sequences annotated as sporulation-related functional proteins in air was on 343 

average higher compared to soil (P<10-5), sediments (P<10-5), surface seawater (P=7×10-4) as 344 

well as phyllosphere, hydrothermal vent and river water. The concentration was relatively high 345 

in the Celtic seawater (186) and the snow samples (163 +/- 47). We also observed a large 346 

variability within air sites (P=3×10-5). When considering the bacterial sequences only, this 347 

concentration in air was on average higher compared to soil (P=0.02), sediments (P=4×10-3) 348 

and snow (P=0.01), and showed a smaller variability between air sites. Two samples, the 349 

phyllosphere (i.e. 35) and the shrubland soil from Sudan (i.e. 32) showed high numbers of 350 

sequences annotated as sporulation-related functional proteins per 10000 annotated sequences 351 

(Fig 4). 352 

 353 
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 354 

Fig 4. Proportion of sequences annotated as sporulation related functional proteins in the 355 

metagenomes. Average number of sequences annotated as proteins implicated in sporulation 356 

per 10000 annotated sequences from (a) all sequences, (b) fungal sequences and (c) bacterial 357 
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sequences per site. Colors indicate the ecosystems in which the sites belong to. For the sites 358 

including several metagenomes, the standard deviation was added. 359 

 360 

The concentration of sequences annotated as UV response related functional proteins per 10000 361 

annotated sequences varied between air sites (P=10-5), with values ranging from 16 +/- 2 in 362 

Namco and 19 +/- 4 in STN to 29 +/- 3 in Storm Peak and 36 +/- 6 in Amsterdam-Island (Fig 363 

S4). The concentration was on average higher in air compared to sediments (P<10-5), soil 364 

(P<10-5) and comparable to snow and surface seawater (P>0.05). The other ecosystems showed 365 

lower ratios (feces, phyllosphere) or comparable concentrations (hydrothermal vent, river 366 

water) compared to air. Within the soil samples, the French agricultural soil samples showed a 367 

high average concentration (56 +/- 8), which increased the average ratio observed in soil 368 

samples. When considering fungal sequences separately, the concentration of sequences 369 

annotated as UV response related functional proteins was higher in air compared to soil 370 

(P=9×10-4), and comparable to the other ecosystems (P>0.05). When considering the bacterial 371 

sequences only, this concentration in air was on average higher compared to seawater (P=3×10-372 
3) and sediments (P=6×10-3). 373 

The concentration of sequences annotated as oxidative stress cell response related functional 374 

proteins per 10000 annotated sequences varied largely between air sites (P=5×10-7), with the 375 

lowest values observed for Station Nord (23 +/- 5), San Diego (11 +/- 3) and Namco (28 +/- 376 

10), and the highest values observed for Storm Peak (105 +/- 16), Amsterdam-Island (108 +/- 377 

16) and Grenoble (119 +/- 19) (Fig 5). The concentration was on average higher in air compared 378 

to soil (P<10-5), sediments (P<10-5) and surface seawater (P=2×10-3). Snow showed a relatively 379 

high average value (46 +/- 11), not different from air (P>0.05). The other ecosystems (feces, 380 

river water, hydrothermal vent, phyllosphere) showed lower ratios compared to air. When 381 

considering fungal sequences separately, the concentration of sequences annotated as oxidative 382 

stress related functional proteins per 10000 sequences was on average higher in air compared 383 

to soil (P<10-5), sediments (P<10-5) and surface seawater (P=10-3). Feces showed a very high 384 

average value (2237). When considering bacterial sequences separately, this concentration was 385 

not different between air and the other ecosystems (P>0.05). When considering both fungal and 386 

bacterial sequences separately, the variability in the concentration of sequences annotated as 387 

oxidative stress cell response related functional proteins between air sites diminished and their 388 

difference was not detected anymore (P>0.05). 389 

 390 
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Fig 5. Proportion of sequences as oxidative stress cell response related functional proteins 392 

in the metagenomes. Average number of sequences annotated as proteins implicated in 393 

oxidative stress cell response per 10000 annotated sequences from (a) all sequences, (b) fungal 394 

sequences and (c) bacterial sequences per site. Colors indicate the ecosystems in which the sites 395 

belong to. For the sites including several metagenomes, the standard deviation was added.  396 

 397 

 398 

The concentration of sequences annotated as desiccation response related functional proteins 399 

per 10000 sequences varied between air sites (P=2×10-5), with the highest values in Grenoble 400 

(4 +/- 1), Storm Peak (4 +/- 1) and Amsterdam-Island (3 +/- 3), and the lowest values in Station 401 

Nord (0.5 +/- 1) and San Diego (0.1 +/- 0.1) (Fig S4). It was on average higher in air compared 402 

to the other ecosystems (P=4×10-9). Still Svalbard snow and French agricultural soil showed 403 

high values (2 +/- 1 and 3 +/- 1, respectively) (Fig S4). When considering fungal sequences 404 

only, the concentration in air was higher compared to soil (P>10-5), sediments (P>10-5) and 405 

surface seawater (P=10-3). No difference between the ecosystems was observed when 406 

considering bacterial sequences separately (P=0.62). 407 

Two proteins (lipoate synthase and chromosome plasmid partitioning protein ParA) related to 408 

stress response showed high relative concentrations in bacterial sequences of a few air samples 409 

compared to the other ecosystems (Fig S3), although the number of sequences related to these 410 

proteins was on average not higher in the atmosphere than other ecosystems (P>0.05). 411 

 412 

4 Discussion 413 

Metagenomic investigations of different ecosystems revealed a specific functional potential 414 

signature of their associated microbial communities (Delmont et al., 2011; Tringe et al., 2005). 415 

These specific signatures are thought to result from microbial adaptation and/or physical 416 

selection to the environmental abiotic conditions (Hindré et al., 2012; Li et al., 2019; Rey et al., 417 

2016) and are a reflection of the high relative abundances of genes coding for specific functions 418 

essential for microorganisms to survive and develop in these environments. For example, 419 

microbial metagenomes of human feces were characterized by high relative abundances of 420 

sequences annotated as beta-glucosidases that are associated with high intestinal concentrations 421 

of complex glycosides; and microbial metagenomes of oceans were enriched in sequences 422 

annotated as enzymes catalyzing DMSP (dimethylsulfoniopropionate), that is an organosulfur 423 

compound produced by phytoplankton (Delmont et al., 2011). Our results showed a clear 424 

separation between surface seawater, river water, human feces and almost all the soil samples 425 

(which grouped with the sediment and snow samples at the scale used here) on the PCo analysis 426 

based on the microbial functional potential (Fig 3). For air microbiomes, the PCo analyses 427 

showed that the individual air samples did not group for each site and that they did not form a 428 

cluster separated from the other ecosystems based on the overall microbial functional potential 429 

averaged per site (Fig 3). Air samples seemed to group with their underlying ecosystems. While 430 

terrestrial air samples (GRE, NAM, CHC, STP, PDD, PDM) grouped with snow, soil and 431 

sediment samples, the marine (Amsterdam-Island), coastal (Cape Point) and arctic (Station 432 

Nord) air samples were closer to surface seawater and river water samples. Airborne microbial 433 

functional potential (and especially metabolic functional potential as SEED functional classes 434 

included mainly metabolic functions and few stress response related functions) might be 435 

dependent on the ecosystems from which microorganisms are aerosolized. Moreover, it seems 436 

that bacterial sequences are mainly responsible for the distribution of the samples on the PCo 437 

analysis (as observed when comparing the PCoA to that carried out with the fungal sequences 438 

only) although they were in smaller numbers compared to fungal sequences for many of the air 439 

samples (i.e. STP, GRE, AMS, PDD, CAP, Beijing etc.). The low statistical weight of fungal 440 

sequences relative to the overall sequences might be related to their low richness in terms of 441 
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functional genes that might have resulted in the spreading of the samples on the PCoA based 442 

on the fungal sequences (Table S3). 443 

Metagenomes extracted from atmospheric samples taken around the planet were characterized 444 

by a relatively high percentage of fungal sequences as compared to other ecosystems even 445 

though bacterial sequences still dominated. This percentage varied across the different sites 446 

with a higher percentage at terrestrial sites whose surrounding landscapes were vegetated like 447 

Grenoble (GRE), puy de Dôme (PDD) and Pic-du-midi (PDM) (surrounding landscapes in Fig 448 

S1). This percentage was also relatively high at the marine site Amsterdam-Island (AMS), 449 

where fungi might come from the ocean and/or the vegetated surfaces of the small island. A 450 

high percentage of fungal sequences was also reported for air samples from Beijing, New York 451 

and San Diego and validates our DNA extraction method set-up specifically for quartz fiber 452 

filter (Dommergue et al., 2019). Similarly, the sequencing technology (Illumina MiSeq) could 453 

not have been responsible for the larger percentage of fungal sequences observed in our datasets 454 

as the Beijing and New York/San Diego air sample datasets originated from Illumina HiSeq 455 

and 454 sequencing technology, respectively. qPCR results on the 16S rRNA gene (bacterial 456 

cell concentration estimation) and on the 18S rRNA gene (fungal cell concentration estimation) 457 

on our air samples in comparison to soil samples (Côte Saint André, France) showed that the 458 

ratio between fungal and bacterial cell number was much higher (from 4.5 to 160 times higher 459 

for the most vegetated site Grenoble) in air than in soil (Table S4). The ratio between fungal 460 

and bacterial cell number might be higher in the planetary boundary layer (PBL) than in other 461 

environments like soil (Malik et al., 2016), and thus, would explain the relatively higher 462 

percentage of fungal sequences observed in air metagenomes. High throughput sequencing 463 

allows the sequencing of a small part of the metagenomic DNA (with large fungal genomes 464 

likely to be sequenced first) and might explain why the values of the bacteria and fungi 465 

abundance ratio obtained by qPCR does not match those obtained by the metagenomic 466 

sequencing approach. Our study is a preliminary metagenomic investigation of the air 467 

environment with a limited number of sequences per sample, and further studies are needed to 468 

confirm our results.  469 

Fungi in the atmosphere are expected to be found mostly as fungal spores, although the relative 470 

concentration of fungal spores and fungal hyphae fragments in air is unknown. Our results 471 

showed that the number of sporulation-related functions was higher in air than the other 472 

ecosystems (with the exception of snow and phyllosphere). While fungal hyphae are not 473 

expected to be particularly resistant to extreme conditions such as UV radiation, fungal spores 474 

are specifically produced to resist and survive overall adverse atmospheric conditions (Huang 475 

and Hull, 2017). Their thick membrane and dehydrated nature make them particularly resistant 476 

to abiotic atmospheric conditions such as UV radiation, oxidative stress, desiccation as well as 477 

osmotic stress. Fig 6 presents a conceptual model that could explain the higher ratio between 478 

fungi and bacteria observed in air. During aerosolization and aerial transport, bacteria and fungi 479 

might be under stress and might undergo a physical selection with the survival of the most 480 

resistant cells to the adverse atmospheric conditions (i.e. UV radiation, desiccation etc.) and the 481 

death of non-resistant cells. As fungi (and especially fungal spores) might be naturally more 482 

resistant and adapted to atmospheric conditions than bacteria, we expect a larger decline of 483 

bacterial cells compared to fungal cells and spores in air. This might have as a consequence an 484 

increase in the ratio between fungi and bacteria compared to their non-atmospheric origins (i.e. 485 

the surrounding ecosystems) (Fig 6). 486 

 487 
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 488 

 489 

Fig 6. Microbial cell loss due to atmospheric physical stress. Conceptual model on the 490 

microbial cell loss occurring during the aerosolization and aerial transport steps due to physical 491 

selection. The thickness of the arrows represents the impact of the physical selection on both 492 

bacterial and fungal cell loss (the more microbial cells survive the physical selection, the thicker 493 

becomes the arrow). Approximate ratios are indicative and result from 16S rRNA and 18S 494 

rRNA qPCR data on Côte Saint André soil samples (crop soil, France) and puy de Dôme air 495 

samples (France; puy de Dôme landscape is mainly composed of croplands as shown in Fig 496 

S1). 497 

 498 

The high variability between the air sites and between air samples of the same site could be 499 

explained by the variability in the inputs from the different surrounding landscapes. Our 500 

previous paper showed that local inputs were the main sources of planetary boundary layer 501 

microorganisms and that local meteorology (especially the wind direction) had a major impact 502 

on the temporal variability of airborne microbial communities by affecting which of the 503 
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different local sources were upwind (Tignat-Perrier et al., 2019). Our results did not show a 504 

specific (metabolic) functional potential signature for the atmosphere, which was rather mainly 505 

driven by the surrounding landscapes. Our results are consistent with both a pre-metabolic 506 

adaptation of airborne microorganisms to the chemicals of the sources (i.e. surrounding 507 

landscapes) and a potential metabolic adaptation to these chemicals in the atmosphere. 508 

Atmospheric chemistry is dependent on the underlying ecosystem chemistry since the main 509 

sources of atmospheric chemicals are Earth surface emissions. Yet, the oxidizing conditions of 510 

the atmosphere might lead to rapid transformations of atmospheric chemicals by photochemical 511 

reactions. These specific atmospheric chemical reactions (i.e. photochemical) produce species 512 

which, with the gases like CH4, characterize the atmosphere (O3, H2O2, OH etc.). Although 513 

some microbial strains from cloud water origin have been shown to metabolize and grow on 514 

culture medium in the presence of H2O2 (Vaïtilingom et al., 2013), radical species and their 515 

precursors are reactive compounds and might not easily serve as energy and carbon sources for 516 

microorganisms (Imlay, 2013). Our results on specific metabolic related functions showed that 517 

functions related to methane monooxygenase activity (CH4 degradation) and hydrogen 518 

peroxide catabolism (H2O2 degradation) were present in air but not in higher proportion than in 519 

other ecosystems (Fig S3). Reactive compounds can cause oxidative stress to airborne 520 

microorganisms. In association to adverse physical conditions like UV radiation and 521 

desiccation, oxidative compounds might create more of a physical stress than provide a new 522 

metabolic source for airborne microorganisms. Laboratory investigations of cultivable 523 

microorganisms of an airborne origin showed the presence of particularly resistant strains under 524 

stressful conditions similar to the atmospheric ones (i.e. similar UV radiation levels; different 525 

oxidative conditions) (Joly et al., 2015; Yang et al., 2008). However, no study has shown 526 

whether these apparently adapted cells represented the majority of airborne microorganisms. 527 

Since the overall SEED functional classes included mainly metabolic functions, specific stress 528 

related functions using GO (Gene Ontology) terms were also evaluated. We observed that on 529 

average, air showed more stress-related functions (UV response, desiccation and oxidative 530 

stress response related functions) than the other ecosystems due to the higher concentration of 531 

fungi (relatively to bacteria) in air. Thus, when the annotated sequences were separated between 532 

sequences belonging to fungal and bacterial genomes, the bacterial and fungal sequences from 533 

air samples did not show a significantly higher concentration of stress-related functions 534 

compared to the samples coming from other ecosystems (Fig 4, 5, Fig S4). 535 

Fungal genomes are expected to carry genes associated to global stress-related functions (i.e. 536 

UV radiation, desiccation, oxidative stress), because of the innate resistance of fungi especially 537 

fungal spores. These genes associated to global stress-related functions are likely acquired 538 

during sporulation formation and certainly do not result from adaptation of fungi in air. When 539 

studying genes coding more specific proteins that are not associated to spore resistance, such 540 

as lipoate synthase and chromosome plasmid partitioning protein ParA, that might play a role 541 

in oxidative stress (Allary et al., 2007; Bunik, 2003) and are more generally found in stress 542 

resistance and adaptability of microorganisms (Shoeb et al., 2012; Zhang et al., 2018), they 543 

were occasionally found in relatively high concentration in air samples (Fig S3). The detection 544 

of metagenomic sequences annotated as genes coding specific proteins in air samples remains 545 

difficult because of the low microbial biomass recovered. That is why we examined the 546 

presence and concentration of global functions (i.e. UV protection related functions, oxidative 547 

stress response related functions etc.) rather than specific functional genes. 548 

The constant and large input of microbial cells to the planetary boundary layer and their 549 

relatively short residence time (a few hours to a few days based on a model assuming that 550 

microbial cells behave like non biological aerosols (Jaenicke, 1980)) might have hindered the 551 

observation of the potential adaptation (physical selection and/or microbial adaptation) of 552 

airborne microorganisms to the stressful atmospheric conditions and to the atmospheric 553 
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chemicals as discussed above. This issue might be addressed by investigating microbial 554 

functional potential in the free troposphere (preferentially high enough above the ground so as 555 

not to be influenced by the surface) where the microbial fluxes are smaller than in the planetary 556 

boundary layer and where microbial airborne residence time might last much longer than in the 557 

planetary boundary layer. This troposphere approach might help in determining the role of 558 

stress in the atmosphere and validate our conceptual model on the physical stress of microbial 559 

cells taking place during aerosolization and aerial transport selecting the resistant cells (Fig 6). 560 

Another explanation might be due to the metagenomic approach that allows to sample both 561 

living and dead cells. Aerosolization has been shown to be particularly stressful and even lethal 562 

for microorganisms (Alsved et al., 2018; Thomas et al., 2011). The functional potential from 563 

the dead cells in air might have a greater weight on the overall functional potential observed 564 

and lead to the dilution of the functional potential of the actual living cells that have adapted to 565 

atmospheric conditions. This might apply for both the overall functional potential discussed 566 

previously and the stress-related functions. 567 

 568 

Conclusion 569 

We conducted the first global comparative metagenomic analysis to characterize the microbial 570 

functional potential signature in the planetary boundary layer. Air samples showed no specific 571 

signature of microbial functional potential which was mainly correlated to the surrounding 572 

landscapes. However, air samples were characterized by a relatively high percentage of fungal 573 

sequences compared to the source ecosystems (soil, surface seawater etc.). The relatively higher 574 

concentrations of fungi in air drove the higher proportions of stress-related functions observed 575 

in air metagenomes. Fungal cells and specifically fungal spores are innately resistant entities 576 

well adapted to atmospheric conditions and which might survive better aerosolization and aerial 577 

transport than bacterial cells. Stress-related functions were present in airborne bacteria but 578 

rarely in higher concentrations compared to the bacterial communities in other ecosystems. 579 

However, the constant flux of microbial cells to the planetary boundary layer might have 580 

complicated the determination of a physical selection and/or microbial adaptation of airborne 581 

microorganisms, especially bacterial communities. Meta-omics investigations on air with a 582 

deeper sequencing are needed to confirm our results and explore the functionality of 583 

atmospheric microorganisms further. 584 

 585 
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