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Abstract. Groundwater ecosystems can host different habitats with unique microbial assemblages and functions. Although 

groundwater microbes are important to subsurface processes, little is known about the drivers of change in these communities. 

Illumina sequencing and bioinformatic tools were used to examine whether different groundwater zones could have the same 

patterns of microbial community change over a two-year period. Five different groundwater zones from Hospital Hole, a 

stratified sinkhole in west-central Florida, were used in this study since they have been previously shown to host distinct 10 

microbial communities. Seasonal patterns of microbial community assemblages and potential metabolic functions were not 

identified in the sinkhole communities. Different physicochemical parameters correlated to microbial community change 

within each zone. Local hydrogeology appears to play an important role in subsurface microbial community change since 

Hurricane Irma and seasonal turnover events did not appear to cause a large perturbation in the microbial communities. Nutrient 

availability and local hydrogeochemistry appear to be important drivers of microbial community change in the subsurface. 15 

1 Introduction 

 Both community interactions and hydrochemistry drive change in microbial communities (e.g. Grubisic et al. 2017, 

Graham et al. 2016), but physicochemistry plays a greater role in seasonal changes in microbial community composition 

(Gilbert et al. 2012). These drivers can cause short-term (Landesman and Dighton 2011, Landesman et al. 2019, Gunnigle et 

al. 2017, Davis et al. 2020) and long-term (Lipson et al. 2004, Siboni et al. 2016, Ward et al. 2017) temporal changes in 20 

microbial community structure and function.  Temporal variation in microbial assemblages can allow for a new consortium 

(Rubelmann 2014) or recurring patterns of communal assemblages (Bosshard et al. 2000, Camacho et al. 2000, Dimitriu et al. 

2008) when similar physicochemical patterns occur (Bosshard et al. 2000, Ward et al. 2017).  

 Temporal dynamics of microbial community assemblages vary within and among systems. Some systems have 

community variation depending on the location of sampling (e.g. Siboni et al. 2016), whereas other systems can have relatively 25 

stable microbial communities on a short-term (e.g. Koizumi et al. 2004, Rogozin et al. 2010) or long-term basis (Dimitriu et 

al. 2008). There are many environmental factors that drive seasonal changes (Landesman et al. 2019), and how these factors 

manifest appear to be based on the type of ecosystem. For example, seasonal changes in temperature are known to drive 
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microbial community assemblages, but this may manifest as changes in water (Siboni et al. 2016, Ward et al. 2017) or soil 

temperature (Strickland et al. 2015, Alster et al. 2016). 30 

 Perturbation events can cause dramatic changes within microbial communities (Alcocer et al. 1999, Lee et al. 2017, 

Rubelmann 2014, Menning et al. 2018, Ager et al. 2010), though little is known about how long their impacts may last. 

Environmental conditions can cause these perturbations, such as seasonal turnover of water columns caused by temperature 

changes and seasonal weather patterns (Alcocer et al. 1999, Lee et al. 2017, Rubelmann 2014, Menning et al. 2018). While 

these perturbations can alter the microbial communities, the assemblages may return (Ager et al. 2010) or a new consortium 35 

may form with the same functions (Rubelmann 2014). Microbial communities that incur perturbation events may become 

resistant to other environmental stressors (Bowen et al. 2011, Bressan et al. 2009).  

 This study sought to determine whether patterns of microbial assemblages and potential metabolic functions are 

similar in different zones within a submerged sinkhole over a two-year period. It was hypothesized that seasonal microbial 

community changes occurred all zones. This study investigated five different adjacent zones in a stratified sinkhole that had 40 

been previously characterized (Davis and Garey 2018) to provide a holistic view of microbial community changes within the 

subsurface. 

2 Materials and Methods 

2.1 Site description, sampling procedures, and Hurricane Irma 

Hospital Hole is a submerged, 40-m deep sinkhole in west-central Florida underneath the Weeki Wachee River, FL 45 

about 1.4 km inland (Fig. 1). Previous analyses (Davis and Garey 2018) have indicated four unique hydrochemical zones (Fig. 

1) within this sinkhole: the surface zone (Weeki Wachee River), the hypoxic zone, the chemocline, and the anoxic zone.  

Subsequent observations demonstrated that a conduit at 22 m deep contributed water with a unique chemistry to the hypoxic 

zone, thus the fifth zone (Fig. 1). Other conduits discharging water with similar hydrochemistry and the presence of flowstone 

were noted in the hypoxic zone. 50 

Sampling was conducted by trained scientific cave divers under the auspices of the University of South Florida 

Scientific Diving Program. Five replicate samples per zone were collected in 1L bottles for biological and three replicate 

samples were collected in 500 mL glass bottles for hydrochemical analysis (sulfide, sulfate, phosphorus, nitrite, alkalinity, and 

ammonia). Three separate 50 mL conical vials were used to sample for total organic carbon (TOC) and total nitrogen (TN). A 

datasonde (OTT Hydromet, Loveland, CO, USA) accompanied divers on each dive to measure pH, salinity, temperature, 55 

dissolved oxygen (DO), and depth at 5-s intervals.  

The sampling period encompassed two wet seasons and two dry seasons. Hospital Hole was sampled on the following 

dates: July 11, 2017; September 28, 2017; November 14, 2017; January 16, 2018; April 3, 2018; July 17, 2018; September 18, 

2018; December 4, 2018; and April 16, 2019. Hurricane Irma impacted the study region, and the eye passed east of the study 

region on September 11, 2017 as a Category 1 hurricane (Cangialosi et al. 2018). The conduit at 22 m deep was not sampled 60 
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prior to Hurricane Irma since it was thought to be inactive until September 28, 2017 when divers felt heavy flow from the 

conduit. 

2.2 Hydrochemical analyses of water column samples 

Water samples were collected by divers, transported on ice, and analyzed in the lab. Total organic carbon and total 

nitrogen were analyzed with a Shimadzu TOC-V Analyzer (Shimadzu Scientific Instruments, Kyoto, Japan). Sulfate (method 65 

10248), sulfide (method 8131), alkalinity (method 10239), nitrite (method 10207), phosphorus (method 8190), and ammonia 

(method 10205) were analyzed using HACH test kits and a HACH DR 3900 spectrophotometer (HACH, Loveland, CO, USA). 

Protocols from the manufacturer were used. Deoxygenated deionized water was used for all necessary sample dilutions. 

Monthly rainfall data for Hernando County for each month sampled was obtained from the Southwest Florida Water 

Management District (SWFWMD) website.  70 

Statistical analyses of the replicate hydrochemical data were analyzed using Primer v7/Permanova+ statistical 

software to correlate with community structure data. Hydrochemical data was transformed (log X+1), normalized (subtracted 

the mean across all samples and divided by the standard deviation of the variable), and clustered using Euclidian distance 

similarity before correlating with microbial community data (Primer v7/Permanova+).   

2.2 Microbial community analyses 75 

Water column samples (1 L) were filtered through sterile 0.22-µm filters. Bacterial DNA was extracted aseptically 

using the Qiagen PowerSoil kit following the manufacturers protocol. The V4-V5 region of the 16S rRNA gene for three 

replicate DNA samples and was amplified using the Earth Microbiome 515F and 806R primers (Caporaso et al. 2011) adapted 

for Illumina MiSeq sequencing by Applied and Biological Materials, Inc. (Richmond, BC, Canada). A mock community was 

constructed from a six-strain mix (ATCC MSA 3000), Thermococcus gorgonarius (ATCC 700654D-5), and Methanococcus 80 

maripaludis (ATCC 43000D-5). Sequences from the mock community samples were analyzed and processed through mothur 

separately (Schloss et al. 2009) to calculate the sequence error rate. A reference dataset was constructed from the strain 

information using sequences from Genbank. 

Sequencing data for each zone was run separately through mothur software (Schloss et al. 2009) to assemble paired-

end reads and to remove ambiguous sequences, sequences greater than 310 base pairs in length, and archaeal, eukaryotic, 85 

mitochondrial, chloroplast, and unidentified sequences. Mothur was used to eliminate chimeras using the VSEARCH 

algorithm (Rognes et al. 2016) and to create operational taxonomic units (OTUs, ≥97% similarity) using the OptiClust 

algorithm (Westcott and Schloss 2017). Any OTU with less than 20 sequences were removed from subsequent analyses to 

avoid potential artifacts caused by rare OTUs (Brown et al. 2015). Rarefaction curves were produced using mothur (Schloss 

et al. 2009). The average abundance of each OTU from each date was used for community structure analyses with Primer 90 
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v7/Permanova+ statistical software.  Principal coordinate analyses (PCO) were used on data that was clustered using Bray-

Curtis similarity. Community similarity was determined using the CLUSTER analyses in Primer v7/Permanova+. 

The 200 most abundant bacterial OTUs from each zone were investigated for provisional taxonomic identification 

and functional analyses. The OTUs that were not identified to the genus level by the Ribosomal Database Project (RDP) 

version 16 reference file (Cole et al. 2014) using mothur (Schloss et al. 2009) were provisionally identified using the nearest 95 

identified sequence match from a GenBank query. Those that were at least 80% similar to taxonomically identified sequences 

in Genbank or RDP were designated as “unidentified”. Despite a 97% cut-off for OTU clustering, some OTUs have the same 

provisional identification, which were combined under the same identification. 

The potential metabolic function of each OTU was assigned by a review of the literature for each identified 

prokaryote. These potential functions include the metabolism of sulfur, nitrogen, carbon, manganese, and iron cycling. To 100 

reduce the complexity of the function data, some of these functions were categorized together: microbes capable of sulfur 

disproportionation or dissimilatory sulfate reduction are considered sulfur reducers; sulfur oxidizers include all microbes that 

can oxidize sulfur compounds; nitrogen reducers include microbes that carry out denitrification, reduction of nitrate to nitrite, 

reduction of nitrite to ammonia, dissimilatory nitrate reduction to ammonia (DNRA), and nitrogen fixation; and nitrogen 

oxidizers include microbes that can utilize nitrification and anaerobic ammonia oxidation.  105 

The relative abundance of sequences with metabolic functions (sequence abundance) was calculated independently 

in each zone by date.  For each date, the number of sequences with a provisional function was divided by the total number of 

sequences in each date and converted to a percent. The top 200 OTUs were used since they encompass between 60% and 85% 

of the total sequence abundance. 

3 Results 110 

Hydrochemical variation within the zones of Hospital Hole were evident (Table 1). Large ranges of concentrations 

of sulfide in the anoxic (12,456-54,886 µg/L) and chemocline (11-14,079 µg/L), sulfate in the surface (8-529 mg/L), and nitrite 

within the hypoxic (0.00-0.16 mg/L) zones occurred during this study period. Rainfall was not abnormally high after Hurricane 

Irma, and sinkhole hydrochemistry does not reflect a drastic change before and after the hurricane (Table 1).  

Mothur analyses and OTU clustering of the Illumina sequences revealed a total of 22,487 OTUs representing 5,217,879 115 

bacterial sequences for all five zones analyzed over the two-year study. The sequencing error rate for this dataset was on 

average 0.09%. Only the surface zone showed clear seasonal patterns when microbial community structure was analyzed by 

PCO and coded by season (Fig. 2). Communities within each zone were at 5% - 60% similar over the study period, with the 

least seasonal similarity in the chemocline (5%) and the greatest seasonal similarities in the surface (60%) and anoxic (40%) 

zones. All zones showed different patterns of community structure (Fig. 2). The identity and function of the 200 most abundant 120 

bacterial OTUs in each zone, representing a total of 1,000 OTUs, were analyzed in detail and represent 60%-85% of the total 
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sequence abundance in each zone. A condensed, literature-based analysis of the potential microbial community is shown in 

Table 2.  

While wet and dry season patterns of hydrochemistry were present in the surface and chemocline zones (Table 3), the 

microbial community structure (Fig. 2) did not show a clear separation between seasons in the zones. Statistical analyses of 125 

the microbial community structure determined that seasonal differences in microbial community assemblages were not 

significant (Table 3). Microbial community function (Table 2) did not show seasonal patterns. A BEST test determined the 

environmental parameters from Table 1 that best explained changes in microbial community structure from Fig. 2 for each of 

the five zones (Table 3). While several physicochemical parameters appear to correlate to microbial community changes within 

multiple zones, there is not one hydrochemical parameter that correlates to microbial community differences within all zones 130 

(Table 3). 

Rainfall did not correlate to changes in microbial community structure (Table 3). Large perturbation events after 

Hurricane Irma were not identified in the microbial community structure (Fig. 2). Disturbances may have occurred in the 

potential metabolic functions after this hurricane, but the percent abundance is comparable to later dates (Table 2). 

4 Discussion 135 

4.1 Potential causes of microbial community change 

Reoccurring physicochemical conditions can cause seasonal patterns of microbial community assemblages (e.g. 

Bosshard et al. 2000, Strickland et al. 2015, Siboni et al. 2016, Ward et al. 2017). Differences between wet and dry season 

hydrochemistry occurred in the surface and chemocline zones (Table 3), but clear trends in the microbial community structure 

(Fig. 2) and estimated metabolic functions (Table 2) were not apparent in the two-year period of this study. The spring-fed 140 

surface zone did not experience large temperature changes (Table 1), which likely prevented seasonal mixing events that have 

been described in other systems (e.g. Saccà et al. 2008, Rubelmann 2014). Considering perturbation events allow for microbial 

communities to become resistant to environmental stressors (Bowen et al. 2011, Bressan et al. 2009), the lack of seasonal 

changes could cause subsurface microbial communities to be more susceptible to anthropogenic stressors. 

In subsurface ecosystems, nutrient availability may have an important role in inducing microbial community changes. 145 

Sulfide concentrations correlated to microbial community changes in the anoxic zone (Table 3). It is likely that the 

concentrations of sulfide did not elicit changes in the microbial community but was an indicator of changes in the sulfur-

reducing community within this zone (Table 2). Availability and changes in the concentration of organic carbon (Table 1) 

likely caused changes in the community in this zone. Phosphorus concentrations correlated to microbial community changes 

in the hypoxic and conduit zones (Table 3). While the input of these nutrients is likely from agricultural runoff or leaky septic 150 

systems, these communities provide an analogy to what could occur near injection wells for aquifer storage and recovery. 

Correlations of hydrochemistry to microbial community change varied between zones (Table 3), suggesting that different 

groundwater regions may not have the same drivers of change. 
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1.2 Impacts of Hurricane Irma 

Tropical storms and hurricanes may affect subsurface microbial communities (Lakey and Krothe 1996, Pronk et al. 155 

2006, Menning et al. 2018) by concentrating large amounts of rainfall to a small region, which can alter flow and discharge 

within the surrounding aquifer (Menning et al. 2018). In some cases, weather events may not elicit changes in subsurface 

communities (e.g. León-Galván et al. 2009) since not all storms produce large amounts of rainfall. Hurricane Irma did not 

produce a large change in microbial community assemblages in the zones of Hospital Hole (Fig. 2). The abundance of sulfur 

oxidizers in the hypoxic zone decreased after Hurricane Irma (29%) and returned to their previous abundance after the storm 160 

(50%), but similar abundances were observed in July (28%), September (28%), and December (29%) the following year. It is 

likely that Hurricane Irma did not have as much impact as other tropical storms and hurricanes in the area (e.g. Menning et al. 

2018) since Hurricane Irma did not result in abnormal amounts of rainfall (Table 1).  

1.3 Interactions between distinct hydrochemical zones 

There is a general assumption in groundwater management that aquifer microbial communities are homogenous and 165 

that communities in different hydrogeochemical regions of aquifers do not interact. The year-round stratification of Hospital 

Hole allows it to be a model of hydrochemical stratification within the aquifer (Davis and Garey 2018). Similar patterns of 

microbial community assemblages (Fig. 2B-D) and similar trends in changes of abundance (Table 2) in the zones of Hospital 

Hole suggest interactions between hydrochemically distinct water bodies in the subsurface. It is important for water managers 

to consider how changes in the microbial community of one region may impact the biogeochemistry of other regions. 170 

 Interactions between the different zones in Hospital Hole may have occurred (Fig. 3). Phosphorus concentrations 

correlated to microbial community change in the hypoxic and conduit zones (Table 3). The hypoxic zone is partially sourced 

from water discharging from the conduit (Fig. 1), so changes in flow, water source, and hydrochemistry of the conduit may 

affect the microbial communities in the hypoxic zone. Species interactions are generally considered on a scale of a few 

micrometers (Armitridge and Jones 2019), but metabolic byproducts of these communities could impact a larger region. For 175 

example, the sulfur reducing community within the anoxic zone (Table 2) created high concentrations of hydrogen sulfide 

(Table 1), which the sulfur oxidizers in the chemocline could utilize (Table 2). Discharge from Hospital Hole into the Weeki 

Wachee River (Sinclair 1978) may affect the biogeochemistry of the Weeki Wachee River downstream of the sinkhole but 

was not analyzed in this study. The relationship of changes in microbial communities among these zones suggests that regional 

scale features are important to consider for management strategies within karst, which has been noted in other studies (e.g. 180 

Scharping et al. 2018). 

4 Conclusions 

The subsurface contains distinct hydrochemical zones with unique microbial community assemblages and functions, 

and the microbial communities within each of these zones may respond differently to environmental changes. Conduits and 
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the interaction of different water bodies may add to the complexity of understanding drivers of microbial community change 185 

in subsurface ecosystems (Fig. 3). Perturbation events, such as hurricanes, tropical storms, and seasonal turnover, may cause 

changes in microbial community structure and function if the hydrogeochemistry is altered (Fig. 3). Water managers should 

be cautious of the introduction of nutrients to the subsurface and the alteration of groundwater flow. Future studies should also 

consider the ecological impacts these microbial communities may have on large ecosystem processes. 

Data availability 190 

The sequencing data will be deposited and available in GenBank. 
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Figure 1: (A.) Profile view of Hospital Hole site modified from Davis and Garey (2018), as seen Chapter 1. (B.) The surface zone, the 

Weeki Wachee River, flows over the sinkhole. (C.) Diver in the hypoxic zone of the sinkhole, which extends from 3 m depth to 300 
roughly 22 m depth. (D.) The chemocline is a white, cloudy zone that can range from a couple centimeters to a couple meters in 
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thickness at roughly 22 m depth, depending on tide. The profile (E.) and internal (F.) view of the conduit is shown. This conduit is 

at roughly 21 m depth and flows water into the hypoxic and chemocline zones. (G.) The anoxic zone extends from underneath the 

chemocline at roughly 22 m deep to the bottom of the sinkhole, which is about 40 m depth. 

 305 

Figure 2: Principal coordinate analyses of the (A.) surface, (B.) hypoxic, (C.) conduit, (D.) chemocline, and (E.) anoxic zones are 

shown. The average of three replicate microbial community samples are shown per date and are color coded by season. Similarities 

of the communities within each zone are also shown. 
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Figure 3: Some potential drivers of subsurface microbial community changes are shown in relation to how these drivers could impact 310 
Hospital Hole. 
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Region 
Phyisochemical 

parameters 
Units Jul-17 Sep-17 

Nov-
17 

Jan-18 Apr-18 Jul-18 Sep-18 Dec-18 Apr-19 

Surface Phosphorus mg/L 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 

 Ammonia mg/L 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 

 Nitrite mg/L 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Sulfide µg/L 2 1 0 1 1 0 0 0 2 

 Sulfate mg/L 14 8 10 16 18 13 529 19 39 

 Alkalinity mg/L 120 117 122 182 150 103 123 108 150 

 Dissolved oxygen mg/L 6.0 5.2 6.8 7.7 5.8 5.4 5.4 6.3 6.8 

 Salinity ppt 0.4 0.3 0.4 1.2 0.9 0.5 0.5 2.5 0.5 

 pH  7.7 7.6 7.8 7.8 7.6 7.6 7.5 7.5 8.0 

 Temperature °C 24.33 23.98 23.24 22.21 23.19 24.36 25.05 23.24 23.13 

 Total organic carbon mg/L N/A N/A N/A N/A N/A 2.3 0.2 0.9 1.0 

  Total nitrogen mg/L N/A N/A N/A N/A N/A 4.1 0.3 1.2 0.6 

Hypoxic Phosphorus mg/L 0.3 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.2 

 Ammonia mg/L 0.05 0.06 0.00 0.00 0.01 0.00 0.06 0.02 0.00 

 Nitrite mg/L 0.01 0.08 0.00 0.05 0.04 0.16 0.00 0.01 0.00 

 Sulfide µg/L 0 1 1 7 1 3 0 0 1 

 Sulfate mg/L 724 451 529 357 1 881 607 425 403 482 

 Alkalinity mg/L 114 125 125 139 137 136 137 114 118 

 DO mg/L 0.0 0.0 0.5 0.0 0.1 0.0 0.0 0.4 0.3 

 Salinity ppt 9.3 8.0 11.6 10.8 12.4 12.1 8.3 11.1 12.3 

 pH  7.3 7.2 7.3 7.3 7.2 7.3 7.3 7.3 7.6 

 Temperature °C 24.16 24.17 24.16 24.16 24.16 24.18 24.18 24.18 24.19 

 TOC mg/L N/A N/A N/A N/A N/A 2.1 0.5 0.8 0.7 

  TN mg/L N/A N/A N/A N/A N/A 3.9 1.0 2.5 0.6 

Conduit Phosphorus mg/L N/A 0.1 0.1 0.1 0.1 0.1 0.3 0.2 0.2 

 Ammonia mg/L N/A 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 

 Nitrite mg/L N/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 Sulfide µg/L N/A 3 1 3 1 4 0 1 0 

 Sulfate mg/L N/A 341 486 401 847 598 370 403 402 

 Alkalinity mg/L N/A N/A 127 141 150 105 136 116 152 

 DO mg/L N/A 0.3 0.6 0.3 0.4 0.5 0.7 0.7 0.3 

 Salinity ppt N/A 7.9 10.7 11.8 12.6 12.1 8.0 10.4 12.3 

 pH  N/A 7.3 7.4 7.4 7.4 7.4 7.5 7.5 7.6 

 Temperature °C N/A 24.16 24.16 24.16 24.14 24.17 24.16 24.18 24.19 

 TOC mg/L N/A N/A N/A N/A N/A 2.0 0.1 0.6 0.9 

  TN mg/L N/A N/A N/A N/A N/A 4.4 0.1 1.5 0.6 

Chemocline Phosphorus mg/L 0.3 0.3 0.2 0.5 0.2 0.3 0.2 0.3 0.4 

 Ammonia mg/L 0.12 0.41 0.07 0.34 0.11 0.03 0.06 0.05 0.09 

 Nitrite mg/L 0.06 0.02 0.03 0.02 0.04 0.32 0.03 0.05 0.05 

 Sulfide µg/L 25 3 870 1 391 14 079 293 30 11 15 475 

 Sulfate mg/L 513 421 571 543 1 038 680 380 570 481 

 Alkalinity mg/L 133 146 130 190 148 151 127 116 190 

 DO mg/L 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.3 0.1 

 Salinity ppt 12.4 8.8 13.1 14.2 13.9 14.0 8.5 13.3 15.8 

 pH  7.2 7.2 7.1 7.1 7.0 7.2 7.4 7.2 7.3 

 Temperature °C 24.49 24.18 24.22 24.16 24.16 24.19 24.18 24.18 24.16 

 TOC mg/L N/A N/A N/A N/A N/A 2.3 0.4 1.0 2.3 

  TN mg/L N/A N/A N/A N/A N/A 3.3 0.9 1.9 1.1 
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Region 
Phyisochemical 

parameters 
Units Jul-17 Sep-17 

Nov-
17 

Jan-18 Apr-18 Jul-18 Sep-18 Dec-18 Apr-19 

Anoxic Phosphorus mg/L 0.7 0.7 0.6 0.6 0.5 0.7 1.1 0.8 0.4 

 Ammonia mg/L 0.06 0.06 0.06 0.13 0.03 0.15 0.10 0.18 0.07 

 Nitrite mg/L 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Sulfide µg/L 37 347 43 209 37 685 34 181 23 500 12 456 54 886 44 360 31 490 

 Sulfate mg/L 1 311 1 054 1 123 800 1 675 1 067 839 1 094 861 

 Alkalinity mg/L 248 276 247 229 204 284 323 256 222 

 DO mg/L 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.1 0.0 

 Salinity ppt 19.6 18.2 18.8 20.1 20.6 18.6 17.1 17.3 18.1 

 pH  7.0 6.8 6.9 7.0 7.0 7.0 7.0 7.1 7.4 

 Temperature °C 24.17 24.16 24.17 24.18 24.19 24.20 24.19 24.20 24.21 

 TOC mg/L N/A N/A N/A N/A N/A 6.8 7.5 2.9 2.4 

  TN mg/L N/A N/A N/A N/A N/A 7.6 7.9 4.4 1.5 

All Rainfall cm 17.6 25.6 6.0 11.2 13.1 27.3 11.2 24.4 8.3 

 

Table 2: Hydrochemistry of Hospital Hole. 315 

Layer 
Potential Metabolic 

Function 
Jul-17 

Sep-
17 

Nov-
17 

Jan-
18 

Apr-
18 

Jul-18 
Sep-
18 

Dec-
18 

Apr-
19 

Surface Sulfur oxidizer 3% 4% 3% 27% 5% 2% 2% 3% 3% 

 Nitrogen reducer 20% 15% 12% 35% 16% 19% 17% 17% 17% 

 Photosynthesis 1% 1% 1% 1% 1% 0% 0% 1% 1% 

 Iron reducer 1% 1% 1% 1% 1% 1% 2% 1% 2% 

Hypoxic Sulfur oxidizer 50% 29% 50% 68% 68% 28% 28% 29% 35% 

 Sulfur reducer 7% 3% 1% 0% 0% 1% 1% 1% 1% 

 Nitrogen oxidizer 0% 0% 0% 0% 0% 0% 0% 8% 0% 
  Nitrogen reducer 73% 89% 91% 69% 87% 80% 93% 64% 79% 

Conduit Sulfur oxidizer N/A 29% 29% 30% 45% 5% 10% 17% 13% 

 Sulfur reducer N/A 1% 1% 0% 0% 0% 0% 0% 0% 

 Nitrogen oxidizer N/A 6% 6% 2% 3% 3% 29% 24% 5% 

 Nitrogen reducer N/A 42% 42% 32% 57% 13% 16% 23% 21% 

Chemocline Sulfur oxidizer 92% 66% 93% 80% 88% 44% 54% 27% 83% 

 Sulfur reducer 7% 28% 0% 0% 0% 0% 0% 0% 0% 

 Nitrogen reducer 99% 94% 99% 80% 89% 83% 94% 77% 89% 

Anoxic Sulfur oxidizer 7% 25% 37% 52% 56% 11% 34% 48% 8% 

 Sulfur reducer 25% 29% 24% 14% 13% 7% 12% 18% 45% 

 Nitrogen oxidizer 0% 1% 0% 0% 0% 0% 12% 0% 0% 
  Nitrogen reducer 12% 40% 41% 54% 65% 13% 38% 51% 19% 

 

Table 2: Potential metabolic functions in five zones of Hospital Hole. 
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Statistical analyses Surface Hypoxic Conduit Chemocline Anoxic 

PERMANOVA 
p-values 

Seasonal 
hydrochemistry 

0.044 0.082 0.279 0.044 0.082 

  
Seasonal 
microbial 

communities 
0.494 0.25 0.426 0.527 0.275 

BEST analysis ps 0.343 0.417 0.622 0.412 0.46 

  
Combined 

environmental 
variables 

nitrite, total 
organic 
carbon 

phosphorus, 
sulfide 

phosphorus 

nitrite, 
sulfide, 

dissolved 
oxygen, 

total organic 
carbon, 
water 

elevation 

sulfide 

Table 3: Hydrochemical correlates to microbial community structure within each zone. 

 

https://doi.org/10.5194/bg-2020-238
Preprint. Discussion started: 8 July 2020
c© Author(s) 2020. CC BY 4.0 License.


