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Dear editors,

Please find attached the revised manuscript. The change made to the manuscript are shown in this document.
To address your comment on emissions due to livestock and manure management, also raised by the first

reviewer, we have added the following text to the revised manuscript:

Manure management:
“Manure management emissions, 0.01 Tg/yr in SSWR, are small, even though there is a large cattle population in South
Sudan due to lack of effective management practices. This is reflected in the small emission factors used for the emissions

category for the country by EDGAR: 1 kg CH4 head for South Sudan vs 48 kg CH4 head™! for USA.”

Livestock:

“Livestock is the largest anthropogenic methane source in SSWR region: 0.36 Tg yr=' in 2012 as per EDGAR
v4.3.2,and 0.37 Tg yr~! in 2015 as per EDGAR version 5 (Crippa et al., 2020). South Sudan has a large
population of livestock: 7.5 million dairy cattle, 4.6 million non-dairy cattle, 13.5 million goats and 16.3 million
sheep in 2018, which causes 0.63 Tg yr~! of methane emissions (FAOSTATS., 2020). This amount is twice of
what we use to calculate the wetlands emissions for SSWR. In the extreme case that all these additional
emissions are located in SSWR, it would slightly reduce our wetland emission estimate, however, well within its

uncertainty margin. “
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Using satellite data to identify the methane emission controls of
South Sudan’s wetlands

Sudhanshu Pandey', Sander Houwelingl’z, Alba Lorente!, Tobias Borsdorff', Maria Tsivlidou®, A.
Anthony Bloom*, Benjamin Poulter’, Zhen Zhang®, Ilse Aben'

!SRON Netherlands Institute for Space Research, Utrecht, the Netherlands

2Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

3 Laboratoire d'Aérologie, Université de Toulouse, CNRS, UPS, IRD, France

4Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
SNASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA

®Department of Geographical Sciences, University of Maryland, College Park, MD, 20740, USA

Correspondence: Sudhanshu Pandey (s.pandey@sron.nl)

Abstract. The TROPOspheric Monitoring Instrument (TROPOMI) provides observations of atmospheric
methane (CHa4) at an unprecedented combination of high spatial resolution and daily global coverage. Hu et al.
(2018) reported unexpectedly large methane enhancements over South Sudan in these observations. Here we
assess methane emissions from the wetlands of South Sudan using two years (December 2017-November 2019)
of TROPOMI total column methane observations. We estimate annual wetland emissions of 7.42 + 3.2 Tg yr'!,
which agrees with the multiyearmuttiyear GOSAT inversions of Lunt et al. (2019) but is an order of magnitude
larger than estimates from wetland process models. This disagreement may be explained by the up to 4 times
underestimation of inundation extent by the hydrological schemes used in those models. We investigate the
seasonal cycle of the emissions and find the lowest emissions during the June-August season when the process
models show the largest emissions. Using satellite altimetry-based river water height measurements, we infer that
this seasonal mismatch is likely due to a seasonal mismatch in inundation extent. In models, inundation extent is
controlled by regional precipitation, scaled to static wetland extent maps, whereas the actual inundation extent is

driven by water inflow from rivers like the White Nile and the Sobat. We find the lowest emission in the highest

perception and lowest temperature season JJA when models estimate large emissions. In general, our FTROPOMI

emission estimates show better agreement, in terms of both seasonal cycle and annual mean, with model estimates
that use a stronger temperature dependence. This suggests that temperature might be a stronger control for the

South Sudan wetlands emissions than currently assumed by modelsthe-best-explanatory-eontrel-forthe-emissions
from-wetlandsm-Seuth-Sudan. Our findings demonstrate the use of satellite instruments for quantifying emissions
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from inaccessible and uncertain tropical wetlands, providing clues for improvement of process models, and
thereby improving our understanding of the currently uncertain contribution of wetlands to the global methane

budget.

1 Introduction

Reducing anthropogenic methane emissions has been recognized as an important requirement for achieving the
2015 Paris Agreement target of limiting global temperature rise below 2° C relative to pre-industrial times
(Ganesan et al., 2019). However, large uncertainties remain in the atmospheric budget of methane, calling for an
improved understanding of its emissions from both anthropogenic and natural sources (Saunois et al., 2016).
Wetlands are ecosystems with seasonally or permanently inundated or saturated soils, including peatlands (bogs
and fens), mineral wetlands (swamps and marshes), and seasonal or permanent floodplains, where methanogens
produce methane in the anaerobic decomposition of organic matter. Emissions from natural wetlands are the
largest and the most uncertain emission category of methane (Kirschke et al., 2013). Saunois et al. (2016) provide
global methane emission estimates for all source categories combined of 540-568 Tg yr! using top-down
approaches and 596-884 Tg yr! using bottom-up approaches for the period 2003—2012. They attribute the
mismatch between the two approaches mainly to uncertainties in emissions from natural wetlands, inland waters
and geological sources. They report total emissions of 127-202 Tg yr! and 153-227 Tg yr'! from wetlands using

top-down and bottom-up approaches, respectively, which accounts for 30 % of global emissions.

In addition to being an important source of uncertainty in methane budget, wetlands emissions can have significant
climate feedback due to their sensitivity to changes in precipitation and temperature (Arneth et al., 2010; Zhang
et al., 2018; Zhu et al., 2017). By analyzing surface and satellite measurements of methane, Pandey et al. (2017)
reported enhanced methane emissions from tropical wetlands due to precipitation and temperature anomalies
associated with the La Nifia of 2010. Furthermore, according to Zhang et al. (2017), the feedback of methane
should be accounted for in climate mitigation policies as they find that the global wetland emissions will increase
by 50 to 170 Tg yr'! at the end of the 21st century because of the temperature-driven increase in wetland emissions
under the different Representative Concentration Pathways (RCP) adopted by the IPCC. Their results indicate that
the increase in wetland emissions maybe 38—56 % larger than the projected anthropogenic emission increase by

the end of the 21" century under the strong climate mitigation scenario (RCP 2.6).
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To improve wetland emission estimates is very challenging due to many reasons. Wetlands are spread over large,
inaccessible regions around the world. Upscaling a few localized measurements of wetland emissions is often
futile as these emissions have large temporal and spatial variability, and the parameters controlling them are very
uncertain. The emissions are also difficult to monitor on the ground due to logistical limitations. This makes
satellite observations a promising and crucial source of information to advance our understanding of the role of

wetland methane emissions in the carbon cycle.

Hu et al. (2018) observed large methane enhancements over South Sudan in TROPOMI data collected during the
first two months of the commissioning phase of the satellite, November and December 2017. Frankenberg et al.
(2011) also observed an enhancement over the region in a seven-year average (2003—2010) of SCanning Imaging
Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) observations. These studies indicated
that the enhancements are likely caused by large emissions from wetlands in the region. Recently, Lunt et al.
(2019) used methane observations from the Japanese Greenhouse gases Observing Satellite (GOSAT) in inverse
modelling to infer emissions from tropical Africa during 2010-2016. They found that emissions from South Sudan
were more than 3 times larger than the ensemble mean estimates from the Wetcharts process model (Bloom et al.,
2017). They also found that emissions from the Sudd wetlands in the region increased rapidly from 2.4—4.2 Tg yr-
'in 2010-2011 to 5.2-6.9 Tg yr'! in 2016, likely, because of an inundation extent (HE) expansion due to an increase

in water inflow from the White Nile river.

This study aims to infer the scale of the wetland methane emissions from South Sudan from TROPOMI
observations using a simplified emission quantification method and investigate its relationship with the results of
wetland process models and the seasonally varying climatological conditions. This study is structured as follows.
Section 2 describes the method and data used including the TROPOMI data, wetland models and He-inundation
extent data, and the emission quantification method. Section 3 presents our results and discussion including
emission estimates from TROPOMI and their comparison with the process models, and an analysis of the

differences between models and TROPOMI emission estimates using HE-inundation extent and meteorological

data. Our conclusions are given in Section 4.



110

115

120

125

130

135

2 Data and method
2.1 TROPOMI methane data

TROPOMI is the single instrument onboard the Copernicus Sentinel-5 Precursor (S-5P) satellite, launched on 13
October 2017 in a sun-synchronous orbit at 824 km altitude (Veefkind et al., 2012). It is a push-broom imaging
spectrometer, recording spectra along a 2600 km swath while orbiting the Earth every 100 min, resulting in daily
global coverage. Total column methane (XCHa) is retrieved with near-uniform sensitivity in the troposphere from
its absorption band around 2.3 um using earthshine radiance measurements from the Short Wave Infrared (SWIR)
channel of TROPOMI (Hu et al., 2016; 2018). TROPOMI XCHj4 has a ground pixel size of 7 X 7 km? (7 X 5.56
km? since August 2019) at nadir with larger ground pixels towards the edges of its swath.

In this study, we use the operational two-band retrieval product of TROPOMI (Hasekamp et al., 2019). It uses
0.76 um O2A and 2.3 um CHa bands in the Near Infrared (NIR) and SWIR spectra. XCHa is retrieved using the
full-physics RemoTeC algorithm, which accounts for light path perturbations due to scattering by aerosol and
cirrus cloud particles in the atmosphere (Butz et al., 2012; Hu et al., 2016). We only use high-quality XCHa
measurements retrieved under favourable cloud-free conditions. Also, XCHa is filtered (“ga”=1) for solar zenith
angle (< 70°), viewing zenith angle (< 60°), smooth topography (1-standard deviation surface elevation variability
< 80 m within a 5 km radius) and low aerosol load (aerosol optical thickness < 0.3 in SWAR-NIR band). Note that
Hu et al. (2018) used two months of XCH4 data from the “scientific” retrieval product of SRON Netherlands
Institute for Space Research. Those measurements had a relatively sparse temporal coverage over South Sudan
because they were performed during the commissioning phase of TROPOMI when algorithm tests and calibrations
were ongoing. The operational product used here provides a more temporally homogenous coverage and a surface

albedo-dependent bias correction (Hasekamp et al., 2019).

2.2 Process model data

We compare TROPOMI emission estimates with two wetlands process models: Wetcharts (Bloom et al., 2017)
and LPJ-wsl (Zhang et al., 2016). These models calculate monthly methane emissions on a global grid of 0.5° X
0.5° resolution by simulating the microbial production and oxidation processes in the soil using temperature, H=

inundation extent and heterotrophic respiration data. Wetcharts calculates wetland emissions using in total four

HE-inundation extent parameterizations, nine terrestrial biosphere models of heterotrophic respiration and three

CHa4:C temperature parameterizations (q10). Wetcharts version 1.0 provides two ensembles: (1) an ensemble with
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324 emission estimates for 2009-2010, called the “Full Ensemble” and (2) an 18-member extended-in-time
ensemble for 2001-2015, called the Wetcharts “Extended Ensemble”. In the Wetcharts Full Ensemble, the set of
four HE-inundation extent estimates are calculated based on two maximum wetland area estimates, multiplied with
two monthly varying scaling factors. The wetlands area estimates are taken from (1) the Global Lakes and
Wetlands Database (GLWD; Lehner and Do6ll, 2004), and (2) the sum of all GLOBCOVER wetland and
freshwater land types (Bontemps et al., 2011). The scaling factors are calculated from (1) precipitation data from

ERA-Interim meteorological data and (2) HE-inundation extent data from the Surface WAter Microwave Product

Series (SWAMPS) multi-satellite surface water product (Schroeder et al., 2015). The 18-member Wetcharts
Extended Ensemble provides emission estimates for only the two HE-inundation extent estimates that are based on

ERA-Interim and only one terrestrial biosphere model CARDAMOM (Bloom et al., 2016).

LPJ-wsl methane model is based on the process-based dynamic global vegetation model Lund Postdam Jena
(LPJ). It uses soil temperature, soil moisture-dependent fraction of heterotrophic respiration (Rx), and HE
inundation extent to calculate wetlands methane emissions. The H-inundation extent of LPJ-wsl is calculated by

the TOPography-based hydrological model (TOPMODEL) driven by meteorology from ERA-Interim.

TOPMODEL simulates hydrologic fluxes of water, including lateral transport, such as infiltration-excess overland

flow, infiltration, exfiltration, subsurface flow, evapotranspiration, and channel routing through a watershed.

2.3 Inundation extent data

Earlier studies have indicated that the water availability is particularly important in the tropics (temperature is less
limiting here in contrast to high latitudes), and hence, H-inundation extent is one of the main sources of uncertainty
for tropical wetlands (Bloom et al., 2010; Ringeval et al., 2010). We analyze the H=-inundation extent data used
in process models: TOPMODEL (used in LPJ-wsl); GLWD and GLOBCOVER with ERA-Interim (used in the

Wetcharts Extended Ensemble). We compare these He-inundation extent estimates against the remote sensing-

based high-resolution H£-inundation extent data from Gumbricht et al. (2017), which maps wetlands and peatlands
at 231 meters spatial resolution by combining three biophysical indices related to wetland and peat formation: (1)
long-term water supply exceeding atmospheric water demand, (2) annually or seasonally waterlogged soils, and
(3) geomorphological position where water is supplied and retained. They use 2011 MODIS data to map the
duration of wet and inundated soil conditions and Shuttle Radar Topography Mission (SRTM) for topography. In
addition, we use satellite altimetry-based water height measurements from the Hydroweb database (Crétaux et al.,

2011; Da Silva et al., 2010). The water height anomalies of the White Nile and Sobat rivers are used as a proxy
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for HE-inundation extent variations in the Sudd and Macher wetlands, respectively. Fig. 1b shows the location of

the river height measurement sites. We also analyze temperature and precipitation data from the European Centre

for Medium-Range Weather Forecasts” ERAS meteorological reanalysis (Hersbach and Dee, 2016).

2.4 Emission Quantification method

The wetland distribution from Gumbricht et al. (2017) is shown in Fig. 1 for the region in South Sudan where a
large TROPOMI XCH4 enhancement can be observed. This region, which includes Sudd, Machar and other

smaller wetlands, is hereafter referred to as the South Sudan wetland region (SSWR). To calculate emissions, we

first prepare seasonally averaged TROPOMI XCH4 maps on a grid of at 0.1° X 0.1° resolution. Only grid cells

with at least 5 high-quality TROPOMI measurements are used in the season average map. We apply the mass

balance method of Buchwitz et al. (2017) to seasenallyaveraged TROPOMIXCHato-calculate emissions from
December 2017 to November 2019. The emission Q (Tg yr!) from the SSWR box in Fig. 1a for a given period is

calculated using the following equation:

Q =AXCHy X M X Mgy, X LXV X C (1)

Where, AXCH, is the “source XCH4 enhancement”, i.e., the mean XCHjy difference between the source and the
surrounding background. C is a dimensionless factor of 2.0 derived by Buchwitz et al. (2017) based on the
concentration difference of air parcels before and after entering a source area. M (5.345 Tg CHs km™ ppb™') is the
atmospheric total column mixing ratio-to-mass conversion factor for a surface pressure of 1013.25 hPa, which is
the standard atmospheric pressure. M,,,, is a dimensionless factor used to correct for the changes in column air
mass with surface elevation, calculated as the ratio of surface pressure in the source and standard atmospheric
pressure (1013.25 hPa). L is the “effective size” of the source region (632 km), calculated as the square root of its
area (4.0 X 10° km?). ¥ (km yr'!) is the ventilation wind speed derived from the ERAS meteorological reanalysis
vertical wind speed profile. Surface elevation variations change the contribution of tropospheric to the total
atmospheric column, which influences XCH4. TROPOMI XCH4 maps are corrected for this effect by adding the
correction factor 7 ppb km™! from Buchwitz et al. (2017), using GMTED2010 elevation data shown in Fig. Al

(Danielson et al., 2010)._ We remove the large scale latitudinal XCH4 gradient from the seasonal average

TROPOMI XCH4 maps by subtracting a 3" order polynomial fit from the background region, excluding the source

region (see Figure 2a).
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Figure 32 shows the monthly average ERAS5 wind speed at 10:00 UTC (TROPOMI overpass time) in the SSWR
as a function of pressure within the local boundary layer during select months. To calculate V, the pressure-
weighted average of these boundary layer wind speed is calculated over SSWR using monthly average ERAS
boundary layer height data. We use average boundary layer winds instead of 10-meter winds because it was found
to better represent the ventilation wind speed in the source region (see Varon et al., 2018). For SSWR, the 10-
meter wind speed is on average 35 % lower than the boundary layer wind speed, consistent with the diminishing

influence of the surface friction with height.

The uncertainty of Q is calculated as sum-in-quadrature of uncertainties associated with AXCH, and V. The
AXCH, uncertainty is estimated as sum-in-quadrature of (1) 1-standard deviation of AXCH, estimates calculated
by sequentially increasing the size of the background box from 1° to 10° longitude and latitude in 1° interval, and
(2) the XCHa4 uncertainty of a single 0.1° X 0.1° grid cell in the average map (= 22 ppb), taken as 1-standard
deviation XCHa of all the grid cells in Fig. 1a. Note that this approach overestimates the XCHa uncertainty of the
grid cells as XCHa variations within the grid are also caused by emissions and surface elevation variations in
addition to measurement errors. The uncertainty of V is estimated from the variation in wind speed during 4
consecutive hours (09:00 UTC, 10:00 UTC, 11:00 UTC, 12:00 UTC) eentredcentered around the TROPOMI
overpass time. Note that we use the mass balance method equation from Buchwitz et al. (2017), but not their
empirical equation to estimate the uncertainty of Q. They derive that equation using a fixed wind speed of 1.1 m/s
globally, which would give a larger uncertainty in comparison to our approach of using location and time-specific

wind information: ERAS average Vis 2.5+ 0.42 m s in SSWR during 2018-2019.
3 Results

3.1 XCH4 enhancements

We first assess the XCH4 enhancements over South Sudan in the two-year average map of TROPOMI XCHa4
shown in Fig. la in relation to the SSWR wetland distribution in Fig. 1b. Similar to previous remote sensing
studies (Frankenberg et al., 2011; Lunt et al., 2019; Hu et al., 2018), we observe a large XCH4 enhancement over
the Sudd wetlands. In addition, the TROPOMI data also resolve another distinct enhancement over the Machar
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and Lotilla wetlands in eastern South Sudan, indicating large emissions from these wetlands too. The second

enhancement was also observed by Hu et al. (2018) using two months of TROPOMI XCHea.

The Sudd wetlands are flooded by the main White Nile tributary originating from Lake Victoria, whereas the
wetlands in Southeast Sudan are along smaller rivers like the Kangen and Sobat, originating from the Ethiopian
mountains. Lunt et al. (2019) attributed their GOSAT inversion emission estimates only to Sudd and evaluated
the emissions using auxiliary data for Sudd. However, as the wetlands in the east are flooded by a different set of
rivers and have a substantial contribution to the overall XCHs enhancement, they also need to be considered when

studying the mechanisms driving the large emissions in this region.

The XCH4 enhancement for SSWR in the two-year average is 18.8 + 2.8 ppb, which is more than 3 times the
enhancement over the Permian basin in the USA as reported by Zhang et al. (2020). It is very unlikely that the
SSWR enhancement is an artefact of the known aerosol or surface albedo biases in the TROPOMI XCH4 data.
We elaborate further on this in Appendix Sect. Al. Figure 23 shows seasonally average XCH4 maps over SSWR,
and Table 1 quantifies the seasonal XCHa enhancement and areal coverage of the TROPOMI data. TROPOMI
has good coverage in SSWR, ranging from 40 % in JJA to > 90 % DIJF. It is higher than 70 % in all seasons except
JJA, likely due to persistent cloud cover during the wet season. The lowest enhancements are observed in JJA in
both 2018 (10.5 +4.173=+2-4 ppb) and 2019 (2.6 + 3.7(+5+2-4 ppb). It is unlikely that these low enhancements
are artefacts of the low coverage as there is still sufficient TROPOMI data (> 40 %) and measurement are not
systematically missing over the evertheareas—with-large emissions areas oftn SSWR, the Sudd and Machar
wetlands. SON-2019 has the largest enhancement of 29.3 + 4.0 ppb.26-:3=+=22ppb likely due to low wind speeds.;

3.2 Emissions quantification

We use the mass balance method of Buchwitz et al. (2017) to estimate emissions from SSWR for each season (see
Table 1). Hi-eshaneements—Emissions during
other-most seasons are close to 109 Tg yrl-exceptfor DIE-2018, except for the low emissions in JJA.- We find

very low emission in JJA-2019 (1.4 £2.1 Tg yr 1), but it accommodates the season’s anthropogenic emissions of

about 0.48 Tg yr ! (sum of 2012 EDGAR emissions, and 2016 oil and gas emissions from Scarpelli et al., 2020)

and GFED biomass burning emissions (0.003 Tg yr ')The lowest-emissions-are-in-JJA corresponding to-the

lowestXCHas-enhaneements.- -Direct application of the mass balance method on the two-year average XCHa4 map
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shown in Fig. 1a yields an annual emission of 10 + 1.7 Tg yr'!. However, this is likely an overestimate as the two-
year average temporally under samples the low emissions of JJA seasons due to low coverage during these
seasons. Therefore, to ensure uniform temporal sampling of all seasons, we calculate annual SSWR emissions by
averaging the seasonal emission estimates, resulting in 8.20 + 3.2 Tg yr'!. Moreover, this approach is likely less
sensitive to error due to mean-of-products vs product-of-means effect. A caveat of the mass balance method is
that it ignores two factors: (1) the influence of emissions in the background region, and (2) the contribution of
emissions in the source region to the background average XCHa. Both factors increase the background XCHa4 and
ignoring them results in an underestimation of the emission estimate. However, this underestimation is large when
the ratio of the area of the background region and the source region is small, and as we apply the method using a

large background, we do not expect a significant impact on our emission estimates.

Lunt et al. (2019) report methane emissions for all sources (including wetlands, biomass burning, anthropogenic,
wild animals) from the Sudd wetlands using multiyearmuttiyear GOSAT inversions. Their emission estimate of
5.2-6.9 Tg yr'! for 2016 is within the uncertainty bounds of our SSWR total emission estimate of 8.0 + 3.2 Tg yr°
! for 2018-2019. Note that some difference in the emission estimates can be explained by the difference in the
definition of the source region between the two studies as their region extends more north and less east than ours.
TROPOMI shows a large XCH4 enhancement over Lottila and Machar wetlands in the east SSWR, indicating
large emissions from these wetlands. As the source region in Lunt et al. (2019) only partially covers these

wetlands, our emission estimates are expected to be higher.

To calculate wetlands emissions from SSWR, we account for other methane emissions in the region using bottom-
up data. According to the EDGAR (version 4.3.2, Janssens-Maenhout et al., 2017) inventory for 2012, the total
anthropogenic emissions from SSWR were 0.43 Tg yr! with enteric fermentation (0.36 Tg yr! ) being the largest
anthropogenic category. The region has small emissions from wastewater management (0.03 Tg yr™!), energy for
buildings (0.01 Tg yr!') and manure management (0.01 Tg yr'!). EDGAR does not report any significant emissions
from fossil fuel exploitation sector in the region. Recently, Scarpelli et al (2020) presented a new inventory for
the oil and gas sector in which UNFCCC reported national emissions are spatially allocated to the fossil fuel
infrastructure. They report 0.05 Tg yr'! emissions from SSWR in 2016. Biomass burning is the largest natural
methane source after wetlands in SSWR with average emissions of 0.20 Tg yr! in 2018-2019 according to
GFED4s (0.23 Tg yr!in 2018, 0.16 Tg yr! in 2019, Van der Werfet al., 2017). Another significant natural source

is the emission from termites (0.16 Tg yr'!, Sanderson, 1996). We subtract the total of these non-wetlands

10



290

295

300

305

310

315

emissions to calculate wetland emissions of 7.42 + 3.2 Tg yr! from SSWR in 2018-2019. This estimate is an
order of magnitude larger than the 0.5 Tg yr'! wetlands emissions from the prominent Pantanal wetlands of South

America in 2010-2018 which are estimated using GOSAT inversions by Tunnicliffe et al. (2020).

Our SSWR wetlands emission estimate of 7.4 + 3.2 Tg yr'! can be an overestimate if the emissions from the
above-mentioned non-wetlands sectors are underestimated in the inventories. However, this is unlikely as it
would require a very large underestimation in the inventories for the two years studied here. For example, for
the oil and gas sector, the annual emissions (0.05 Tg yr!') will need to be underestimated by two orders of
magnitude to have a significant error impact on the wetland emission estimates. Moreover, the strong
seasonality shown by the TROPOMI emission estimates is not expected in oil and gas emissions. The SSWR
biomass burning emissions are targerhigher in comparison to the other sectors, but a large underestimation in
annual emissions by GFED is unlikely as it uses remote sensing-based fire activity and vegetation productivity
data. Livestock is the largest anthropogenic methane source in SSWR region: 0.36 Tg yr! in 2012 as per
EDGAR v4.3.2, and 0.37 Tg yr ! in 2015 as per EDGAR version 5 (Crippa et al., 2020). South Sudan has a

large population of livestock: 7.5 million dairy cattle, 4.6 million non-dairy cattle, 13.5 million goats and 16.3

million sheep in 2018, which causes 0.63 Tg yr ! of methane emissions (FAOSTATS., 2020). This amount is

twice of what we use to calculate the wetlands emissions for SSWR. In the extreme case that all these additional

emissions are located in SSWR, it would slightly reduce our wetland emission estimate, however, well within its

uncertainty margin. Manure management emissions in SSWR (0.01 Tg/yr) are small even though there is a large

cattle population in South Sudan due to lack of effective management practices. This is reflected in the small

emission factors used for the country by EDGAR for dairy cattle: 1 kg CH4 head! for South Sudan vs 48 kg
CH4 head™! for USA.

3.3 Comparison to wetland process models
3.3.1 Annual means

SSWR integrated mean methane emission estimates from the process models are nearly an order of magnitude
lower than those from TROPOMI (Table 2). For example, the multiannual mean emission from LPJ-wsl for 1980-
2016 is 1.1 Tg yr'! (ranging from 0.5 Tg yr! in 1990 to 1.5 Tg yr'! in 1998). The multi-annual mean individual

11
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ensemble estimates from Wetcharts Extended Ensemble range from 0.4 Tg yr'! (uses GLWD) to 1.8 Tg yr™! (uses
GLOBCOVER). Its smallest and largest annual emission estimates from these ensemble members are 0.29 Tg yr-
'in 2009 and 2.21 Tg yr! in 2013. The Wetcharts Full Ensemble, with 324 estimates for 2009-2010, has a mean
of 0.9 Tg yr'!, ranging from 0.07 to 3.7 Tg yr'’.

Table 2 also presents the maximum H-inundation extent (i.e., sum of seasonal and permanent wetland areas)

extent-in-the IE-data-used by the process models. ;-1t which-range from 25,000 to 69,000 km? across the models.

These H-inundation extent are up to 4 times lower than the observation-based maximum He-inundation extent

estimates of 99,000 km? by Gumbricht et al. (2017). Huges & Huges (1992) give the permanent wetland area of
the different wetlands in SSWR (Table A1). The sum of these areas is 36,000 km?, significantly larger than the
permanent He-inundation extent area—(i.e., minimum #ean—monthly-inundation extent HE) used in the models
(Wetcharts Extended Ensemble: 1,000 km?; LPJ-wsl: 14,000 km?; SWAMPS: 16,000 km?). Rebelo et al. (2011)

used remote sensing data to characterize HE-inundation extent of the Sudd wetlands over a 12 months period,

yielding a total wetlands area of 50,000 km? (41,000 km? of seasonally inundated and 9,000 km? of permanent

inundated). According to Huges & Huges (1992), other wetlands in the SSWR have a total permanent wetlands
area of >20,500 km?, meaning that Sudd accounts for only about a third of the SSWR’s total wetland area. As

other wetlands in SSWR are also along rivers like Sobat, their He-inundation extent likely has a large seasonality,

and assuming that the relative seasonal amplitude of He-inundation extent of these other wetlands is similar to that
of Sudd would give a total (seasonal + permanent) flooded area of 134,000 km?. Adding the Sudd IE-inundation
extent yields a total SSWR IE-inundation extent of 164,000 km?, which is larger than the total IE-estimate of
99,000 km? from Gumbricht et al. (2017). Overall, we find substantial evidence of underestimations of SSWR 1E

inundation extent in the process models, which may explain their emission underestimations as they assume that

HE-inundation extent is a strong control of the emissions.

We now look at variations in annual mean HE-inundation extent to find a possible cause of high emissions in 2018-
2019. Lunt et al. (2019) attribute the emission increase in South Sudan between 2010 and 2016 to an H£-inundation
extent increase in the Sudd owing to an increased water inflow from the White Nile river found in satellite
altimetry-based river water height measurements. To investigate this for the period 2018-2019, we look at trends
in water height (see Fig. 4) of Lake Victoria, and White Nile and Sobat rivers. Similar to Lunt et al. (2019), we
observe a rapid water height increase during 2011-2014. After this period, water levels stabilize and slightly
decrease but remain significantly higher than in 2009-2010. 2019 shows the highest water level for the Sobat
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river due to a renewed positive trend from 2017 onward. This suggests that the total SSWR H=-inundation extent

was significantly higher in 2018-2019 than the pre-2011 levels. In contrast, the HE-inundation extent data used in

the process models, shown in Fig. 4a, have negative trends, which means that the process models do not account

for the emission increase during 2010-2016 due to increasing HEinundation extent, as suggested by Lunt et al.
(2019).

HE-Inundation extent estimates from the remote sensing-based SWAMPS also do not show the increase and

underestimate annual means—+E. Schroeder et al. (2015) have recommended not to use SWAMPS absolute £
inundation extent as the microwave sensors used in SWAMPS have limited capability to detect water underneath
the soil surface or beneath closed forest canopies. This effect can impact also the temporal H=-changes, in addition

to the absolute HEinundation extent, as such flooding ehanges-beneath the forest canopies would also not be

observed. It is unclear why TOPMODEL, which accounts for lateral water transport processes, does not capture

the trend in river outflow. These are interesting topics for follow-on investigations.

3.3.2 Seasonal cycle

Next, we assess the seasonal cycle of the TROPOMI-derived emission estimates. Figure 5a shows the seasonal
cycles in 2018 and 2019. The largest emissions are in DJF in 2018, while DJF, MAM and SON have large
emissions of similar magnitude in 2019. In both 2018 and 2019, TROPOMI emissions are lowest in JJA; in
contrast, the process models estimate the lowest emissions in DJF (Fig. 5¢). We investigate this mismatch by
looking at the seasonal cycle of HE-inundation extent in the models. The model emissions have a strong correlation

with the theiinundation extent they use respeetive HE*s+(Wetcharts R = 0.91; LPJ-wsl R = 0.94, where R is

correlation coefficient), indicating that the seasonality of emissions is driven by inundation extent}E. In fact, the

differences in HE-inundation extent seasonality between LPJ-wsl and Wetcharts are consistent with the emissions

differences; for example, both HE-inundation extent and emissions in LPJ-wsl are lower than in Wetcharts during
MAM.

The seasonality of the altimetry-based river water height measurements, shown in Fig. 5d, is highest in SON and
is very different from Wetcharts HE-inundation extent (highest in JJA). This can partially explain the difference in
the seasonal cycles of Wetcharts and TROPOMI emissions. The seasonal cycle of Wetcharts Extended-Ensemble

HE-inundation extent shewnhere-is strongly correlated with local precipitation (Fig. 5b), as the intra-annual £

inundation extent variation is calculated using precipitation. However, this method would not accurately account
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for HE-inundation extent variation due to lateral water fluxes and evapotranspiration. Surface runoff is especially

important for river-fed wetlands like Sudd, whose H-inundation extent is controlled by water inflow from the

White Nile because regionathy-the evapotranspiration rate exceeds rainfall in the region (Lunt et al., 2019; Sutcliffe

and Brown, 2018). LPJ-wsl HE-inundation extent seasonality shows better agreement with the river height data as

it is calculated using TOPMODEL, which accounts for the lateral fluxes and evapotranspiration. However, LPJ-
wsl emissions still show large differences with the seasonal cycle of TROPOMI emissions. Previous remote
sensing studies for the Sudd wetlands have found the largest HE-inundation extent during September-January in

2007-2008 (Robelo et al., 2012) and during December-January in 1991-1992 (Travaglia et al., 1995), in better

agreement with river height measurements than the process models. Overall, H=-inundation extent seasonality of

models appears to be significantly off, which can explain part of the mismatch between TROPOMI and model

emissions.

In both 2018 and 2019, TROPOMI emission estimates are the lowest during JJA, while river height measurements
are the lowest in MAM. A similar seasonal cycle mismatch in the GOSAT emission estimates and HEinundation
extent, derived using MODIS Land Surface Temperature (LST) as a proxy, is shown in Lunt et al (2019).

Furthermore, tFhey find the highest emissions trend during SON, which had the smallest trend in inundationtE,

but no trend in emissions during MAM, which has the highest H=-inundation extent trend (i.e. strongest negative

LST trend).

An explanation for the difference in seasonal phasing can be a higher temperature dependence of emissions than
suggested by the models as temperatures are lowest during JJA. We evaluate this hypothesis using Wetcharts Full
Ensemble, which provides a total of 324 emission estimates for three temperature dependences q10 (=1, 2, 3; see
Bloom et al., 2017). Figure 6 compares the average seasonal cycle of TROPOMI emissions with Wetcharts
emissions using different q10’s (see also Table 3). Wetcharts emissions with q10 = 1 have the poorest agreement
with the seasonal cycle of TROPOMI (R = -0.6271}). Interestingly, these emissions also have the lowest annual
means (= 0.5 Tg yr'!). Conversely, Wetcharts emissions with q10 = 3 have the best correlation with TROPOMI
(R = -0.282) and have the largest annual mean (=1.0 Tg yr'!). In fact, the member estimate—out of the 324-
member Full Ensemble —with the largest annual emissions of 3.7 Tg yr'! alse-has the best correlation with
TROPOMI (R = 0.00+3). As expected, this member uses q10 = 3. The agreement of TROPOMI with the larger
q10 model estimates, in terms of both annual mean and seasonal cycle, suggests that wetland emissions from

SSWR have a large temperature dependence. In their study of wetlands in the Amazon Basin, Tunnicliffe et al.
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(2020) pointed to temperature as a more important control on methane emissions than inundation extenttE. They
find a simultaneous, spatially correlated emission and temperature increases in the west Brazilian Amazon during
the El-Nino of 2015, with unchanged inundation extentfE. Moreover, Wilson et al. (2016) found a negligible
impact on wetlands emissions in the Amazon basin despite the large difference in precipitation between 2010 and
2011, which impacted He-inundation extent significantly. Note that it is also possible that the higher q10’s we find
for SSWR emissions are simply compensating for errors due to a remainingmisrepresentation of HEinundation

extent; or other factors covarying with temperature.

Figure 7 shows the emission anomalies time series from TROPOMI along with temperature and HEinundation
extent, which we assume to be proportional to river height. A small lag between the river height and H=-inundation
extent is expected, but we expect it to be negligible in comparison to a full season. We observe that the emissions

show a strong correlation with temperature (R= 0.4966), but a poorer correlation with HE-inundation extent (R=

0.2467). The emissions peak a full season later than Einundation extent, and accounting for this seasonal lag

improves the correlation significantly (R= 0.805). An explanation for this can be the higher temperature
dependence of emissions discussed earlier. Another explanation could be the “activation” time of methanogenesis
afterflooding, as after flooding it takes time for anoxic conditions to develop and alternative electron acceptors
to be depleted. Jerman et al. (2009) documented that methane emissions from water-saturated soil slurries
remained very low for a long time: methane production started after a lag of 84 days at 15° C and a minimum of
7 days at 37° C, the optimum temperature for methanogenesis. They found that the lag was inversely related to
iron reduction, which is expected as iron reduction outcompeted methanogenesis. Similarly, Itoh et al. (2011)
investigated methane emissions from rice paddy fields and found a time lag of a few weeks between the onset of

inundation and peak emissions.

Process models assume that wetland emissions are instantaneously regulated by HEinundation extent, and they do
not account for the time lag as information on the availability of alternate electron accepters is generally not
available. This results in an incorrect temporal allocation of the wetland emissions-when-the-emissionsare-sealed
with-preeipitation-or-eventE-direetly. Furthermore, some models assume inundation extent is instantaneously
regulated by precipitation. Fe+In river floodplains like Sudd, sealingemissions-directhy-with-preeipitation-would
give-even-worse-estimates-in-medelsas-thetE-inundation extent is mostly controlled by river inflow, and not the

local precipitation, as the evapotranspiration rates exceed the rainfall in the region. -Therefore, scaling with
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precipitation would even worse emission estimates. Overall, a combination of temperature and inundation extent

dependences that are used in the models can explain their seasonal cycle mismatch with TROPOMI emissions.

5 Conclusions

XCH4 enhancements over South Sudan have been observed in remote sensing studies suggesting large emissions
from the Sudd wetlands as the cause (Lunt et al., 2019, Hu et al., 2018, Frankenberg et al., 2011). We observe two
large enhancements in the region in a 2-year average map of TROPOMI XCHs—over Sudd, and Machar and
Lotilla wetlands. Sudd Wetlands are flooded by the White Nile river originating from Lake Victoria, while the
wetlands in the east are around smaller rivers like the Sobat originating in the Ethiopian mountains. In this study,
we examine these wetlands, and their river systems, together to understand the controls of the emissions causing

the large XCH4 enhancements.

We estimate methane emissions of 7.42 = 3.2 Tg yr! from wetlands in South Sudan during 2018-2019 using a
mass balance approach applied to TROPOMI data. We find large differences between the emission estimates from
TROPOMI and wetland process models LPJ-wsl and Wetcharts. The annual mean estimates from TROPOMI are

an order of magnitude larger than mean estimates of frem-the models, which may be explained by the up to 4

times underestimated HE-inundation extent in the models. We find differences in interannual variability and

average seasonal cycles of TROPOMI and models, which can be again; partially explained by the strong

dependence of model emissions on poor HE-inundation extent estimates. We find the lowest emission in the highest

perception and lowest temperature season JJA, when models estimate large emissions as they incorrectly assume

an instantaneous influence of the precipitation-derived inundation extent. Wie find that the Wetcharts emission

estimates that use a highstronger -temperature dependence (q10 = 3) show a better agreement with TROPOMI

concerning both seasonality and annual emissions. This indicates that the models may also underestimate the

temperature sensitivity of the methane emissions. The-causes-of this-need-to-be-investigated-further:

The H-inundation extent of SSWR is analyzed using satellite altimetry-based river height measurements of White

Nile and Sobat rivers at locations within the Sudd and Macher wetlands. The HE-inundation extent estimates used

in models are based on the local precipitation, whereas, the actual HE-inundation extent of SSWR is driven by

water inflow from the rivers as evapotranspiration exceeds the leeal-precipitation_in the region. As a result, both
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the seasonal cycle and trend of model HE-inundation extent disagree with river height data. The seasonal cycle of

HE-inundation extent from river height data shows better agreement with the TROPOMI emissions when a full

season-long lag between the two is assumed. This time lag can be explained by the time needed for
methanogenesis to develop in the seasonally flooded areas of the wetlands. A more precise estimate of the lag is

not possible due to the coarse temporal resolution of our TROPOMI emissions estimates.

The lack of information on the correct relationship of wetland emissions with H-inundation extent and temperature
results in large model uncertainties. Such large gaps in our understanding of the processes driving wetland
emissions call for further investigation. As shown here for the wetlands of South Sudan, TROPOMI provides
valuable observations over remote and inaccessible wetland regions of the world, which future wetland studies

can take advantage of.

APPENDIX
Section Al. Systematic Measurement Uncertainties

Surface albedo and aerosols can alter the optical light path, introducing biases in XCH4 (Butz et al., 2011).
Therefore, the XCH4 enhancement over South Sudan can be affected by the differences between the source and
background region values of these parameters. The average retrieved aerosol optical thickness (AOT) and surface
albedo in the SWIR band of TROPOMI are shown in Fig. A1. For SSWR and its background, the AOT and albedo
differences in two-year average data are 0.001 and -0.10, respectively. The average differences for seasonal
average maps are -0.01 = 0.01, -0.15 = 0.02 and 16.3 = 8.4 ppb for AOT, albedo and XCHs respectively. The
negative albedo difference for SSWR occurs due to the high albedo the Sahara in the background. This small
albedo difference is unlikely to influence the SSWR XCH4 enhancement significantly, especially, as an albedo-
based bias correction is applied to the XCH4 in operational TROPOMI product (Hasekamp et al., 2019). We also
examined the possibility that the XCH4 enhancement over South Sudan is an artefact of sun glint geometry of
TROPOMI observations due to refection on standing water of the Lakes and inundated areas in the region. This
can happen when the observation geometry over a water body surface is at the specular reflection angle (si.c., the
viewing zenith angle matches the solar zenith angle); causing a spike in the level 1 radiance measurements.

However, this was found not to occur over the wetlands of South Sudan.
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Data  Availability. TROPOMI data are available at the Copernicus Open Access Hub
(https://scihub.copernicus.eu/)
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Table 1. SSWR XCH4 enhancement and emission estimates. The enhancements (AXCH,) is the XCHa difference

between SSWR and the background after correcting XCHy for latitudinal variation.- Data coverage is defined here

as the fraction ef-thesnuwmber—of 0.1° X 0.1° grid cells in SSWR with at least five high-quality TROPOMI

measurement in a -quarterdata. Wind speed is the average boundary layer winds from ERAS. Emission estimates

are calculated using Eq. (1). + represents 1 o uncertainty.

XCH4 enhancement
Season Data coverage (%) Wind speed (m s™) (opb) Emissions (Tg yr™)
(Y Y
16.5+4.3 27+ 11.5+
DJF-2018 91 35+0.9
202 +4.1 216 8.5+
MAM-2018 74 2.1+12
10.5+4.1 73= 5.7+
JJA-2018 44 2.7+0.3
18.7+4.3 165 10.1 +
SON-2018 83 2.7+04
134+£2.7 144 8.6+
DIJF-2019 98 32+0.9
13.6+3.6 148 8.4+
MAM-2019 92 3.1+£0.8
26+3.7 5=+ 1.4+2.1-
JJA-2019 43 2.8+0.3
293+4.0 263 11.2+
SON-2019 83 1.9+0.2
— 1.99.8+14
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725

Table 2. Annual emission and maximum H-inundation extent estimates for SSWR. The values in parentheses

show 1-standard deviation spread over the given periods. The dashed values give the range of Wetcharts ensemble

estimates.
Period Maximum H-inundation Emissions (Tg yr?)
extent (10° km?)
Wetcharts Extended 2001-2015 32(7) 0.4(0.1)-1.0(0.2)
Ensemble/GLWD
Wetcharts Extended 2001-2015 69 (10) 0.70 (0.1) - 1.8 (0.2)
Ensemble/GLOBCOVER
Wetcharts Full Ensemble 2010 30-66 0.07-3.7
LPJ-wsl/ TOPMODEL 1980-2016 57(9) 1.1 (0.25)
SWAMPS 2001-2019 25(5) -
Gumbricht et al. (2017) 2011 99 -
TROPOMI 2018-2019 - 742432
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Table 3. Annual emission estimates from Wetcharts Full ensemble (2010) for different temperature dependencies,

and correlation coefficient (R) of their respective average seasonal cycle with TROPOMI emissions.

735
Temperature Emissions (Tg yr'l) R (with
dependence (q10) TROPOMI)
1 0.5 -0.627+
2 0.8 -0.4140
3 1.0 -0.2822
Maximum* 3.7 0.00+3

*The maximum annual emission estimate in the 324-member ensemble of Wetcharts Full Ensemble. Its q10 is 3.
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Table Al. The total permanent SSWR HE-inundation extent from Huges & Huges (1992).

Wetlands in SSWR Wetland Area (km?)
Sudd 16,500

Machar marshes 9,000

Lottila Swamps 2,000

Veveno, Adiet and LiLebook 6,500

Kenamuke and Kobowen swamps 1,700

Bahr el Ghazal floodplains 900

Total 36,000
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Figure 1. The TROPOMI XCHs enhancement over the South Sudan wetlands. (a) Average of two years
(December 2017 to November 2019) of TROPOMI XCHa at 0.1° X 0.1° resolution (b) Wetlands in South Sudan
from Gumbricht et al. (2017) are shown in green, and the rivers in the region are shown in blue. The area within
the blue rectangle (5°—10° N and 28°-34.5° E) is referred to as South Sudan wetlands region (SSWR). The red

dots show the locations of satellite altimetry-based river water height measurement sites.
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755 Figure 2. Seasonally average TROPOMI XCHa (ppb) at 0.1° X 0.1° resolution. The black rectangle at the centre

of each panel shows the SSWR source region. The area outside of it is used as the background region. XCHj is

corrected for large-scale latitudinal variation by subtracting a 3" order polynomial fit using the region shown by

blue rectangles in panel a. The region excludes the longitudes of the source region. Note that DJF includes

December of the previous year.
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765 Figure 32. Monthly average boundary layer ERAS winds in SSWR. Wind speeds (X-axis) and directions (coloar
of the markers) at 10:00 UTC, which is the closest hour to the local TROPOMI overpass time, are shown at

different pressure levels of the model. The markers with dark edges represent 10-meter height winds.
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Figure 4. SSWR IE-inundation extent estimates. (a) Annual anomalies of HE-inundation extent estimates of

SWAMPS, TOPMODEL and Wetcharts (ERA-interim), used in process models, and ERAS5 precipitation,

expressed in the unit of the standard deviation of the respective annualized time series. (b) Water height anomalies
for the altimetry sites in Lake Victoria, and White Nile (WNS3) and Sobat (SOS1) rivers from the Hydroweb
database. Locations of these altimetry sites are given in Figure 1. Here we only use the altimetry sites which have

a sufficiently long temporal coverage that includes 2018-2019.

35



Anomalies (std.dev.)

Anomalies (std.dev.)

%)
o

a. TROPOMI emissions

c o = =
o [%] o %]
1 1 1 1

|
o
w
1

| |
[
w [=]

1 1

#—- 2018
—&— 2019
N |

|
N
[=)

c. Wetland models

M
o

=
(%]
1

=
o
1

o
L
1

0.0 1

LPJwsl
emissions

——
Wetcharts
+ emissions
—4+— LPJwsl IE
—4— Wetcharts IE

MAM JA SON

36

Anomalies (std.dev.)

Anomalies (std.dev.)

b. ERAS

71— tem perat‘LKe

—}— precipitation

d.River height




790

795

2.0

a. TROPOMI emissions

1.5

Anomalies (std. dev.)

= 2018
—&— 2019

—2.0 —

2.0

c. Wetland models

1.5+

1.0

0.5 4

0.0 1

—0.5 -

Anomalies (std. dev.)

—1.5 A

-2.0

o #

S/ LPJwsl
A WS
/ / / #- emissions
Wetcharts
+ emissions
—+— LPJwsl IE
—4— Wetcharts IE

MAM JA SON

Anomalies (std. dev.)

Anomalies (std. dev.)

b. ERA5

1 —— tem perathre

—}— precipitation

d. River height

DJF MAM JA SON

Figure 5. Mean seasonal cycles expressed in the unit of the standard deviation of respective time series. (a)

Emission estimates from TROPOMI; (b) precipitation and temperature from ERAS (2010-2019); (c) emissions

and HE-inundation extent from the process models LPJ-wsl and Wetcharts Extended Ensemble; (d) river water

height measurements at the altimetry sites given in Figure 1b. The vertical bars represent 1-standard deviation

spread over different years.
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800 Figure 6. Seasonal cycle of SSWR emissions. Methane emissions from Wetcharts Full Ensemble for 2010
(December 2009 —November 2010) and TROPOMI are shown. The solid lines show the average of an emission
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estimate ensemble for a temperature dependency (q10). The dashed line shows the seasonal cycle of the Wetcharts

estimate that has the largest annual emissions. All values are shown in the unit of standard deviation.
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810 Figure 7. Seasonal anomalies in SSWR. (a) TROPOMI emissions estimates-e£TFROPOMI, ERAS temperature

and HE-inundation extent, ssine—from river height measurements, are shown. (b) Llocal precipitation and

SWAMPS HE-inundation extent data are shown. All values are expressed in the unit of standard deviation.

Correlation coefficients (R) of TROPOMI emissions with temperature, river height, SWAMPS and precipitation
are 0.4966 and 0.2467, —0.3344, —0.6786, respectively.
815

41



24.00° 24.00°

15.75° 15.75° 020
015
7.50° 7.50° 010
0.05
075° ¢ 075° 0.00
-0.00° 5 -0.00°
u 3125 30.88° 14.00° 31.25°
c. Albedo d. Altitude
24.00° — 24.00° —
1575 R 07 1575 1000
06 800
05
04 600
03 7.50 00 £
02
01 5 00
00 0.75° 0
0.00° L -9.00° :
14.00° 2.62° 31.25° 30.88° 8.50° 14.00° 2.62° 31.25° 30.88° 48.50°

Figure Al. Average TROPOMI data (2018-2019) at 0.1° X 0.1° resolution. The albedo and AOT are retrieved
for the SWIR band at 2.3 um.
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