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Dear editors, 

 

    Please find attached the revised manuscript. The change made to the manuscript are shown in this document.  

To address your comment on emissions due to livestock and manure management, also raised by the first 

reviewer, we have added the following text to the revised manuscript: 5 

 

Manure management: 

“Manure management emissions, 0.01 Tg/yr in SSWR, are small, even though there is a large cattle population in South 

Sudan due to lack of effective management practices. This is reflected in the small emission factors used for the emissions 

category for the country by EDGAR: 1 kg CH4 head-1 for South Sudan vs 48 kg CH4 head-1 for USA.” 10 

 

Livestock: 

“Livestock is the largest anthropogenic methane source in SSWR region: 0.36 Tg yr−1 in 2012 as per EDGAR 

v4.3.2, and 0.37 Tg yr−1 in 2015 as per EDGAR version 5 (Crippa et al., 2020). South Sudan has a large 

population of livestock: 7.5 million dairy cattle, 4.6 million non-dairy cattle, 13.5 million goats and 16.3 million 15 

sheep in 2018, which causes 0.63 Tg yr−1 of methane emissions (FAOSTATS., 2020). This amount is twice of 

what we use to calculate the wetlands emissions for SSWR. In the extreme case that all these additional 

emissions are located in SSWR, it would slightly reduce our wetland emission estimate, however, well within its 

uncertainty margin. “ 

 20 
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Abstract. The TROPOspheric Monitoring Instrument (TROPOMI) provides observations of atmospheric 

methane (CH4) at an unprecedented combination of high spatial resolution and daily global coverage. Hu et al. 

(2018) reported unexpectedly large methane enhancements over South Sudan in these observations. Here we 

assess methane emissions from the wetlands of South Sudan using two years (December 2017–November 2019) 

of TROPOMI total column methane observations. We estimate annual wetland emissions of 7.42 ± 3.2 Tg yr-1, 40 

which agrees with the multiyearmultiyear GOSAT inversions of Lunt et al. (2019) but is an order of magnitude 

larger than estimates from wetland process models. This disagreement may be explained by the up to 4 times 

underestimation of inundation extent by the hydrological schemes used in those models. We investigate the 

seasonal cycle of the emissions and find the lowest emissions during the June-August season when the process 

models show the largest emissions. Using satellite altimetry-based river water height measurements, we infer that 45 

this seasonal mismatch is likely due to a seasonal mismatch in inundation extent. In models, inundation extent is 

controlled by regional precipitation, scaled to static wetland extent maps, whereas the actual inundation extent is 

driven by water inflow from rivers like the White Nile and the Sobat. We find the lowest emission in the highest 

perception and lowest temperature season JJA when models estimate large emissions. In general, our TROPOMI 

emission estimates show better agreement, in terms of both seasonal cycle and annual mean, with model estimates 50 

that use a stronger temperature dependence. This suggests that temperature might be a stronger control for the 

South Sudan wetlands emissions than currently assumed by modelsthe best explanatory control for the emissions 

from wetlands in South Sudan. Our findings demonstrate the use of satellite instruments for quantifying emissions 
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from inaccessible and uncertain tropical wetlands, providing clues for improvement of process models, and 

thereby improving our understanding of the currently uncertain contribution of wetlands to the global methane 55 

budget.  

 

1 Introduction 

Reducing anthropogenic methane emissions has been recognized as an important requirement for achieving the 

2015 Paris Agreement target of limiting global temperature rise below 2° C relative to pre-industrial times 60 

(Ganesan et al., 2019). However, large uncertainties remain in the atmospheric budget of methane, calling for an 

improved understanding of its emissions from both anthropogenic and natural sources (Saunois et al., 2016). 

Wetlands are ecosystems with seasonally or permanently inundated or saturated soils, including peatlands (bogs 

and fens), mineral wetlands (swamps and marshes), and seasonal or permanent floodplains, where methanogens 

produce methane in the anaerobic decomposition of organic matter. Emissions from natural wetlands are the 65 

largest and the most uncertain emission category of methane (Kirschke et al., 2013). Saunois et al. (2016) provide 

global methane emission estimates for all source categories combined of 540–568 Tg yr-1 using top-down 

approaches and 596–884 Tg yr-1 using bottom-up approaches for the period 2003–2012. They attribute the 

mismatch between the two approaches mainly to uncertainties in emissions from natural wetlands, inland waters 

and geological sources. They report total emissions of 127–202 Tg yr-1 and 153–227 Tg yr-1 from wetlands using 70 

top-down and bottom-up approaches, respectively, which accounts for 30 % of global emissions.  

 

In addition to being an important source of uncertainty in methane budget, wetlands emissions can have significant 

climate feedback due to their sensitivity to changes in precipitation and temperature (Arneth et al., 2010; Zhang 

et al., 2018; Zhu et al., 2017). By analyzing surface and satellite measurements of methane, Pandey et al. (2017) 75 

reported enhanced methane emissions from tropical wetlands due to precipitation and temperature anomalies 

associated with the La Niña of 2010. Furthermore, according to Zhang et al. (2017), the feedback of methane 

should be accounted for in climate mitigation policies as they find that the global wetland emissions will increase 

by 50 to 170 Tg yr-1 at the end of the 21st century because of the temperature-driven increase in wetland emissions 

under the different Representative Concentration Pathways (RCP) adopted by the IPCC. Their results indicate that 80 

the increase in wetland emissions maybe 38–56 % larger than the projected anthropogenic emission increase by 

the end of the 21st century under the strong climate mitigation scenario (RCP 2.6). 
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To improve wetland emission estimates is very challenging due to many reasons. Wetlands are spread over large, 

inaccessible regions around the world. Upscaling a few localized measurements of wetland emissions is often 85 

futile as these emissions have large temporal and spatial variability, and the parameters controlling them are very 

uncertain. The emissions are also difficult to monitor on the ground due to logistical limitations. This makes 

satellite observations a promising and crucial source of information to advance our understanding of the role of 

wetland methane emissions in the carbon cycle.  

Hu et al. (2018) observed large methane enhancements over South Sudan in TROPOMI data collected during the 90 

first two months of the commissioning phase of the satellite, November and December 2017. Frankenberg et al. 

(2011) also observed an enhancement over the region in a seven-year average (2003–2010) of SCanning Imaging 

Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) observations. These studies indicated 

that the enhancements are likely caused by large emissions from wetlands in the region. Recently, Lunt et al. 

(2019) used methane observations from the Japanese Greenhouse gases Observing Satellite (GOSAT) in inverse 95 

modelling to infer emissions from tropical Africa during 2010–2016. They found that emissions from South Sudan 

were more than 3 times larger than the ensemble mean estimates from the Wetcharts process model (Bloom et al., 

2017). They also found that emissions from the Sudd wetlands in the region increased rapidly from 2.4–4.2 Tg yr-

1 in 2010–2011 to 5.2–6.9 Tg yr-1 in 2016, likely, because of an inundation extent (IE) expansion due to an increase 

in water inflow from the White Nile river.  100 

This study aims to infer the scale of the wetland methane emissions from South Sudan from TROPOMI 

observations using a simplified emission quantification method and investigate its relationship with the results of 

wetland process models and the seasonally varying climatological conditions. This study is structured as follows. 

Section 2 describes the method and data used including the TROPOMI data, wetland models and IE inundation 

extent data, and the emission quantification method. Section 3 presents our results and discussion including 105 

emission estimates from TROPOMI and their comparison with the process models, and an analysis of the 

differences between models and TROPOMI emission estimates using IE inundation extent and meteorological 

data. Our conclusions are given in Section 4.  
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2 Data and method 

2.1 TROPOMI methane data 110 

TROPOMI is the single instrument onboard the Copernicus Sentinel-5 Precursor (S-5P) satellite, launched on 13 

October 2017 in a sun-synchronous orbit at 824 km altitude (Veefkind et al., 2012). It is a push-broom imaging 

spectrometer, recording spectra along a 2600 km swath while orbiting the Earth every 100 min, resulting in daily 

global coverage. Total column methane (XCH4) is retrieved with near-uniform sensitivity in the troposphere from 

its absorption band around 2.3 𝜇m using earthshine radiance measurements from the Short Wave Infrared (SWIR) 115 

channel of TROPOMI (Hu et al., 2016; 2018). TROPOMI XCH4 has a ground pixel size of 7 ×	7 km2 (7 ×	5.56 

km2 since August 2019) at nadir with larger ground pixels towards the edges of its swath.   

 

In this study, we use the operational two-band retrieval product of TROPOMI (Hasekamp et al., 2019). It uses 

0.76 𝜇m O2A and 2.3 𝜇m CH4 bands in the Near Infrared (NIR) and SWIR spectra. XCH4 is retrieved using the 120 

full-physics RemoTeC algorithm, which accounts for light path perturbations due to scattering by aerosol and 

cirrus cloud particles in the atmosphere (Butz et al., 2012; Hu et al., 2016). We only use high-quality XCH4 

measurements retrieved under favourable cloud-free conditions. Also, XCH4 is filtered (“qa”=1) for solar zenith 

angle (< 70°), viewing zenith angle (< 60°), smooth topography (1-standard deviation surface elevation variability 

< 80 m within a 5 km radius) and low aerosol load (aerosol optical thickness < 0.3 in SWIR NIR band). Note that 125 

Hu et al. (2018) used two months of XCH4 data from the “scientific” retrieval product of SRON Netherlands 

Institute for Space Research. Those measurements had a relatively sparse temporal coverage over South Sudan 

because they were performed during the commissioning phase of TROPOMI when algorithm tests and calibrations 

were ongoing. The operational product used here provides a more temporally homogenous coverage and a surface 

albedo-dependent bias correction (Hasekamp et al., 2019). 130 

2.2 Process model data 

We compare TROPOMI emission estimates with two wetlands process models: Wetcharts (Bloom et al., 2017) 

and LPJ-wsl (Zhang et al., 2016). These models calculate monthly methane emissions on a global grid of 0.5° × 

0.5° resolution by simulating the microbial production and oxidation processes in the soil using temperature, IE 

inundation extent and heterotrophic respiration data. Wetcharts calculates wetland emissions using in total four 135 

IE inundation extent parameterizations, nine terrestrial biosphere models of heterotrophic respiration and three 

CH4:C temperature parameterizations (q10). Wetcharts version 1.0 provides two ensembles: (1) an ensemble with 
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324 emission estimates for 2009-2010, called the “Full Ensemble” and (2) an 18-member extended-in-time 

ensemble for 2001-2015, called the Wetcharts “Extended Ensemble”. In the Wetcharts Full Ensemble, the set of 

four IE inundation extent estimates are calculated based on two maximum wetland area estimates, multiplied with 140 

two monthly varying scaling factors. The wetlands area estimates are taken from (1) the Global Lakes and 

Wetlands Database (GLWD; Lehner and Döll, 2004), and (2) the sum of all GLOBCOVER wetland and 

freshwater land types (Bontemps et al., 2011). The scaling factors are calculated from (1) precipitation data from 

ERA-Interim meteorological data and (2) IE inundation extent data from the Surface WAter Microwave Product 

Series (SWAMPS) multi-satellite surface water product (Schroeder et al., 2015). The 18-member Wetcharts 145 

Extended Ensemble provides emission estimates for only the two IE inundation extent estimates that are based on 

ERA-Interim and only one terrestrial biosphere model CARDAMOM (Bloom et al., 2016).  

 

LPJ-wsl methane model is based on the process-based dynamic global vegetation model Lund Postdam Jena 

(LPJ). It uses soil temperature, soil moisture-dependent fraction of heterotrophic respiration (Rh), and IE 150 

inundation extent to calculate wetlands methane emissions. The IE inundation extent of LPJ-wsl is calculated by 

the TOPography-based hydrological model (TOPMODEL) driven by meteorology from ERA-Interim. 

TOPMODEL simulates hydrologic fluxes of water, including lateral transport, such as infiltration-excess overland 

flow, infiltration, exfiltration, subsurface flow, evapotranspiration, and channel routing through a watershed. 

2.3 Inundation extent data 155 

Earlier studies have indicated that the water availability is particularly important in the tropics (temperature is less 

limiting here in contrast to high latitudes), and hence, IE inundation extent is one of the main sources of uncertainty 

for tropical wetlands (Bloom et al., 2010; Ringeval et al., 2010). We analyze the IE inundation extent data used 

in process models: TOPMODEL (used in LPJ-wsl); GLWD and GLOBCOVER with ERA-Interim (used in the 

Wetcharts Extended Ensemble). We compare these IE inundation extent estimates against the remote sensing-160 

based high-resolution IE inundation extent data from Gumbricht et al. (2017), which maps wetlands and peatlands 

at 231 meters spatial resolution by combining three biophysical indices related to wetland and peat formation: (1) 

long‐term water supply exceeding atmospheric water demand, (2) annually or seasonally waterlogged soils, and 

(3) geomorphological position where water is supplied and retained. They use 2011 MODIS data to map the 

duration of wet and inundated soil conditions and Shuttle Radar Topography Mission (SRTM) for topography. In 165 

addition, we use satellite altimetry-based water height measurements from the Hydroweb database (Crétaux et al., 

2011; Da Silva et al., 2010). The water height anomalies of the White Nile and Sobat rivers are used as a proxy 
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for IE inundation extent variations in the Sudd and Macher wetlands, respectively. Fig. 1b shows the location of 

the river height measurement sites. We also analyze temperature and precipitation data from the European Centre 

for Medium-Range Weather Forecasts’ ERA5 meteorological reanalysis (Hersbach and Dee, 2016). 170 

2.4 Emission Quantification method 

The wetland distribution from Gumbricht et al. (2017) is shown in Fig. 1 for the region in South Sudan where a 

large TROPOMI XCH4 enhancement can be observed. This region, which includes Sudd, Machar and other 

smaller wetlands, is hereafter referred to as the South Sudan wetland region (SSWR). To calculate emissions, we 

first prepare seasonally averaged TROPOMI XCH4 maps on a grid of at 0.1° ×	 0.1° resolution. Only grid cells 175 

with at least 5 high-quality TROPOMI measurements are used in the season average map. We apply the mass 

balance method of Buchwitz et al. (2017) to seasonally averaged TROPOMI XCH4 to calculate emissions from 

December 2017 to November 2019. The emission Q (Tg yr-1) from the SSWR box in Fig. 1a for a given period is 

calculated using the following equation:  

 180 

𝑄 = ∆𝑋𝐶𝐻!	 ×𝑀 ×𝑀#$% × 𝐿 × 𝑉 × 𝐶   (1) 

 

Where, ∆𝑋𝐶𝐻!	  is the “source XCH4 enhancement”, i.e., the mean XCH4 difference between the source and the 

surrounding background. C is a dimensionless factor of 2.0 derived by Buchwitz et al. (2017) based on the 

concentration difference of air parcels before and after entering a source area. M (5.345 Tg CH4 km-2 ppb-1) is the 185 

atmospheric total column mixing ratio-to-mass conversion factor for a surface pressure of 1013.25 hPa, which is 

the standard atmospheric pressure. 𝑀#$% is a dimensionless factor used to correct for the changes in column air 

mass with surface elevation, calculated as the ratio of surface pressure in the source and standard atmospheric 

pressure (1013.25 hPa). L is the “effective size” of the source region (632 km), calculated as the square root of its 

area (4.0 × 105 km2). V (km yr-1) is the ventilation wind speed derived from the ERA5 meteorological reanalysis 190 

vertical wind speed profile. Surface elevation variations change the contribution of tropospheric to the total 

atmospheric column, which influences XCH4. TROPOMI XCH4 maps are corrected for this effect by adding the 

correction factor 7 ppb km-1 from Buchwitz et al. (2017), using  GMTED2010 elevation data shown in Fig. A1 

(Danielson et al., 2010). We remove the large scale latitudinal XCH4 gradient from the seasonal average 

TROPOMI XCH4 maps by subtracting a 3rd order polynomial fit from the background region, excluding the source 195 

region (see Figure 2a). 
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Figure 32 shows the monthly average ERA5 wind speed at 10:00 UTC (TROPOMI overpass time) in the SSWR 200 

as a function of pressure within the local boundary layer during select months. To calculate V, the pressure-

weighted average of these boundary layer wind speed is calculated over SSWR using monthly average ERA5 

boundary layer height data. We use average boundary layer winds instead of 10-meter winds because it was found 

to better represent the ventilation wind speed in the source region (see Varon et al., 2018). For SSWR, the 10-

meter wind speed is on average 35 % lower than the boundary layer wind speed, consistent with the diminishing 205 

influence of the surface friction with height.   

 

The uncertainty of Q is calculated as sum-in-quadrature of uncertainties associated with ∆𝑋𝐶𝐻!	  and V. The 

∆𝑋𝐶𝐻!	  uncertainty is estimated as sum-in-quadrature of (1) 1-standard deviation of ∆𝑋𝐶𝐻!	  estimates calculated 

by sequentially increasing the size of the background box from 1° to 10° longitude and latitude in 1°  interval, and 210 

(2) the XCH4 uncertainty of a single 0.1° × 0.1° grid cell in the average map (= 22 ppb), taken as 1-standard 

deviation XCH4 of all the grid cells in Fig. 1a. Note that this approach overestimates the XCH4 uncertainty of the 

grid cells as XCH4 variations within the grid are also caused by emissions and surface elevation variations in 

addition to measurement errors. The uncertainty of 𝑉 is estimated from the variation in wind speed during 4 

consecutive hours (09:00 UTC, 10:00 UTC, 11:00 UTC, 12:00 UTC) centredcentered around the TROPOMI 215 

overpass time. Note that we use the mass balance method equation from Buchwitz et al. (2017), but not their 

empirical equation to estimate the uncertainty of Q. They derive that equation using a fixed wind speed of 1.1 m/s 

globally, which would give a larger uncertainty in comparison to our approach of using location and time-specific 

wind information: ERA5 average V is 2.5 ± 0.42 m s-1 in SSWR during 2018-2019.  

3 Results  220 

3.1 XCH4 enhancements 

We first assess the XCH4 enhancements over South Sudan in the two-year average map of TROPOMI XCH4 

shown in Fig. 1a in relation to the SSWR wetland distribution in Fig. 1b. Similar to previous remote sensing 

studies (Frankenberg et al., 2011; Lunt et al., 2019; Hu et al., 2018), we observe a large XCH4 enhancement over 

the Sudd wetlands. In addition, the TROPOMI data also resolve another distinct enhancement over the Machar 225 
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and Lotilla wetlands in eastern South Sudan, indicating large emissions from these wetlands too. The second 

enhancement was also observed by Hu et al. (2018) using two months of TROPOMI XCH4.  

 

The Sudd wetlands are flooded by the main White Nile tributary originating from Lake Victoria, whereas the 

wetlands in Southeast Sudan are along smaller rivers like the Kangen and Sobat, originating from the Ethiopian 230 

mountains. Lunt et al. (2019) attributed their GOSAT inversion emission estimates only to Sudd and evaluated 

the emissions using auxiliary data for Sudd. However, as the wetlands in the east are flooded by a different set of 

rivers and have a substantial contribution to the overall XCH4 enhancement, they also need to be considered when 

studying the mechanisms driving the large emissions in this region.  

 235 

The XCH4 enhancement for SSWR in the two-year average is 18.8 ± 2.8 ppb, which is more than 3 times the 

enhancement over the Permian basin in the USA as reported by Zhang et al. (2020). It is very unlikely that the 

SSWR enhancement is an artefact of the known aerosol or surface albedo biases in the TROPOMI XCH4 data. 

We elaborate further on this in Appendix Sect. A1. Figure 23 shows seasonally average XCH4 maps over SSWR, 

and Table 1 quantifies the seasonal XCH4 enhancement and areal coverage of the TROPOMI data. TROPOMI 240 

has good coverage in SSWR, ranging from 40 % in JJA to > 90 % DJF. It is higher than 70 % in all seasons except 

JJA, likely due to persistent cloud cover during the wet season. The lowest enhancements are observed in JJA in 

both 2018 (10.5 ± 4.17.3 ± 2.4 ppb) and 2019 (2.6 ± 3.7(-1.5 ± 2.4 ppb). It is unlikely that these low enhancements 

are artefacts of the low coverage as there is still sufficient TROPOMI data (> 40 %) and measurement are not 

systematically missing over the over the areas with large emissions areas ofin SSWR, the Sudd and Machar 245 

wetlands. SON-2019 has the largest enhancement of 29.3 ± 4.0 ppb,26.3 ± 2.2 ppb likely due to low wind speeds., 

while  DJF-2018 and MAM-2018 also have large enhancements of about 22 ppb. 

3.2 Emissions quantification 

We use the mass balance method of Buchwitz et al. (2017) to estimate emissions from SSWR for each season (see 

Table 1). The lowest emissions are in JJA, corresponding to the lowest XCH4 enhancements. Emissions during 250 

other most seasons are close to 109 Tg yr-1 except for DJF-2018, except for the low emissions in JJA.. We find 

very low emission in JJA-2019 (1.4 ± 2.1 Tg yr−1), but it accommodates the season’s anthropogenic emissions of 

about 0.48 Tg yr−1 (sum of 2012 EDGAR emissions, and 2016 oil and gas emissions from Scarpelli et al., 2020) 

and GFED biomass burning emissions (0.003 Tg yr−1)The lowest emissions are in JJA, corresponding to the 

lowest XCH4 enhancements.   Direct application of the mass balance method on the two-year average XCH4 map 255 
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shown in Fig. 1a yields an annual emission of 10 ± 1.7 Tg yr-1. However, this is likely an overestimate as the two-

year average temporally under samples the low emissions of JJA seasons due to low coverage during these 

seasons. Therefore, to ensure uniform temporal sampling of all seasons, we calculate annual SSWR emissions by 

averaging the seasonal emission estimates, resulting in 8.20 ± 3.2 Tg yr-1. Moreover, this approach is likely less 

sensitive to error due to mean-of-products vs product-of-means effect. A caveat of the mass balance method is 260 

that it ignores two factors: (1) the influence of emissions in the background region, and (2) the contribution of 

emissions in the source region to the background average XCH4. Both factors increase the background XCH4 and 

ignoring them results in an underestimation of the emission estimate. However, this underestimation is large when 

the ratio of the area of the background region and the source region is small, and as we apply the method using a 

large background, we do not expect a significant impact on our emission estimates.  265 

 

Lunt et al. (2019) report methane emissions for all sources (including wetlands, biomass burning, anthropogenic, 

wild animals) from the Sudd wetlands using multiyearmultiyear GOSAT inversions. Their emission estimate of 

5.2–6.9 Tg yr-1 for 2016 is within the uncertainty bounds of our SSWR total emission estimate of 8.0 ± 3.2 Tg yr-

1 for 2018-2019. Note that some difference in the emission estimates can be explained by the difference in the 270 

definition of the source region between the two studies as their region extends more north and less east than ours. 

TROPOMI shows a large XCH4 enhancement over Lottila and Machar wetlands in the east SSWR, indicating 

large emissions from these wetlands. As the source region in Lunt et al. (2019) only partially covers these 

wetlands, our emission estimates are expected to be higher. 

 275 

To calculate wetlands emissions from SSWR, we account for other methane emissions in the region using bottom-

up data. According to the EDGAR (version 4.3.2, Janssens-Maenhout et al., 2017) inventory for 2012, the total 

anthropogenic emissions from SSWR were 0.43 Tg yr-1 with enteric fermentation (0.36 Tg yr-1 ) being the largest 

anthropogenic category. The region has small emissions from wastewater management (0.03 Tg yr-1), energy for 

buildings (0.01 Tg yr-1) and manure management (0.01 Tg yr-1). EDGAR does not report any significant emissions 280 

from fossil fuel exploitation sector in the region. Recently, Scarpelli et al (2020) presented a new inventory for 

the oil and gas sector in which UNFCCC reported national emissions are spatially allocated to the fossil fuel 

infrastructure. They report 0.05 Tg yr-1 emissions from SSWR in 2016.  Biomass burning is the largest natural 

methane source after wetlands in SSWR with average emissions of 0.20 Tg yr-1 in 2018-2019 according to 

GFED4s (0.23 Tg yr-1 in 2018, 0.16 Tg yr-1 in 2019, Van der Werf et al., 2017). Another significant natural source 285 

is the emission from termites (0.16 Tg yr-1, Sanderson, 1996). We subtract the total of these non-wetlands 
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emissions to calculate wetland emissions of 7.42 ± 3.2 Tg yr-1  from SSWR in 2018-2019. This estimate is an 

order of magnitude larger than the 0.5 Tg yr-1 wetlands emissions from the prominent Pantanal wetlands of South 

America in 2010–2018 which are estimated using GOSAT inversions by Tunnicliffe et al. (2020).  

 290 

Our SSWR wetlands emission estimate of 7.4 ± 3.2 Tg yr-1 can be an overestimate if the emissions from the 

above-mentioned non-wetlands sectors are underestimated in the inventories. However, this is unlikely as it 

would require a very large underestimation in the inventories for the two years studied here. For example, for 

the oil and gas sector, the annual emissions (0.05 Tg yr-1) will need to be underestimated by two orders of 

magnitude to have a significant error impact on the wetland emission estimates. Moreover, the strong 295 

seasonality shown by the TROPOMI emission estimates is not expected in oil and gas emissions. The SSWR 

biomass burning emissions are larger higher in comparison to the other sectors, but a large underestimation in 

annual emissions by GFED is unlikely as it uses remote sensing-based fire activity and vegetation productivity 

data. Livestock is the largest anthropogenic methane source in SSWR region: 0.36 Tg yr−1 in 2012 as per 

EDGAR v4.3.2, and 0.37 Tg yr−1 in 2015 as per EDGAR version 5 (Crippa et al., 2020). South Sudan has a 300 

large population of livestock: 7.5 million dairy cattle, 4.6 million non-dairy cattle, 13.5 million goats and 16.3 

million sheep in 2018, which causes 0.63 Tg yr−1 of methane emissions (FAOSTATS., 2020). This amount is 

twice of what we use to calculate the wetlands emissions for SSWR. In the extreme case that all these additional 

emissions are located in SSWR, it would slightly reduce our wetland emission estimate, however, well within its 

uncertainty margin. Manure management emissions in SSWR (0.01 Tg/yr) are small even though there is a large 305 

cattle population in South Sudan due to lack of effective management practices. This is reflected in the small 

emission factors used for the country by EDGAR for dairy cattle: 1 kg CH4 head-1 for South Sudan vs 48 kg 

CH4 head-1 for USA. 
 
 310 

 

3.3 Comparison to wetland process models  

3.3.1 Annual means 

SSWR integrated mean methane emission estimates from the process models are nearly an order of magnitude 

lower than those from TROPOMI (Table 2). For example, the multiannual mean emission from LPJ-wsl for 1980-315 

2016 is 1.1 Tg yr-1 (ranging from 0.5 Tg yr-1 in 1990 to 1.5 Tg yr-1 in 1998). The multi-annual mean individual 
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ensemble estimates from Wetcharts Extended Ensemble range from 0.4 Tg yr-1 (uses GLWD) to 1.8 Tg yr-1 (uses 

GLOBCOVER). Its smallest and largest annual emission estimates from these ensemble members are 0.29 Tg yr-

1 in 2009 and 2.21 Tg yr-1 in 2013. The Wetcharts Full Ensemble, with 324 estimates for 2009-2010, has a mean 

of 0.9 Tg yr-1, ranging from 0.07 to 3.7 Tg yr-1.  320 

 

Table 2 also presents the maximum IE inundation extent (i.e., sum of seasonal and permanent wetland areas) 

extent in the IE data used by the process models. , It which range from 25,000 to 69,000 km2 across the models. 

These IE inundation extent are up to 4 times lower than the observation-based maximum IE inundation extent 

estimates of 99,000 km2 by Gumbricht et al. (2017). Huges & Huges (1992) give the permanent wetland area of 325 

the different wetlands in SSWR (Table A1). The sum of these areas is 36,000 km2, significantly larger than the 

permanent IE inundation extent area (i.e., minimum mean monthly inundation extent IE) used in the models 

(Wetcharts Extended Ensemble: 1,000 km2; LPJ-wsl: 14,000 km2; SWAMPS: 16,000 km2). Rebelo et al. (2011) 

used remote sensing data to characterize IE inundation extent of the Sudd wetlands over a 12 months period, 

yielding a total wetlands area of 50,000 km2 (41,000 km2 of seasonally inundated and 9,000 km2 of permanent 330 

inundated). According to Huges & Huges (1992), other wetlands in the SSWR have a total permanent wetlands 

area of >20,500 km2, meaning that Sudd accounts for only about a third of the SSWR’s total wetland area. As 

other wetlands in SSWR are also along rivers like Sobat, their IE inundation extent likely has a large seasonality, 

and assuming that the relative seasonal amplitude of IE inundation extent of these other wetlands is similar to that 

of Sudd would give a total (seasonal + permanent) flooded area of 134,000 km2. Adding the Sudd IE inundation 335 

extent yields a total SSWR IE inundation extent of 164,000 km2, which is larger than the total IE estimate of 

99,000 km2 from Gumbricht et al. (2017). Overall, we find substantial evidence of underestimations of SSWR IE 

inundation extent in the process models, which may explain their emission underestimations as they assume that 

IE inundation extent is a strong control of the emissions.  

 340 

We now look at variations in annual mean IE inundation extent to find a possible cause of high emissions in 2018-

2019. Lunt et al. (2019) attribute the emission increase in South Sudan between 2010 and 2016 to an IE inundation 

extent increase in the Sudd owing to an increased water inflow from the White Nile river found in satellite 

altimetry-based river water height measurements. To investigate this for the period 2018-2019, we look at trends 

in water height (see Fig. 4) of Lake Victoria, and White Nile and Sobat rivers. Similar to Lunt et al. (2019), we 345 

observe a rapid water height increase during 2011–2014. After this period, water levels stabilize and slightly 

decrease but remain significantly higher than in 2009–2010. 2019 shows the highest water level for the Sobat 
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river due to a renewed positive trend from 2017 onward. This suggests that the total SSWR IE inundation extent 

was significantly higher in 2018-2019 than the pre-2011 levels. In contrast, the IE inundation extent data used in 

the process models, shown in Fig. 4a, have negative trends, which means that the process models do not account 350 

for the emission increase during 2010-2016 due to increasing IEinundation extent, as suggested by Lunt et al. 

(2019).  

 

IE Inundation extent estimates from the remote sensing-based SWAMPS also do not show the increase and 

underestimate annual means IE. Schroeder et al. (2015) have recommended not to use SWAMPS absolute IE 355 

inundation extent as the microwave sensors used in SWAMPS have limited capability to detect water underneath 

the soil surface or beneath closed forest canopies. This effect can impact also the temporal IE changes, in addition 

to the absolute IEinundation extent, as such flooding changes beneath the forest canopies would also not be 

observed. It is unclear why TOPMODEL, which accounts for lateral water transport processes, does not capture 

the trend in river outflow. These are interesting topics for follow-on investigations. 360 

3.3.2 Seasonal cycle 

Next, we assess the seasonal cycle of the TROPOMI-derived emission estimates. Figure 5a shows the seasonal 

cycles in 2018 and 2019. The largest emissions are in DJF in 2018, while DJF, MAM and SON have large 

emissions of similar magnitude in 2019. In both 2018 and 2019, TROPOMI emissions are lowest in JJA; in 

contrast, the process models estimate the lowest emissions in DJF (Fig. 5c). We investigate this mismatch by 365 

looking at the seasonal cycle of IE inundation extent in the models. The model emissions have a strong correlation 

with the their inundation extent they use respective IE’s (Wetcharts R = 0.91; LPJ-wsl R = 0.94, where R is 

correlation coefficient), indicating that the seasonality of emissions is driven by inundation extentIE. In fact, the 

differences in IE inundation extent seasonality between LPJ-wsl and Wetcharts are consistent with the emissions 

differences; for example, both IE inundation extent and emissions in LPJ-wsl are lower than in Wetcharts during 370 

MAM.  

 

The seasonality of the altimetry-based river water height measurements, shown in Fig. 5d, is highest in SON and 

is very different from Wetcharts IE inundation extent (highest in JJA). This can partially explain the difference in 

the seasonal cycles of Wetcharts and TROPOMI emissions. The seasonal cycle of Wetcharts Extended Ensemble 375 

IE inundation extent shown here is strongly correlated with local precipitation (Fig. 5b), as the intra-annual IE 

inundation extent variation is calculated using precipitation. However, this method would not accurately account 
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for IE inundation extent variation due to lateral water fluxes and evapotranspiration. Surface runoff is especially 

important for river-fed wetlands like Sudd, whose IE inundation extent is controlled by water inflow from the 

White Nile because regionally the evapotranspiration rate exceeds rainfall in the region (Lunt et al., 2019; Sutcliffe 380 

and Brown, 2018). LPJ-wsl IE inundation extent seasonality shows better agreement with the river height data as 

it is calculated using TOPMODEL, which accounts for the lateral fluxes and evapotranspiration. However, LPJ-

wsl emissions still show large differences with the seasonal cycle of TROPOMI emissions. Previous remote 

sensing studies for the Sudd wetlands have found the largest IE inundation extent during September-January in 

2007-2008 (Robelo et al., 2012) and during December-January in 1991–1992 (Travaglia et al., 1995), in better 385 

agreement with river height measurements than the process models. Overall, IE inundation extent seasonality of 

models appears to be significantly off, which can explain part of the mismatch between TROPOMI and model 

emissions.   

 

In both 2018 and 2019, TROPOMI emission estimates are the lowest during JJA, while river height measurements 390 

are the lowest in MAM. A similar seasonal cycle mismatch in the GOSAT emission estimates and IEinundation 

extent, derived using MODIS Land Surface Temperature (LST) as a proxy, is shown in Lunt et al (2019). 

Furthermore, tThey find the highest emissions trend during SON, which had the smallest trend in inundationIE, 

but no trend in emissions during MAM, which has the highest IE inundation extent trend (i.e. strongest negative 

LST trend).  395 

 

An explanation for the difference in seasonal phasing can be a higher temperature dependence of emissions than 

suggested by the models as temperatures are lowest during JJA. We evaluate this hypothesis using Wetcharts Full 

Ensemble, which provides a total of 324 emission estimates for three temperature dependences q10 (=1, 2, 3; see 

Bloom et al., 2017). Figure 6 compares the average seasonal cycle of TROPOMI emissions with Wetcharts 400 

emissions using different q10’s (see also Table 3). Wetcharts emissions with q10 = 1 have the poorest agreement 

with the seasonal cycle of TROPOMI (R = -0.6271). Interestingly, these emissions also have the lowest annual 

means (= 0.5 Tg yr-1). Conversely, Wetcharts emissions with q10 = 3 have the best correlation with TROPOMI 

(R = -0.282) and have the largest annual mean (=1.0 Tg yr-1). In fact, the member estimate––out of the 324-

member Full Ensemble ––with the largest annual emissions of 3.7 Tg yr-1 also has the best correlation with 405 

TROPOMI (R = 0.0013).  As expected, this member uses q10 = 3. The agreement of TROPOMI with the larger 

q10 model estimates, in terms of both annual mean and seasonal cycle, suggests that wetland emissions from 

SSWR have a large temperature dependence. In their study of wetlands in the Amazon Basin, Tunnicliffe et al. 
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(2020) pointed to temperature as a more important control on methane emissions than inundation extentIE. They 

find a simultaneous, spatially correlated emission and temperature increases in the west Brazilian Amazon during 410 

the El-Nino of 2015, with unchanged inundation extentIE. Moreover, Wilson et al. (2016) found a negligible 

impact on wetlands emissions in the Amazon basin despite the large difference in precipitation between 2010 and 

2011, which impacted IE inundation extent significantly. Note that it is also possible that the higher q10’s we find 

for SSWR emissions are simply compensating for errors due to a remaining misrepresentation of IEinundation 

extent, or other factors covarying with temperature.  415 

 

Figure 7 shows the emission anomalies time series from TROPOMI along with temperature and IEinundation 

extent, which we assume to be proportional to river height. A small lag between the river height and IE inundation 

extent is expected, but we expect it to be negligible in comparison to a full season. We observe that the emissions 

show a strong correlation with temperature (R= 0.4966), but a poorer correlation with IE inundation extent (R= 420 

0.2407). The emissions peak a full season later than IEinundation extent, and accounting for this seasonal lag 

improves the correlation significantly (R= 0.805). An explanation for this can be the higher temperature 

dependence of emissions discussed earlier. Another explanation could be the “activation” time of methanogenesis 

after flooding, as after flooding it takes time for anoxic conditions to develop and alternative electron acceptors 

to be depleted. Jerman et al. (2009) documented that methane emissions from water-saturated soil slurries 425 

remained very low for a long time: methane production started after a lag of 84 days at 15° C and a minimum of 

7 days at 37° C, the optimum temperature for methanogenesis. They found that the lag was inversely related to 

iron reduction, which is expected as iron reduction outcompeted methanogenesis. Similarly, Itoh et al. (2011) 

investigated methane emissions from rice paddy fields and found a time lag of a few weeks between the onset of 

inundation and peak emissions.  430 

 

Process models assume that wetland emissions are instantaneously regulated by IEinundation extent, and they do 

not account for the time lag as information on the availability of alternate electron accepters is generally not 

available. This results in an incorrect temporal allocation of the wetland emissions when the emissions are scaled 

with precipitation or even IE directly. Furthermore, some models assume inundation extent is instantaneously 435 

regulated by precipitation. For In river floodplains like Sudd, scaling emissions directly with precipitation would 

give even worse estimates in models as the IE inundation extent is mostly controlled by river inflow, and not the 

local precipitation, as the evapotranspiration rates exceed the rainfall in the region.  Therefore, scaling with 
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precipitation would even worse emission estimates. Overall, a combination of temperature and inundation extent 

dependences that are used in the models can explain their seasonal cycle mismatch with TROPOMI emissions. 440 

 

 

5 Conclusions 

XCH4 enhancements over South Sudan have been observed in remote sensing studies suggesting large emissions 

from the Sudd wetlands as the cause (Lunt et al., 2019, Hu et al., 2018, Frankenberg et al., 2011). We observe two 445 

large enhancements in the region in a 2-year average map of TROPOMI XCH4––over Sudd, and Machar and 

Lotilla wetlands. Sudd Wetlands are flooded by the White Nile river originating from Lake Victoria, while the 

wetlands in the east are around smaller rivers like the Sobat originating in the Ethiopian mountains. In this study, 

we examine these wetlands, and their river systems, together to understand the controls of the emissions causing 

the large XCH4 enhancements.  450 

 

We estimate methane emissions of 7.42 ± 3.2 Tg yr-1 from wetlands in South Sudan during 2018–2019 using a 

mass balance approach applied to TROPOMI data. We find large differences between the emission estimates from 

TROPOMI and wetland process models LPJ-wsl and Wetcharts. The annual mean estimates from TROPOMI are 

an order of magnitude larger than mean estimates of from the models, which may be explained by the up to 4 455 

times underestimated IE inundation extent in the models. We find differences in interannual variability and 

average seasonal cycles of TROPOMI and models, which can be again, partially explained by the strong 

dependence of model emissions on poor IE inundation extent estimates. We find the lowest emission in the highest 

perception and lowest temperature season JJA, when models estimate large emissions as they incorrectly assume 

an instantaneous influence of the precipitation-derived inundation extent. WWe find that the Wetcharts emission 460 

estimates that use a highstronger -temperature dependence (q10 = 3) show a better agreement with TROPOMI 

concerning both seasonality and annual emissions. This indicates that the models may also underestimate the 

temperature sensitivity of the methane emissions. The causes of this need to be investigated further.  

 

The IE inundation extent of SSWR is analyzed using satellite altimetry-based river height measurements of White 465 

Nile and Sobat rivers at locations within the Sudd and Macher wetlands. The IE inundation extent estimates used 

in models are based on the local precipitation, whereas, the actual IE inundation extent of SSWR is driven by 

water inflow from the rivers as evapotranspiration exceeds the local precipitation in the region. As a result, both 
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the seasonal cycle and trend of model IE inundation extent disagree with river height data. The seasonal cycle of 

IE inundation extent from river height data shows better agreement with the TROPOMI emissions when a full 470 

season-long lag between the two is assumed. This time lag can be explained by the time needed for 

methanogenesis to develop in the seasonally flooded areas of the wetlands. A more precise estimate of the lag is 

not possible due to the coarse temporal resolution of our TROPOMI emissions estimates.  

 

The lack of information on the correct relationship of wetland emissions with IE inundation extent and temperature 475 

results in large model uncertainties. Such large gaps in our understanding of the processes driving wetland 

emissions call for further investigation. As shown here for the wetlands of South Sudan, TROPOMI provides 

valuable observations over remote and inaccessible wetland regions of the world, which future wetland studies 

can take advantage of. 

 480 

APPENDIX 

Section A1. Systematic Measurement Uncertainties 

Surface albedo and aerosols can alter the optical light path, introducing biases in XCH4 (Butz et al., 2011). 

Therefore, the XCH4 enhancement over South Sudan can be affected by the differences between the source and 

background region values of these parameters. The average retrieved aerosol optical thickness (AOT) and surface 485 

albedo in the SWIR band of TROPOMI are shown in Fig. A1. For SSWR and its background, the AOT and albedo 

differences in two-year average data are 0.001 and -0.10, respectively. The average differences for seasonal 

average maps are -0.01 ± 0.01, -0.15 ± 0.02 and 16.3 ± 8.4 ppb for AOT, albedo and XCH4 respectively. The 

negative albedo difference for SSWR occurs due to the high albedo the Sahara in the background. This small 

albedo difference is unlikely to influence the SSWR XCH4 enhancement significantly, especially, as an albedo-490 

based bias correction is applied to the XCH4 in operational TROPOMI product (Hasekamp et al., 2019). We also 

examined the possibility that the XCH4 enhancement over South Sudan is an artefact of sun glint geometry of 

TROPOMI observations due to refection on standing water of the Lakes and inundated areas in the region. This 

can happen when the observation geometry over a water body surface is at the specular reflection angle (, i.e., the 

viewing zenith angle matches the solar zenith angle), causing a spike in the level 1 radiance measurements. 495 

However, this was found not to occur over the wetlands of South Sudan. 
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Data Availability. TROPOMI data are available at the Copernicus Open Access Hub 

(https://scihub.copernicus.eu/) 500 

Satellite altimetry river height dataset is available at Hydroweb website (http://hydroweb.theia-land.fr/). 

Wetcharts data can be downloaded from 

https://daac.ornl.gov/CMS/guides/CMS_Global_Monthly_Wetland_CH4.html. SWAMPS IE inundation extent 

data is available at http://wetlands.jpl.nasa.gov. LPJ-wsl data is available from Zhen Zhang 

(yuisheng@gmail.com) upon request. 505 
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 715 

Table 1. SSWR XCH4 enhancement and emission estimates. The enhancements (∆XCH!	 ) is the XCH4 difference 

between SSWR and the background after correcting XCH4 for latitudinal variation.. Data coverage is defined here 

as the fraction of the number of 0.1° ×	 0.1° grid cells in SSWR with at least five high-quality TROPOMI 

measurement in a  quarterdata. Wind speed is the average boundary layer winds from ERA5. Emission estimates 

are calculated using	Eq. (1). ± represents 1 σ uncertainty.  720 

 

Season Data coverage (%) Wind speed (m s-1) 
XCH4 enhancement 

(ppb) 
Emissions (Tg yr-1) 

DJF-2018 91 3.5 ± 0.9 
16.5 ± 4.3  21.7 + 

1.5 

            11.5 ± 

4.215.1 ± 5.2 

MAM-2018 74 2.1 ± 1.2 
 20.2 ± 4.1   21.6 

± 1.4 

            8.5 ± 

5.19.0 ± 5.3 

JJA-2018 44 2.7 ± 0.3 
  10.5 ± 4.1   7.3 ± 

2.4 

            5.7 ± 

2.34.0 ± 2.0 

SON-2018 83 2.7 ± 0.4 
  18.7 ± 4.3  16.5 

± 2.0 

            10.1 ± 

2.88.9 ± 2.0 

DJF-2019 98 3.2 ± 0.9 
  13.4 ± 2.7   14.4 

± 1.1 

            8.6 ± 

3.09.2 ±2.7 

MAM-2019 92 3.1 ± 0.8 
 13.6 ± 3.6   14.8 

± 1.2 

            8.4 ± 

3.19.1 ±3.0 

JJA-2019 43 2.8 ± 0.3 
  2.6 ± 3.7   -1.5 ± 

2.4 

            1.4 ± 2.1-

0.9 ±1.4 

SON-2019 83 1.9 ± 0.2 
   29.3 ± 4.0  26.3 

± 2.2 

            11.2 ± 

1.99.8 ±1.4 
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 725 

Table 2. Annual emission and maximum IE inundation extent estimates for SSWR. The values in parentheses 

show 1-standard deviation spread over the given periods. The dashed values give the range of Wetcharts ensemble 

estimates. 

 
 

Period Maximum IE inundation 

extent (103 km2) 

Emissions (Tg yr-1) 

Wetcharts Extended 

Ensemble/GLWD 

2001-2015 32 (7) 0.4 (0.1) – 1.0 (0.2) 

Wetcharts Extended 

Ensemble/GLOBCOVER 

2001-2015 69 (10) 0.70 (0.1) – 1.8 (0.2) 

Wetcharts Full Ensemble  2010 30–66 0.07 – 3.7 

LPJ-wsl/ TOPMODEL 1980-2016 57 (9) 1.1 (0.25) 

SWAMPS 2001-2019 25 (5) – 

Gumbricht et al. (2017) 2011 99 – 

TROPOMI 2018-2019 – 7.42 ± 3.2 
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Table 3. Annual emission estimates from Wetcharts Full ensemble (2010) for different temperature dependencies, 

and correlation coefficient (R) of their respective average seasonal cycle with TROPOMI emissions. 

 735 

Temperature 

dependence (q10)  
Emissions (Tg yr-1) R (with 

TROPOMI) 

1 0.5 -0.6271 

2 0.8 -0.4140 

3 1.0 -0.2822 

Maximum* 3.7 0.0013 

*The maximum annual emission estimate in the 324-member ensemble of Wetcharts Full Ensemble. Its q10 is 3. 
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Table A1. The total permanent SSWR IE inundation extent from Huges & Huges (1992).  

 

Wetlands in SSWR Wetland Area (km2) 

Sudd  16,500 

Machar marshes 9,000 

Lottila Swamps 2,000 

Veveno, Adiet  and LiLebook 6,500 

Kenamuke and Kobowen swamps 1,700 

Bahr el Ghazal floodplains 900 

Total 36,000 

 740 
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Figure 1. The TROPOMI XCH4 enhancement over the South Sudan wetlands. (a) Average of two years 745 

(December 2017 to November 2019) of TROPOMI XCH4 at 0.1° ×	 0.1° resolution (b) Wetlands in South Sudan 

from Gumbricht et al. (2017) are shown in green, and the rivers in the region are shown in blue. The area within 

the blue rectangle (5°–10° N and 28°–34.5° E) is referred to as South Sudan wetlands region (SSWR). The red 

dots show the locations of satellite altimetry-based river water height measurement sites.  

  750 
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Figure 2. Seasonally average TROPOMI XCH4 (ppb) at 0.1° ×	 0.1° resolution. The black rectangle at the centre 755 

of each panel shows the SSWR source region. The area outside of it is used as the background region. XCH4 is 

corrected for large-scale latitudinal variation by subtracting a 3rd order polynomial fit using the region shown by 

blue rectangles in panel a. The region excludes the longitudes of the source region. Note that DJF includes 

December of the previous year. 
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Figure 32. Monthly average boundary layer ERA5 winds in SSWR. Wind speeds (X-axis) and directions (colour 765 

of the markers) at 10:00 UTC, which is the closest hour to the local TROPOMI overpass time, are shown at 

different pressure levels of the model. The markers with dark edges represent 10-meter height winds. 
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 770 

 

Figure 3. Seasonally average TROPOMI XCH4 at 0.1° ×	 0.1° resolution. The blue rectangles show SSWR and 

the larger black rectangles show the background areas used for calculating XCH4 enhancements. Note that DJF 

of a year includes December of the previous year. 
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Figure 4. SSWR IE inundation extent estimates. (a) Annual anomalies of IE inundation extent estimates of 780 

SWAMPS, TOPMODEL and Wetcharts (ERA-interim), used in process models, and ERA5 precipitation, 

expressed in the unit of the standard deviation of the respective annualized time series. (b) Water height anomalies 

for the altimetry sites in Lake Victoria, and White Nile (WNS3) and Sobat (SOS1) rivers from the Hydroweb 

database. Locations of these altimetry sites are given in Figure 1. Here we only use the altimetry sites which have 

a sufficiently long temporal coverage that includes 2018-2019. 785 
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Figure 5. Mean seasonal cycles expressed in the unit of the standard deviation of respective time series. (a) 790 

Emission estimates from TROPOMI; (b) precipitation and temperature from ERA5 (2010-2019); (c) emissions 

and IE inundation extent from the process models LPJ-wsl and Wetcharts Extended Ensemble; (d) river water 

height measurements at the altimetry sites given in Figure 1b. The vertical bars represent 1-standard deviation 

spread over different years.  
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Figure 6. Seasonal cycle of SSWR emissions. Methane emissions from Wetcharts Full Ensemble for 2010 800 

(December 2009 –November 2010) and TROPOMI are shown. The solid lines show the average of an emission 
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estimate ensemble for a temperature dependency (q10). The dashed line shows the seasonal cycle of the Wetcharts 

estimate that has the largest annual emissions. All values are shown in the unit of standard deviation.  
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Figure 7. Seasonal anomalies in SSWR. (a) TROPOMI emissions estimates of TROPOMI, ERA5 temperature 810 

and IE inundation extent, using from river height measurements, are shown. (b) Llocal precipitation and 

SWAMPS IE inundation extent data are shown. All values are expressed in the unit of standard deviation. 

Correlation coefficients (R) of TROPOMI emissions with temperature, river height, SWAMPS and precipitation 

are 0.4966 and 0.2407, –0.3341, –0.6780, respectively.  
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Figure A1. Average TROPOMI data (2018-2019) at 0.1° × 0.1° resolution. The albedo and AOT are retrieved 

for the SWIR band at 2.3 𝜇m.  


