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Abstract. The TROPOspheric Monitoring Instrument (TROPOMI) provides observations of atmospheric methane (CH,) at
an unprecedented combination of high spatial resolution and daily global coverage. Hu et al. (2018) reported unexpectedly
large methane enhancements over South Sudan in these observations. Here we assess methane emissions from the wetlands of
South Sudan using two years (December 2017-November 2019) of TROPOMI total column methane observations. We
estimate annual wetland emissions of 7.4 + 3.2 Tg yr?, which agrees with the multiyear GOSAT inversions of Lunt et al.
(2019) but is an order of magnitude larger than estimates from wetland process models. This disagreement may be explained
by the up to 4 times underestimation of inundation extent by the hydrological schemes used in those models. We investigate
the seasonal cycle of the emissions and find the lowest emissions during the June-August season when the process models
show the largest emissions. Using satellite altimetry-based river water height measurements, we infer that this seasonal
mismatch is likely due to a seasonal mismatch in inundation extent. In models, inundation extent is controlled by regional
precipitation, scaled to static wetland extent maps, whereas the actual inundation extent is driven by water inflow from rivers
like the White Nile and the Sobat. We find the lowest emission in the highest perception and lowest temperature season JJA
when models estimate large emissions. In general, our emission estimates show better agreement, in terms of both seasonal
cycle and annual mean, with model estimates that use a stronger temperature dependence. This suggests that temperature might
be a stronger control for the South Sudan wetlands emissions than currently assumed by models. Our findings demonstrate the
use of satellite instruments for quantifying emissions from inaccessible and uncertain tropical wetlands, providing clues for
improvement of process models, and thereby improving our understanding of the currently uncertain contribution of wetlands

to the global methane budget.
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1 Introduction

Reducing anthropogenic methane emissions has been recognized as an important requirement for achieving the 2015 Paris
Agreement target of limiting global temperature rise below 2° C relative to pre-industrial times (Ganesan et al., 2019).
However, large uncertainties remain in the atmospheric budget of methane, calling for an improved understanding of its
emissions from both anthropogenic and natural sources (Saunois et al., 2016). Wetlands are ecosystems with seasonally or
permanently inundated or saturated soils, including peatlands (bogs and fens), mineral wetlands (swamps and marshes), and
seasonal or permanent floodplains, where methanogens produce methane in the anaerobic decomposition of organic matter.
Emissions from natural wetlands are the largest and the most uncertain emission category of methane (Kirschke et al., 2013).
Saunois et al. (2016) provide global methane emission estimates for all source categories combined of 540-568 Tg yr* using
top-down approaches and 596-884 Tg yr?* using bottom-up approaches for the period 2003—-2012. They attribute the mismatch
between the two approaches mainly to uncertainties in emissions from natural wetlands, inland waters and geological sources.
They report total emissions of 127-202 Tg yr* and 153—-227 Tg yr* from wetlands using top-down and bottom-up approaches,
respectively, which accounts for 30 % of global emissions.

In addition to being an important source of uncertainty in methane budget, wetlands emissions can have significant climate
feedback due to their sensitivity to changes in precipitation and temperature (Arneth et al., 2010; Zhang et al., 2018; Zhu et
al., 2017). By analyzing surface and satellite measurements of methane, Pandey et al. (2017) reported enhanced methane
emissions from tropical wetlands due to precipitation and temperature anomalies associated with the La Nifia of 2010.
Furthermore, according to Zhang et al. (2017), the feedback of methane should be accounted for in climate mitigation policies
as they find that the global wetland emissions will increase by 50 to 170 Tg yr* at the end of the 21st century because of the
temperature-driven increase in wetland emissions under the different Representative Concentration Pathways (RCP) adopted
by the IPCC. Their results indicate that the increase in wetland emissions maybe 38-56 % larger than the projected

anthropogenic emission increase by the end of the 21 century under the strong climate mitigation scenario (RCP 2.6).

To improve wetland emission estimates is very challenging due to many reasons. Wetlands are spread over large, inaccessible
regions around the world. Upscaling a few localized measurements of wetland emissions is often futile as these emissions have
large temporal and spatial variability, and the parameters controlling them are very uncertain. The emissions are also difficult
to monitor on the ground due to logistical limitations. This makes satellite observations a promising and crucial source of

information to advance our understanding of the role of wetland methane emissions in the carbon cycle.

Hu et al. (2018) observed large methane enhancements over South Sudan in TROPOMI data collected during the first two
months of the commissioning phase of the satellite, November and December 2017. Frankenberg et al. (2011) also observed
an enhancement over the region in a seven-year average (2003-2010) of SCanning Imaging Absorption spectroMeter for

Atmospheric CHartographY (SCIAMACHY) observations. These studies indicated that the enhancements are likely caused
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by large emissions from wetlands in the region. Recently, Lunt et al. (2019) used methane observations from the Japanese
Greenhouse gases Observing Satellite (GOSAT) in inverse modelling to infer emissions from tropical Africa during 2010—
2016. They found that emissions from South Sudan were more than 3 times larger than the ensemble mean estimates from the
Wetcharts process model (Bloom et al., 2017). They also found that emissions from the Sudd wetlands in the region increased
rapidly from 2.4-4.2 Tg yrt in 2010-2011 to 5.2-6.9 Tg yr in 2016, likely, because of an inundation extent expansion due
to an increase in water inflow from the White Nile river.

This study aims to infer the scale of the wetland methane emissions from South Sudan from TROPOMI observations using a
simplified emission quantification method and investigate its relationship with the results of wetland process models and the
seasonally varying climatological conditions. This study is structured as follows. Section 2 describes the method and data used
including the TROPOM I data, wetland models and inundation extent data, and the emission quantification method. Section 3
presents our results and discussion including emission estimates from TROPOMI and their comparison with the process
models, and an analysis of the differences between models and TROPOMI emission estimates using inundation extent and

meteorological data. Our conclusions are given in Section 4.

2 Data and method
2.1 TROPOMI methane data

TROPOMI is the single instrument onboard the Copernicus Sentinel-5 Precursor (S-5P) satellite, launched on 13 October 2017
in a sun-synchronous orbit at 824 km altitude (Veefkind et al., 2012). It is a push-broom imaging spectrometer, recording
spectra along a 2600 km swath while orbiting the Earth every 100 min, resulting in daily global coverage. Total column
methane (XCHy) is retrieved with near-uniform sensitivity in the troposphere from its absorption band around 2.3 um using
earthshine radiance measurements from the Short Wave Infrared (SWIR) channel of TROPOMI (Hu et al., 2016; 2018).
TROPOMI XCHjy has a ground pixel size of 7 x 7 km? (7 x 5.5 km? since August 2019) at nadir with larger ground pixels

towards the edges of its swath.

In this study, we use the operational two-band retrieval product of TROPOMI (Hasekamp et al., 2019). It uses 0.76 um O2A
and 2.3 um CHg bands in the Near Infrared (NIR) and SWIR spectra. XCHy is retrieved using the full-physics RemoTeC
algorithm, which accounts for light path perturbations due to scattering by aerosol and cirrus cloud particles in the atmosphere
(Butz et al., 2012; Hu et al., 2016). We only use high-quality XCH, measurements retrieved under favourable cloud-free
conditions. Also, XCHy, is filtered (“ga”=1) for solar zenith angle (< 70°), viewing zenith angle (< 60°), smooth topography
(1-standard deviation surface elevation variability < 80 m within a 5 km radius) and low aerosol load (aerosol optical thickness
< 0.3 in NIR band). Note that Hu et al. (2018) used two months of XCH, data from the “scientific” retrieval product of SRON
Netherlands Institute for Space Research. Those measurements had a relatively sparse temporal coverage over South Sudan

because they were performed during the commissioning phase of TROPOMI when algorithm tests and calibrations were
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ongoing. The operational product used here provides a more temporally homogenous coverage and a surface albedo-dependent

bias correction (Hasekamp et al., 2019).

2.2 Process model data

We compare TROPOMI emission estimates with two wetlands process models: Wetcharts (Bloom et al., 2017) and LPJ-wsl
(Zhang et al., 2016). These models calculate monthly methane emissions on a global grid of 0.5° x 0.5° resolution by
simulating the microbial production and oxidation processes in the soil using temperature, inundation extent and heterotrophic
respiration data. Wetcharts calculates wetland emissions using in total four inundation extent parameterizations, nine terrestrial
biosphere models of heterotrophic respiration and three CH4:C temperature parameterizations (q10). Wetcharts version 1.0
provides two ensembles: (1) an ensemble with 324 emission estimates for 2009-2010, called the “Full Ensemble ” and (2) an
18-member extended-in-time ensemble for 2001-2015, called the Wetcharts “Extended Ensemble”. In the Wetcharts Full
Ensemble, the set of four inundation extent estimates are calculated based on two maximum wetland area estimates, multiplied
with two monthly varying scaling factors. The wetlands area estimates are taken from (1) the Global Lakes and Wetlands
Database (GLWD; Lehner and D6ll, 2004), and (2) the sum of all GLOBCOVER wetland and freshwater land types (Bontemps
et al., 2011). The scaling factors are calculated from (1) precipitation data from ERA-Interim meteorological data and (2)
inundation extent data from the Surface WAter Microwave Product Series (SWAMPS) multi-satellite surface water product
(Schroeder et al., 2015). The 18-member Wetcharts Extended Ensemble provides emission estimates for only the two
inundation extent estimates that are based on ERA-Interim and only one terrestrial biosphere model CARDAMOM (Bloom et
al., 2016).

LPJ-wsl methane model is based on the process-based dynamic global vegetation model Lund Postdam Jena (LPJ). It uses soil
temperature, soil moisture-dependent fraction of heterotrophic respiration (Ry), and inundation extent to calculate wetlands
methane emissions. The inundation extent of LPJ-wsl is calculated by the TOPography-based hydrological model
(TOPMODEL) driven by meteorology from ERA-Interim. TOPMODEL simulates hydrologic fluxes of water, including
lateral transport, such as infiltration-excess overland flow, infiltration, exfiltration, subsurface flow, evapotranspiration, and

channel routing through a watershed.

2.3 Inundation extent data

Earlier studies have indicated that the water availability is particularly important in the tropics (temperature is less limiting
here in contrast to high latitudes), and hence, inundation extent is one of the main sources of uncertainty for tropical wetlands
(Bloom et al., 2010; Ringeval et al., 2010). We analyze the inundation extent data used in process models: TOPMODEL (used
in LPJ-wsl); GLWD and GLOBCOVER with ERA-Interim (used in the Wetcharts Extended Ensemble). We compare these
inundation extent estimates against the remote sensing-based high-resolution inundation extent data from Gumbricht et al.

(2017), which maps wetlands and peatlands at 231 meters spatial resolution by combining three biophysical indices related to
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wetland and peat formation: (1) long-term water supply exceeding atmospheric water demand, (2) annually or seasonally
waterlogged soils, and (3) geomorphological position where water is supplied and retained. They use 2011 MODIS data to
map the duration of wet and inundated soil conditions and Shuttle Radar Topography Mission (SRTM) for topography. In
addition, we use satellite altimetry-based water height measurements from the Hydroweb database (Crétaux et al., 2011; Da
Silva et al., 2010). The water height anomalies of the White Nile and Sobat rivers are used as a proxy for inundation extent
variations in the Sudd and Macher wetlands, respectively. Fig. 1b shows the location of the river height measurement sites.
We also analyze temperature and precipitation data from the European Centre for Medium-Range Weather Forecasts” ERAS
meteorological reanalysis (Hersbach and Dee, 2016).

2.4 Emission Quantification method

The wetland distribution from Gumbricht et al. (2017) is shown in Fig. 1 for the region in South Sudan where a large TROPOMI
XCH4 enhancement can be observed. This region, which includes Sudd, Machar and other smaller wetlands, is hereafter
referred to as the South Sudan wetland region (SSWR). To calculate emissions, we first prepare seasonally averaged
TROPOMI XCH4 maps on a grid of at 0.1° x 0.1° resolution. Only grid cells with at least 5 high-quality TROPOMI
measurements are used in the season average map. We apply the mass balance method of Buchwitz et al. (2017) to calculate
emissions from December 2017 to November 2019. The emission Q (Tg yr?) from the SSWR box in Fig. 1a for a given period

is calculated using the following equation:

Q =AXCHy X M X Mgy X LXV X C (1)

Where, AXCH, is the “source XCH4 enhancement”, i.e., the mean XCHy, difference between the source and the surrounding
background. C is a dimensionless factor of 2.0 derived by Buchwitz et al. (2017) based on the concentration difference of air
parcels before and after entering a source area. M (5.345 Tg CH4 km™ ppb!) is the atmospheric total column mixing ratio-to-
mass conversion factor for a surface pressure of 1013.25 hPa, which is the standard atmospheric pressure. M.y, is a
dimensionless factor used to correct for the changes in column air mass with surface elevation, calculated as the ratio of surface
pressure in the source and standard atmospheric pressure (1013.25 hPa). L is the “effective size” of the source region (632
km), calculated as the square root of its area (4.0 x 10° km?). V (km yr?) is the ventilation wind speed derived from the ERA5
meteorological reanalysis vertical wind speed profile. Surface elevation variations change the contribution of tropospheric to
the total atmospheric column, which influences XCHs. TROPOMI XCH4 maps are corrected for this effect by adding the
correction factor 7 ppb km* from Buchwitz et al. (2017), using GMTED2010 elevation data shown in Fig. Al (Danielson et
al., 2010). We remove the large scale latitudinal XCH,4 gradient from the seasonal average TROPOMI XCH4 maps by

subtracting a 3' order polynomial fit from the background region, excluding the source region (see Figure 2a).
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Figure 3 shows the monthly average ERAS wind speed at 10:00 UTC (TROPOMI overpass time) in the SSWR as a function
of pressure within the local boundary layer during select months. To calculate V, the pressure-weighted average of these
boundary layer wind speed is calculated over SSWR using monthly average ERA5 boundary layer height data. We use average
boundary layer winds instead of 10-meter winds because it was found to better represent the ventilation wind speed in the
source region (see Varon et al., 2018). For SSWR, the 10-meter wind speed is on average 35 % lower than the boundary layer

wind speed, consistent with the diminishing influence of the surface friction with height.

The uncertainty of Q is calculated as sum-in-quadrature of uncertainties associated with AXCH, and V. The AXCH, uncertainty
is estimated as sum-in-quadrature of (1) 1-standard deviation of AXCH, estimates calculated by sequentially increasing the
size of the background box from 1° to 10° longitude and latitude in 1° interval, and (2) the XCH4 uncertainty of a single 0.1°
x 0.1° grid cell in the average map (= 22 ppb), taken as 1-standard deviation XCH, of all the grid cells in Fig. 1a. Note that
this approach overestimates the XCH, uncertainty of the grid cells as XCH4 variations within the grid are also caused by
emissions and surface elevation variations in addition to measurement errors. The uncertainty of V is estimated from the
variation in wind speed during 4 consecutive hours (09:00 UTC, 10:00 UTC, 11:00 UTC, 12:00 UTC) centered around the
TROPOMI overpass time. Note that we use the mass balance method equation from Buchwitz et al. (2017), but not their
empirical equation to estimate the uncertainty of Q. They derive that equation using a fixed wind speed of 1.1 m/s globally,
which would give a larger uncertainty in comparison to our approach of using location and time-specific wind information:
ERADS average V is 2.5 + 0.42 m st in SSWR during 2018-2019.

3 Results
3.1 XCH,4 enhancements

We first assess the XCH4 enhancements over South Sudan in the two-year average map of TROPOMI XCH, shown in Fig. 1la
in relation to the SSWR wetland distribution in Fig. 1b. Similar to previous remote sensing studies (Frankenberg et al., 2011;
Luntetal., 2019; Hu et al., 2018), we observe a large XCH,4 enhancement over the Sudd wetlands. In addition, the TROPOMI
data also resolve another distinct enhancement over the Machar and Lotilla wetlands in eastern South Sudan, indicating large
emissions from these wetlands too. The second enhancement was also observed by Hu et al. (2018) using two months of
TROPOMI XCHa.

The Sudd wetlands are flooded by the main White Nile tributary originating from Lake Victoria, whereas the wetlands in
Southeast Sudan are along smaller rivers like the Kangen and Sobat, originating from the Ethiopian mountains. Lunt et al.

(2019) attributed their GOSAT inversion emission estimates only to Sudd and evaluated the emissions using auxiliary data for
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Sudd. However, as the wetlands in the east are flooded by a different set of rivers and have a substantial contribution to the
overall XCH,4 enhancement, they also need to be considered when studying the mechanisms driving the large emissions in this

region.

The XCH,4 enhancement for SSWR in the two-year average is 18.8 + 2.8 ppb, which is more than 3 times the enhancement
over the Permian basin in the USA as reported by Zhang et al. (2020). It is very unlikely that the SSWR enhancement is an
artefact of the known aerosol or surface albedo biases in the TROPOMI XCHj, data. We elaborate further on this in Appendix
Sect. Al. Figure 2 shows seasonally average XCH4 maps over SSWR, and Table 1 quantifies the seasonal XCHenhancement
and areal coverage of the TROPOMI data. TROPOM I has good coverage in SSWR, ranging from 40 % in JJA to > 90 % DJF.
It is higher than 70 % in all seasons except JJA, likely due to persistent cloud cover during the wet season. The lowest
enhancements are observed in JJA in both 2018 (10.5 + 4.1 ppb) and 2019 (2.6 + 3.7 ppb). It is unlikely that these low
enhancements are artefacts of the low coverage as there is still sufficient TROPOMI data (> 40 %) and measurement are not
systematically missing over the large emissions areas of SSWR, the Sudd and Machar wetlands. SON-2019 has the largest

enhancement of 29.3 £ 4.0 ppb, likely due to low wind speeds.

3.2 Emissions quantification

We use the mass balance method of Buchwitz et al. (2017) to estimate emissions from SSWR for each season (see Table 1).
Emissions during most seasons are close to 10 Tg yr?, except for the low emissions in JJA. We find very low emission in JJA-
2019 (1.4 £ 2.1 Tg yr'Y), but it accommodates the season’s anthropogenic emissions of about 0.48 Tg yr ! (sum of 2012
EDGAR emissions, and 2016 oil and gas emissions from Scarpelli et al., 2020) and GFED biomass burning emissions (0.003
Tg yr!). Direct application of the mass balance method on the two-year average XCH4 map shown in Fig. 1a yields an annual
emission of 10 + 1.7 Tg yr. However, this is likely an overestimate as the two-year average temporally under samples the
low emissions of JJA seasons due to low coverage during these seasons. Therefore, to ensure uniform temporal sampling of
all seasons, we calculate annual SSWR emissions by averaging the seasonal emission estimates, resulting in 8.2 + 3.2 Tg yr2.
Moreover, this approach is likely less sensitive to error due to mean-of-products vs product-of-means effect. A caveat of the
mass balance method is that it ignores two factors: (1) the influence of emissions in the background region, and (2) the
contribution of emissions in the source region to the background average XCH.. Both factors increase the background XCH,
and ignoring them results in an underestimation of the emission estimate. However, this underestimation is large when the
ratio of the area of the background region and the source region is small, and as we apply the method using a large background,

we do not expect a significant impact on our emission estimates.

Lunt et al. (2019) report methane emissions for all sources (including wetlands, biomass burning, anthropogenic, wild animals)
from the Sudd wetlands using multiyear GOSAT inversions. Their emission estimate of 5.2-6.9 Tg yr? for 2016 is within the

uncertainty bounds of our SSWR total emission estimate of 8.0 = 3.2 Tg yr* for 2018-2019. Note that some difference in the
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emission estimates can be explained by the difference in the definition of the source region between the two studies as their
region extends more north and less east than ours. TROPOMI shows a large XCH,4 enhancement over Lottila and Machar
wetlands in the east SSWR, indicating large emissions from these wetlands. As the source region in Lunt et al. (2019) only

partially covers these wetlands, our emission estimates are expected to be higher.

To calculate wetlands emissions from SSWR, we account for other methane emissions in the region using bottom-up data.
According to the EDGAR (version 4.3.2, Janssens-Maenhout et al., 2017) inventory for 2012, the total anthropogenic
emissions from SSWR were 0.43 Tg yr* with enteric fermentation (0.36 Tg yr? ) being the largest anthropogenic category.
The region has small emissions from wastewater management (0.03 Tg yr?), energy for buildings (0.01 Tg yr?) and manure
management (0.01 Tg yr'). EDGAR does not report any significant emissions from fossil fuel exploitation sector in the region.
Recently, Scarpelli et al (2020) presented a new inventory for the oil and gas sector in which UNFCCC reported national
emissions are spatially allocated to the fossil fuel infrastructure. They report 0.05 Tg yr?! emissions from SSWR in 2016.
Biomass burning is the largest natural methane source after wetlands in SSWR with average emissions of 0.20 Tg yr? in 2018-
2019 according to GFED4s (0.23 Tg yr in 2018, 0.16 Tg yr? in 2019, Van der Werf et al., 2017). Another significant natural
source is the emission from termites (0.16 Tg yr?, Sanderson, 1996). We subtract the total of these non-wetlands emissions to
calculate wetland emissions of 7.4 £ 3.2 Tg yr! from SSWR in 2018-2019. This estimate is an order of magnitude larger than
the 0.5 Tg yr! wetlands emissions from the prominent Pantanal wetlands of South America in 2010-2018 which are estimated
using GOSAT inversions by Tunnicliffe et al. (2020).

Our SSWR wetlands emission estimate of 7.4 + 3.2 Tg yr* can be an overestimate if the emissions from the above-
mentioned non-wetlands sectors are underestimated in the inventories. However, this is unlikely as it would require a very
large underestimation in the inventories for the two years studied here. For example, for the oil and gas sector, the annual
emissions (0.05 Tg yr?) will need to be underestimated by two orders of magnitude to have a significant error impact on the
wetland emission estimates. Moreover, the strong seasonality shown by the TROPOMI emission estimates is not expected in
oil and gas emissions. The SSWR biomass burning emissions are higher in comparison to the other sectors, but a large
underestimation in annual emissions by GFED is unlikely as it uses remote sensing-based fire activity and vegetation
productivity data. There are a large number of wild animals in the SSWR region, which in total emit 0.03 Tg yr*as

per Crutzen et al. (1986). Livestock is the largest anthropogenic methane source in SSWR region: 0.36 Tg yr ! in 2012 as per
EDGAR v4.3.2, and 0.37 Tg yr ! in 2015 as per EDGAR version 5 (Crippa et al., 2020). South Sudan has a large population
of livestock: 7.5 million dairy cattle, 4.6 million non-dairy cattle, 13.5 million goats and 16.3 million sheep in 2018, which
causes 0.63 Tg yr! of methane emissions (FAOSTATS, 2020). This amount is twice of what we use to calculate the
wetlands emissions for SSWR. Manure management emissions in SSWR (0.01 Tgly as per EDGAR v4.3.2) are small even
though there is a large cattle population in South Sudan due to lack of effective management practices. This is reflected in

the small emission factors used for manure management for the country by EDGAR, for example, the dairy cattle emission
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factors are 1 kg CH4 head™ for South Sudan vs 48 kg CH4 head™® for USA. As per FAOSTATS (2020), the total emissions
from manure management of dairy and non-dairy cattle, asses, chickens, sheep and goats from the whole South Sudan are
0.02 Tg yr L. In the extreme case that all the South Sudan emissions are located in SSWR, it would slightly reduce our

wetland emission estimate, however, well within its uncertainty margin.

3.3 Comparison to wetland process models
3.3.1 Annual means

SSWR integrated mean methane emission estimates from the process models are nearly an order of magnitude lower than
those from TROPOM I (Table 2). For example, the multiannual mean emission from LPJ-wsl for 1980-2016 is 1.1 Tg yr?
(ranging from 0.5 Tg yr'in 1990 to 1.5 Tg yrt in 1998). The multi-annual mean individual ensemble estimates from Wetcharts
Extended Ensemble range from 0.4 Tg yr?! (uses GLWD) to 1.8 Tg yr! (uses GLOBCOVER). Its smallest and largest annual
emission estimates from these ensemble members are 0.29 Tg yr?! in 2009 and 2.21 Tg yr! in 2013. The Wetcharts Full
Ensemble, with 324 estimates for 2009-2010, has a mean of 0.9 Tg yr, ranging from 0.07 to 3.7 Tg yr™.

Table 2 also presents the maximum inundation extent (i.e., sum of seasonal and permanent wetland areas) used by the process
models. It range from 25,000 to 69,000 km? across the models. These inundation extent are up to 4 times lower than the
observation-based maximum inundation extent estimates of 99,000 km? by Gumbricht et al. (2017). Huges & Huges (1992)
give the permanent wetland area of the different wetlands in SSWR (Table Al). The sum of these areas is 36,000 km?,
significantly larger than the permanent inundation extent (i.e., minimum inundation extent ) used in the models (Wetcharts
Extended Ensemble: 1,000 km?; LPJ-wsl: 14,000 km?; SWAMPS: 16,000 km?). Rebelo et al. (2011) used remote sensing data
to characterize inundation extent of the Sudd wetlands over a 12 months period, yielding a total wetlands area of 50,000 km?
(41,000 km? of seasonally inundated and 9,000 km? of permanent inundated). According to Huges & Huges (1992), other
wetlands in the SSWR have a total permanent wetlands area of >20,500 km?, meaning that Sudd accounts for only about a
third of the SSWR’s total wetland area. As other wetlands in SSWR are also along rivers like Sobat, their inundation extent
likely has a large seasonality, and assuming that the relative seasonal amplitude of inundation extent of these other wetlands
is similar to that of Sudd would give a total (seasonal + permanent) flooded area of 134,000 km?. Adding the Sudd inundation
extent yields a total SSWR inundation extent of 164,000 km?, which is larger than the total estimate of 99,000 km? from

Gumbricht et al. (2017). Overall, we find substantial evidence of underestimations of SSWR inundation extent in the process
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models, which may explain their emission underestimations as they assume that inundation extent is a strong control of the

emissions.

We now look at variations in annual mean inundation extent to find a possible cause of high emissions in 2018-2019. Lunt et
al. (2019) attribute the emission increase in South Sudan between 2010 and 2016 to an inundation extent increase in the Sudd
owing to an increased water inflow from the White Nile river found in satellite altimetry-based river water height
measurements. To investigate this for the period 2018-2019, we look at trends in water height (see Fig. 4) of Lake Victoria,
and White Nile and Sobat rivers. Similar to Lunt et al. (2019), we observe a rapid water height increase during 2011-2014.
After this period, water levels stabilize and slightly decrease but remain significantly higher than in 2009-2010. 2019 shows
the highest water level for the Sobat river due to a renewed positive trend from 2017 onward. This suggests that the total SSWR
inundation extent was significantly higher in 2018-2019 than the pre-2011 levels. In contrast, the inundation extent data used
in the process models, shown in Fig. 4a, have negative trends, which means that the process models do not account for the

emission increase during 2010-2016 due to increasing inundation extent, as suggested by Lunt et al. (2019).

Inundation extent estimates from the remote sensing-based SWAMPS also do not show the increase and underestimate annual
means. Schroeder et al. (2015) have recommended not to use SWAMPS absolute inundation extent as the microwave sensors
used in SWAMPS have limited capability to detect water underneath the soil surface or beneath closed forest canopies. This
effect can impact also the temporal changes, in addition to the absolute inundation extent, as such flooding beneath the forest
canopies would also not be observed. It is unclear why TOPMODEL, which accounts for lateral water transport processes,

does not capture the trend in river outflow. These are interesting topics for follow-on investigations.

3.3.2 Seasonal cycle

Next, we assess the seasonal cycle of the TROPOMI-derived emission estimates. Figure 5a shows the seasonal cycles in 2018
and 2019. The largest emissions are in DJF in 2018, while DJF, MAM and SON have large emissions of similar magnitude in
2019. In both 2018 and 2019, TROPOMI emissions are lowest in JJA; in contrast, the process models estimate the lowest
emissions in DJF (Fig. 5¢). We investigate this mismatch by looking at the seasonal cycle of inundation extent in the models.
The model emissions have a strong correlation with the inundation extent they use (Wetcharts R = 0.91; LPJ-wsl R = 0.94,
where R is correlation coefficient), indicating that the seasonality of emissions is driven by inundation extent. In fact, the
differences in inundation extent seasonality between LPJ-wsl and Wetcharts are consistent with the emissions differences; for

example, both inundation extent and emissions in LPJ-wsl are lower than in Wetcharts during MAM.

The seasonality of the altimetry-based river water height measurements, shown in Fig. 5d, is highest in SON and is very
different from Wetcharts inundation extent (highest in JJA). This can partially explain the difference in the seasonal cycles of

Wetcharts and TROPOMI emissions. The seasonal cycle of Wetcharts inundation extent is strongly correlated with local
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precipitation (Fig. 5b), as the intra-annual inundation extent variation is calculated using precipitation. However, this method
would not accurately account for inundation extent variation due to lateral water fluxes and evapotranspiration. Surface runoff
is especially important for river-fed wetlands like Sudd, whose inundation extent is controlled by water inflow from the White
Nile because the evapotranspiration rate exceeds rainfall in the region (Lunt et al., 2019; Sutcliffe and Brown, 2018). LPJ-wsl
inundation extent seasonality shows better agreement with the river height data as it is calculated using TOPMODEL, which
accounts for the lateral fluxes and evapotranspiration. However, LPJ-wsl emissions still show large differences with the
seasonal cycle of TROPOMI emissions. Previous remote sensing studies for the Sudd wetlands have found the largest
inundation extent during September-January in 2007-2008 (Robelo et al., 2012) and during December-January in 1991-1992
(Travaglia et al., 1995), in better agreement with river height measurements than the process models. Overall, inundation extent
seasonality of models appears to be significantly off, which can explain part of the mismatch between TROPOMI and model
emissions. In both 2018 and 2019, TROPOMI emission estimates are the lowest during JJA, while river height measurements
are the lowest in MAM. A similar seasonal cycle mismatch in the GOSAT emission estimates and inundation extent, derived
using MODIS Land Surface Temperature (LST) as a proxy, is shown in Lunt et al (2019). Furthermore, they find the highest
emissions trend during SON, which had the smallest trend in inundation, but no trend in emissions during MAM, which has

the highest inundation extent trend (i.e. strongest negative LST trend).

An explanation for the difference in seasonal phasing can be a higher temperature dependence of emissions than suggested by
the models as temperatures are lowest during JJA. We evaluate this hypothesis using Wetcharts Full Ensemble, which provides
a total of 324 emission estimates for three temperature dependences q10 (=1, 2, 3; see Bloom et al., 2017). Figure 6 compares
the average seasonal cycle of TROPOMI emissions with Wetcharts emissions using different q10’s (see also Table 3).
Wetcharts emissions with q10 = 1 have the poorest agreement with the seasonal cycle of TROPOMI (R = -0.62). Interestingly,
these emissions also have the lowest annual means (= 0.5 Tg yr?). Conversely, Wetcharts emissions with g10 = 3 have the
best correlation with TROPOMI (R = -0.28) and have the largest annual mean (=1.0 Tg yr?). In fact, the member estimate—
out of the 324-member Full Ensemble —with the largest annual emissions of 3.7 Tg yr? has the best correlation with
TROPOMI (R = 0.00). As expected, this member uses q10 = 3. The agreement of TROPOMI with the larger q10 model
estimates, in terms of both annual mean and seasonal cycle, suggests that wetland emissions from SSWR have a large
temperature dependence. In their study of wetlands in the Amazon Basin, Tunnicliffe et al. (2020) pointed to temperature as a
more important control on methane emissions than inundation extent. They find a simultaneous, spatially correlated emission
and temperature increases in the west Brazilian Amazon during the EI-Nino of 2015, with unchanged inundation extent.
Moreover, Wilson et al. (2016) found a negligible impact on wetlands emissions in the Amazon basin despite the large
difference in precipitation between 2010 and 2011, which impacted inundation extent significantly. Note that it is also possible
that the higher q10’s we find for SSWR emissions are simply compensating for errors due to a misrepresentation of inundation

extent or other factors covarying with temperature.
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Figure 7 shows the emission anomalies time series from TROPOM I along with temperature and inundation extent, which we
assume to be proportional to river height. A small lag between the river height and inundation extent is expected, but we expect
it to be negligible in comparison to a full season. We observe that the emissions show a strong correlation with temperature
(R=0.49), but a poorer correlation with inundation extent (R= 0.24). The emissions peak a full season later than inundation
extent, and accounting for this seasonal lag improves the correlation significantly (R= 0.80). An explanation for this can be
the higher temperature dependence of emissions discussed earlier. Another explanation could be the “activation” time of
methanogenesis, as after flooding it takes time for anoxic conditions to develop and alternative electron acceptors to be
depleted. Jerman et al. (2009) documented that methane emissions from water-saturated soil slurries remained very low for a
long time: methane production started after a lag of 84 days at 15° C and a minimum of 7 days at 37° C, the optimum
temperature for methanogenesis. They found that the lag was inversely related to iron reduction, which is expected as iron
reduction outcompeted methanogenesis. Similarly, Itoh et al. (2011) investigated methane emissions from rice paddy fields

and found a time lag of a few weeks between the onset of inundation and peak emissions.

Process models assume that wetland emissions are instantaneously regulated by inundation extent, and they do not account for
the time lag as information on the availability of alternate electron accepters is generally not available. This results in an
incorrect temporal allocation of the wetland emissions. Furthermore, some models assume inundation extent is instantaneously
regulated by precipitation. In river floodplains like Sudd, inundation extent is mostly controlled by river inflow, and not the
local precipitation, as the evapotranspiration rates exceed the rainfall in the region. Therefore, scaling with precipitation would
even worse emission estimates. Overall, a combination of temperature and inundation extent dependences that are used in the

models can explain their seasonal cycle mismatch with TROPOMI emissions.

5 Conclusions

XCHa, enhancements over South Sudan have been observed in remote sensing studies suggesting large emissions from the
Sudd wetlands as the cause (Lunt et al., 2019, Hu et al., 2018, Frankenberg et al., 2011). We observe two large enhancements
in the region in a 2-year average map of TROPOMI XCHs—over Sudd, and Machar and Lotilla wetlands. Sudd Wetlands are
flooded by the White Nile river originating from Lake Victoria, while the wetlands in the east are around smaller rivers like
the Sobat originating in the Ethiopian mountains. In this study, we examine these wetlands, and their river systems, together

to understand the controls of the emissions causing the large XCH4 enhancements.

We estimate methane emissions of 7.4 + 3.2 Tg yr? from wetlands in South Sudan during 20182019 using a mass balance
approach applied to TROPOMI data. We find large differences between the emission estimates from TROPOMI and wetland

process models LPJ-wsl and Wetcharts. The annual mean estimates from TROPOMI are an order of magnitude larger than
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mean estimates of the models, which may be explained by the up to 4 times underestimated inundation extent in the models.
We find differences in interannual variability and average seasonal cycles of TROPOMI and models, which can be again
partially explained by the strong dependence of model emissions on poor inundation extent estimates. We find the lowest
emission in the highest perception and lowest temperature season JJA, when models estimate large emissions as they
incorrectly assume an instantaneous influence of the precipitation-derived inundation extent. We find that the Wetcharts
emission estimates that use a stronger temperature dependence (q10 = 3) show a better agreement with TROPOM I concerning
both seasonality and annual emissions. This indicates that the models may also underestimate the temperature sensitivity of

the methane emissions.

The inundation extent of SSWR is analyzed using satellite altimetry-based river height measurements of White Nile and Sobat
rivers at locations within the Sudd and Macher wetlands. The inundation extent estimates used in models are based on the local
precipitation, whereas, the actual inundation extent of SSWR is driven by water inflow from the rivers as evapotranspiration
exceeds the precipitation in the region. As a result, both the seasonal cycle and trend of model inundation extent disagree with
river height data. The seasonal cycle of inundation extent from river height data shows better agreement with the TROPOMI
emissions when a full season-long lag between the two is assumed. This time lag can be explained by the time needed for
methanogenesis to develop in the seasonally flooded areas of the wetlands. A more precise estimate of the lag is not possible

due to the coarse temporal resolution of our TROPOMI emissions estimates.

The lack of information on the correct relationship of wetland emissions with inundation extent and temperature results in
large model uncertainties. Such large gaps in our understanding of the processes driving wetland emissions call for further
investigation. As shown here for the wetlands of South Sudan, TROPOMI provides valuable observations over remote and

inaccessible wetland regions of the world, which future wetland studies can take advantage of.

APPENDIX
Section Al. Systematic Measurement Uncertainties

Surface albedo and aerosols can alter the optical light path, introducing biases in XCH4 (Butz et al., 2011). Therefore, the
XCH. enhancement over South Sudan can be affected by the differences between the source and background region values of
these parameters. The average retrieved aerosol optical thickness (AOT) and surface albedo in the SWIR band of TROPOMI
are shown in Fig. Al. For SSWR and its background, the AOT and albedo differences in two-year average data are 0.001 and
-0.10, respectively. The average differences for seasonal average maps are -0.01 £ 0.01, -0.15 + 0.02 and 16.3 + 8.4 ppb for
AOT, albedo and XCHjy respectively. The negative albedo difference for SSWR occurs due to the high albedo the Sahara in

the background. This small albedo difference is unlikely to influence the SSWR XCH4 enhancement significantly, especially,
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as an albedo-based bias correction is applied to the XCH, in operational TROPOMI product (Hasekamp et al., 2019). We also
examined the possibility that the XCH4 enhancement over South Sudan is an artefact of sun glint geometry of TROPOMI
observations due to refection on standing water of the Lakes and inundated areas in the region. This can happen when the
observation geometry over a water body surface is at the specular reflection angle (i.e., the viewing zenith angle matches the
solar zenith angle) causing a spike in the level 1 radiance measurements. However, this was found not to occur over the

wetlands of South Sudan.

Data Availability. TROPOMI data are available at the Copernicus Open Access Hub (https://scihub.copernicus.eu/)

Satellite altimetry river height dataset is available at Hydroweb website (http://hydroweb.theia-land.fr/). Wetcharts data can
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Table 1. SSWR XCH. enhancement and emission estimates. The enhancements (AXCH,) is the XCH, difference between
SSWR and the background after correcting XCHy, for latitudinal variation. Data coverage is defined here as the fraction of 0.1°
640 X 0.1° grid cells in SSWR with at least five high-quality TROPOMI measurement in a quarter. Wind speed is the average

boundary layer wind from ERA5. Emission estimates are calculated using Eq. (1). £ represents 1 ¢ uncertainty.

Season Data coverage (%) Wind speed (m s) XCH: e(r:;e;r;cement Emissions (Tg yr?)
DJF-2018 91 3.5%09 16.5+4.3 11.5+42
MAM-2018 74 21+1.2 20.2+4.1 85%£5.1
JJA-2018 44 27%03 105+4.1 5723
SON-2018 83 27+04 18.7+4.3 10.1+28
DJF-2019 98 3.2+0.9 13.4+£27 8.6x+3.0
MAM-2019 92 3.1+08 13.6£3.6 84+31
JIA-2019 43 28+0.3 2.6 £3.7 14+£21
SON-2019 83 19+0.2 29.3x4.0 11.2+19
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645

Table 2. Annual emission and maximum inundation extent estimates for SSWR. The values in parentheses show 1-standard

deviation spread over the given periods. The dashed values give the range of Wetcharts ensemble estimates.

650
Period Maximum inundation Emissions (Tg yr?)
extent (10° km?)
Wetcharts Extended 2001-2015 32 (7) 0.4(0.1)-1.0(0.2)
Ensemble/GLWD
Wetcharts Extended 2001-2015 69 (10) 0.70(0.1)-1.8(0.2)
Ensemble/GLOBCOVER
Wetcharts Full Ensemble 2010 30-66 0.07-3.7
LPJ-wsl/ TOPMODEL 1980-2016 57 (9) 1.1 (0.25)
SWAMPS 2001-2019 25 (5) -
Gumbricht et al. (2017) 2011 99 -
TROPOMI 2018-2019 - 74+32
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Table 3. Annual emission estimates from Wetcharts Full ensemble (2010) for different temperature dependencies, and

655 correlation coefficient (R) of their respective average seasonal cycle with TROPOMI emissions.

Temperature Emissions (Tg yr) R (with
dependence (q10) TROPOMI)
1 0.5 -0.62

2 0.8 -0.41

3 1.0 -0.28
Maximum* 3.7 0.00

*The maximum annual emission estimate in the 324-member ensemble of Wetcharts Full Ensemble. Its 10 is 3.
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Table Al. The total permanent SSWR inundation extent from Huges & Huges (1992).

660
Wetlands in SSWR Wetland Area (km?)
Sudd 16,500
Machar marshes 9,000
Lottila Swamps 2,000
Veveno, Adiet and LiLebook 6,500

Kenamuke and Kobowen swamps 1,700
Bahr el Ghazal floodplains 900

Total 36,000

24



a. TROPOMI XCH, b. Wetland area

24.00° TR
. - v B rd o~
P ERGW " a8,
'
~
15.75° . ; 875 "
>
1900 4
1880 .. 750° 4"~
1860
Q
1840 =
1820 o
0.75° ictoria Lal L
1800
L]
5.00"N— - — ;
0.00° 28.00° 29.62° 31.25° 32.88° 34.50°
14.00° 22.62° 31.25° 30.88° 48.50°

665
Figure 1. The TROPOMI XCH, enhancement over the South Sudan wetlands. (a) Average of two years (December 2017 to

November 2019) of TROPOMI XCHj at 0.1° x 0.1° resolution (b) Wetlands in South Sudan from Gumbricht et al. (2017) are

shown in green, and the rivers in the region are shown in blue. The area within the blue rectangle (5°-10° N and 28°-34.5° E)

is referred to as South Sudan wetlands region (SSWR). The red dots show the locations of satellite altimetry-based river water
670 height measurement sites.
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675
Figure 2. Seasonally average TROPOMI XCHy, (ppb) at 0.1° x 0.1° resolution. The black rectangle at the centre of each panel

shows the SSWR source region. The area outside of it is used as the background region. XCH, is corrected for large-scale
latitudinal variation by subtracting a 3 order polynomial fit using the region shown by blue rectangles in panel a. The region
excludes the longitudes of the source region. Note that DJF includes December of the previous year.
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685 Figure 3. Monthly average boundary layer ERA5 winds in SSWR. Wind speeds (X-axis) and directions (color of the markers)
at 10:00 UTC, which is the closest hour to the local TROPOMI overpass time, are shown at different pressure levels of the
model. The markers with dark edges represent 10-meter height winds.
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695
Figure 4. SSWR inundation extent estimates. (a) Annual anomalies of inundation extent estimates of SWAMPS, TOPMODEL

and Wetcharts (ERA-interim), used in process models, and ERAS precipitation, expressed in the unit of the standard deviation
of the respective annualized time series. (b) Water height anomalies for the altimetry sites in Lake Victoria, and White Nile
(WNS3) and Sobat (SOS1) rivers from the Hydroweb database. Locations of these altimetry sites are given in Figure 1. Here

700 we only use the altimetry sites which have a sufficiently long temporal coverage that includes 2018-2019.
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705 Figure 5. Mean seasonal cycles expressed in the unit of the standard deviation of respective time series. (a) Emission estimates
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Figure 6. Seasonal cycle of SSWR emissions. Methane emissions from Wetcharts Full Ensemble for 2010 (December 2009 —
715 November 2010) and TROPOMI are shown. The solid lines show the average of an emission estimate ensemble for a

temperature dependency (q10). The dashed line shows the seasonal cycle of the Wetcharts estimate that has the largest annual
emissions. All values are shown in the unit of standard deviation.
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Figure 7. Seasonal anomalies in SSWR. (a) TROPOMI emissions estimates, ERA5 temperature and inundation extent, from
river height measurements, are shown. (b) Local precipitation and SWAMPS inundation extent data are shown. All values are
725 expressed in the unit of standard deviation. Correlation coefficients (R) of TROPOMI emissions with temperature, river height,

SWAMPS and precipitation are 0.49 and 0.24, —0.33, —0.67, respectively.
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