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Abstract. The TROPOspheric Monitoring Instrument (TROPOMI) provides observations of atmospheric methane (CH4) at 15 

an unprecedented combination of high spatial resolution and daily global coverage. Hu et al. (2018) reported unexpectedly 

large methane enhancements over South Sudan in these observations. Here we assess methane emissions from the wetlands of 

South Sudan using two years (December 2017–November 2019) of TROPOMI total column methane observations. We 

estimate annual wetland emissions of 7.4 ± 3.2 Tg yr-1, which agrees with the multiyear GOSAT inversions of Lunt et al. 

(2019) but is an order of magnitude larger than estimates from wetland process models. This disagreement may be explained 20 

by the up to 4 times underestimation of inundation extent by the hydrological schemes used in those models. We investigate 

the seasonal cycle of the emissions and find the lowest emissions during the June-August season when the process models 

show the largest emissions. Using satellite altimetry-based river water height measurements, we infer that this seasonal 

mismatch is likely due to a seasonal mismatch in inundation extent. In models, inundation extent is controlled by regional 

precipitation, scaled to static wetland extent maps, whereas the actual inundation extent is driven by water inflow from rivers 25 

like the White Nile and the Sobat. We find the lowest emission in the highest perception and lowest temperature season JJA 

when models estimate large emissions. In general, our emission estimates show better agreement, in terms of both seasonal 

cycle and annual mean, with model estimates that use a stronger temperature dependence. This suggests that temperature might 

be a stronger control for the South Sudan wetlands emissions than currently assumed by models. Our findings demonstrate the 

use of satellite instruments for quantifying emissions from inaccessible and uncertain tropical wetlands, providing clues for 30 

improvement of process models, and thereby improving our understanding of the currently uncertain contribution of wetlands 

to the global methane budget.  
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1 Introduction 

Reducing anthropogenic methane emissions has been recognized as an important requirement for achieving the 2015 Paris 

Agreement target of limiting global temperature rise below 2 C relative to pre-industrial times (Ganesan et al., 2019). 35 

However, large uncertainties remain in the atmospheric budget of methane, calling for an improved understanding of its 

emissions from both anthropogenic and natural sources (Saunois et al., 2016). Wetlands are ecosystems with seasonally or 

permanently inundated or saturated soils, including peatlands (bogs and fens), mineral wetlands (swamps and marshes), and 

seasonal or permanent floodplains, where methanogens produce methane in the anaerobic decomposition of organic matter. 

Emissions from natural wetlands are the largest and the most uncertain emission category of methane (Kirschke et al., 2013). 40 

Saunois et al. (2016) provide global methane emission estimates for all source categories combined of 540–568 Tg yr-1 using 

top-down approaches and 596–884 Tg yr-1 using bottom-up approaches for the period 2003–2012. They attribute the mismatch 

between the two approaches mainly to uncertainties in emissions from natural wetlands, inland waters and geological sources. 

They report total emissions of 127–202 Tg yr-1 and 153–227 Tg yr-1 from wetlands using top-down and bottom-up approaches, 

respectively, which accounts for 30 % of global emissions.  45 

 

In addition to being an important source of uncertainty in methane budget, wetlands emissions can have significant climate 

feedback due to their sensitivity to changes in precipitation and temperature (Arneth et al., 2010; Zhang et al., 2018; Zhu et 

al., 2017). By analyzing surface and satellite measurements of methane, Pandey et al. (2017) reported enhanced methane 

emissions from tropical wetlands due to precipitation and temperature anomalies associated with the La Niña of 2010. 50 

Furthermore, according to Zhang et al. (2017), the feedback of methane should be accounted for in climate mitigation policies 

as they find that the global wetland emissions will increase by 50 to 170 Tg yr-1 at the end of the 21st century because of the 

temperature-driven increase in wetland emissions under the different Representative Concentration Pathways (RCP) adopted 

by the IPCC. Their results indicate that the increase in wetland emissions maybe 38–56 % larger than the projected 

anthropogenic emission increase by the end of the 21st century under the strong climate mitigation scenario (RCP 2.6). 55 

 

To improve wetland emission estimates is very challenging due to many reasons. Wetlands are spread over large, inaccessible 

regions around the world. Upscaling a few localized measurements of wetland emissions is often futile as these emissions have 

large temporal and spatial variability, and the parameters controlling them are very uncertain. The emissions are also difficult 

to monitor on the ground due to logistical limitations. This makes satellite observations a promising and crucial source of 60 

information to advance our understanding of the role of wetland methane emissions in the carbon cycle.  

Hu et al. (2018) observed large methane enhancements over South Sudan in TROPOMI data collected during the first two 

months of the commissioning phase of the satellite, November and December 2017. Frankenberg et al. (2011) also observed 

an enhancement over the region in a seven-year average (2003–2010) of SCanning Imaging Absorption spectroMeter for 

Atmospheric CHartographY (SCIAMACHY) observations. These studies indicated that the enhancements are likely caused 65 
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by large emissions from wetlands in the region. Recently, Lunt et al. (2019) used methane observations from the Japanese 

Greenhouse gases Observing Satellite (GOSAT) in inverse modelling to infer emissions from tropical Africa during 2010–

2016. They found that emissions from South Sudan were more than 3 times larger than the ensemble mean estimates from the 

Wetcharts process model (Bloom et al., 2017). They also found that emissions from the Sudd wetlands in the region increased 

rapidly from 2.4–4.2 Tg yr-1 in 2010–2011 to 5.2–6.9 Tg yr-1 in 2016, likely, because of an inundation extent  expansion due 70 

to an increase in water inflow from the White Nile river.  

This study aims to infer the scale of the wetland methane emissions from South Sudan from TROPOMI observations using a 

simplified emission quantification method and investigate its relationship with the results of wetland process models and the 

seasonally varying climatological conditions. This study is structured as follows. Section 2 describes the method and data used 

including the TROPOMI data, wetland models and inundation extent data, and the emission quantification method. Section 3 75 

presents our results and discussion including emission estimates from TROPOMI and their comparison with the process 

models, and an analysis of the differences between models and TROPOMI emission estimates using inundation extent and 

meteorological data. Our conclusions are given in Section 4.  

2 Data and method 

2.1 TROPOMI methane data 80 

TROPOMI is the single instrument onboard the Copernicus Sentinel-5 Precursor (S-5P) satellite, launched on 13 October 2017 

in a sun-synchronous orbit at 824 km altitude (Veefkind et al., 2012). It is a push-broom imaging spectrometer, recording 

spectra along a 2600 km swath while orbiting the Earth every 100 min, resulting in daily global coverage. Total column 

methane (XCH4) is retrieved with near-uniform sensitivity in the troposphere from its absorption band around 2.3 𝜇m using 

earthshine radiance measurements from the Short Wave Infrared (SWIR) channel of TROPOMI (Hu et al., 2016; 2018). 85 

TROPOMI XCH4 has a ground pixel size of 7 × 7 km2 (7 × 5.5 km2 since August 2019) at nadir with larger ground pixels 

towards the edges of its swath.   

 

In this study, we use the operational two-band retrieval product of TROPOMI (Hasekamp et al., 2019). It uses 0.76 𝜇m O2A 

and 2.3 𝜇m CH4 bands in the Near Infrared (NIR) and SWIR spectra. XCH4 is retrieved using the full-physics RemoTeC 90 

algorithm, which accounts for light path perturbations due to scattering by aerosol and cirrus cloud particles in the atmosphere 

(Butz et al., 2012; Hu et al., 2016). We only use high-quality XCH4 measurements retrieved under favourable cloud-free 

conditions. Also, XCH4 is filtered (“qa”=1) for solar zenith angle (< 70°), viewing zenith angle (< 60°), smooth topography 

(1-standard deviation surface elevation variability < 80 m within a 5 km radius) and low aerosol load (aerosol optical thickness 

< 0.3 in NIR band). Note that Hu et al. (2018) used two months of XCH4 data from the “scientific” retrieval product of SRON 95 

Netherlands Institute for Space Research. Those measurements had a relatively sparse temporal coverage over South Sudan 

because they were performed during the commissioning phase of TROPOMI when algorithm tests and calibrations were 
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ongoing. The operational product used here provides a more temporally homogenous coverage and a surface albedo-dependent 

bias correction (Hasekamp et al., 2019). 

2.2 Process model data 100 

We compare TROPOMI emission estimates with two wetlands process models: Wetcharts (Bloom et al., 2017) and LPJ-wsl 

(Zhang et al., 2016). These models calculate monthly methane emissions on a global grid of 0.5 ×  0.5 resolution by 

simulating the microbial production and oxidation processes in the soil using temperature, inundation extent and heterotrophic 

respiration data. Wetcharts calculates wetland emissions using in total four inundation extent parameterizations, nine terrestrial 

biosphere models of heterotrophic respiration and three CH4:C temperature parameterizations (q10). Wetcharts version 1.0 105 

provides two ensembles: (1) an ensemble with 324 emission estimates for 2009-2010, called the “Full Ensemble” and (2) an 

18-member extended-in-time ensemble for 2001-2015, called the Wetcharts “Extended Ensemble”. In the Wetcharts Full 

Ensemble, the set of four inundation extent estimates are calculated based on two maximum wetland area estimates, multiplied 

with two monthly varying scaling factors. The wetlands area estimates are taken from (1) the Global Lakes and Wetlands 

Database (GLWD; Lehner and Döll, 2004), and (2) the sum of all GLOBCOVER wetland and freshwater land types (Bontemps 110 

et al., 2011). The scaling factors are calculated from (1) precipitation data from ERA-Interim meteorological data and (2) 

inundation extent data from the Surface WAter Microwave Product Series (SWAMPS) multi-satellite surface water product 

(Schroeder et al., 2015). The 18-member Wetcharts Extended Ensemble provides emission estimates for only the two 

inundation extent estimates that are based on ERA-Interim and only one terrestrial biosphere model CARDAMOM (Bloom et 

al., 2016).  115 

 

LPJ-wsl methane model is based on the process-based dynamic global vegetation model Lund Postdam Jena (LPJ). It uses soil 

temperature, soil moisture-dependent fraction of heterotrophic respiration (Rh), and inundation extent to calculate wetlands 

methane emissions. The inundation extent of LPJ-wsl is calculated by the TOPography-based hydrological model 

(TOPMODEL) driven by meteorology from ERA-Interim. TOPMODEL simulates hydrologic fluxes of water, including 120 

lateral transport, such as infiltration-excess overland flow, infiltration, exfiltration, subsurface flow, evapotranspiration, and 

channel routing through a watershed. 

2.3 Inundation extent data 

Earlier studies have indicated that the water availability is particularly important in the tropics (temperature is less limiting 

here in contrast to high latitudes), and hence, inundation extent is one of the main sources of uncertainty for tropical wetlands 125 

(Bloom et al., 2010; Ringeval et al., 2010). We analyze the inundation extent data used in process models: TOPMODEL (used 

in LPJ-wsl); GLWD and GLOBCOVER with ERA-Interim (used in the Wetcharts Extended Ensemble). We compare these 

inundation extent estimates against the remote sensing-based high-resolution inundation extent data from Gumbricht et al. 

(2017), which maps wetlands and peatlands at 231 meters spatial resolution by combining three biophysical indices related to 
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wetland and peat formation: (1) long‐term water supply exceeding atmospheric water demand, (2) annually or seasonally 130 

waterlogged soils, and (3) geomorphological position where water is supplied and retained. They use 2011 MODIS data to 

map the duration of wet and inundated soil conditions and Shuttle Radar Topography Mission (SRTM) for topography. In 

addition, we use satellite altimetry-based water height measurements from the Hydroweb database (Crétaux et al., 2011; Da 

Silva et al., 2010). The water height anomalies of the White Nile and Sobat rivers are used as a proxy for inundation extent 

variations in the Sudd and Macher wetlands, respectively. Fig. 1b shows the location of the river height measurement sites. 135 

We also analyze temperature and precipitation data from the European Centre for Medium-Range Weather Forecasts’ ERA5 

meteorological reanalysis (Hersbach and Dee, 2016). 

2.4 Emission Quantification method 

The wetland distribution from Gumbricht et al. (2017) is shown in Fig. 1 for the region in South Sudan where a large TROPOMI 

XCH4 enhancement can be observed. This region, which includes Sudd, Machar and other smaller wetlands, is hereafter 140 

referred to as the South Sudan wetland region (SSWR). To calculate emissions, we first prepare seasonally averaged 

TROPOMI XCH4 maps on a grid of at 0.1 ×  0.1 resolution. Only grid cells with at least 5 high-quality TROPOMI 

measurements are used in the season average map. We apply the mass balance method of Buchwitz et al. (2017) to calculate 

emissions from December 2017 to November 2019. The emission Q (Tg yr-1) from the SSWR box in Fig. 1a for a given period 

is calculated using the following equation:  145 

 

𝑄 = ∆𝑋𝐶𝐻4
 × 𝑀 × 𝑀𝑒𝑥𝑝 × 𝐿 × 𝑉 × 𝐶   (1) 

 

Where, ∆𝑋𝐶𝐻4
  is the “source XCH4 enhancement”, i.e., the mean XCH4 difference between the source and the surrounding 

background. C is a dimensionless factor of 2.0 derived by Buchwitz et al. (2017) based on the concentration difference of air 150 

parcels before and after entering a source area. M (5.345 Tg CH4 km-2 ppb-1) is the atmospheric total column mixing ratio-to-

mass conversion factor for a surface pressure of 1013.25 hPa, which is the standard atmospheric pressure. 𝑀𝑒𝑥𝑝  is a 

dimensionless factor used to correct for the changes in column air mass with surface elevation, calculated as the ratio of surface 

pressure in the source and standard atmospheric pressure (1013.25 hPa). L is the “effective size” of the source region (632 

km), calculated as the square root of its area (4.0 × 105 km2). V (km yr-1) is the ventilation wind speed derived from the ERA5 155 

meteorological reanalysis vertical wind speed profile. Surface elevation variations change the contribution of tropospheric to 

the total atmospheric column, which influences XCH4. TROPOMI XCH4 maps are corrected for this effect by adding the 

correction factor 7 ppb km-1 from Buchwitz et al. (2017), using  GMTED2010 elevation data shown in Fig. A1 (Danielson et 

al., 2010). We remove the large scale latitudinal XCH4 gradient from the seasonal average TROPOMI XCH4 maps by 

subtracting a 3rd order polynomial fit from the background region, excluding the source region (see Figure 2a). 160 
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Figure 3 shows the monthly average ERA5 wind speed at 10:00 UTC (TROPOMI overpass time) in the SSWR as a function 

of pressure within the local boundary layer during select months. To calculate V, the pressure-weighted average of these 165 

boundary layer wind speed is calculated over SSWR using monthly average ERA5 boundary layer height data. We use average 

boundary layer winds instead of 10-meter winds because it was found to better represent the ventilation wind speed in the 

source region (see Varon et al., 2018). For SSWR, the 10-meter wind speed is on average 35 % lower than the boundary layer 

wind speed, consistent with the diminishing influence of the surface friction with height.   

 170 

The uncertainty of Q is calculated as sum-in-quadrature of uncertainties associated with ∆𝑋𝐶𝐻4
  and V. The ∆𝑋𝐶𝐻4

  uncertainty 

is estimated as sum-in-quadrature of (1) 1-standard deviation of ∆𝑋𝐶𝐻4
  estimates calculated by sequentially increasing the 

size of the background box from 1 to 10 longitude and latitude in 1  interval, and (2) the XCH4 uncertainty of a single 0.1 

× 0.1 grid cell in the average map (= 22 ppb), taken as 1-standard deviation XCH4 of all the grid cells in Fig. 1a. Note that 

this approach overestimates the XCH4 uncertainty of the grid cells as XCH4 variations within the grid are also caused by 175 

emissions and surface elevation variations in addition to measurement errors. The uncertainty of 𝑉 is estimated from the 

variation in wind speed during 4 consecutive hours (09:00 UTC, 10:00 UTC, 11:00 UTC, 12:00 UTC) centered around the 

TROPOMI overpass time. Note that we use the mass balance method equation from Buchwitz et al. (2017), but not their 

empirical equation to estimate the uncertainty of Q. They derive that equation using a fixed wind speed of 1.1 m/s globally, 

which would give a larger uncertainty in comparison to our approach of using location and time-specific wind information: 180 

ERA5 average V is 2.5 ± 0.42 m s-1 in SSWR during 2018-2019.  

3 Results  

3.1 XCH4 enhancements 

We first assess the XCH4 enhancements over South Sudan in the two-year average map of TROPOMI XCH4 shown in Fig. 1a 

in relation to the SSWR wetland distribution in Fig. 1b. Similar to previous remote sensing studies (Frankenberg et al., 2011; 185 

Lunt et al., 2019; Hu et al., 2018), we observe a large XCH4 enhancement over the Sudd wetlands. In addition, the TROPOMI 

data also resolve another distinct enhancement over the Machar and Lotilla wetlands in eastern South Sudan, indicating large 

emissions from these wetlands too. The second enhancement was also observed by Hu et al. (2018) using two months of 

TROPOMI XCH4.  

 190 

The Sudd wetlands are flooded by the main White Nile tributary originating from Lake Victoria, whereas the wetlands in 

Southeast Sudan are along smaller rivers like the Kangen and Sobat, originating from the Ethiopian mountains. Lunt et al. 

(2019) attributed their GOSAT inversion emission estimates only to Sudd and evaluated the emissions using auxiliary data for 
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Sudd. However, as the wetlands in the east are flooded by a different set of rivers and have a substantial contribution to the 

overall XCH4 enhancement, they also need to be considered when studying the mechanisms driving the large emissions in this 195 

region.  

 

The XCH4 enhancement for SSWR in the two-year average is 18.8 ± 2.8 ppb, which is more than 3 times the enhancement 

over the Permian basin in the USA as reported by Zhang et al. (2020). It is very unlikely that the SSWR enhancement is an 

artefact of the known aerosol or surface albedo biases in the TROPOMI XCH4 data. We elaborate further on this in Appendix 200 

Sect. A1. Figure 2 shows seasonally average XCH4 maps over SSWR, and Table 1 quantifies the seasonal XCH4 enhancement 

and areal coverage of the TROPOMI data. TROPOMI has good coverage in SSWR, ranging from 40 % in JJA to > 90 % DJF. 

It is higher than 70 % in all seasons except JJA, likely due to persistent cloud cover during the wet season. The lowest 

enhancements are observed in JJA in both 2018 (10.5 ± 4.1 ppb) and 2019 (2.6 ± 3.7 ppb). It is unlikely that these low 

enhancements are artefacts of the low coverage as there is still sufficient TROPOMI data (> 40 %) and measurement are not 205 

systematically missing over the large emissions areas of SSWR, the Sudd and Machar wetlands. SON-2019 has the largest 

enhancement of 29.3 ± 4.0 ppb, likely due to low wind speeds. 

3.2 Emissions quantification 

We use the mass balance method of Buchwitz et al. (2017) to estimate emissions from SSWR for each season (see Table 1). 

Emissions during most seasons are close to 10 Tg yr-1, except for the low emissions in JJA. We find very low emission in JJA-210 

2019 (1.4 ± 2.1 Tg yr−1), but it accommodates the season’s anthropogenic emissions of about 0.48 Tg yr−1 (sum of 2012 

EDGAR emissions, and 2016 oil and gas emissions from Scarpelli et al., 2020) and GFED biomass burning emissions (0.003 

Tg yr−1). Direct application of the mass balance method on the two-year average XCH4 map shown in Fig. 1a yields an annual 

emission of 10 ± 1.7 Tg yr-1. However, this is likely an overestimate as the two-year average temporally under samples the 

low emissions of JJA seasons due to low coverage during these seasons. Therefore, to ensure uniform temporal sampling of 215 

all seasons, we calculate annual SSWR emissions by averaging the seasonal emission estimates, resulting in 8.2 ± 3.2 Tg yr-1. 

Moreover, this approach is likely less sensitive to error due to mean-of-products vs product-of-means effect. A caveat of the 

mass balance method is that it ignores two factors: (1) the influence of emissions in the background region, and (2) the 

contribution of emissions in the source region to the background average XCH4. Both factors increase the background XCH4 

and ignoring them results in an underestimation of the emission estimate. However, this underestimation is large when the 220 

ratio of the area of the background region and the source region is small, and as we apply the method using a large background, 

we do not expect a significant impact on our emission estimates.  

 

Lunt et al. (2019) report methane emissions for all sources (including wetlands, biomass burning, anthropogenic, wild animals) 

from the Sudd wetlands using multiyear GOSAT inversions. Their emission estimate of 5.2–6.9 Tg yr-1 for 2016 is within the 225 

uncertainty bounds of our SSWR total emission estimate of 8.0 ± 3.2 Tg yr-1 for 2018-2019. Note that some difference in the 
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emission estimates can be explained by the difference in the definition of the source region between the two studies as their 

region extends more north and less east than ours. TROPOMI shows a large XCH4 enhancement over Lottila and Machar 

wetlands in the east SSWR, indicating large emissions from these wetlands. As the source region in Lunt et al. (2019) only 

partially covers these wetlands, our emission estimates are expected to be higher. 230 

 

To calculate wetlands emissions from SSWR, we account for other methane emissions in the region using bottom-up data. 

According to the EDGAR (version 4.3.2, Janssens-Maenhout et al., 2017) inventory for 2012, the total anthropogenic 

emissions from SSWR were 0.43 Tg yr-1 with enteric fermentation (0.36 Tg yr-1 ) being the largest anthropogenic category. 

The region has small emissions from wastewater management (0.03 Tg yr-1), energy for buildings (0.01 Tg yr-1) and manure 235 

management (0.01 Tg yr-1). EDGAR does not report any significant emissions from fossil fuel exploitation sector in the region. 

Recently, Scarpelli et al (2020) presented a new inventory for the oil and gas sector in which UNFCCC reported national 

emissions are spatially allocated to the fossil fuel infrastructure. They report 0.05 Tg yr-1 emissions from SSWR in 2016.  

Biomass burning is the largest natural methane source after wetlands in SSWR with average emissions of 0.20 Tg yr-1 in 2018-

2019 according to GFED4s (0.23 Tg yr-1 in 2018, 0.16 Tg yr-1 in 2019, Van der Werf et al., 2017). Another significant natural 240 

source is the emission from termites (0.16 Tg yr-1, Sanderson, 1996). We subtract the total of these non-wetlands emissions to 

calculate wetland emissions of 7.4 ± 3.2 Tg yr-1  from SSWR in 2018-2019. This estimate is an order of magnitude larger than 

the 0.5 Tg yr-1 wetlands emissions from the prominent Pantanal wetlands of South America in 2010–2018 which are estimated 

using GOSAT inversions by Tunnicliffe et al. (2020).  

 245 

Our SSWR wetlands emission estimate of 7.4 ± 3.2 Tg yr-1 can be an overestimate if the emissions from the above-

mentioned non-wetlands sectors are underestimated in the inventories. However, this is unlikely as it would require a very 

large underestimation in the inventories for the two years studied here. For example, for the oil and gas sector, the annual 

emissions (0.05 Tg yr-1) will need to be underestimated by two orders of magnitude to have a significant error impact on the 

wetland emission estimates. Moreover, the strong seasonality shown by the TROPOMI emission estimates is not expected in 250 

oil and gas emissions. The SSWR biomass burning emissions are higher in comparison to the other sectors, but a large 

underestimation in annual emissions by GFED is unlikely as it uses remote sensing-based fire activity and vegetation 

productivity data. There are a large number of wild animals in the SSWR region, which in total emit 0.03 Tg yr-1 as 

per Crutzen et al. (1986). Livestock is the largest anthropogenic methane source in SSWR region: 0.36 Tg yr−1 in 2012 as per 

EDGAR v4.3.2, and 0.37 Tg yr−1 in 2015 as per EDGAR version 5 (Crippa et al., 2020). South Sudan has a large population 255 

of livestock: 7.5 million dairy cattle, 4.6 million non-dairy cattle, 13.5 million goats and 16.3 million sheep in 2018, which 

causes 0.63 Tg yr−1 of methane emissions (FAOSTATS, 2020). This amount is twice of what we use to calculate the 

wetlands emissions for SSWR. Manure management emissions in SSWR (0.01 Tg/y as per EDGAR v4.3.2) are small even 

though there is a large cattle population in South Sudan due to lack of effective management practices. This is reflected in 

the small emission factors used for manure management for the country by EDGAR, for example, the dairy cattle emission 260 
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factors are 1 kg CH4 head-1 for South Sudan vs 48 kg CH4 head-1 for USA. As per FAOSTATS (2020), the total emissions 

from manure management of dairy and non-dairy cattle, asses, chickens, sheep and goats from the whole South Sudan are 

0.02 Tg yr−1. In the extreme case that all the South Sudan emissions are located in SSWR, it would slightly reduce our 

wetland emission estimate, however, well within its uncertainty margin.  

 265 

 
 

 

3.3 Comparison to wetland process models  

3.3.1 Annual means 270 

SSWR integrated mean methane emission estimates from the process models are nearly an order of magnitude lower than 

those from TROPOMI (Table 2). For example, the multiannual mean emission from LPJ-wsl for 1980-2016 is 1.1 Tg yr-1 

(ranging from 0.5 Tg yr-1 in 1990 to 1.5 Tg yr-1 in 1998). The multi-annual mean individual ensemble estimates from Wetcharts 

Extended Ensemble range from 0.4 Tg yr-1 (uses GLWD) to 1.8 Tg yr-1 (uses GLOBCOVER). Its smallest and largest annual 

emission estimates from these ensemble members are 0.29 Tg yr-1 in 2009 and 2.21 Tg yr-1 in 2013. The Wetcharts Full 275 

Ensemble, with 324 estimates for 2009-2010, has a mean of 0.9 Tg yr-1, ranging from 0.07 to 3.7 Tg yr-1.  

 

Table 2 also presents the maximum inundation extent (i.e., sum of seasonal and permanent wetland areas) used by the process 

models. It range from 25,000 to 69,000 km2 across the models. These inundation extent are up to 4 times lower than the 

observation-based maximum inundation extent estimates of 99,000 km2 by Gumbricht et al. (2017). Huges & Huges (1992) 280 

give the permanent wetland area of the different wetlands in SSWR (Table A1). The sum of these areas is 36,000 km2, 

significantly larger than the permanent inundation extent (i.e., minimum inundation extent ) used in the models (Wetcharts 

Extended Ensemble: 1,000 km2; LPJ-wsl: 14,000 km2; SWAMPS: 16,000 km2). Rebelo et al. (2011) used remote sensing data 

to characterize inundation extent of the Sudd wetlands over a 12 months period, yielding a total wetlands area of 50,000 km2 

(41,000 km2 of seasonally inundated and 9,000 km2 of permanent inundated). According to Huges & Huges (1992), other 285 

wetlands in the SSWR have a total permanent wetlands area of >20,500 km2, meaning that Sudd accounts for only about a 

third of the SSWR’s total wetland area. As other wetlands in SSWR are also along rivers like Sobat, their inundation extent 

likely has a large seasonality, and assuming that the relative seasonal amplitude of inundation extent of these other wetlands 

is similar to that of Sudd would give a total (seasonal + permanent) flooded area of 134,000 km2. Adding the Sudd inundation 

extent yields a total SSWR inundation extent of 164,000 km2, which is larger than the total estimate of 99,000 km2 from 290 

Gumbricht et al. (2017). Overall, we find substantial evidence of underestimations of SSWR inundation extent in the process 
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models, which may explain their emission underestimations as they assume that inundation extent is a strong control of the 

emissions.  

 

We now look at variations in annual mean inundation extent to find a possible cause of high emissions in 2018-2019. Lunt et 295 

al. (2019) attribute the emission increase in South Sudan between 2010 and 2016 to an inundation extent increase in the Sudd 

owing to an increased water inflow from the White Nile river found in satellite altimetry-based river water height 

measurements. To investigate this for the period 2018-2019, we look at trends in water height (see Fig. 4) of Lake Victoria, 

and White Nile and Sobat rivers. Similar to Lunt et al. (2019), we observe a rapid water height increase during 2011–2014. 

After this period, water levels stabilize and slightly decrease but remain significantly higher than in 2009–2010. 2019 shows 300 

the highest water level for the Sobat river due to a renewed positive trend from 2017 onward. This suggests that the total SSWR 

inundation extent was significantly higher in 2018-2019 than the pre-2011 levels. In contrast, the inundation extent data used 

in the process models, shown in Fig. 4a, have negative trends, which means that the process models do not account for the 

emission increase during 2010-2016 due to increasing inundation extent, as suggested by Lunt et al. (2019).  

 305 

Inundation extent estimates from the remote sensing-based SWAMPS also do not show the increase and underestimate annual 

means. Schroeder et al. (2015) have recommended not to use SWAMPS absolute inundation extent as the microwave sensors 

used in SWAMPS have limited capability to detect water underneath the soil surface or beneath closed forest canopies. This 

effect can impact also the temporal changes, in addition to the absolute inundation extent, as such flooding beneath the forest 

canopies would also not be observed. It is unclear why TOPMODEL, which accounts for lateral water transport processes, 310 

does not capture the trend in river outflow. These are interesting topics for follow-on investigations. 

3.3.2 Seasonal cycle 

Next, we assess the seasonal cycle of the TROPOMI-derived emission estimates. Figure 5a shows the seasonal cycles in 2018 

and 2019. The largest emissions are in DJF in 2018, while DJF, MAM and SON have large emissions of similar magnitude in 

2019. In both 2018 and 2019, TROPOMI emissions are lowest in JJA; in contrast, the process models estimate the lowest 315 

emissions in DJF (Fig. 5c). We investigate this mismatch by looking at the seasonal cycle of inundation extent in the models. 

The model emissions have a strong correlation with the inundation extent they use (Wetcharts R = 0.91; LPJ-wsl R = 0.94, 

where R is correlation coefficient), indicating that the seasonality of emissions is driven by inundation extent. In fact, the 

differences in inundation extent seasonality between LPJ-wsl and Wetcharts are consistent with the emissions differences; for 

example, both inundation extent and emissions in LPJ-wsl are lower than in Wetcharts during MAM.  320 

 

The seasonality of the altimetry-based river water height measurements, shown in Fig. 5d, is highest in SON and is very 

different from Wetcharts inundation extent (highest in JJA). This can partially explain the difference in the seasonal cycles of 

Wetcharts and TROPOMI emissions. The seasonal cycle of Wetcharts inundation extent is strongly correlated with local 
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precipitation (Fig. 5b), as the intra-annual inundation extent variation is calculated using precipitation. However, this method 325 

would not accurately account for inundation extent variation due to lateral water fluxes and evapotranspiration. Surface runoff 

is especially important for river-fed wetlands like Sudd, whose inundation extent is controlled by water inflow from the White 

Nile because the evapotranspiration rate exceeds rainfall in the region (Lunt et al., 2019; Sutcliffe and Brown, 2018). LPJ-wsl 

inundation extent seasonality shows better agreement with the river height data as it is calculated using TOPMODEL, which 

accounts for the lateral fluxes and evapotranspiration. However, LPJ-wsl emissions still show large differences with the 330 

seasonal cycle of TROPOMI emissions. Previous remote sensing studies for the Sudd wetlands have found the largest 

inundation extent during September-January in 2007-2008 (Robelo et al., 2012) and during December-January in 1991–1992 

(Travaglia et al., 1995), in better agreement with river height measurements than the process models. Overall, inundation extent 

seasonality of models appears to be significantly off, which can explain part of the mismatch between TROPOMI and model 

emissions.  In both 2018 and 2019, TROPOMI emission estimates are the lowest during JJA, while river height measurements 335 

are the lowest in MAM. A similar seasonal cycle mismatch in the GOSAT emission estimates and inundation extent, derived 

using MODIS Land Surface Temperature (LST) as a proxy, is shown in Lunt et al (2019). Furthermore, they find the highest 

emissions trend during SON, which had the smallest trend in inundation, but no trend in emissions during MAM, which has 

the highest inundation extent trend (i.e. strongest negative LST trend).  

 340 

An explanation for the difference in seasonal phasing can be a higher temperature dependence of emissions than suggested by 

the models as temperatures are lowest during JJA. We evaluate this hypothesis using Wetcharts Full Ensemble, which provides 

a total of 324 emission estimates for three temperature dependences q10 (=1, 2, 3; see Bloom et al., 2017). Figure 6 compares 

the average seasonal cycle of TROPOMI emissions with Wetcharts emissions using different q10’s (see also Table 3). 

Wetcharts emissions with q10 = 1 have the poorest agreement with the seasonal cycle of TROPOMI (R = -0.62). Interestingly, 345 

these emissions also have the lowest annual means (= 0.5 Tg yr-1). Conversely, Wetcharts emissions with q10 = 3 have the 

best correlation with TROPOMI (R = -0.28) and have the largest annual mean (=1.0 Tg yr-1). In fact, the member estimate––

out of the 324-member Full Ensemble ––with the largest annual emissions of 3.7 Tg yr-1 has the best correlation with 

TROPOMI (R = 0.00).  As expected, this member uses q10 = 3. The agreement of TROPOMI with the larger q10 model 

estimates, in terms of both annual mean and seasonal cycle, suggests that wetland emissions from SSWR have a large 350 

temperature dependence. In their study of wetlands in the Amazon Basin, Tunnicliffe et al. (2020) pointed to temperature as a 

more important control on methane emissions than inundation extent. They find a simultaneous, spatially correlated emission 

and temperature increases in the west Brazilian Amazon during the El-Nino of 2015, with unchanged inundation extent. 

Moreover, Wilson et al. (2016) found a negligible impact on wetlands emissions in the Amazon basin despite the large 

difference in precipitation between 2010 and 2011, which impacted inundation extent significantly. Note that it is also possible 355 

that the higher q10’s we find for SSWR emissions are simply compensating for errors due to a misrepresentation of inundation 

extent or other factors covarying with temperature.  
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Figure 7 shows the emission anomalies time series from TROPOMI along with temperature and inundation extent, which we 

assume to be proportional to river height. A small lag between the river height and inundation extent is expected, but we expect 360 

it to be negligible in comparison to a full season. We observe that the emissions show a strong correlation with temperature 

(R= 0.49), but a poorer correlation with inundation extent (R= 0.24). The emissions peak a full season later than inundation 

extent, and accounting for this seasonal lag improves the correlation significantly (R= 0.80). An explanation for this can be 

the higher temperature dependence of emissions discussed earlier. Another explanation could be the “activation” time of 

methanogenesis, as after flooding it takes time for anoxic conditions to develop and alternative electron acceptors to be 365 

depleted. Jerman et al. (2009) documented that methane emissions from water-saturated soil slurries remained very low for a 

long time: methane production started after a lag of 84 days at 15 C and a minimum of 7 days at 37 C, the optimum 

temperature for methanogenesis. They found that the lag was inversely related to iron reduction, which is expected as iron 

reduction outcompeted methanogenesis. Similarly, Itoh et al. (2011) investigated methane emissions from rice paddy fields 

and found a time lag of a few weeks between the onset of inundation and peak emissions.  370 

 

Process models assume that wetland emissions are instantaneously regulated by inundation extent, and they do not account for 

the time lag as information on the availability of alternate electron accepters is generally not available. This results in an 

incorrect temporal allocation of the wetland emissions. Furthermore, some models assume inundation extent is instantaneously 

regulated by precipitation. In river floodplains like Sudd, inundation extent is mostly controlled by river inflow, and not the 375 

local precipitation, as the evapotranspiration rates exceed the rainfall in the region. Therefore, scaling with precipitation would 

even worse emission estimates. Overall, a combination of temperature and inundation extent dependences that are used in the 

models can explain their seasonal cycle mismatch with TROPOMI emissions. 

 

 380 

5 Conclusions 

XCH4 enhancements over South Sudan have been observed in remote sensing studies suggesting large emissions from the 

Sudd wetlands as the cause (Lunt et al., 2019, Hu et al., 2018, Frankenberg et al., 2011). We observe two large enhancements 

in the region in a 2-year average map of TROPOMI XCH4––over Sudd, and Machar and Lotilla wetlands. Sudd Wetlands are 

flooded by the White Nile river originating from Lake Victoria, while the wetlands in the east are around smaller rivers like  385 

the Sobat originating in the Ethiopian mountains. In this study, we examine these wetlands, and their river systems, together 

to understand the controls of the emissions causing the large XCH4 enhancements.  

 

We estimate methane emissions of 7.4 ± 3.2 Tg yr-1 from wetlands in South Sudan during 2018–2019 using a mass balance 

approach applied to TROPOMI data. We find large differences between the emission estimates from TROPOMI and wetland 390 

process models LPJ-wsl and Wetcharts. The annual mean estimates from TROPOMI are an order of magnitude larger than 
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mean estimates of the models, which may be explained by the up to 4 times underestimated inundation extent in the models. 

We find differences in interannual variability and average seasonal cycles of TROPOMI and models, which can be again 

partially explained by the strong dependence of model emissions on poor inundation extent estimates. We find the lowest 

emission in the highest perception and lowest temperature season JJA, when models estimate large emissions as they 395 

incorrectly assume an instantaneous influence of the precipitation-derived inundation extent. We find that the Wetcharts 

emission estimates that use a stronger temperature dependence (q10 = 3) show a better agreement with TROPOMI concerning 

both seasonality and annual emissions. This indicates that the models may also underestimate the temperature sensitivity of 

the methane emissions.  

 400 

The inundation extent of SSWR is analyzed using satellite altimetry-based river height measurements of White Nile and Sobat 

rivers at locations within the Sudd and Macher wetlands. The inundation extent estimates used in models are based on the local 

precipitation, whereas, the actual inundation extent of SSWR is driven by water inflow from the rivers as evapotranspiration 

exceeds the precipitation in the region. As a result, both the seasonal cycle and trend of model inundation extent disagree with 

river height data. The seasonal cycle of inundation extent from river height data shows better agreement with the TROPOMI 405 

emissions when a full season-long lag between the two is assumed. This time lag can be explained by the time needed for 

methanogenesis to develop in the seasonally flooded areas of the wetlands. A more precise estimate of the lag is not possible 

due to the coarse temporal resolution of our TROPOMI emissions estimates.  

 

The lack of information on the correct relationship of wetland emissions with inundation extent and temperature results in 410 

large model uncertainties. Such large gaps in our understanding of the processes driving wetland emissions call for further 

investigation. As shown here for the wetlands of South Sudan, TROPOMI provides valuable observations over remote and 

inaccessible wetland regions of the world, which future wetland studies can take advantage of. 

 

APPENDIX 415 

Section A1. Systematic Measurement Uncertainties 

Surface albedo and aerosols can alter the optical light path, introducing biases in XCH4 (Butz et al., 2011). Therefore, the 

XCH4 enhancement over South Sudan can be affected by the differences between the source and background region values of 

these parameters. The average retrieved aerosol optical thickness (AOT) and surface albedo in the SWIR band of TROPOMI 

are shown in Fig. A1. For SSWR and its background, the AOT and albedo differences in two-year average data are 0.001 and 420 

-0.10, respectively. The average differences for seasonal average maps are -0.01 ± 0.01, -0.15 ± 0.02 and 16.3 ± 8.4 ppb for 

AOT, albedo and XCH4 respectively. The negative albedo difference for SSWR occurs due to the high albedo the Sahara in 

the background. This small albedo difference is unlikely to influence the SSWR XCH4 enhancement significantly, especially, 
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as an albedo-based bias correction is applied to the XCH4 in operational TROPOMI product (Hasekamp et al., 2019). We also 

examined the possibility that the XCH4 enhancement over South Sudan is an artefact of sun glint geometry of TROPOMI 425 

observations due to refection on standing water of the Lakes and inundated areas in the region. This can happen when the 

observation geometry over a water body surface is at the specular reflection angle (i.e., the viewing zenith angle matches the 

solar zenith angle) causing a spike in the level 1 radiance measurements. However, this was found not to occur over the 

wetlands of South Sudan. 

 430 
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Table 1. SSWR XCH4 enhancement and emission estimates. The enhancements (∆XCH4
 ) is the XCH4 difference between 

SSWR and the background after correcting XCH4 for latitudinal variation. Data coverage is defined here as the fraction of 0.1 

×  0.1 grid cells in SSWR with at least five high-quality TROPOMI measurement in a quarter. Wind speed is the average 640 

boundary layer wind from ERA5. Emission estimates are calculated using Eq. (1). ± represents 1 σ uncertainty.  

 

Season Data coverage (%) Wind speed (m s-1) 
XCH4 enhancement 

(ppb) 
Emissions (Tg yr-1) 

DJF-2018 91 3.5 ± 0.9 16.5 ± 4.3               11.5 ± 4.2 

MAM-2018 74 2.1 ± 1.2  20.2 ± 4.1                8.5 ± 5.1 

JJA-2018 44 2.7 ± 0.3   10.5 ± 4.1                5.7 ± 2.3 

SON-2018 83 2.7 ± 0.4   18.7 ± 4.3               10.1 ± 2.8 

DJF-2019 98 3.2 ± 0.9   13.4 ± 2.7                8.6 ± 3.0 

MAM-2019 92 3.1 ± 0.8  13.6 ± 3.6                8.4 ± 3.1 

JJA-2019 43 2.8 ± 0.3   2.6 ± 3.7                1.4 ± 2.1 

SON-2019 83 1.9 ± 0.2    29.3 ± 4.0               11.2 ± 1.9 
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 645 

 

 

Table 2. Annual emission and maximum inundation extent estimates for SSWR. The values in parentheses show 1-standard 

deviation spread over the given periods. The dashed values give the range of Wetcharts ensemble estimates. 

 650 
 

Period Maximum inundation 

extent (103 km2) 

Emissions (Tg yr-1) 

Wetcharts Extended 

Ensemble/GLWD 

2001-2015 32 (7) 0.4 (0.1) – 1.0 (0.2) 

Wetcharts Extended 

Ensemble/GLOBCOVER 

2001-2015 69 (10) 0.70 (0.1) – 1.8 (0.2) 

Wetcharts Full Ensemble  2010 30–66 0.07 – 3.7 

LPJ-wsl/ TOPMODEL 1980-2016 57 (9) 1.1 (0.25) 

SWAMPS 2001-2019 25 (5) – 

Gumbricht et al. (2017) 2011 99 – 

TROPOMI 2018-2019 – 7.4 ± 3.2 
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Table 3. Annual emission estimates from Wetcharts Full ensemble (2010) for different temperature dependencies, and 

correlation coefficient (R) of their respective average seasonal cycle with TROPOMI emissions. 655 

 

Temperature 

dependence (q10)  

Emissions (Tg yr-1) R (with 

TROPOMI) 

1 0.5 -0.62 

2 0.8 -0.41 

3 1.0 -0.28 

Maximum* 3.7 0.00 

*The maximum annual emission estimate in the 324-member ensemble of Wetcharts Full Ensemble. Its q10 is 3. 
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Table A1. The total permanent SSWR inundation extent from Huges & Huges (1992).  

 660 

Wetlands in SSWR Wetland Area (km2) 

Sudd  16,500 

Machar marshes 9,000 

Lottila Swamps 2,000 

Veveno, Adiet  and LiLebook 6,500 

Kenamuke and Kobowen swamps 1,700 

Bahr el Ghazal floodplains 900 

Total 36,000 
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 665 

Figure 1. The TROPOMI XCH4 enhancement over the South Sudan wetlands. (a) Average of two years (December 2017 to 

November 2019) of TROPOMI XCH4 at 0.1 ×  0.1 resolution (b) Wetlands in South Sudan from Gumbricht et al. (2017) are 

shown in green, and the rivers in the region are shown in blue. The area within the blue rectangle (5–10 N and 28–34.5 E) 

is referred to as South Sudan wetlands region (SSWR). The red dots show the locations of satellite altimetry-based river water 

height measurement sites.  670 
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 675 

Figure 2. Seasonally average TROPOMI XCH4 (ppb) at 0.1 ×  0.1 resolution. The black rectangle at the centre of each panel 

shows the SSWR source region. The area outside of it is used as the background region. XCH4 is corrected for large-scale 

latitudinal variation by subtracting a 3rd order polynomial fit using the region shown by blue rectangles in panel a. The region 

excludes the longitudes of the source region. Note that DJF includes December of the previous year. 

 680 
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Figure 3. Monthly average boundary layer ERA5 winds in SSWR. Wind speeds (X-axis) and directions (color of the markers) 685 

at 10:00 UTC, which is the closest hour to the local TROPOMI overpass time, are shown at different pressure levels of the 

model. The markers with dark edges represent 10-meter height winds. 

 

 

 690 
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 695 

Figure 4. SSWR inundation extent estimates. (a) Annual anomalies of inundation extent estimates of SWAMPS, TOPMODEL 

and Wetcharts (ERA-interim), used in process models, and ERA5 precipitation, expressed in the unit of the standard deviation 

of the respective annualized time series. (b) Water height anomalies for the altimetry sites in Lake Victoria, and White Nile 

(WNS3) and Sobat (SOS1) rivers from the Hydroweb database. Locations of these altimetry sites are given in Figure 1. Here 

we only use the altimetry sites which have a sufficiently long temporal coverage that includes 2018-2019. 700 
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Figure 5. Mean seasonal cycles expressed in the unit of the standard deviation of respective time series. (a) Emission estimates 705 

from TROPOMI; (b) precipitation and temperature from ERA5 (2010-2019); (c) emissions and inundation extent from the 

process models LPJ-wsl and Wetcharts Extended Ensemble; (d) river water height measurements at the altimetry sites given 

in Figure 1b. The vertical bars represent 1-standard deviation spread over different years.  
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Figure 6. Seasonal cycle of SSWR emissions. Methane emissions from Wetcharts Full Ensemble for 2010 (December 2009 –

November 2010) and TROPOMI are shown. The solid lines show the average of an emission estimate ensemble for a 715 

temperature dependency (q10). The dashed line shows the seasonal cycle of the Wetcharts estimate that has the largest annual 

emissions. All values are shown in the unit of standard deviation.  

 

 

 720 
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Figure 7. Seasonal anomalies in SSWR. (a) TROPOMI emissions estimates, ERA5 temperature and inundation extent, from 

river height measurements, are shown. (b) Local precipitation and SWAMPS inundation extent data are shown. All values are 

expressed in the unit of standard deviation. Correlation coefficients (R) of TROPOMI emissions with temperature, river height, 725 

SWAMPS and precipitation are 0.49 and 0.24, –0.33, –0.67, respectively.  
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Figure A1. Average TROPOMI data (2018-2019) at 0.1 × 0.1 resolution. The albedo and AOT are retrieved for the SWIR 

band at 2.3 𝜇m.  730 
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