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Abstract. Nearly every nation has signed the UNFCC Paris Agreement, committing to mitigate global anthropogenic carbon

(Cant) emissions and limit global mean temperature increase to 1.5◦C. A consequence of emission mitigation is reduced

efficiency of ocean Cant uptake, which is driven by mechanisms that have not been studied in detail. The historical pattern

of continual increase in atmospheric CO2 has resulted in a proportional increase in Cant uptake. Here, we explore how this

proportionality will weaken and find significant effects related to changes in the vertical transfer of Cant from the surface5

to the deep ocean, and also ocean chemistry. We define ocean uptake growth consistent with an exact proportionality to the

atmospheric growth rate, i.e. the historical scaling, to be 100% efficient. Using a model hierarchy consisting of a commonly

used one-dimensional ocean carbon cycle model and a complex Earth System Model (ESM), we find that declines in the

efficiency of ocean uptake are greatest under aggressive emission mitigation. To understand the drivers of efficiency declines,

we use the ESM to compare scenarios with aggressive emission mitigation (1.5◦C), intermediate emission mitigation (RCP4.5),10

and no emission mitigation (RCP8.5). Using the one-dimensional ocean carbon cycle model, we demonstrate how growth of

ocean Cant uptake is a balance between enhancement due to a positive atmospheric CO2 growth rate, and decreases due to

the positive growth rate of dissolved CO2 in the surface ocean. Without emission mitigation (RCP8.5), changes in efficiency

are almost entirely the result of changes in the buffer capacity of the ocean, which accelerates the growth rate of dissolved

CO2 in the surface ocean. Under the declining CO2 regime of the 1.5◦C scenario, the dominant driver of efficiency decline15

is the carbon gradient effect, wherein Cant in the ocean interior slows the removal of Cant from the surface. Although the

carbon gradient effect is an unavoidable consequence of emission mitigation, it can be reduced by hastily pursuing emission

mitigation.

1 Introduction

The ocean has absorbed 39% of the CO2 from industrial era fossil fuel combustion and cement production (Friedlingstein20

et al., 2019). The rest of the CO2 remains in the atmosphere where it acts as the primary driver of climate change. At the global

scale, the partial pressure of CO2 in the atmosphere (pCOatm
2 ) is greater than the partial pressure of CO2 in the surface ocean

(pCOocn
2 ), thus there is a net ocean sink. The difference in partial pressures has grown over time, therefore ocean uptake of

atmospheric CO2 has increased over the industrial era (Khatiwala et al., 2009; DeVries, 2014). The carbon that has been added

to the ocean and atmosphere as the result of anthropogenic CO2 emissions is referred to as anthropogenic carbon, Cant.25
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The rate of ocean Cant uptake is controlled by the rate of physical removal of Cant from the surface ocean into the ocean

interior. Various processes set the rate of physical Cant removal, with significant contributions coming from vertical diapycnal

diffusion and isopycnal eddy diffusion (Bopp et al., 2015; Gnanadesikan et al., 2015). Advection dominates regional patterns

Cant fluxes into (reemergence) and out of (subduction) the seasonal mixed layer (Bopp et al., 2015; Toyama et al., 2017). The

large positive and negative signs of the advective flux mostly cancel when globally integrated (Bopp et al., 2015), thus advection30

does not play a dominant role in setting the globally integrated Cant air-sea flux. In density space, Cant is primarily absorbed

in lighter subtropical waters, and then transferred to denser mode and intermediate waters by diapycnal fluxes associated with

watermass transformation (Iudicone et al. 2016). Using an effective surface diffusivity (Kz,eff ), i.e. summarizing the net

removal by these processes as a single diffusive process, one-dimensional diffusion models have been shown to be consistent

with observations and complex models (Gnanadesikan et al., 2015; Oeschger et al., 1975).35

Growth of the natural sinks (land biosphere and ocean) has been outpaced by the growth of atmospheric CO2 and thus sink

efficiency has declined (Canadell et al., 2007; Raupach et al., 2014). Efficiency of land and ocean sinks is described by the

CO2 sink rate (kS ; Raupach et al., 2014), which is the combined ocean-land CO2 uptake per unit atmospheric CO2 above

preindustrial levels (Cant,A; Pg C):

kS(t) =
Fant,L(t) +Fant,M (t)

Cant,A(t)
(1)40

WhereFant,L (Pg C yr−1) is the anthropogenic land sink andFant,M (Pg C yr−1) is the anthropogenic ocean sink. Observations

of kS from 1959-2012 indicate a robust declining trend, and thus the rate of increase in the natural sinks was slower than the

accumulation of carbon in the atmosphere. Using a simple climate model, Raupach et al. (2014) attribute the declining trend to

slower-than-exponential CO2 emissions growth (∼35% of the trend), a decline in the size of major volcanic eruptions, which

cause brief periods of global cooling (∼25%), response of the natural sinks to a warming climate (∼20%), and nonlinear45

responses to increasing atmospheric CO2 (mostly attributable to ocean chemistry; ∼20%).

Slowing of the emissions growth rate, and thus the pCOatm
2 growth rate, reduces the efficiency of ocean Cant uptake

(McKinley et al., 2020; Raupach et al., 2014); this response is related to the timescales of Cant transfer to the ocean interior

(Raupach et al. 2014). A reduced pCOatm
2 growth rate is inevitable, due either to climate policy, or by the eventual exhaustion

of fossil fuel reservoirs. Nearly every nation has signed the Paris Agreement, which requires participating governments to50

pledge to mitigate future greenhouse gas emissions in an attempt to limit the global mean temperature increase to 1.5◦C. While

countries’ emissions pledges are incompatible with the 1.5◦C goal (UNEP, 2019), continued commitment to these emissions

pledges will inevitably end the historical pattern of exponential pCOatm
2 growth in coming decades.

The reductions to efficiency that are attributable to a slowing pCOatm
2 growth rate will be at least partially compensated by

a decrease in the strength of the climate-carbon feedbacks that reduce efficiency of ocean Cant uptake (Friedlingstein et al.,55

2013; Raupach et al., 2014). Past studies have separated carbon cycle feedbacks into CO2 concentration effects and climate

driven effects (Friedlingstein et al., 2013). The CO2 concentration driven effect is the net result of two effects: increased flux

driven by increasing pCOatm
2 and reduced flux driven by a declining buffer capacity of the ocean. The buffering capacity of
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the ocean refers to the transfer of absorbed CO2 via chemical reactions into chemical species that do not exchange with the

atmosphere. As more CO2 is added to the ocean, buffer capacity decreases (Fassbender et al., 2017). When buffer capacity is60

reduced, more of the CO2 remains in a form that can exchange with the atmosphere and the efficiency of ocean Cant uptake

declines.

Climate driven effects stem from the warming of the surface ocean, which impacts gas solubility and ocean circulation.

Projected warming reduces ocean uptake (Friedlingstein et al., 2013) and thus reduces the efficiency of ocean uptake . This

impact of warming on future carbon uptake has been quantified using a climate feedback framework (Friedlingstein et al.,65

2013; Randerson et al., 2015; Schwinger and Tjiputra, 2018). However, the idealized simulations used in these studies have

not allowed for quantification of the additional contribution of reduced buffering capacity to reduced ocean carbon uptake.

This work expands upon previous work that has quantified future change in ocean Cant uptake by separately accounting

for changes due to buffering. We will compare a future scenario with moderate levels of mitigation (RCP4.5; Meinshausen

et al., 2011), and an aggressive mitigation scenario where the 1.5◦C target is met (1.5◦C; Sanderson et al., 2017) to RCP8.570

using an Earth System model (ESM). In the RCP8.5 scenario (Meinshausen et al., 2011), pCOatm
2 increases exponentially

and represents our no mitigation baseline. With our set of ocean carbon cycle simulations, we will calculate how warming and

reduced buffering, referred to here as chemical capacity, affect ocean Cant uptake.

The contribution of ocean Cant uptake to kS is referred to as kM :

kM (t) =
Fant,M (t)
Cant,A(t)

(2)75

In the past, kM has been influenced by a slowing of the CO2 emissions growth rate (McKinley et al., 2020), volcanic aerosol

induced cooling of the surface ocean (McKinley et al., 2020), changing ocean chemistry, and changes to physical climate

(Friedlingstein et al., 2013).

Under exponentially increasing pCOatm
2 , constant gas solubility, and constant chemical capacity, kM , would remain con-

stant, and thus by definition, the proportionality between increases in atmospheric CO2 and increases in ocean Cant uptake80

would also remain constant. Because these conditions approximately describe the historical conditions of the ocean carbon

cycle, constant proportionality for ocean Cant uptake has been used as a null hypothesis in studies of the drivers of historical

regional and global scale changes in the ocean carbon cycle (Lovenduski et al., 2008; Gruber et al., 2019a). Here we refer to

this constant proportionality (i.e. kM = constant) as the "historical scaling", instead of the seemingly contradictory original

term, the "transient steady state assumption" (Gammon et al., 1982; Tanhua et al., 2007; Lovenduski et al., 2008; Gruber et al.,85

2019a). With constant kM , the evolution of ocean Cant concentration at all points in space also follows the historical scaling.

This is because the exponential shape of pCOatm
2 is passed on to pCOocn

2 by the Cant air-sea flux. The amplifying effect that

approximately exponentially increasing pCOatm
2 has on the ocean Cant concentration and ocean Cant uptake can be removed

using the historical scaling, and in previous work, deviations from the historical scaling for ocean Cant uptake and Cant con-

centrations have been attributed entirely to internal ocean mechanisms. However, we illustrate that previous work has likely90

overestimated of the impacts of internal variability on the ocean carbon cycle, given the close relationship between the histor-
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ical scaling and kM , which is sensitive external mechanisms such as volcanic forcings and pCOatm
2 growth rate (McKinley

et al., 2020).

The focus of this work is to determine the primary mechanisms in projections of future climate that will drive reductions

to the efficiency of ocean Cant uptake under emission mitigation and, thus, a reduced growth rate of atmospheric CO2. Here95

we consider efficiency of ocean Cant uptake as a measure of how effectively the input, pCOatm
2 , is converted into the desired

output, ocean Cant uptake. More efficient ocean Cant uptake would result in the ocean absorbing more carbon at a given

pCOatm
2 . In the following sections, we use a one-dimensional ocean carbon cycle model to diagnose the mechanisms of

efficiency decline in climate projections from a complex ESM, with the goal of understanding future changes in the efficiency

of ocean Cant uptake.100

2 Methods

In this section, we develop equations for ocean sink efficiency and introduce our one-dimensional ocean carbon cycle model.

We identify the mechanisms driving changes in efficiency by comparing the behaviour of a one-dimensional ocean carbon

cycle model to an ESM, the Community Earth System Model (CESM). CESM simulations are publicly available, provided by

the National Center for Atmospheric Research (NCAR). The one-dimensional ocean carbon cycle model emulates the ocean105

circulation and carbon cycling of the ESM, but allows for rapid integration to facilitate mechanistic exploration.

2.1 Efficiency Metric and Historical Scaling

Ocean sink rate (kM ; Equation 2) represents the efficiency of ocean Cant uptake. The efficiency metric used here, η, is kM

referenced to the year 1990, so that efficiency may be expressed as a percentage:

η(t) =
kM (t)

kM (1990)
× 100 (3)110

Referencing kM to 1990 values maximizes the time ocean Cant uptake is at 100% efficiency during the historical period,

1920-2006 (Figure S1). The historical scaling for ocean Cant uptake (Fant) is closely related to kM :

∗
F ant(t) = kM (1990)Cant,A(t) = Fant(1990)

Cant,A(t)
Cant,A(1990)

(4)

The rightmost expression in Equation 4 is the Fant historical scaling, and is based the assumption of constant efficiency,

and thus mathematically equivalent to extrapolating Fant using a fixed kM (Equation 2,4). The overset "*" notation indicates115

the variable that has been extrapolated with the historical scaling. When using the historical scaling, Fant(1990) is diagnosed

from the CESM, and
∗
F ant(t) is obtained mathematically by extrapolating Fant(1990) based on the relative increase in atmo-

spheric Cant from 1990 values ( Cant,A(t)
Cant,A(1990) ). For example, Fant(1990) simulated by CESM was 1.7 Pg Cant yr−1, and the

atmospheric perturbation in 1990 was 74 ppm (∼157 Pg C). In the future, if the atmospheric perturbation is doubled from 1990
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values to 148 ppm (∼314 Pg C),
∗
F ant would also double to 3.4 Pg Cant yr−1. Expressing ocean carbon sink efficiency (η) as120

Equation 5 illustrates the link to the historical scaling:

η(t) =
Fant(t)
∗
F ant(t)

× 100 (5)

Equation 5 is equivalent to Equation 3, and is obtained by expanding Equation 3 into terms of Fant and Cant,A. Under

the approximately exponential pCOatm
2 increase of the historical period, kM is relatively constant, thus Fant(t)≈

∗
F ant(t)

and historical period efficiency is ∼100%. Because it is approximately equal to Fant,
∗
F ant has been used by biogeochemical125

oceanographers to estimate historical Fant(t) (Lovenduski et al., 2008). In the future, as kM declines from 1990 values, Fant

will be less than
∗
F ant(t), and efficiency will decline. Here

∗
F ant(t), extrapolated into the future with projected pCOatm

2 , will

be used to represent an upper bound for future ocean Cant uptake.

While kM remains constant, the global mean ocean Cant profile (Cant(z, t)) can also be estimated (
∗
Cant(z, t)) using the

historical scaling (Tanhua et al., 2007; Gruber et al., 2019a):130

∗
Cant(z, t) = Cant(z,1990)

Cant,A(t)
Cant,A(1990)

(6)

The Cant historical scaling exists because the Cant air-sea flux is effectively "pulling" pCOocn
2 towards pCOatm

2 , so under

the observed exponentially increasing pCOatm
2 , pCOocn

2 and pCOatm
2 are both exponential curves. Because ocean chemistry

has remained relatively constant over the historical period, we have been able to assume that surface ocean Cant concentration

is linearly related to pCOocn
2 . Mathematically, surface ocean Cant concentration is closely related to the time integral of the135

Cant air-sea flux (Methods 2.3). Therefore, because the integral of an exponential is also an exponential, surface Cant concen-

tration has also increased exponentially, and that exponential is then propagated by ocean circulation to deeper layers. However,

looking forward, the linear relationship between Cant concentration and pCOocn
2 will end due to a decreasing chemical ca-

pacity for CO2. Also, the propagation of the surface exponential signal to depth by ocean circulation is not instantaneous, thus

when emissions are mitigated, waters towards the surface will be changing in proportion to flattening atmospheric CO2 , but140

deeper in the water column they will be changing in proportion to the exponential atmospheric CO2 signal from decades prior.

Future Cant(z), will deviate from
∗
Cant(z).

2.2 Ocean Component of the Earth System Model

The CESM provides a realistic simulation of the response of the ocean carbon cycle to climate change. The CESM’s ocean

component model, POP2, provides the ocean biogeochemistry output analyzed in sections 3.1 and 3.2. POP2 output is from145

publicly available CESM climate simulations provided by NCAR. POP2 features 60 vertical levels and a nominal 1◦ x 1◦

horizontal resolution. Surface boundary layer physics are parameterized using the K-Profile Parameterization (KPP) of Large

et al. (1994). Unresolved advection by eddies is parameterized with the Gent-McWilliams parameterization (1990). Isopyc-

nal mixing is parameterized with the Redi (1982) diffusion operator. The biogeochemical output comes from the embedded
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Biogeochemical Elemental Cycle (BEC) model (Moore et al., 2004). Cant concentration is calculated in the model as the150

difference between natural carbon (Cnat), a tracer that experiences a fixed preindustrial pCOatm
2 , and contemporary carbon

(Ccon), a tracer that experiences time evolving pCOatm
2 .

All of the climate simulations used here are forced with pCOatm
2 from the Representative Concentration Pathways (RCPs)

or a 1.5◦C scenario (Sanderson et al., 2017) from 2006-2080. Over the historical period, 1920-2005, these simulations are

forced with observations of pCOatm
2 . For the 1.5◦C scenario, a concentration pathway was designed that limited warming155

the CESM to 1.5◦C, for the purpose of investigating avoided climate impacts (Sanderson et al., 2017). This scenario features

the same forcing as RCP8.5 until 2017, except for CO2. The projected CO2 forcing was not smoothly joined to the historical

CO2 forcing, creating a period of low Cant flux, which the ocean Cant sink recovers from by 2017 (Figure S2).

Multiple simulations are run with the same pCOatm
2 forcing to generate single model ensembles for each scenario. The

ensemble approach allows for separation of internal variability from the forced signals, with the latter being the focus of this160

study. NCAR has run multiple ensembles with different forcings including CESM Large Ensemble (40 members, RCP8.5; Kay

et al. 2014), CESM Medium Ensemble (15 members, RCP4.5), and the CESM Low-Warming Ensemble (10 members, 1.5◦C;

Sanderson et al., 2017). Ocean biogeochemistry output is limited to 9 members for the medium ensemble and the 3 for the low

warming ensemble, thus we also only use 9 ensemble members for the RCP8.5 experiment.

In coupled climate models, historical climate variability of the carbon sink is not expected to match observations because165

the phasing of ENSO or other internal climate variability is different in each ensemble member. Averaging across an ensemble

removes the imprint of internal variability leaving only the climate system response to external forcing. With only a single

coupled climate simulation, decadal means are used to smooth internal climate variability, but with an ensemble, a single

year of the ensemble mean provides a snapshot of the climate response to external forcing. All output analyzed here is the

ensemble mean because we are focused on the externally forced signal. CESM is used for maps and sections, and we tune a170

one-dimensional model to replicate its global mean behavior to elucidate the underlying mechanisms.

2.3 One-Dimensional Ocean Carbon Cycle Model

The behavior of the one-dimensional ocean carbon cycle model is more easily interpreted than the behavior of the complex

ESM. Here we employ an established one-dimensional ocean carbon cycle model that is based on impulse response functions.

This model is easily interpretable and has been used for decades to emulate ocean carbon uptake simulated by complex ESMs175

(Joos et al., 1996; Meinshausen et al., 2011; Raupach et al., 2014). The impulse response function form of our model has been

used to convert emissions projections into the CO2 concentration pathways (RCP4.5, RCP8.5) that are used to force the CESM,

as well as others in the CMIP5 suite of ESMs (Meinshausen et al., 2011) used in IPCC AR5 (Cias et al., 2013).

Impulse response functions can be used to characterize the response of dynamical systems to small perturbations around a

steady state. In our case, the small perturbation is the Cant perturbation to the preindustrial carbon cycle. With this method,180

the full response of the system is considered to be the sum of the system’s response to infinitely many discrete pulses. For the

ocean carbon cycle, a pulse is the Cant added to the surface ocean by air-sea exchange for a time frame specified by the one-

dimensional model’s time step. The impulse response function describes how long that Cant pulse remains in surface ocean.
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Cant air-sea flux and surface Cant concentration are calculated at each time step, while the response function is fixed. The

surface ocean Cant is mathematically expressed as the convolution integral of the impulse (Cant air-sea flux) and the impulse185

response function (lifetime of that Cant pulse). A conceptual version of this approach is illustrated in Appendix A.

The one-dimensional model is forced with the same historical and projected pCOatm
2 that is used to force the ocean com-

ponent of the ESM, and historical and projected SST change simulated by the ocean component of ESM. With this one-

dimensional model we can calculate the annual mean Cant concentration and the globally integrated Cant air-sea flux. The

one-dimensional model consists of two equations (Equation 7,10) that are solved at each timestep to obtain the air-sea flux of190

Cant:

Cant(t) =
1
h

t∫

ti

Fant(u)r(t−u)du (7)

This is the convolution integral of Cant air-sea flux (Fant) and the mixed-layer impulse response function, r(t). A convo-

lution integral calculates the concentration at time t by calculating the fraction of previous pulses (Fant(u)), that entered the

ocean at times u (from ti = 0 to t), that remain in the surface ocean at time t. The effective mixed layer depth, h, converts the195

output of the convolution integral into from mmol m−2 to units of mmol m−3. We use h to tune the historical Cant air-sea flux

of the one-dimensional model to the historical Cant air-sea flux of the ocean component of the ESM. In our case, the optimal

h to match the behavior of the CESM ocean component model is 109 m.

The mixed-layer impulse response function (r(t)) used here is from Joos et al. (1996), and was diagnosed by those authors

from the box-diffusion model, HILDA (HIgh Latitude-exchange/interior Diffusion-Advection). With this method, the response200

function is fixed throughout time, which is equivalent to the assumption that ocean circulation is constant.

The convolution integral (Equation 7) represents the time integral of a box-diffusion model’s surfaceCant tendency equation:

∂Cant

∂t
=
Fant

h
+
Kz,eff

h

∂Cant

∂z
(8)

Cant(t) =
1
h

t∫

0

(
Fant +Kz,eff

∂Cant

∂z

)
dt (9)

Where h again, is the effective mixed layer depth (same as Equation 7) and Kz,eff is the effective vertical diffusivity of the205

one-dimensional model. The one-dimensional model’s Kz,eff must match that of the ocean component of the ESM in order

for the growth of Cant uptake of the one-dimensional model to match that of the ocean component of the ESM (Gnanadesikan

et al., 2015). Diagnosing an ocean model’s mixed layer impulse response function diagnoses the netCant removal by simulated

physical processes, and thus the Kz,eff of the ocean model. However, diagnosing the mixed layer impulse response function

requires special simulations (Joos et al., 1996), and is unnecessary if one instead uses h as tuning parameter (Meinshausen et al.,210

2011). Experiments with one-dimensional carbon cycle models show that Kz,eff is indirectly tuned by adjusting h (Oeschger

et al., 1975). Thus by changing h of the one-dimensional model, we can match the Kz,eff of the CESM and therefore the

one-dimensional model replicates CESM ocean Cant uptake over the historical period.
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Cant(t) and Fant are calculated explicitly by the one-dimensional model, and the second term on inside the integral in

Equation 9, the diffusive Cant flux, is not modeled explicitly by the one-dimensional model, but can be determined exactly by215

residual. In the one-dimensional model, the Cant air-sea flux is calculated as follows:

Fant = ckg(pCOatm
2 − pCOocn

2 ) (10)

Fant is the ocean flux of anthropogenic carbon, which is dependent on the air-sea partial pressure gradient and the gas ex-

change coefficient (m−2 yr−1). A conversion factor, c, converts the flux units from ppm m−2 yr−1 to mmol m−2 yr−1. We

calculate pCOocn
2 as the preindustrial pCOocn

2 (pCOocn,PI
2 ) plus an anthropogenic perturbation (δpCOocn

2 ). Model calcula-220

tion of δpCOocn
2 is based on a parameterization that includes effects of changing buffer capacity and temperature (Appendix

B).

2.4 Process Decomposition Using One-Dimensional Ocean Carbon Cycle Model Simulations

Table 1. Description of the two experiments conducted with the one-dimensional carbon cycle model (Control and Constant Chemical

Capacity), the historical scaling experiment, and the effects quantified from these experiments.

Experiment Name Description Symbol Scenarios

All Effects (Control) full chemistry ∆Ctotal RCP8.5, RCP4.5, 1.5◦C

Constant Chemical Capacity constant buffer factor ∆Cccc RCP8.5, RCP4.5, 1.5◦C

Historical Scaling1 constant efficiency ∆
∗
Chs RCP8.5, RCP4.5, 1.5◦C

Effect Name Effect Symbol Equation

Carbon Gradient Effect ∆Ccgrad ∆Cccc−∆
∗
Chs

Chemical Capacity Effect ∆Cchem ∆Ctotal−∆Cccc

1. ∆
∗
Chs is calculated directly from pCOatm

2 (∆
∗
Chs =

∫ ∗
F ant dt; Equation 4)

We analyze two additional idealized one-dimensional model experiments for each scenario, for a total of 6 complementary

simulations that are used to diagnose the changes seen in the CESM simulations. The naming convention for these experiments225

and a brief description are listed in Table 1. Cumulative change is denoted as ∆CX . In addition to these simulations, we

calculate cumulative Cant uptake consistent with the historical scaling, ∆
∗
Chs, for each scenario. ∆

∗
Chs is calculated directly

from the prescribed pCOatm
2 (Table 1; Equation 4). With these experiments, we quantify how two negative effects, ∆Cchem

and ∆Ccgrad, combine to make ∆Ctotal lower than the historical scaling (∆
∗
Chs):

∆Ctotal = ∆
∗
Chs + ∆Cchem + ∆Ccgrad (11)230

Changes in ocean chemical capacity, ∆Cchem, are the change inCant in a one-dimensional model simulation with all effects,

∆Ctotal , minus the change in Cant in a one-dimensional model simulation with constant chemical capacity, ∆Cccc (Table

1). The carbon gradient effect, ∆Ccgrad, is the difference between ∆Cccc and the time integral of
∗
F ant, ∆

∗
Chs. The carbon
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gradient effect is due to interactions between the transport of Cant out of the surface ocean and the growth rate of pCOatm
2 .

Because circulation is fixed in the one-dimensional ocean carbon cycle model, changes to the carbon gradient effect are not235

due to changes in circulation. In the results, we show that ocean Cant uptake has a low sensitivity to simulated changes in

circulation from 1920-2080.

2.5 Cant Air-Sea Flux Decomposition

We use the one-dimensional model to identify the dominant controls on ocean Cant uptake, by decomposing the Cant air-sea

flux into multiple terms. In order to perform this decomposition, surface ocean pCOocn
2 must be represented by a single value240

(Equation 10). For the ocean component of the ESM, defining an effective pCOocn
2 , representing the entire surface ocean, is not

straightforward due to the spatial variability of pCOocn
2 . Therefore, this decomposition is only feasible in the one-dimensional

ocean carbon cycle model.

The Cant air-sea flux can be considered to be a function of three indirectly related variables: Fant(pCOatm
2 ,Cant,T ).

Because these variables are indirectly related, we can decompose the total derivative of the Cant air-sea flux (dFant

dt ) into its245

partial derivatives:

dFant

dt
=

atm. gr. rate︷ ︸︸ ︷
∂pCOatm

2

∂t

∂Fant

∂pCOatm
2︸ ︷︷ ︸

atmos. component

+

ocn. gr. rate︷ ︸︸ ︷
∂pCOocn

2

∂t

∂Fant

∂pCOocn
2︸ ︷︷ ︸

ocean component

(12)

The first term on the right hand side is the impact of the atmospheric CO2 growth rate on the flux (atmosphere component)

and the second term is the impact of the ocean CO2 growth rate on the flux (ocean component). In Equation 12, ∂Fant

∂pCOatm
2

=
∂Fant

∂pCOocn
2

, and is constant, thus variations in Fant are solely due to variations in the atmospheric CO2 growth rate and the250

ocean CO2 growth rate. The pCOocn
2 closely follows pCOatm

2 , and the sign of their growth rates is the same. When the

atmospheric CO2 growth rate is positive, the atmospheric CO2 growth rate acts to enhance Fant, and the ocean CO2 growth

rate acts to decrease Fant (Equation 10). The atmospheric CO2 growth rate is prescribed, and cannot be separated further in

this framework, while the ocean component is expanded into the following terms:

∂pCOocn
2

∂t
=
∂Cant

∂t

∂pCOocn
2

∂Cant
+
∂T

∂t

∂pCOocn
2

∂T
(13)255

The two ocean terms are the product of the change in Cant times the buffer factor, and the change in temperature times the

sensitivity of pCOocn
2 to warming. Substituting Equation 8 we arrive at three terms controlling the ocean component:

∂pCOocn
2

∂t
=

Fant

h

buffer factor︷ ︸︸ ︷
∂pCOocn

2

∂Cant︸ ︷︷ ︸
impact of air−sea flux

+
Kz,eff

h

∂Cant

∂z

buffer factor︷ ︸︸ ︷
∂pCOocn

2

∂Cant︸ ︷︷ ︸
impact of ocean circ.

+
∂T

∂t

warm. sens.︷ ︸︸ ︷
∂pCOocn

2

∂T︸ ︷︷ ︸
impact of warming

(14)
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We refer to the three terms on the right hand side, from left to right, as the impact of the air-sea flux on pCOocn
2 , the impact

of ocean circulation on pCOocn
2 , and the impact of warming on pCOocn

2 . Because the impact of warming is small, the ocean260

CO2 growth rate is a balance between the impact of the air-sea flux on pCOocn
2 and the impact of ocean circulation on pCOocn

2 .

The sign of Fant is always positive in all scenarios, thus the impact of the air-sea flux always acts to increase pCOocn
2 . The sign

of the vertical gradient (∂Cant

∂z ) is always negative, thus the impact of ocean circulation always acts to decrease pCOocn
2 . In the

∆Ctotal experiment (Table 1), Fant, the verticalCant gradient, the buffer factor, and sensitivity to warming, are freely evolving

(Equation 14). In the ∆Cccc experiment, the buffer factor is fixed at preindustrial values. The ∆
∗
Chs experiment is equivalent265

to a constant buffer factor, a warming sensitivity of 0, and, as shown in the results, setting the Cant profile to that predicted

by historical scaling. The vertical profile alters pCOocn
2 through the vertical gradient (Equation 14). In the results we will use

Equation 14 to illustrate how changes to the impact of ocean circulation result in reduced efficiency of ocean Cant uptake in

response to emission mitigation.

3 Results270

In the following sections, we use ocean output from the ocean component of the ESM to calculate the efficiency of ocean

Cant uptake (Results 3.1) and determine if the evolution of Cant concentration along meridional sections is consistent with

historical scaling (Results 3.2). We then use the one-dimensional model to attribute changes in the efficiency of Cant uptake

to physical and/or chemical mechanisms (Results 3.3). Changes to the air-sea flux arising from changes to the atmospheric

CO2 growth rate and ocean CO2 growth rate are also diagnosed (Results 3.4). Our analysis includes scenarios with aggressive275

emission mitigation (1.5◦C), intermediate emission mitigation (RCP4.5), and no emission mitigation (RCP8.5). See Figure 2c

for the pCOatm
2 forcing for these scenarios.

3.1 Projected Spatial Redistribution of the Cant Air-Sea Flux

Using output from the ocean component of the ESM, we diagnose Cant air-sea flux for three future scenarios: 1.5◦C, RCP4.5,

RCP8.5. Here we focus on the projected spatial distribution of Cant air-sea flux from 2020-2080.280

In the 1.5◦C scenario the spatial pattern of the Cant air-sea flux changes significantly from 2020-2080. While most of the

ocean is a sink in 2020, in 2050 and 2080 there are large regions of Cant outgassing (Figure 1, bottom row). Most pronounced

is the emergence of Cant outgassing in the equatorial Pacific. The outcrop region of Sub-Antarctic Mode Water (SAMW) at

about 50◦S also experiences outgassing by 2080. In 2020, the Kuroshio and subpolar North Atlantic are some of the most

intense sinks of Cant, but by 2080, these regions are sources. The Equatorial Pacific, SAMW outcrop region, Kuroshio, and285

subpolar North Atlantic are broad regions that are sources of Cant in 2080 under the 1.5◦C scenario. Contrastingly, Southern

Ocean Cant uptake persists throughout the simulation.

In the RCP4.5 scenario, changes to the spatial pattern lie somewhere between RCP8.5 and the 1.5◦C scenario. Equatorial

Pacific outgassing of Cant grows over time, but is less widespread and intense than in the 1.5◦C scenario (Figure 1, middle

row). Cant air-sea flux intensity decreases over time for the subpolar and mid-latitude Atlantic and Kuroshio region. Beyond290
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Figure 1. Ocean component of the ESM output of air-sea flux (mol Cant m−2 yr−1; positive = red = to the atmosphere). Ensemble mean is

presented to reduce the potential effect of interannual variability masking the forced response. Negative indicates into the ocean. Each row is

a scenario, and each column represents a year. Emission mitigation is greatest at the bottom of each column.

the equatorial Pacific, the spatial pattern of Cant air-sea flux is similar to the RCP8.5 scenario, but the amplitude of uptake is

reduced.

Relative to the scenarios with emission mitigation (1.5◦C and RCP4.5) the RCP8.5 scenario features a consistent spatial

pattern of the Cant air-sea flux (Figure 1, top row). The primary change over time is an amplification of magnitude, with the

highest flux intensity occurring in 2080.295

Ocean Cant uptake is greatest in RCP8.5, and is the lowest in 1.5◦C (Figure 2a). In all scenarios ocean Cant inventory

increases throughout the period (Figure 2d). In the RCP4.5 scenario, Cant air sea flux peaks in 2050, and then gradually

declines. In the 1.5◦C scenario, ocean Cant uptake peaks in 2020, and is almost zero by 2080. In the RCP4.5 scenario ocean

Cant uptake initially increases and then returns to 2020 values by 2080.

Extrapolation of the ocean Cant uptake based on the historical scaling (
∗
F ant) is dependent solely on pCOatm

2 . Lower300

pCOatm
2 results in a lower estimate of ocean Cant uptake, and higher pCOatm

2 results in greater uptake. In all scenarios,

simulated air-sea Cant uptake is far less than
∗
F ant (Figure 2a). Reduced uptake relative to

∗
F ant indicates that in the future,

ocean Cant uptake will be less efficient (Figure 2b). Efficiency is the ratio of the solid lines (Fant) to the respective dashed

lines (
∗
F ant) in Figure 2a, with this ratio plotted in Figure 2b. Efficiency (Figure 2b) remains greater than 90% from 1990

through 2010, but then declines under all future scenarios, with greater efficiency declines as emission mitigation increases.305
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Figure 2. (a) Historical scaling of ocean Cant uptake (
∗
F ant; dotted lines) and simulated (ocean component of the ESM) ocean Cant uptake

(Fant; solid lines) for three scenarios (1.5◦C, RCP4.5, and RCP8.5). Negative indicates atmospheric Cant removal. (b) Simulated (ocean

component of the ESM) efficiency for the three scenarios. (c) Atmospheric CO2concentration. (d) Simulated ocean Cant accumulation (solid

lines) and the one-dimensional model Cant accumulation (dotted lines). Air-sea flux and efficiency from 2006-2017 not shown for 1.5◦C

scenario due to ocean adjustment to pCOatm
2 forcing (see Methods 2.2; Figure S2).

The efficiency decrease is linear in RCP8.5 and RCP4.5, but exponential in the 1.5◦C scenario. The 1.5◦C scenario is the only

scenario with negative pCOatm
2 growth rates, which substantially modifies the ocean carbon cycle response, as shown below.

3.2 Projected Changes in the Ocean Interior

Here we analyze the evolution of the Cant vertical gradient by applying the historical scaling to the vertical profile of

Cant (Equation 6). A weakening of the vertical gradient of Cant would reduce the ability of physical removal of Cant to310

maintain the Cant air-sea flux (Fant; Equation 14). Thus, via the vertical Cant gradient, interior Cant can alter the air-

sea flux. Deviations of globally averaged Cant profiles (Cant(z)) from the Cant historical scaling (
∗
Cant(z)) are defined as

Cant(z)−
∗
Cant(z). Wherever Cant(z)>

∗
Cant(z), more carbon is stored at that location than predicted by the Cant historical

scaling (Equation 6) and the deviation is positive. Assuming ocean circulation remains constant, if deviations are less at the

surface relative to the interior, the vertical gradient would be weaker than expected by the historical scaling, and thus ocean315

Cant uptake would be less efficient. Therefore the historical scaling may be used to identify how the pattern of changing in-

terior Cant(z) deviates from the historical scaling (Figure 3) and thus reduces the efficiency of the Cant air-sea flux (Figure

2b). With more rapid emission mitigation, globally average profiles reveal a pattern of increasingly positive deviations from

the historical scaling at depth (Figure 3).

In the RCP8.5 and RCP4.5 scenarios, Cant(z) increases from 2020-2080 at all depths, but at the surface, Cant(z) increase320

is less than
∗
Cant(z) increase (Figure 3a). In the RCP4.5 scenario, the Cant at depth is greater than

∗
Cant(z), while in the

RCP8.5 scenario it is less than
∗
Cant(z) (Figure 3b). In both the RCP8.5 and RCP4.5 scenarios, the increase in Cant is surface
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intensified, which enhances the vertical gradient. The enhanced vertical gradient allows for increased vertical diffusion of

Cant, and thus increased ocean Cant uptake. However, in RCP4.5 and RCP8.5 the enhancement of the vertical gradient is not

as strong as the historical scaling would suggest (Figure 3b). In the 1.5◦C scenario, the largest change in Cant(z) is at depth,325

and at the surface Cant decreases. This results in a much weaker vertical gradient, weaker vertical diffusion, and thus a reduced

ocean Cant uptake. The surface loss of Cant is a short term response to declines in pCOatm
2 that began in 2036, while the

increase in Cant(z) at depth is from the long-term increase in pCOatm
2 relative to preindustrial times (Figure 3c).

The signals found in Cant(z) are found throughout the ocean (Figure 4). In the RCP8.5 scenario (Figure 4, top row), the

surface layer exhibits the strongest negative deviation, but there is no positive deviation in the interior. The negative deviation330

is seen in deep waters between 25◦N and 60◦N, and also in the bowls of the northern and southern subtropical gyres. The

negative deviation grows from 2020-2080, and appears to propagate into the ocean interior with NADW. The historical scaling

alone cannot identify whether buffering or solubility is the driver of lower Cant(z) than
∗
Cant(z) in the interior.

In the RCP4.5 scenario, the surface layer exhibits a growing negative deviation (Figure 4, middle). The negative surface

deviation spans from the southern to the northern end of the zonal mean section. In the interior, however, there is a growing335

positive deviation. The magnitude and growth rate of the interior positive deviation is less than in the 1.5◦C scenario. The

positive deviation is due to the lagged response of the ocean interior to the intermediate rate of emission mitigation in RCP4.5,

in which pCOatm
2 slowly plateaus (Figure 2c).

The 1.5◦C scenario features the largest positive Cant deviations from the historical scaling (Figure 4, bottom row). The

positive deviation is found throughout the thermocline. These are waters that outcrop in the equatorial Pacific and mid to high340

latitudes, consistent with these regions being a source of Cant by 2080 (Figure 1). In the next section, we will evaluate the

relative role of buffering for all scenarios.

3.3 Drivers of Simulated Changes in Efficiency

We utilize projections of ocean Cant uptake from the one-dimensional model to provide mechanistic understanding of the

changes in ocean carbon uptake efficiency simulated by the full model. Changes in ocean Cant are examined to determine345

what drives projected changes in efficiency. These changes that are quantified with the one-dimensional model are separated

into the carbon gradient effect, ∆Ccgrad (Table 1), and effects related to the ocean’s chemical capacity to absorb carbon,

∆Cchem (Table 1). The one-dimensional model can accurately recreate the change in Cant inventory for all scenarios (Figure

2d), indicating that the assumption of constant circulation and parameterized chemistry are reasonable through 2080. For the

RCP8.5 scenario, the difference between the one-dimensional model cumulative flux and ocean component model is the largest.350

The cumulative error is 4 Pg Cant, only 3% of the 2080 cumulative flux, again indicating that the one-dimensional model is a

useful diagnostic tool for quantifying changes in the efficiency of ocean uptake .

Over the historical forcing period (1920-2006) ∆Ccgrad drives ∆Ctotal to be slightly lower than the historical scaling

(Figure 5). Because there is no internal ocean variability in the one-dimensional model (constant ocean circulation), ∆Ccgrad

in this period is due to only the integrated effects of short term variations in the growth rate of the pCOatm
2 forcing, which355

drive a slight reduction in total uptake (McKinley et al., 2020).
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Figure 3. Output from the ocean component of the CESM of the global mean Cant profiles (Cant(z)) (orange, solid), and profiles of
∗
Cant(z)

(gray, dashed), for the (a) RCP8.5 scenario, (b) RCP4.5 scenario, and (c) 1.5◦C scenario. The shaded region between the dashed and solid

lines indicates the deviation from the historical scaling. Light lines are for 2020 and dark lines are for 2080. The shaded region between the

lines is shown for zonal mean sections in Figure 4.
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Figure 4. Ocean component model output of the global zonal mean deviation of Cant concentration (mmol m−3) from the historical scaling

of Cant (Cant−
∗
Cant). Rows and columns same as Figure 1. Positive regions indicate faster carbon accumulation than historical scaling,

negative regions indicate slower accumulation. Contour lines are surfaces (kg m−3).

In RCP8.5, the ocean cumulatively absorbs 393 Pg Cant (Figure 5) by 2080, approximately 2.5 times the present-day

Cant inventory (160-166 Pg Cant; Devries, 2014). In RCP8.5, the historical scaling tracks the simulation with constant chem-

ical capacity (Figure 5). This indicates that if ocean chemical capacity remains constant, the ocean would absorb an additional

158 Pg Cant. The positive ∆Ccgrad is attributable to fitting CESM Cant uptake to a not-quite exponential pCOatm
2 in the360

historical period. Changes in ocean Cant uptake due to warming were calculated, but are not shown as warming effects are

small relative to ∆Cchem, making up <5% of the total efficiency decline. This small contribution is consistent with the change

due to warming calculated in studies of climate-carbon feedbacks (Randerson et al., 2015, Schwinger et al., 2018).

In RCP4.5, the ocean absorbs 307 Pg Cant (Figure 5) by 2080. Cumulative uptake predicted by the historical scaling tracks

the constant chemical capacity simulation until around 2040 (Figure 5). After 2040, the historical scaling and the constant365

chemical capacity simulation diverge, indicating the increasing carbon gradient effect is related to the decreasing growth rate

of the pCOatm
2 forcing in this time frame. The ∆Ccgrad effect amounts to -52 Pg Cant in 2080, however, the ∆Cchem effect

is stronger, amounting to -84 Pg Cant by 2080.

In the 1.5◦C scenario, the ocean absorbs 213 Pg Cant (Figure 5) by 2080. The ∆Cchem effect is the weakest in this scenario,

-37 Pg C in 2080. The weak ∆Cchem effect is consistent with this scenario taking up the least Cant because chemical capacity370

decreases as Cant uptake increases. ∆Ccgrad is the dominant change in this scenario, accounting for -90 Pg Cant. The strongly

reduced vertical gradient of Cant (Figure 3,4) results in reduced vertical Cant removal (Equation 8).
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Figure 5. Cumulative ocean Cant uptake (Pg C) for the historical period and the three scenarios in the one-dimensional model. The cyan line

is the extrapolation based on the historical scaling. The dark blue line is the one-dimensional model simulation of constant chemical capacity

(PI buffer factor) with variable solubility. The black line is the one-dimensional model simulation that includes all effects (variable chemical

capacity and variable solubility). Light green shading represents decreases in uptake related to the carbon gradient effect (∆Ccgrad), teal

shading represents decreases in uptake related to chemical capacity (∆Cchem). Negative indicates loss of ocean carbon.

3.4 Decomposition of the Cant Air-Sea Flux

Here we diagnose the mechanisms controlling the Cant air-sea flux (Fant) in the one-dimensional model ∆Ctotal simulations.

The one-dimensional model has been tuned so the ∆Ctotal simulation matches the CESM (Figure 2d). The one-dimensional375

form of the model allows for the decomposition of Cant air-sea flux (Methods 2.5).

Air-sea flux (Fant) in the one-dimensional model is controlled by large opposing components (Figure 6), the atmosphere

component, driven by the atmosphere CO2 growth rate, and the ocean component, driven by the ocean CO2 growth rate.

Because the air-sea flux is adding Cant to the surface in all simulations, the impact of the air-sea flux on pCOocn
2 is to

increase pCOocn
2 , while the impact of ocean circulation is to decrease pCOocn

2 because of the downward vertical Cant gradient380
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(Equation 14). Thus the vertical Cant gradient plays an important role in sustaining Cant removal by ocean circulation, and

thus slowing the ocean CO2 growth rate.

Figure 6. (a-c) Total Cant air-sea flux (green line; Pg Cant yr−1) and its ocean (blue line; Pg Cant yr−1) and atmosphere (orange line;

Pg Cant yr−1) components. The values for the air-sea flux and its components are calculated by integrating the Cant air-sea flux growth

rate ( dFant
dt

, units of Pg Cant yr−2), and the ocean component ( ∂pCOocn
2

∂t
∂Fant

∂pCOocn
2

, units of Pg Cant yr−2) and atmosphere component

( ∂pCOatm
2

∂t
∂Fant

∂pCOatm
2

, units of Pg Cant yr−2), from left to right, starting at the beginning of the simulation in 1850. The annual air-sea flux

is shown on a reduced axis in (a-c). In (d-f) the same terms (Equation 12) are integrated starting in 2040 (vertical dashed line in (a-c)) and

on a log scale to highlight the changing roles of the ocean and atmosphere components under rapid mitigation scenarios. Components are

non-zero at 2040 in (d-f) because of the air-sea pCO2 difference in 2040.

In the RCP8.5 scenario, the atmosphere component acts to enhance Fant, and the ocean component acts to reduce the Fant

(Figure 6a-b). The actual Fant (Figure 6, green) is a small residual of these tendencies. Increasing pCOatm
2 acts to increase

the air-sea pCO2 difference, while increasing pCOocn
2 acts to decrease Fant (Equation 12). If pCOocn

2 , increased only very385

slightly, such as the hypothetical scenario where the ocean is well mixed from surface to deep, ocean Cant uptake would be

the magnitude of the atmospheric component (Figure 6a-b). In fact, the ocean component is also subject to a balance between

two large terms. The increase in pCOocn
2 is mitigated by ocean circulation, thus ocean circulation enhances Fant (Equation

14). Fant increases pCOocn
2 and, which in turn reduces Fant (Equation 14).
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In the RCP4.5 scenario, the atmosphere and ocean components acts similarly to the RCP8.5 scenario, with the atmosphere390

component enhancing Fant, while the ocean component acts to reduce Fant (Figure 6c-d). However, due to increased emission

mitigation, pCOatm
2 plateaus (Figure 2c), and in 2040 Fant begins to decline. The ocean component is acting to decrease Fant

and by 2040 overwhelms the atmosphere component. The pCOocn
2 increases slower than pCOatm

2 , which acts to enhance the

flux early in the period, but the slower rate of change of pCOocn
2 cause Fant to decline in the later period (Figure 6d).

In the 1.5◦C scenario, initially the atmosphere component acts to enhance Fant, and the ocean component acts to re-395

duce Fant. However, by 2040, the roles of Fant components have switched (Figure 6a-b). Due to rapid emission mitigation,

pCOatm
2 plateaus, and then begins to decrease slightly, acting to reduce Fant for the first time since the preindustrial era.

After 2040, the ocean component acts to enhance Fant (Figure 6f). If efficiency were constant, it follows that the ratio of

atmosphere to ocean components is constant and the change in pCOocn
2 for a a given change in pCOatm

2 ( ∆pCOocn
2

∆pCOatm
2

) would

also be constant. From 2013 to 2036, the year of pCOatm
2 begins to decline (Figure 2c), pCOatm

2 increases 39 ppm, and400

pCOocn
2 increases 39 ppm and ∆pCOocn

2
∆pCOatm

2
= 1.00. From 2036 to 2080, pCOatm

2 also declines 39 ppm and pCOocn
2 declines

37 ppm, thus ∆pCOocn
2

∆pCOatm
2

= 0.95. From 2040 to 2080, the Cant(z) has weakened relative to the historical scaling (Figure 4),

thus also weakening the impact of ocean circulation on pCOocn
2 (Equation 14). The weakening of the vertical Cant gradient

therefore plays a significant role in reducing ∆pCOocn
2

∆pCOatm
2

, and thus efficiency, on the downward pCOatm
2 trajectory.

4 Discussion405

4.1 Drivers of Future Efficiency Declines

Ocean carbon uptake will decline as a result of emission mitigation. We also show that the efficiency of ocean carbon uptake,

i.e. how closely ocean carbon uptake follows the observed proportionality between uptake and atmospheric CO2, is also re-

duced as mitigation becomes more rapid, consistent with the results of Raupach et al. (2014). Under exponentially increasing

pCOatm
2 (RCP8.5), reductions in efficiency of ocean Cant uptake are almost entirely due to reduced buffer capacity. We find410

that an exponentially increasing pCOatm
2 allows for the entire vertical Cant profile to behave as a function of pCOatm

2 . Be-

cause ocean Cant uptake is well characterized by one-dimensional physics, under constant chemistry and ocean circulation, if

the vertical profile behaves as a function of pCOatm
2 then air-sea flux will also behave as function of pCOatm

2 (Equation 4,

Equation 8). With rapid mitigation, the vertical Cant profile, which is set by the integrated effects of past Cant accumulation

at depth, does not change to immediately to adjust to the trajectory of pCOatm
2 . We find that in a scenario featuring rapid415

emission mitigation (1.5◦C), the Cant concentration change from 2020-2080 is greatest in the thermocline, a behavior that has

been identified in other simulations of rapid emission mitigation (Tokarska et al., 2019). The past Cant accumulation at depth

weakens the vertical Cant gradient compared to a vertical Cant profile that reaching the same pCOatm
2 under exponential

pCOatm
2 increase, constant ocean chemistry, and constant circulation (Figure 3).

The air-sea flux is a balance between the atmospheric CO2 growth rate and the ocean CO2 growth rate (Equation 12), and in420

all scenarios the atmospheric CO2 growth rate dominates the balance. The positive atmospheric CO2 growth rates throughout

the RCP8.5 and RCP4.5 scenarios acts to enhance the air-sea flux. In the 1.5◦C scenario, ocean pCOatm
2 declines after 2036,
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and the negative atmospheric CO2 growth rate acts to decrease the air-sea flux, while the negative ocean CO2 growth rate acts

to enhance the air-sea flux. The negative growth rates of the 1.5◦C scenario occur in the only scenario where efficiency declines

exponentially.425

The dominant mechanisms governing the decline in efficiency are different in each scenario, due to the differing degrees

of emission mitigation. Internal ocean mechanisms (reduced chemical capacity) dominate the reduction of efficiency in the

RCP8.5 scenario, and external mechanisms (increasing carbon gradient effect) dominate the reduction of efficiency in the

1.5◦C scenario. For the ocean, warming effects have a small impact relative to the carbon gradient and chemical capacity

effects.430

The growing carbon gradient effect in the 1.5◦C scenario is due to a weakening of theCant vertical gradient, thus a declining

rate at which Cant mixes and diffuses into the ocean interior. The magnitude of the Cant air-sea flux is limited by the rate of

surface Cant removal (Graven et al., 2012), thus slower removal results in a reduced growth rate of ocean Cant uptake. The

vertical gradient is weaker in scenarios with slower than exponential pCOatm
2 increase, compared to the vertical gradient at

the same pCOatm
2 concentration in an exponentially increasing pCOatm

2 scenario, because Cant concentration is enhanced at435

depth relative to exponential scenarios (Figure 3,4). The Cant concentration is elevated at depth because it takes longer for the

slower than exponential scenarios to reach the same pCOatm
2 , allowing more cumulative Cant transfer to deeper waters. The

waters at depth effectively push back on the changes occurring at the surface due to changing pCOatm
2 , which is qualitatively

similar to how back-pressure in a pipe slows the flow of fluid through the pipe. It is theCant at depth that is providing the "back-

pressure", resisting the flow of Cant into the interior. The faster emissions are mitigated, the more evident the back-pressure440

exerted by ocean interior Cant becomes (Figure 3,4,5,6). However, delaying emission mitigation would act to increase the total

back-pressure effect that would eventually occur. If the RCP8.5 scenario is followed into the 22nd century, future emissions

would be flat from 2100 to 2150 and then decline dramatically (van Vuuren et al., 2011). As pCOatm
2 growth slows in response

to the declining rate of emissions, the back-pressure effect from the ocean will appear, but at a greater magnitude due to the

much greater load of Cant in the interior ocean. Therefore, climate simulations extending beyond 2100 are needed to quantify445

the back-pressure effect in high emission scenarios.

With aggressive emission mitigation, regional patterns of theCant air-sea flux shift, with implications for regional carbon cy-

cle monitoring (Peters et al., 2017). The surface waters of regions that trend towardsCant outgassing under emission mitigation

(Figure 1; bottom row) are renewed by advection with waters that are much older than the waters that renew the waters of the

subtropics (Toyama et al., 2017). As emissions are mitigated from 2020-2080, there is a positive change in Cant concentration450

in the ocean interior, with this back-pressure effect being most pronounced at ∼400m (Figure 3). Regionally, advective fluxes

are important drivers ofCant reemergence (Bopp et al., 2015), thus the regional impacts of ocean circulation on pCOocn
2 (Equa-

tion 14) would include the effects of advective fluxes in addition to mixing/diffusive fluxes (which dominate globally). In the

outgassing regions of Figure 1 (bottom row), advective fluxes bring waters with an increasing load of Cant to the surface, thus

reemergence is increasing, acting to increase pCOocn
2 . The increase in reemergence ultimately overwhelms the weakening455

downwards diffusive Cant flux that acts to decrease pCOocn
2 . Therefore, advection of Cant is driving the Cant air-sea flux

further towards outgassing in the equatorial Pacific, supbolar and mid-latitude North Atlantic, SAMW outcrop region, and the
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Kuroshio (Toyama et al., 2017). The Circumpolar Deep Water (CDW) that is upwelled into the surface of the Southern Ocean

south of 50◦S, is old relative to the subtropics, but it is uncontaminated by Cant. Below ∼400m the magnitude of the back-

pressure decreases, therefore upwelling of CDW does not result in an increasing load of Cant being brought to the surface.460

Southern Ocean Cant uptake persists because the positive Cant tendency is absent in the upwelling watermass.

The back-pressure from Cant at depth is an unavoidable consequence of emission mitigation. While more efficient ocean

Cant uptake is desirable when drawing down pCOatm
2 , in fact, peak sink efficiency occurs under exponential growth of

pCOatm
2 . How long the ocean will remain a net sink depends on the strength of the back-pressure effect, which depends

on the strength of surface ocean Cant removal. If the back-pressure effect is stronger, due to more vigorous ocean circulation465

transfer of Cant to depth in the years prior to mitigation, the sink will disappear at a faster rate. With rapid mitigation, the

ocean Cant uptake peaks in approximately 2030 and nearly disappears by 2080. Despite the decline in the efficiency of ocean

Cant uptake under rapid mitigation, ESMs indicate that the ocean becomes the primary Cant sink in scenarios with aggressive

mitigation (Jones et al., 2013) and without mitigation (Randerson et al., 2015) because the land uptake declines more rapidly

than ocean uptake (Zickfeld et al., 2016). The ocean will ultimately remove most atmospheric Cant over tens of thousands of470

years (Archer, 2005, Archer et al., 2009).

4.2 Validity of the One-Dimensional Model Representation of Ocean Physics

Our one-dimensional ocean carbon cycle model represents multiple physical removal process as a single diffusive process

(Equation 8). Parameterizing these various processes in this manner requires defining an effective vertical diffusivity of the

ocean, Kz,eff and better observational estimates of ocean mixing are required to in order to recreate the effective diffusivity475

of the actual ocean. In the three-dimensional ocean models used in ESMs, up to ∼30% of simulated Kz,eff is attributable

to isopycnal eddy mixing (Gnanadesikan et al., 2015). Varying a three-dimensional ocean model’s isopycnal eddy diffusivity

within the range of typical model values results in a 92 Pg C range of cumulative ocean Cant uptake under instantaneous

CO2 doubling (Gnanadesikan et al., 2015), thus the sensitivity of ocean Cant uptake to isopycnal eddy mixing is much larger

than the sensitivity to changing ocean circulation. Models with spatially varying isopycnal eddy diffusivities, such as the480

NCAR CESM and GFDL ESM2G, have parameterizations that produce a range of diffusivities from ∼300 m2s−1 in gyres,

to ∼1500 m2s−1 in boundary currents (Dunne et al., 2012; Danabasoglu et al., 2011). Observational estimates of isopycnal

eddy diffusivity from tracers (Ledwell et al., 1998) and satellite altimetry (Abernathey and Marshall, 2013) are uncertain,

but consistently suggest that real world eddy diffusivities could be much higher, with ranges from ∼1000 m2s−1 in gyres, to

∼10,000 m2s−1 in boundary currents.485

While the mean state of ocean circulation is most important over the never 60 years, as warming increases, the magnitude

climate-carbon feedbacks increase, such as changes to ocean circulation driving changes in ocean carbon uptake (Randerson

et al., 2015), which is not represented by our one-dimensional ocean carbon cycle model. The small effect of changing ocean

circulation in our simulation is likely because changes due to declines in AMOC are not yet evident by 2080 (Sarmiento

and LeQuéré, 1996; Randerson et al., 2015). While assuming that ocean climate-carbon feedbacks are small prior to 2080490

is consistent with the behavior of the CESM (Randerson et al., 2015), this may not be hold true for the Earth System itself.
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The uncertainties associated with the timing and magnitude of climate-carbon feedbacks can be avoided by mitigating climate

change (Randerson et al., 2015).

4.3 Identification of the Impacts of Internal Ocean Variability using the Historical Scaling

Given the direct relationship between the efficiency of ocean Cant uptake and the deviations from the historical scaling, we495

suggest that future work quantify the impact of external mechanisms on observed interannual variability of ocean carbon

uptake. The historical scaling relies on the assumption of fixed sink efficiency due to exponential growth of pCOatm
2 . While

most of the industrial era is consistent with an exponential CO2 growth, variability in emissions drives variability in the

atmospheric growth rate that then results in decadal variability in the ocean carbon sink (McKinley et al., 2020). If the historical

scaling is used to identify changes in observations of Cant concentration (Gruber et al., 2019a), and the atmospheric growth500

rate has recently slowed, changes due to internal variability are mixed with signals related to the carbon gradient effect, and

the changes due to internal variability (Gruber et al., 2019a) would be overestimated. We also emphasize that in a future with

emission mitigation, deviations from historical scaling will not be driven by changes due to internal ocean variability alone,

given the dynamic response of the ocean to changes in pCOatm
2 .

5 Conclusion505

Atmospheric CO2 has grown exponentially over the industrial era, and so has ocean Cant concentration at all depths (DeVries,

2014; Gruber et al., 2019). Under the exponential forcing regime, ocean Cant uptake also grows exponentially and, over the

historical era, maintains high efficiency of ocean Cant uptake as we have defined it here. In future scenarios, regardless of

whether countries mitigate emissions, efficiency of ocean Cant uptake will decline. However the mechanisms differ depending

on the degree of mitigation. In the RCP8.5 scenario, a scenario with no emission mitigation, reduced buffer capacity explains510

nearly all of the loss in efficiency of ocean Cant uptake by 2080, 158 Pg C. In the case of scenarios with emission mitigation,

such as RCP4.5 and the 1.5◦C scenario, the loss of efficiency is more due to the carbon gradient effect. The carbon gradient

effect explains 38% of efficiency loss in RCP4.5 scenario, and 71% of the efficiency loss in the 1.5◦C scenario. The carbon

gradient effect increases with time in all scenarios with emission mitigation, and the equatorial Pacific becomes a prominent

source of Cant in both cases. Under aggressive mitigation (1.5◦C) this carbon gradient effect will result in large regions of515

ocean becoming a source by 2080, with the exception of the Southern Ocean.

Changes in the vertical Cant concentration gradient are responsible for this carbon gradient effect. Under exponential

pCOatm
2 growth, with constant chemical capacity and constant solubility, the vertical Cant gradient behaves as a function

of pCOatm
2 , thus the Cant air-sea flux behaves as though it is solely a function of pCOatm

2 , rather than a function of pCOatm
2 ,

Cant, and temperature. When emissions are mitigated and the growth in pCOatm
2 slows, the surface ocean can respond rapidly.520

However, the ocean interior Cant concentration response lags the surface response. Below 100m in the rapid mitigation sce-

nario, Cant concentration increases from 2020-2080, while above 100m, the Cant concentration decreases, thus the downward

Cant concentration gradient is greatly reduced. A reduced downward vertical gradient results in less effective downward dif-
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fusion of Cant. Ocean Cant uptake is limited by surface ocean Cant removal (Graven et al., 2012), thus this results in reduced

uptake in the future, relative to ocean Cant uptake under the same pCOatm
2 concentration in the historical period. This reduc-525

tion of the vertical gradient, an unavoidable result of emission mitigation, is the driver of efficiency declines.

Under emission mitigation, the carbon gradient effect results in a enhanced outgassing of Cant in the equatorial Pacific,

and a transition from Cant uptake to Cant outgassing in the subpolar and mid-latitude North Atlantic, Kurshio, and SAMW

outcrop region. These regions are also hotspots for reemergence (Bopp et al., 2015, Toyama et al., 2017). Reemergence of older

watermasses, from depths where Cant continues to increase, drives a tendency towards outgassing in these regions. The waters530

of the subtropics are renewed with shallower waters, above where the continued Cant increase occurs in the ocean component

of ESM, and the surface waters of the Southern Ocean are renewed with waters below the Cant increase. Thus, in subtropics

and Southern Ocean, the air-sea Cant uptake continues.

Diffusive processes control the removal of Cant from the surface ocean, and because the diffusivity of the surface ocean is

highly uncertain, it creates large uncertainties in Cant uptake (Gnanadesikan et al., 2015). Determining the effective vertical535

diffusivity of the upper ocean is essential to reducing uncertainty in future ocean Cant uptake, particularly under 21st century

emission mitigation scenarios.

Code and data availability. The code used to run the one-dimensional model is provided by the authors in a GitHub repository (https:

//qoccm.readthedocs.io/en/latest/). Raw output from the coupled ocean model simulations can download from NCAR’s Earth System Grid

(https://www.earthsystemgrid.org/).540

Appendix A: Physical Interpretation of the Impulse Response Function Based Model one-dimensional model

Impulse response functions are a powerful tool in dynamical system analysis. With a response function, one can understand the

response of a system to any pulse, as long as the response is linear. The response function used in our one-dimensional model

has the same shape as the conceptual example in Figure A1. For the one-dimensional model case, the response function was

derived by equilibrating HILDA to a doubling CO2, and then tracking fraction of Cant that remained in the surface box (the545

mixed layer) (Joos et al. 1996).

In our conceptual example of the mixed layer response function, at t= 0 100% of the tracer remains in the mixed layer,

while 200 years later, only 10% of the tracer remains (Figure A1). This is a general example of response function that can be

applied to any transient tracer, but the values in this example have been scaled so that it is most similar to the evolution Cant.

Ocean circulation, with vertical diffusion playing the largest role for short lived transient tracers, sets the time that it takes550

to reach this value. The mixed layer pulse response function must be calculated for each transient tracer of interest because

the spatial distribution of flux is tracer dependent, thus each tracer flux distribution uniquely samples the spatially variable

vertical diffusivity of the ocean. The mixed layer pulse response function for Cant is determined by simulating the exposure of

the surface ocean to a pulse of atmospheric CO2 . In order to use a single case as our pulse response function, the size of the
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Figure A1. A conceptual example of the response function. This response function characterizes the decay of a transient tracer in the surface

ocean.

pulse we give our model cannot affect the time it would take that pulse to reach 10%. In other words, the time it takes for any555

subsequent pulse to reach 10% in the mixed layer must also remain constant. In theory, the timescale could change as result

of changes to ocean circulation, and as seen in the results this does occur, but minimally affects the response (Figure 2c).

One can use the convolution integral of the pulse and the response function to determine the surface ocean concentration of

a transient tracer:

Co(t) =

t∫

ti

Fc(u)r(t−u)du (A1)560

This is a slightly simplified version of the one-dimensional model equation, where Co is the surface concentration of a tracer,

Fc is the flux, and r is the response function. In our case, the pulse, Fc, is the change in carbon concentration at the surface

each year. By taking the convolution integral of the pulse, and its response function, we can determine the change in mixed-

layer concentration (Figure A2). A convolution integral (Equation A1) calculates the concentration at time t by calculating the

fraction of previous pulses (Fc(u)), that entered the ocean at times u (from ti = 0 to t), that remain in the surface ocean at time565

t. This is generalizable to any tracer that is initially absent in the ocean. An intuition for convolution integral can be formed

by visualizing it in discrete form (Figure A2). By summing all of the discrete pulses that are present in the mixed layer at a

given time, one can arrive at an approximation of the exact convolution integral (Figure A2c,d). In this case the exact solution

is the ocean concentration of the transient tracer. In this generalized example, we show the effect of pulse sampling frequency

(Figure A2c). With more frequent pulse sampling, the more accurate the approximation of the convolution integral (A2c,d),570
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Figure A2. (a,b) Time series of the flux of transient tracer (concentration yr−1), with different sampling frequencies shown with the blue

bars. The left column is a 10 year sampling frequency, 1 year frequency in the right column. The blue bars are Fc in Equation A1. (c,d)

Predicted transient tracer concentration in the surface ocean, the left hand-side of Equation A1. The predicted concentration (black line) at

any point in time is the sum of the individual pulses at that time (colored lines).

thus with infinitely many pulses one can capture the full convolution integral (concentration of some transient tracer). In the

one-dimensional model case, the pulse is sampled annually, with no benefit to sampling at sub-annual frequencies.

Interestingly, the convolution integral can be used to solve for the flux. All we need to know is the flux at t= 0. The flux of

transient tracer can be described with the following equation:

FC =
k

h
(Catm−Cocn) (A2)575

In this equation FC is the flux of tracer in units of quantity (µmol, mol, kg, etc) per m3. On the right hand side, the air-sea

difference is multiplied by the gas transfer velocity, k (m yr−1), and the mixed layer depth, h (m).
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We can calculate the initial flux of transient tracer with knowledge of the atmospheric history of the transient tracer, and also

because by definition, we know the initial ocean concentration is 0. Beginning at t= 0, at each time step we can make these

calculations in the following order to determine the flux for the entire period we have atmospheric measurements of the tracer:580

1. Calculate the air-sea flux (Equation A2)

2. Sum up the pulses still present in the mixed layer to determine concentration at the next timestep (Equation A1).

This process is repeated to calculate the next year’s air-sea flux. After many time steps, the flux is responding to the change

in concentration that occurred in the previous year due to the previous year’s flux, and any pulses that remain in the mixed

layer.585

Appendix B: One-Dimensional Ocean Carbon Cycle Model Chemistry

The pCOocn
2 of the one-dimensional ocean carbon cycle model is calculated as follows:

pCOocn
2 = [pCOocn,PI

2 + δpCOocn
2 (Cant,T0)]exp(αT δT ) (B1)

The response of pCOocn
2 to warming is parameterized as an exponential function as in Takahashi et al. (1993), with αT set

to 0.0423 (Equation A24; Joos et al., 2001)). The δpCOocn
2 is calculated using a fixed ocean alkalinity of 2300 µmol kg−1 and590

the preindustrial temperature, T0. The chemistry of δpCOocn
2 is parameterized as follows:

δpCOocn
2 (Cant,T0) = Cant[A1 +Cant(A2 +Cant(A3 +Cant(A4 +CantA5)))] (B2)

With coefficients:

A1 = (1.5568− 1.3993× 10−2×T0) (B3)

A2 = (7.4706− 0.20207×T0)× 10−3 (B4)595

A3 =−(1.2748− 0.12015×T0)× 10−5 (B5)

A4 = (2.4491− 0.12639×T0)× 10−7 (B6)

A5 =−(1.5468− 0.15326×T0)× 10−10 (B7)
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