
1 

 

Response to comments from reviewer #1 

Dear editor: 

Thank you very much for handling our manuscript. We really appreciate the reviewer’s 

insightful comments and suggestions. Below, we address the comments from reviewer #1 point-

by-point. The comments are italicized and our response follow in blue, and we hope we could 

address the concerns from reviewer. 

Reply to Reviewer #1 

General comments: 

Comment 1A: In the manuscript “Spatially asynchronous changes in strength and stability of 

terrestrial net ecosystem productivity”, Chen et al. studied the spatial variations of annual 

mean NEP and IAV_NEP using in-situ eddy covariance observations and gridded NEP datasets 

from FLUXCOM and CLM4.5. They proposed a new approach that decomposes NEP into beta, 

log(U/R) and log (CUP/CRP) and used some of them as “local indicators” to indicate the 

spatial variation of NEP and IAV_NEP. I am intrigued by this study and find it has the potential 

to provide some emergent constraints on NEP that we much need at local scales, though I feel 

some minor revisions are needed to clarify the motivation and the interpretations of the Results. 

Response: Thanks for the recognitions and valuable suggestions. The comments from the 

reviewer have inspired us to strengthen the importance of the local indicators. We have added 

one sentence in Introduction Section (Lines 83-86) to extend the motivation of this study: 

“Therefore, it is imperative to explore the potential indicators for the spatially varying 

NEP, which could help attribute the spatial variation of NEP and IAVNEP into different 

processes and provide valuable constraints for the global C cycle.” 

Specific comments: 

Comment 2A: “Spatially asynchronous” is a bit misleading phrase as it makes me wondering 

what is meant to be spatially asynchronous/synchronous for NEP, or is it simply used as a 

substitute for “spatial variation”. I think the running title of the manuscript is more accurate 

which suggests that the authors studied “spatial variability” of NEP and NEP_IAV and found 

local indicators for them. 

Response: Thanks, we have revised the title as “Spatial variations in terrestrial net ecosystem 

productivity and its local indicators”. 

Comment 3A: The first part of the results (section 3.1) serves to prove that there are large 

spatial variations in NEP and IAV_NEP, and to further motivate a need to study “local 

indicators” for NEP and IAV_NEP. However, many literatures have reported large spatial 

variations of NEP and IAV_NEP already, and I feel this kind of reasoning is more suitable to 

be included in Introduction rather than Results. In addition, FLUXCOM NEP is used here but 

we know is might not be the best source to study IAV_NEP (Jung et al., 2020). 

Response: Thanks for this suggestion. We have deleted this part of results, and moved the 

related content to the Introduction Section (Lines 65-69): 

“Large spatial difference in terrestrial NEP has been reported from eddy-flux measurements, 

model outputs and atmospheric inversion products. In addition, the global average IAV of 

NEP was large relative to global annual mean NEP (Baldocchi et al., 2018). More 
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importantly, the spatial variations of NEP and IAVNEP were typically underestimated by the 

compiled global dataset and the process-based global models (Jung et al., 2020; Fu et al., 

2019).” 

Comment 4A: The IAV_NEP and beta for shrublands and savannas are among the smallest 

compared to other PFTs (Figure 3). Is it at odds with previous global studies that suggest semi-

arid ecosystems contributed the most to global IAV_NEP? (Ahlström et al., 2015). 

Response: Thanks for this suggestion. As the reviewer has mentioned, there are very few semi-

arid ecosystems (e.g. 2 shrublands and 5 savannas in the presented study) in the FLUXNET 

sites, while they represent a large portion of land at the global scale and have been shown to 

substantially control the interannual variability of NEP. Therefore, we have added several 

sentences in Discussion Section (Lines 238-241) to illustrate this point: 

“However, the relatively lower β in shrublands and savannas should be interpreted 

cautiously. There are very few semi-arid ecosystems in the FLUXNET sites, while they 

represent a large portion of land at the global scale and have been shown to substantially 

control the interannual variability of NEP (Ahlström et al., 2015).” 

Technical comments: 

Comment 5A: In the legend of Figure 1 please indicate the source of NEP data. 

Response: This section has been removed. 

Comment 6A: L74. Do you mean the “relative differences” between photosynthesis and 

respiration or between their covariances? 

Response: Thanks, we have rephrased this sentence as “Because photosynthesis and respiration 

are strongly correlated over space (Baldocchi et al., 2015; Biederman et al., 2016), their relative 

difference could determine the spatial variation of NEP.”  

Comment 7A: L100. Rephrase. “to address the local indicators”? 

Response: Thanks, we have rephrased this sentence as “In this study, we decomposed annual 

NEP into U and R, and explored the local indicators for spatially varying NEP.” 

Comment 8A: L102. Reference for FLUXNET2015 is Pastorello et al., 2017. 

Response: Thanks. This sentence has been revised. 

Comment 9A: L84 -86. Generally, I feel there is a need to clarify why there is a need to find a 

local indicator (which is also a new phrase)? Does it help in the attribution of spatial variation 

of NEP and IAV_NEP to different processes, or does it provide an independent constrain on 

NEP and IAV_NEP? 

Response: Thanks for this valuable suggestion. The suggestion proposed by the reviewer 

inspires us to reorganize the importance of our work. We have added several sentences in the 

Introduction Section (Lines 81-86) to state the necessary of exploring the local indicators: 

“However, despite the previous efforts in a predictive understanding of the land-

atmospheric C exchanges, the multi-model spread has not reduced over time (Arora et al., 

2019). Therefore, it is imperative to explore the potential indicators for the spatially varying 

NEP, which could help attribute the spatial variation of NEP and IAVNEP into different 

processes and provide valuable constraints for the global C cycle.” 
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Comment 10A: L135. I understand the scale-mismatch between model and eddy-covariance 

sites is difficult to address, but is it possible that muted spatial variation of NEP and IAV_NEP 

from gridded products is partly related to the scale mismatch? 

Response: Thanks for this suggestion.  

First, considering the scale mismatch between FLUXNET sites and the gridded products, we 

have removed the direct comparison of the spatial variation of mean annual NEP and IAVNEP 

from different sources in Section 3.3. Instead, we mainly emphasize the important role of local 

indicators in indicating the spatially varying NEP. 

Second, we have run the same analysis at the global scale based on the Jena Inversion product, 

the FLUXCOM product and the outputs of CLM4.5 model (Figure 1A). The results have 

strengthened our major conclusion that the spatial variation of mean annual NEP can be 

indicated by ln(U/R), while the spatial distribution of IAVNEP is well indicated by the slope (i.e., 

β) of the demonstrated logarithmic correlation. We have added the results of these new analyses 

into the Results Section (Lines 81-86) as Figure 6. The major revisions in the Results Section 

3.3 are cited as below: 

“However, the spatial variations of NEP and IAVNEP were associated with the spatial 

resolution of the product (Marcolla et al., 2017). At the global scale, the spatial variation of 

mean annual NEP can be also well indicated by ln(U/R) (Fig. 6). The widely reported larger 

C uptake in FLUXCOM (Jung et al., 2020) resulted from its higher simulations for U/R. In 

addition, the larger spatial variation of IAVNEP in CLM4.5 could be inferred from the 

indicator β.” 

 

Figure 4B. Representations of the spatially varying NEP and its local indicators in 

FLUXCOM product and the Community Land Model (CLM4.5) at the global scale. a, The 

variation of mean annual NEP and IAVNEP derives from Jena Inversion, FLUXCOM and 

CLM4.5. Variation in mean annual NEP: the spatial variation of mean annual NEPs; 

Variation in IAVNEP: the spatial variation of standard deviation in IAVNEP. b, Representations 

of the local indicators for NEP in Jena Inversion, FLUXCOM and CLM4.5. 

Comment 11A: L229. “difference” -> “variation”. 

Response: Done as suggested. 
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Response to comments from reviewer #2 

Dear editor: 

Thank you very much for handling our manuscript. We really appreciate the reviewer for the 

invaluable suggestions and comments on our manuscript. Below, we address all the comments 

from reviewer #2 point-by-point. The comments are italicized and our response follow in blue, 

and we hope we could address the concerns from reviewer. 

Reply to Reviewer #2 

General comments: 

Comment 1B: Erqian Cui et al. studied the annual NEP and the inter-annual variability of NEP 

and intended to provide local indicators to better understand their spatial patterns at the 

FLUXNET site level. I find this study relevant as it is important to have a better understanding 

of the factors controlling the spatial and inter-annual variability of NEP. However, I have some 

concerns about some aspects of the method and how the results are presented (see More specific 

comments section). In addition, there are some results presented in this study that do not provide 

ay significant new information compared to the available literature (e.g. spatial patterns of 

annual NEP and IAV of NEP at the global scale). Plus, most of the analysis is done at FLUXNET 

site level, therefore I do not really the point of using the FLUXCOM and CLM4.5 for the 

presented study. In short, although I find the presented study suitable for the scope of 

Biogeosciences, the manuscript is still in its early stage to be accepted as it is, therefore I suggest 

to make major revisions before potential acceptance. 

Response: Thank you for the valuable suggestions. Based the reviewer’s comment, we have 

made a substantial revision on both of the Method and Results sections. 

First, we have deleted Figure 1 from Results, and moved the related contents to the Introduction 

Section as the background of our study. 

Second, we have showed the major findings with FLUXNET observations and the atmospheric 

inversion product (i.e. the new results in Figure 1B). Then as suggested by the reviewer, we 

have benchmarked the simulations from the compiled global product and the process-based 

global model both at the global scale and at the FLUXNET site level (i.e. the new results in 

Figure 4B). 

Specific comments: 

Comment 2B: L. 3-4 The title is very confusing and does not really reflect the findings of the 

analysis. Please try to rephrase the title so that it matches the message the analysis is trying to 

convey. 

Response: Thanks, we have revised the title as “Spatial variations in terrestrial net ecosystem 

productivity and its local indicators”. 

Comment 3B: L. 38 “machine-learning-derived database.” This concept seems odd and 

confusing. What about something like “based on a compiled global dataset and a machine 

learning method”. The use “‘machine-learning-derived database’ is also not entirely true 
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because, as far as I understood, only the FLUXCOM dataset is based on machine learning 

approaches. FLUXNET in-situ data and the CLM4.5 product are not using any machine-

learning methods. 

Response: Thanks for pointing out this issue. We have rephrased the relevant statement as 

“based on daily NEP observations from FLUXNET sites and the atmospheric inversion product” 

in this version (Line 38). 

Comment 4B: L. 65 “is related to the strength of carbon sink”. It can also relate to the strength 

of the carbon source. Consider rephrasing to be more generic. 

Response: Done. We have rephrased this sentence as “is related to the strength of carbon 

exchange” (Line 60). 

Comment 5B: L. 68 Not convinced by the use of ‘asynchronously’ all over the manuscript, 

particularly because the results presented in the manuscript do not provide evidence that the 

spatial patterns of annual NEP or IAV_NEP are not simultaneous or concurrent in time. 

Response: Done. We have deleted the word “asynchronously” all over the manuscript and 

replaced it with “variation”. 

Comment 6B: L. 76-77 ‘environmental fluctuations among years’. Musavi et al., 2017 

attributed the year-to-year variation to species richness and stand age. In the same line, Besnard 

et al. 2018 attributed most of the annual NEP variation to forest age. 

Response: Thanks. We have revised this sentence as “Many previous analyses have attributed 

the IAVNEP at the site level to the different sensitivities of ecosystem photosynthesis and 

respiration to environmental drivers (Gilmanov et al., 2005; Reichstein et al., 2005) and biotic 

controls (Besnard et al., 2018; Musavi et al., 2017).” (Lines 74-76). 

Comment 7B: L. 82-84 Can this sentence be merged with the 1st sentence of the paragraph 

(L.71-72)? They seem quite redundant. 

Response: In the former version, the first sentence illustrated the decomposition of NEP as the 

difference between photosynthesis and respiration, while the last sentence lead to the 

decomposition of NEP directly into CO2 uptake flux and CO2 release flux. To make these points 

clearer, we have rephrased this sentence on Lines 86-91 as: 

“Alternatively, the annual NEP of a given ecosystem can be also directly decomposed into 

CO2 uptake flux and CO2 release flux (Gray et al., 2014), which are more direct 

components for NEP (Fu et al., 2019). Many studies have reported that the vegetation CO2 

uptake during the growing season and the non-growing season soil respiration are tightly 

correlated (Luo et al., 2014; Zhao et al., 2016). It is still unclear how the ecosystem CO2 

uptake and release fluxes would control the spatially varying NEP.” 

Comment 8B: L. 84-86 The last sentence of this paragraph seems a bit out of the context of 

the whole paragraph. Consider improving the transition between the last sentence of the 

paragraph and the entire paragraph. 

Response: Done. We have rephrased this section and strengthened our points by adding the 
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following sentences (Lines 81-91): 

“However, despite the previous efforts in a predictive understanding of the land-

atmospheric C exchanges, the multi-model spread has not changed over time (Arora et al., 

2019). Therefore, it is imperative to explore the potential indicators for the spatially varying 

NEP, which could help attribute the spatial variation of NEP and IAVNEP into different 

processes and provide valuable constraints for the global C cycle. Alternatively, the annual 

NEP of a given ecosystem can be also directly decomposed into CO2 uptake flux and CO2 

release flux (Gray et al., 2014), which are more direct components for NEP (Fu et al., 2019). 

Many studies have reported that the vegetation CO2 uptake during the growing season and 

the non-growing season soil respiration are tightly correlated (Luo et al., 2014; Zhao et al., 

2016). It is still unclear how the ecosystem CO2 uptake and release fluxes would control 

the spatially varying NEP.” 

Comment 9B: L. 85 “could be integrated into some simple indicators”. I would use the term 

‘decompose’ instead of ‘integrated’. After all, the authors want to decompose the contribution 

of a series of carbon uptake and carbon release metrics to annual NEP and IAV_NEP. 

Response: Done as suggested. 

Comment 10B: L. 98-99 Not sure that FLUXCOM products are the best to assess IAV_NEP. 

Please check Jung et al. 2020 to understand the issues of such products when looking at 

IAV_NEP. Why not using NEE derived from atmospheric inversions though (e.g. 

JenaCarboScope (Rödenbeck et al., 2018), CAMSv17r1 (Chevallier et al., 2005, 2019) and 

CarbonTracker-EU (Peters et al., 2010)). At least, we know that this data capture some 

processes that contribute to IAV_NEP, which are not being captured with eddy-covariance data 

(e.g. fire, CO2 fertilization). 

Response: The authors really appreciate the reviewer for this great suggestion. We have verified 

the relationship derived from FLUXNET sites with the Jena CarboScope CO2 Inversion, and 

find that the relationship between annual NEP and 
𝑈

𝑅
 is robust in most global grid cells. We 

have added these new analyses in the Results Section (Lines 193-198) and Figure 2 (i.e., the 

following Fig. 1B) to strengthen our findings: 

“In addition, the relationship between NEP and 
𝑈

𝑅
 was also verified by the atmospheric 

inversion product (i.e., Jena CarboScope Inversion). The control of 
𝑈

𝑅
 on annual NEP was 

robust in most global grid cells (i.e. 0.6 < R2 < 1). The explanation of 
𝑈

𝑅
 was higher in 80% 

of the regions, but lower in North American (Fig. 2). These two datasets both showed that 

the indicator 
𝑈

𝑅
 could successfully capture the variability in annual NEP.” 
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Figure 1B. Relationship between annual NEP and 
𝑈

𝑅
 for Jena Inversion product (of the form 

NEP = 𝛽 ∙ ln⁡(
𝑈

𝑅
)). The black box indicates the location of the sample. 

Comment 11B: L. 122-129 It might be relevant to specify that you use the FLUXCOM RS-

meteo products for which the inter-annual variability is only driven by climatic conditions as 

they used the mean seasonal cycle of remote sensing products. This basically means that there 

is no inter-annual variability directly related to the state of vegetation. 

Response: Done. We have rephrased the description of FLUXCOM product by adding the 

following sentences in Method Section (Lines 141-143): 

“It should be noted that the inter-annual variability of FLUXCOM product is only driven 

by climatic conditions, the effects of land use and land cover change are not represented.” 

Comment 12B: L. 124 why only using the CRUNCEPv6 product. In my understanding, 

FLUXCOM uses more than one meteorological forcing as well as different machine-learning 

methods. Using all the FLUXCOM RS-meteo products could additionally provide uncertainty 

estimates for the presented indicators. 

Response: Thanks for this comment. We used the CRUNCEPv6 product mainly due to two 

reasons. First, the simulations from CLM4.5 and Jena Inversion in this study are both driven by 

CRUNECP meteorological forcing. Therefore, in order to reduce the uncertainty caused by 

meteorological forcing, we would prefer to choose the CRUNCEPv6 product. Second, we have 

averaged all the FLUXCOM CRUNCEPv6 products with different machine-learning methods 

to avoid the uncertainty caused by machine-learning methods. To illustrate our consideration 

clearer, we have detailed the selection of the product in Method Section (Lines 138-141): 

“To be consistent with the meteorological forcing of Jena Inversion product and the 

CLM4.5 model, we used the FLUXCOM CRUNCEPv6 products. In addition, in order to 

reduce the uncertainty caused by machine-learning methods, we averaged all the 

FLUXCOM CRUNCEPv6 products with different machine-learning methods.” 

Comment 13B: L. 122-136 If one of the aims is to compare FLUXCOM and CLM4.5, I would 

suggest comparing the two products during the same time period (i.e. 1990-2010). 
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Response: Thanks for this suggestion. We have adjusted the time period of all the global 

products to 1985-2010. 

Comment 14B: L. 133 ‘match the available FLUXCOM dataset.’ Spatially or temporally? As 

far as I know, the FLUXCOM products have a spatial resolution of either 0.5 or 0.0833 degrees 

(http://www.fluxcom.org/CF-Products/). 

Response: Thanks. We have adjusted the global products to the same time period (1985-2010) 

and specified their spatial resolution in the Method Section. 

Comment 15B: L. 140 equation 1: So U is conceptually GPP and R ecosystem respiration, 

right? I would be curious to see how GPP compared to U when U is computed as in equation 4 

for a sanity check. Are they the same? In principle yes, right? Same for ER and R. 

Response: Sorry for the confusion. We have drawn a concept figure to show our method to 

decompose the NEP in our study (Fig. 2B). The annual NEP is determined by vegetation 

photosynthesis and ecosystem respiration, but here we decompose the annual NEP into its more 

direct components: CO2 uptake flux and CO2 release flux. To describe the decomposition 

process more clearly, we have modified the decomposition process of NEP in Method Section. 

 

Figure 2B. Conceptual figure for the decomposition of annual NEP in this study. The example 

shows daily observations from BE-Bra site. 

Comment 16B: L. 143 I am not sure if this equation is written correctly. Assuming that U is 

supposed to be expressed in gC m-2 d-1, the way the equation is written suggests that the U 

would be expressed in gC m-2 (assuming that CUP is a length expressed in the number of days), 

which is then inconsistent with equation 4. Or did I misunderstand how CUP is calculated? 

Response: Thanks for reminding the confusion of the units. In this study, U is expressed in gC 

m-2 yr-1 and calculated from the mean daily CO2 uptake (𝑈̅, gC m-2 d-1) over the carbon uptake 

period (CUP, d yr-1). In fact,, the equations (2)-(3) and (4)-(5) are mathematically equivalent. 

Based on the suggestions from the reviewer, and in order to avoid using the ambiguous units, 
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we have removed the original equations (4) and (5). 

Comment 17B: L. 144 The same applies to this equation. 

Response: Thanks, we have deleted equations (4) and (5). 

Comment 18B: L. 148-149 I think these equations are correct and good enough to explain how 

U and R are calculated, therefore I would discard equation (2) and (3) to avoid confusion. Again, 

U and R derived from equations 2 and 3 do not seem to match how U and R are calculated from 

eq 4 and 5. 

Response: Done. We have discard equations (2) and (3) to avoid confusion 

Comment 19B: L. 150-153 “Because many studies have [..] are tightly correlated” I would 

move this sentence to the introduction. I am also not sure that this is enough to justify the need 

to look at the relationship between annual NEP and the ratio U/R. 

Response: Thanks for this suggestion. We have removed these sentences to the Introduction 

Section and added several sentences to state the motivation to explore the relationship between 

annual NEP and its components U and R (Lines 81-91): 

“However, despite the previous efforts in a predictive understanding of the land-

atmospheric C exchanges, the multi-model spread has not changed over time (Arora et al., 

2019). Therefore, it is imperative to explore the potential indicators for the spatially varying 

NEP, which could help attribute the spatial variation of NEP and IAVNEP into different 

processes and provide valuable constraints for the global C cycle. Alternatively, the annual 

NEP of a given ecosystem can be also directly decomposed into CO2 uptake flux and CO2 

release flux (Gray et al., 2014), which are more direct components for NEP (Fu et al., 2019). 

Many studies have reported that the vegetation CO2 uptake during the growing season and 

the non-growing season soil respiration are tightly correlated (Luo et al., 2014; Zhao et al., 

2016). It is still unclear how the ecosystem CO2 uptake and release fluxes would control 

the spatially varying NEP.” 

Comment 20B: L. 160 This equation is correct if one assumes that equations 2 and 3 correct, 

and if I understood correctly their formulation, equations 2 and 3 are not (see comment above). 

Therefore, I do not believe that the ratio U/R can be partitioned as presented in equation 7. It 

seems that part of the paper is based on assuming that equations 2 and 3 are correct, therefore I 

have concerned related to the analysis relying on equations 2 and 3. 

Response: Thanks for this comment. To be consistent with the equation (7), we have deleted 

the equations (4) and (5) and kept the equations (2) and (3) as the final decomposition 

approaches. 

Comment 21B: L. 171 I think the analysis presented in section 4 is not correct for the issues I 

have raised related to equations 2 and 3 at least the way equation 8 is expressed. One could 

express U/R = f(U/R, CUP/CUR) though and run the variable importance analysis. Why not 

just do the variable importance analysis as NEP = f(U/R, CUP/CUR)? I find it cleaner although 

it might be a bit circular and spurious as U and R are derived from NEP. 

Response: Thanks for this valuable suggestion. In the revised version, we have directly tested 
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the effect of these two ratios on the spatial variation in NEP (Figure 3B). These new results 

have been added in the Results as Figure 4. The major revisions in Method Section and Results 

Section are as below. 

In the Method Section, please find the added sentences on Lines 175-179 as: 

“We further quantified the relative contributions of 
𝑈̅

𝑅̅
 and 

𝐶𝑈𝑃

𝐶𝑅𝑃
 in driving the spatial 

variations in NEP: 

   NEP = ∫(
𝑈̅

𝑅̅
,
𝐶𝑈𝑃

𝐶𝑅𝑃
)                       (6) 

We used a relative importance analysis method to quantify the relative contributions 

of each ratio to the spatial variations in NEP.” 

In the Results Section, the added sentences could be found on Lines 206-210 as:  

“The decomposition of indicator 
𝑈

𝑅
  into 

𝑈̅

𝑅̅
  and 

𝐶𝑈𝑃

𝐶𝑅𝑃
  allowed us to quantify the 

relative importance of these two ratios in driving NEP variability. The linear regression 

and relative importance analysis showed a more important role of 
𝐶𝑈𝑃

𝐶𝑅𝑃
 (58%) than 

𝑈̅

𝑅̅
 

(42%) in explaining the cross-site variation of NEP (Fig. 4). Therefore, the spatial 

distribution of mean annual NEP was mostly driven by the phenological rather than 

physiological changes.” 

 

Figure 3B. The relative contributions of the local indicators in explaining the spatial patterns of 

mean annual NEP. a, The linear regression between mean annual NEP with 
𝐶𝑈𝑃

𝐶𝑅𝑃
 (R2 = 0.33, P 

< 0.01) and 
𝑈̅

𝑅̅
 (R2 = 0.25, P < 0.01) across sites. b, The relative contributions of each indicator 

to the spatial variation of NEP. The number of site-years at each site is indicated with the size 

of the point. 

Comment 22B: L. 186 I do not find this section relevant in the context of the study. Besides, 

most of the presented results are already well documented in the literature (e.g. Jung at al. 2020). 
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Response: Thanks for this suggestion. We have deleted this section from Results, and moved 

the related content to the Introduction Section (Lines 65-69): 

“Large spatial difference in terrestrial NEP has been reported from eddy-flux measurements, 

model outputs and atmospheric inversion products. In addition, the global average IAV of 

NEP was large relative to global annual mean NEP (Baldocchi et al., 2018). More 

importantly, the spatial variations of NEP and IAVNEP were typically underestimated by the 

compiled global dataset and the process-based global models (Jung et al., 2020; Fu et al., 

2019).” 

Comment 23B: L. 188 Be aware that the ‘large carbon sinks’ are very likely related to an 

artifact in the eddy-covariance datasets due to advection and storage issues. It might be relevant 

to discuss eddy-covariance data quality issues. 

Response: Thanks for this suggestion. Because this section has been removed in this revised 

version, so we didn’t further discuss the eddy-covariance data quality issues.  

Comment 24B: L. 204 Would that make sense to discard the sites for which the logarithmic 

function does not provide a correlation >0.9 for robustness? 

Response: Thanks, we have rephrased this sentence (Lines 190-192) as “The logarithmic 

correlations between annual NEP and 
𝑈

𝑅
 were significant at all sites (Fig. 1a; Fig. S2), and ~90% 

of R2 falling within a range from 0.7 to 1 (Fig. 1c).” 

Comment 25B: L. 207-208 “This finding suggests that the mean annual ratio ln(U/R) is a good 

indicator for NEP and its spatial variation.” Isn’t it expected? I mean U and R are derived from 

NEP so you might expect that their ratio explains the annual variability of NEP, right? 

Response: Thanks. We have rephrased the related sentences to make the statements clearer: (1) 

Results Section 3.1: “These two datasets both showed that the indicator 
𝑈

𝑅
 could successfully 

capture the variability in annual NEP.” (2) Results Section 3.2: “This finding suggested that the 

mean annual ratio ln⁡(
𝑈

𝑅
) is a good indicator for cross-site variation in NEP.” 

Comment 26B: L. 218 Again, is this analysis being done on the extracted time series for each 

Fluxnet sites or globally? If the former, I do not really see the point of included results based 

on FLUXCOM or CLM4.5 for the purpose of the study. It would be interesting to run this 

analysis both at the global scale and at the Fluxnet level. 

Response: Yes, the previous analysis in Figure 5 was based on the extracted time series for 

FLUXNET sites. We agree with the reviewer that it would be interesting to also run the analysis 

at the global scale. In this revised version, we have run the same analysis at the global scale 

based on Jena Inversion product, FLUXCOM product and CLM4.5 model (Figure 4B). The 

results have strengthened our major conclusion that the spatial variation of mean annual NEP 

can be indicated by ln(U/R), while the spatial distribution of IAVNEP is well indicated by the 

slope (i.e., β) of the demonstrated logarithmic correlation. We have added these new analyses 

in Results Section (Lines 219-225) as Figure 6. The major revisions in Results Section are as 

below: 

“In addition, the spatial variations of NEP and IAVNEP were associated with the spatial 
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resolution of the product (Marcolla et al., 2017). Considering the scale mismatch 

between FLUXNET sites and the gridded product, we run the same analysis at the global 

scale based on Jena Inversion product. At the global scale, the spatial variation of mean 

annual NEP can be also well indicated by ln (U/R) (Fig. 6). The larger C uptake in 

FLUXCOM resulted from its higher simulations for ln(U/R). Furthermore, the larger 

spatial variation of IAVNEP in CLM4.5 could be inferred from the indicator β.” 

 

Figure 4B. Representations of the spatially varying NEP and its local indicators in 

FLUXCOM product and the Community Land Model (CLM4.5) at the global scale. a, 

The variation of mean annual NEP and IAVNEP derives from Jena Inversion, FLUXCOM 

and CLM4.5. Variation in mean annual NEP: the spatial variation of mean annual NEPs; 

Variation in IAVNEP: the spatial variation of standard deviation in IAVNEP. b, 

Representations of the local indicators for NEP in Jena Inversion, FLUXCOM and 

CLM4.5. 

Comment 27B: L. 219 I do not think that one can directly compare the results from FLUXNET 

data and the two global products (i.e. FLUXCOM and CLM4.5) simply because of the strong 

bias in representativeness in the FLUXNET datasets. For instance, there are very few semi-arid 

ecosystems (e.g. 2 shrublands and 5 savannas in the presented study) in the FLUXNET dataset, 

while they represent a large portion of land at the global scale and have been shown to 

substantially control the interannual variability of NEP (Ahlström et al., 2015). Or do you 

extract FLUXCOM and CLM4.5 time series for each FLUXNET site location? If so, it is 

anyway not a fair comparison due to spatial mismatch as the footprint of a tower is definitely 

lower than 1 degree (CLM4.5) or 0.5 degree (FLUXCOM) spatial resolution. As previously 

mentioned, I would rather run this analysis globally and not only at FLUXNET sites to have a 

real added value by using global products such as FLUXCOM and CLM4.5. 

Response: Thanks for pointing out the issue of scale mismatch. Considering the scale mismatch 

between FLUXNET sites and the gridded products, we have removed the direct comparison of 

the spatial variation of mean annual NEP and IAVNEP from different sources in Section 3.3. 

Instead, we mainly emphasized the important role of local indicators in indicating the spatially 

varying NEP. 
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Also, as suggested by the reviewer, we have done the same analysis both at the global scale and 

at the FLUXNET site level. The results from FLUXNET sites are used to benchmark the 

simulations of FLUXCOM product and CLM4.5 model at the FLUXNET site level, and the 

results from Jena Inversion product are used to evaluate the simulations of FLUXCOM product 

and CLM4.5 model at the global scale. As shown in Figure 4B, the analyses at the global scale 

and at the FLUXNET site level both support our major conclusion that the spatial variation of 

mean annual NEP can be indicated by ln(U/R), while the spatial distribution of IAVNEP is well 

indicated by the slope (i.e., β) of the demonstrated logarithmic correlation. 

Technical corrections: 

Comment 28B: 

L.57 ‘However’ does not sound appropriate. Maybe ‘furthermore’ or ‘in addition’. 

Response: Done as suggested. 

L. 62 ‘dramatic’. Try to avoid emotional semantic in a scientific paper. Maybe ‘substantial’ 

instead? 

Response: Done as suggested. 

L. 77. replace Musavi, 2017 by Musavi et al., 2017 

Response: Done as suggested. 

L. 104 ‘database’ Replace database by product. 

Response: Done as suggested. 

L. 119-121 Stand age information is mentioned here but is they even being used further in the 

analysis? If not, please remove it. 

Response: Done. We have removed it. 

L. 154-155 ‘Then we found that annual NEP [...] (Figure S2).’ To me, this already belongs to 

the results section. 

Response: Thanks, we have removed this sentence to the Results Section. 

L. 154 ‘the ratio U/R’. It might be relevant for the reader to see a sentence explaining the 

meaning of the ratio U/R. This explanation in L. 162-163 comes a bit too late. 

Response: We have added the meaning of ratio U/R as “we further tested the relationship 

between annual NEP and the ratio of U/R. Ecologically, the ratio of U/R reflects the relative 

strength of the ecosystem CO2 uptake.” on line 158-159. 

L. 151-152 ‘the non-growing soil respiration’ Is that what you mean here? Maybe rephrase. 

Response: We have rephrased it as “the non-growing season soil respiration”. 

L. 208 I would not say ‘was well explained’ but rather that the correlation was moderate (i.e. 

0.3 > r> 0.7) 

Response: We have rephrased it as “was moderately explained”. 

L. 347 In Fig. 1, it is not clear to me what products are we looking at. FLUXCOM, CLM 4.5 or 

both? It seems to be FLUXCOM (L. 99) but please specify in the figure’s caption. 

Response: As suggested by Comment 22B, we have deleted Figure 1 and the related results. 
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Abstract 34 

Multiple lines of evidence have demonstrated the persistence of global land carbon (C) sink 35 

during the past several decades. However, both annual net ecosystem productivity (NEP) and 36 

its inter-annual variation (IAVNEP) keep varying over space. Thus, identifying local indicators 37 

for the spatially varying NEP and IAVNEP is critical for locating the major and sustainable C 38 

sinks on the land. Here, based on a machine-learning-derived database, we first showed that the 39 

variations of NEP and IAVNEP are spatially asynchronous. Then, based on daily NEP 40 

observations from eddy covarianceFLUXNET sites and the atmospheric inversion product, we 41 

found a robust logarithmic correlation between annual NEP and ratio of total CO2 exchanges 42 

during net uptake (U) and release (R) periods (i.e., U/R). The cross-site variation of mean annual 43 

NEP can could be linearly indicated by ln(U/R), while the spatial distribution of IAVNEP was 44 

well indicated by the slope (i.e., β) of the demonstrated logarithmic correlation. Among biomes, 45 

for example, forests and croplands had the largest U/R ratio (1.06 ± 0.83) and β (473 ± 112 g C 46 

m-2 yr-1), indicating the highest NEP and IAVNEP in forests and croplands, respectively. We 47 

further showed that these two simple indicators could directly infer the spatial variations in NEP 48 

and IAVNEP in global gridded productsthe spatial variations of NEP and IAVNEP were both 49 

underestimated by the machine-learning-based and process-based global models. Overall, this 50 

study underscores the asynchronously changes in the strength and stability of land C sinks over 51 

space, and provides two simple local indicators for their the intricate spatial variations in the 52 

strength and stability of land C sinks. These indicators could be helpful for locating the persistent 53 

terrestrial C sinks and provides valuable constraints for improving the simulation of land-54 

atmospheric C exchanges.  55 

  56 
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1. Introduction 57 

Terrestrial ecosystems reabsorb about one-quarter of anthropogenic CO2 emission (Ciais et 58 

al., 2019) and are primarily responsible for the recent temporal fluctuations of the measured 59 

atmospheric CO2 growth rate (Randerson, 2013; Le Quéré et al., 2018). HoweverIn addition, 60 

evidence based on eddy-flux measurements (Baldocchi, Chu, & Reichstein et al., 2018; 61 

Rödenbeck, Zaehle, Keeling, & Heimann, et al., 2018), aircraft atmospheric budgets (Peylin et 62 

al., 2013), and process-based model simulations (Poulter et al., 2014; Ahlstrom et al., 2015) has 63 

shown a large spatial variability in net ecosystem productivity (NEP) on the land. The elusive 64 

variation of terrestrial NEP over space refers to both of the substantialdramatic varying mean 65 

annual NEP and the divergent inter-annual variability (IAV) in NEP (i.e., IAVNEP; usually 66 

quantified as the standard deviation of annual NEP) across space (Baldocchi, Chu, & Reichstein 67 

et al., 2018; Marcolla, Rödenbeck, & Cescatti et al., 2017). The mean annual NEP is related to 68 

the strength of carbon sink exchange of a specific ecosystem (Randerson, Chapin III, Harden, 69 

Neff, & Harmon et al., 2002; Luo, & and Weng, 2011; Jung et al., 2017), while IAVNEP 70 

characterizes the stability of such carbon sink exchange (Musavi et al., 2017). Thus, whether 71 

and how NEP and IAVNEP change asynchronously over the space is important for predicting the 72 

future locations of carbon sinks on the land (Yu et al., 2014; Niu et al., 2017). 73 

Large spatial difference in terrestrial NEP has been reported from eddy-flux measurements, 74 

model outputs and atmospheric inversion products. In addition, the global average IAV of NEP 75 

was large relative to global annual mean NEP (Baldocchi et al., 2018). More importantly, the 76 

spatial variations of NEP and IAVNEP were typically underestimated by the compiled global 77 

product and the process-based global models (Jung et al., 2020; Fu et al., 2019). These 78 

discrepancies further revealed the necessary to identify local indicators for the spatially varying 79 

NEP and IAVNEP, separately.  80 

The NEP in terrestrial ecosystems is determined by two components, including vegetation 81 

photosynthesis and ecosystem respiration (Reichstein et al., 2005). Because there is a strong 82 

covariance between photosynthesis and respiration are strongly correlated over space 83 

(Baldocchi, Sturtevant, & Contributors et al., 2015; Biederman et al., 2016), their relative 84 

difference could determine the spatial variation of NEP. Many previous analyses have attributed 85 
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the IAVNEP at the site level to the different sensitivities of ecosystem photosynthesis and 86 

respiration to environmental fluctuations among yearsdrivers (Gilmanov et al., 2005; Reichstein 87 

et al., 2005) ;and biotic controls (Gilmanov et al., 2005; Reichstein et al., 2005; (Besnard et al., 88 

2018; Musavi et al., 2017). For example, some studies have reported that IAVNEP is more 89 

associated with variations in photosynthesis than carbon release (Ahlstrom et al., 2015; Novick, 90 

Oishi, Ward, Siqueira, Juang, & Stoy et al., 2015; Li et al., 2017), whereas others have indicated 91 

that respiration is more sensitive to anomalous climate variability (Valentini et al., 2000; von 92 

Buttlar et al., 2017). Alternatively, the annual NEP of a given ecosystem can be defined 93 

numerically as the balance between the CO2 uptake and release processes (Gray et al., 2014), 94 

which are more direct components for NEP (Fu et al., 2019). However, despite the previous 95 

efforts in a predictive understanding of the land-atmospheric C exchanges, the multi-model 96 

spread has not reduced over time (Arora et al., 2019). Therefore, it is imperative to explore the 97 

potential indicators for the spatially varying NEP, which could help attribute the spatial variation 98 

of NEP and IAVNEP into different processes and provide valuable constraints for the global C 99 

cycle. Alternatively, the annual NEP of a given ecosystem can be also directly decomposed into 100 

CO2 uptake flux and CO2 release flux (Gray et al., 2014), which are more direct components for 101 

NEP (Fu et al., 2019). Many studies have reported that the vegetation CO2 uptake during the 102 

growing season and the non-growing season soil respiration are tightly correlated (Luo et al., 103 

2014; Zhao et al., 2016). It is still unclear how the whether ecosystem CO2 uptake and release 104 

fluxes would could be integrated into control some simple indicators for the spatially varying 105 

NEP and IAVNEP in terrestrial ecosystems. 106 

Conceptually, the total CO2 uptake flux (U) is determined by the length of CO2 uptake 107 

period (CUP) and the CO2 uptake rate, while the total CO2 release flux (R) depends on the length 108 

of CO2 release period (CRP) and the CO2 release rate (Fig. 2b). The variations of NEP thus 109 

should be innovatively attributed to these decomposed components. A strong spatial correlation 110 

between mean annual NEP and length of CO2 uptake period has been reported in evergreen 111 

needle- and broad-leaved forests (Churkina, Schimel, Braswell, & Xiao et al., 2005; Richardson, 112 

Keenan, Migliavacca, Ryu, Sonnentag, & Toomey et al., 2013; Keenan et al., 2014), whereas 113 

atmospheric inversion data and vegetation photosynthesis model indicated a dominant role of 114 
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the maximal carbon uptake rate (Fu, Dong, Zhou, Stoy, & Niu et al., 2017; Zhou et al., 2017). 115 

However, the relative importance of these phenological and physiological indicators for the 116 

spatially varying NEP remains unclear. 117 

In this study, we first explored the changes in NEP and IAVNEP at the global scale based on 118 

data from a widely-used machine-learning-derived product (i.e., FLUXCOM). To address the 119 

local indicators for spatially varying NEP, we decomposed annual NEP into U and R, and 120 

explored the local indicators for spatially varying NEP. Based on the eddy-covariance fluxes 121 

from FLUXNET2015 Dataset (Pastorello et al., 2017) and the atmospheric inversion product 122 

(Rödenbeck et al., 2018), Then,we we examined the relationship of between NEP and its direct 123 

components. 𝑁𝐸𝑃 ∝  
𝑈

𝑅
 based on the observations at 72 eddy covariance towers which has >5 124 

years measurements in the FLUXNET2015 Dataset (Jung et al., 2017). In In addition, we used 125 

the observations to evaluate the spatial variations of NEP and IAVNEP in the FLUXCOM 126 

database product and a process-based model (CLM4.5) (Oleson et al., 2013). The major aim of 127 

this study is to explore whether there are useful local indicators for the spatially varying NEP 128 

and IAVNEP in terrestrial ecosystems. 129 

2. Materials and Methods 130 

2.1 Datasets 131 

Daily NEP observations of eddy covariance sites were are obtained from the FLUXNET2015 132 

Tier 1 dataset (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). The FLUXNET2015 133 

dataset provides half-hourly data of carbon, water and energy fluxes at over 210 sites that are 134 

standardized and gap-filled (Pastorello et al., 2017). However, time series of most sites are still 135 

too short for the analysis of inter-annual variation in NEP. So only the sites that provided the 136 

availability of eddy covariance flux measurements for at least 5 years are selected. This leads to 137 

a global dataset of 72 sites with different biomes across different climatic regions. Based on the 138 

biome classification from the International Geosphere-Biosphere Programme (IGBP) provided 139 

for the FLUXNET2015 sites, the selected sites include 35 forests (FOR), 15 grasslands (GRA), 140 

11 croplands (CRO), 4 wetlands (WET), 2 shrublands (SHR) and 5 savannas (SAV) (Fig. S1 141 

and Table S1). The stand age information of forest sites is the average tree age of the stand, and 142 
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was obtained from the Biological Ancillary Disturbance and Metadata (BAMD) of the 143 

FLUXNET dataset (Musavi, et al., 2017). 144 

The Jena CarboScope Inversion product compiles from high precision measurements of 145 

atmospheric CO2 concentration with simulated atmospheric transport (Rödenbeck et al., 2018). 146 

Here, we used the daily land-atmosphere CO2 fluxes from the s85_v4.1 version at a spatial 147 

resolution of 5°× 3.75°. Considering the relatively low spatial resolution of the Jena Inversion 148 

product, the daily fluxes were only used to calculate the local indicators for the spatially varying 149 

NEP at the global scale. 150 

Daily NEP simulations from Community Land Model version 4.5 (CLM4.5) were also used 151 

to calculate the local indicators for the spatially varying NEP at the corresponding flux tower 152 

sites. We ran the CLM4.5 model from 1985 to 2010 at a spatial resolution of 1° with CRUNECP 153 

meteorological forcing. Here, NEP was derived as the difference between GPP and TER, and 154 

TER was calculated as the sum of simulated autotrophic and heterotrophic respiration. The daily 155 

outputs from CLM4.5 were used to calculate the local indicators for the spatially varying NEP 156 

both at the global scale and at the FLUXNET site level. 157 

    The FLUXCOM dataset product presents an upscaling of carbon flux estimates from 158 

224 flux tower sites based on multiple machine learning algorithms and meteorological drivers 159 

satellite data (Jung et al., 2017). To be consistent with the meteorological forcing of Jena 160 

Inversion product and the CLM4.5 model, we used the FLUXCOM CRUNCEPv6 products. In 161 

addition, in order to reduce the uncertainty caused by machine-learning methods, we averaged 162 

all the FLUXCOM CRUNCEPv6 products with different machine-learning 163 

methods.Meteorological measurements from CRUNCEPv6 and a serious of remotely sensed 164 

datasets were used as input. It should be noted that the inter-annual variability of FLUXCOM 165 

product is only driven by climatic conditions, the effects of land use and land cover change are 166 

not represented. For this study, we downloaded tThe FLUXCOM NEP product is downloaded 167 

from the Data Portal of the Max Planck Institute for Biochemistry (https://www.bgc-168 

jena.mpg.de). Daily outputs from FLUXCOM for the period 19801985-2013 2010 at 0.5° spatial 169 

resolution were used to map the spatial variation in terrestrial NEP and calculate the local 170 

indicators for the spatially varying NEP both at the global scale and at the FLUXNET site 171 
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level.at the same locations of the flux tower sites. 172 

    Daily NEP simulations from Community Land Model version 4.5 (CLM4.5) were also 173 

used to calculate the local indicators for the spatially varying NEP at the corresponding flux 174 

tower sites. We ran the CLM4.5 model from 1990 to 2010 with a spatial resolution of 1° to 175 

match the available FLUXCOM dataset. Here, NEP was derived as the difference between GPP 176 

and TER, and TER was calculated as the sum of simulated autotrophic and heterotrophic 177 

respiration. The daily outputs from CLM4.5 were used to calculate the local indicators for the 178 

spatially varying NEP at the same locations of the flux tower sites. 179 

2.2 Decomposition of NEP and the calculations for its local indicators 180 

The annual NEP of a given ecosystem can be defined numerically as the difference between the 181 

CO2 uptake and release. As illustrated in Figure 2b: 182 

                          𝑁𝐸𝑃 = 𝑈 − 𝑅                               (1) 183 

These components of NEP contain both photosynthesis and respiration flux, which directly 184 

indicate the net CO2 exchange of an ecosystem. where tThe total CO2 uptake flux (U) and the 185 

total CO2 release flux (R) can be further decomposed as: 186 

                          𝑈 = 𝑈̅ × 𝐶𝑈𝑃                                (2) 187 

                          𝑅 = 𝑅̅ × 𝐶𝑅𝑃                                (3) 188 

where the 𝑈̅ (g C m-2 d-1) is the mean daily CO2 uptake over CUP (d yr-1) and 𝑅̅ (g C m-2 d-1) 189 

represents the mean daily CO2 release over CRP (d yr-1). In addition, The calculations of these 190 

direct indicators are as follows: 191 

                 𝑈 = ∑ 𝑁𝐸𝑃𝑖  (𝑚
𝑖=1 𝑁𝐸𝑃𝑖 > 0;  𝐶𝑈𝑃 = 𝑚)                   (4) 192 

                     𝑅 = ∑ 𝑁𝐸𝑃𝑖  (𝑛
𝑖=1 𝑁𝐸𝑃𝑖 < 0; 𝐶𝑅𝑃 = 𝑛)                     (5) 193 

where 𝑁𝐸𝑃𝑖 refers to the daily NEP (g C m-2 d-1) in the ith day. Because many studies have 194 

reported that the vegetation CO2 uptake during the growing season and the non-growing soil 195 
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respiration are tightly correlated (Luo, & Zhou, 2006; Xia, Chen, Piao, Ciais, Luo, & Wan, 2014; 196 

Zhao, Peichl, Ӧquist, & Nilsson, 2016), we further tested the relationship between annual NEP 197 

and the ratio of 
𝑈

𝑅
 (i.e., 𝑁𝐸𝑃 ∝  

𝑈

𝑅
). Ecologically, the ratio of 

𝑈

𝑅
 reflects the relative strength of 198 

the ecosystem CO2 uptake. Then we found that annual NEP was closely related with the ratio of 199 

𝑈

𝑅
 (Figure S2). Therefore, NEP in any year of any given ecosystem can be expressed as: 200 

                𝑁𝐸𝑃 = 𝛽 ∙ ln (
𝑈

𝑅
)                               (64) 201 

where the parameter 𝛽 represents the slope of the linear relationship of 𝑁𝐸𝑃 ∝ ln (
𝑈

𝑅
). Based 202 

on the definitions of U and R, the ratio 
𝑈

𝑅
 can be further written as: 203 

                   
𝑈

𝑅
=

𝑈̅

𝑅̅
∙

𝐶𝑈𝑃

𝐶𝑅𝑃
                                   (75) 204 

These components of NEP contain both photosynthesis and respiration flux, which directly 205 

indicate the net CO2 exchange of an ecosystem. Ecologically, the ratio of 
𝑈̅

𝑅̅
 reflects the relative 206 

physiological difference between ecosystem CO2 uptake and release strength, while the ratio of 207 

𝐶𝑈𝑃

𝐶𝑅𝑃
 is an indicator of net ecosystem CO2 exchange phenology. Environmental changes may 208 

regulate these ecological processes and ultimately affect the ecosystem NEP. The slope β 209 

indicates the response sensitivity of NEP to the changes in phenology and physiological 210 

processes. All of β, 
𝐶𝑈𝑃

𝐶𝑅𝑃
 and 

𝑈̅

𝑅̅
 were then calculated from the selected eddy covariance sites 211 

and the corresponding pixels of these sites in models. These derived indicators from eddy 212 

covariance sites were then used to benchmark the results extracted from the same locations in 213 

models. 214 

2.4 Calculation of the relative contributions 215 

To We further identify quantified the relative contributions of 
𝑈̅

𝑅̅
  and 

𝐶𝑈𝑃

𝐶𝑅𝑃
  in driving the 216 

spatiotemporal spatial variations in the local indicator 
𝑈

𝑅
NEP, we linearized the equation (7) as: 217 

    log (
𝑈

𝑅
) NEP = ∫(

𝑈̅

𝑅̅
,

𝐶𝑈𝑃

𝐶𝑅𝑃
log (

𝑈̅

𝑅̅
) + log (

𝐶𝑈𝑃

𝐶𝑅𝑃
))                                 218 

(86) 219 
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Then wWe used a relative importance analysis method to quantify the relative contributions 220 

of each ratio to the spatiotemporal spatial variations in NEP. 
𝑈

𝑅
.  The algorithm was performed 221 

with the “ralaimpo” package in R (R Development Core Team, 2011). The “relaimpo” package 222 

is based on variance decomposition for multiple linear regression models. We chose the most 223 

commonly used method named “Lindeman-Merenda-Gold (LMG)” (Grömping, 2007) from the 224 

methods provided by the “ralaimpo” package. This method allows us to quantify the 225 

contributions of explanatory variables in a multiple linear regression model. In each site, we 226 

calculated the contributions of 
𝑈̅

𝑅̅
 and 

𝐶𝑈𝑃

𝐶𝑅𝑃
 in explaining inter-annual variation in 

𝑈

𝑅
. Across the 227 

72 FLUXNET sites, we quantified the relative importance of 
𝑈̅

𝑅̅
 and 

𝐶𝑈𝑃

𝐶𝑅𝑃
 to cross-site changes 228 

in  NEP
𝑈

𝑅
. 229 

3. Results 230 

3.1 Spatial variability in terrestrial NEP 231 

Based on the FLUXCOM product, a large spatial variation in terrestrial NEP and IAVNEP existed 232 

over 1980-2013. The tropical forests were typically large carbon sinks accompanied by 233 

considerable interannual variability. On the contrary, the boreal tundra ecosystems were stable 234 

carbon sinks and the shrublands in the Southern Hemisphere were variable carbon sources (Fig. 235 

1a). This remarkable spatial difference in terrestrial NEP was particularly obvious from eddy-236 

flux measurements (Fig. S1), and the global average IAV of NEP (175 ± 111 g C m-2 yr-1) was 237 

large relative to global annual mean NEP (216 ± 234 g C m-2 yr-1). These spatial patterns were 238 

also supported by the model outputs (Jung et al., 2017) and atmospheric inversion product 239 

(Marcolla, Rödenbeck, & Cescatti, 2017).  240 

More importantly, we found that the variations of NEP and IAVNEP were spatially 241 

asynchronous. Along the latitudinal gradients, terrestrial NEP peaked at equatorial regions, 242 

whereas the highest IAVNEP existed in semiarid regions near 37o S (Fig. 1b). The demonstrated 243 

spatial asynchrony further revealed the necessary to identify local indicators for the spatially 244 

varying NEP and IAVNEP, separately.  245 

3.2 1 Local indicators for spatially varyingThe relationship between NEP and its direct 246 
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components 247 

To find local indicators for the spatially varying NEP in terrestrial ecosystems, we first tested 248 

the relationship between NEP and the its direct components (𝑈 and 𝑅)
𝑈

𝑅
 ratio across the 72 249 

flux-tower sites. Then we found results showed that annual NEP was closely related with the 250 

ratio of 
𝑈

𝑅
 (Figure S2). We The found robust logarithmic correlations between annual NEP and 251 

𝑈

𝑅
 were significant at all sites (Fig. 2a1a; Fig. S2), with and ~90% of R2 falling within a range 252 

from 0.7 to 1 (Fig. 2c1c). 253 

 In addition, the relationship between NEP and 
𝑈

𝑅
 was also verified by the atmospheric 254 

inversion product (i.e., Jena CarboScope Inversion). The control of 
𝑈

𝑅
  on annual NEP was 255 

robust in most global grid cells (i.e. 0.6 < R2 < 1). The explanation of 
𝑈

𝑅
 was higher in 80% of 256 

the regions, but lower in North American (Fig. 2). These two datasets both showed that the 257 

indicator 
𝑈

𝑅
 could successfully capture the variability in annual NEP.Across the 72 flux-tower 258 

sites, the spatial changes in mean annual NEP were significantly correlated to ln (
𝑈

𝑅
) (R2 = 0.65, 259 

P < 0.01) (Fig. 3a). This finding suggests that the mean annual ratio ln (
𝑈

𝑅
) is a good indicator 260 

for NEP and its spatial variation. By contrast, the spatial variation of IAVNEP was well explained 261 

by the slope (i.e., β) of the temporal correlation between NEP and ln (
𝑈

𝑅
) at each site (R2 = 0.39, 262 

P < 0.01; Fig. 3b) rather than ln (
𝑈

𝑅
)  (Fig. S3). The wide range of ratio β reveals a large 263 

divergence of NEP sensitivity across biomes, ranging from 121 ± 118 g C m-2 yr-1 in shrubland 264 

to 473 ± 112 g C m-2 yr-1 in cropland.  265 

The decomposition of indicator 
𝑈

𝑅
  into 

𝑈̅

𝑅̅
  and 

𝐶𝑈𝑃

𝐶𝑅𝑃
  allowed us to quantify the relative 266 

importance of these two ratios in driving 
𝑈

𝑅
  variability. The linear regression and relative 267 

importance analysis showed a more important role of 
𝐶𝑈𝑃

𝐶𝑅𝑃
 (81%) than 

𝑈̅

𝑅̅
 (19%) in explaining 268 

the cross-site variation of 
𝑈

𝑅
 (Fig. 4). Therefore, the spatial distribution of mean annual NEP 269 

was mostly driven by the phenological rather than physiological changes. 270 
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3.2 Local indicators for spatially varying NEP 271 

Across the 72 flux-tower sites, the spatial changes in mean annual NEP were significantly 272 

correlated to ln (
𝑈

𝑅
) (R2 = 0.65, P < 0.01) (Fig. 3a). This finding suggested that the mean annual 273 

ratio ln (
𝑈

𝑅
) is a good indicator for cross-site variation in NEP. By contrast, the spatial variation 274 

of IAVNEP was moderately explained by the slope (i.e., β) of the temporal correlation between 275 

NEP and ln (
𝑈

𝑅
) at each site (R2 = 0.39, P < 0.01; Fig. 3b) rather than ln (

𝑈

𝑅
) (Fig. S3). The 276 

wide range of ratio β reveals a large divergence of NEP sensitivity across biomes, ranging from 277 

121 ± 118 g C m-2 yr-1 in shrubland to 473 ± 112 g C m-2 yr-1 in cropland.  278 

The decomposition of indicator 
𝑈

𝑅
  into 

𝑈̅

𝑅̅
  and 

𝐶𝑈𝑃

𝐶𝑅𝑃
  allowed us to quantify the relative 279 

importance of these two ratios in driving NEP variability. The linear regression and relative 280 

importance analysis showed a more important role of 
𝐶𝑈𝑃

𝐶𝑅𝑃
 (58%) than 

𝑈̅

𝑅̅
 (42%) in explaining 281 

the cross-site variation of NEP (Fig. 4). Therefore, the spatial distribution of mean annual NEP 282 

was mostly driven by the phenological rather than physiological changes. 283 

 284 

3.3 Simulated spatial variations in NEP by models  285 

We further used these two simple indicators (i.e., 
𝑈

𝑅
 and β) to evaluate the simulated spatial 286 

variations of NEP by the compiled global productmachine-learning approach (i.e., FLUXCOM) 287 

and a widely-used process-based model at the FLUXNET site level (i.e., CLM4.5). We found 288 

that both of FLUXCOM and CLM4.5 underestimated the spatial variation of mean annual NEP 289 

and IAVNEP (Fig. 5a). Tthe low spatial variation of mean annual NEP in FLUXCOM and 290 

CLM4.5 could be inferred from their more converging ln (
𝑈

𝑅
) than flux-tower measurements 291 

(Fig. 5b). The underestimated variation of IAVNEP in these modeling results was also clearly 292 

shown by the smaller β values (268.22, 126.00 and 145.08 for FLUXNET, FLUXCOM and 293 

CLM4.5, respectively) (Fig. 5b).  294 

In addition, the spatial variations of NEP and IAVNEP were associated with the spatial 295 

resolution of the product (Marcolla et al., 2017). Considering the scale mismatch between 296 
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FLUXNET sites and the gridded product, we run the same analysis at the global scale based on 297 

Jena Inversion product. At the global scale, the spatial variation of mean annual NEP can be also 298 

well indicated by ln (
𝑈

𝑅
) (Fig. 6). The larger C uptake in FLUXCOM resulted from its higher 299 

simulations for ln (
𝑈

𝑅
). Furthermore, the larger spatial variation of IAVNEP in CLM4.5 could be 300 

inferred from the indicator β. 301 

4. Discussion 302 

4.1 New perspective for locating the major and sustainable land C sinks 303 

Large spatial differences of mean annual NEP and IAVNEP have been well-documented in 304 

previous studies (Jung et al., 2017; Marcolla, Rödenbeck, & Cescatti et al., 2017; Fu et al., 2019). 305 

Here we provide a new perspective for quantifying the spatially varying NEP by tracing annual 306 

NEP into several local indicators. Therefore, these traceable indicators could provide useful 307 

constraints for predicting annual NEP, especially in areas without eddy-covariance towers. 308 

Typically, the C sink capacity and its stability of a specific ecosystem are characterized 309 

separately (Keenan et al., 2014; Ahlstrom et al., 2015; Jung et al., 2017). Here we integrated 310 

NEP into two simple indicators that could directly locate the major and sustainable land C sink. 311 

Among biomes, forests and croplands had the largest ln (
𝑈

𝑅
) and β, indicating the strongest and 312 

the most unstable C sink in forests and croplands, respectively.  313 

However, the relatively lower β in shrublands and savannas should be interpreted 314 

cautiously. There are very few semi-arid ecosystems in the FLUXNET sites, while they 315 

represent a large portion of land at the global scale and have been shown to substantially control 316 

the interannual variability of NEP (Ahlström et al., 2015). The highest β in croplands implies 317 

that the rapid global expansion of cropland may enlarge the IAVNEP on the land. In fact, the 318 

cropland expansion has been confirmed as one important driver of the recent increasing global 319 

vegetation growth peak (Huang et al., 2018) and atmospheric CO2 seasonal amplitude (Gary et 320 

al., 2014; Zeng et al., 2014).   321 

4.2 Phenology-dominant spatial distribution of mean annual NEP 322 

Recent studies have demonstrated that the spatiotemporal variations in terrestrial gross primary 323 
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productivity are jointly controlled by plant phenology and physiology (Xia et al., 2015; Zhou et 324 

al., 2016). Here we demonstrated the dominant role of the phenology indicator 
𝐶𝑈𝑃

𝐶𝑅𝑃
 in driving 325 

the spatial difference of 
𝑈

𝑅
 and therefore the mean annual NEP. The reported low correlation 326 

between 
𝑈

𝑅
 and the physiological between mean annual NEP and the physiological indicator 

𝑈̅

𝑅̅
 327 

could partly be attributed to the convergence of 
𝑈̅

𝑅̅
  across FLUXNET sites (Fig. S4). The 328 

convergent 
𝑈̅

𝑅̅
 across sites was first discovered by Churkina et al. (2005) as 2.73 ± 1.08 across 329 

28 sites, which included DBF, EBF and crop/grass. In this study, we found the 
𝑈̅

𝑅̅
 across the 72 330 

sites is 2.71 ± 1.61, which validates the discovery by Churkina et al. However, the 
𝑈̅

𝑅̅
 varied 331 

among biomes (2.86 ± 1.56 for forest, 2.16 ± 1.14 for grassland, 3.47 ± 1.98 for cropland, 2.89 332 

± 1.47 for wetland, 1.89 ± 1.10 for shrub, 1.83 ± 0.88 for savanna). This spatial convergence of 333 

𝑈̅

𝑅̅
 at the ecosystem level provides important constraints for global models that simulate various 334 

physiological processes (Peng et al., 2015; Xia et al., 2017). These findings imply that the 335 

phenology changes will greatly affect the locations of the terrestrial carbon sink by modifying 336 

the length of carbon uptake period (Richardson, Keenan, Migliavacca, Ryu, Sonnentag, & 337 

Toomey et al., 2013; Keenan et al., 2014). 338 

4.3 The simulated underestimated spatial variations oflocal indicators from gridded 339 

products NEP in models 340 

This study showed that the considerable spatial variations in mean annual NEP and IAVNEP were 341 

both underestimated by from global gridded products the machine-learning-based and process-342 

based global models, which could also be inferred from their local indicators. The low variations 343 

of 
𝑈

𝑅
  ratio in the two modeling approachesCLM4.5 could be largely due to their simple 344 

representations of the diverse terrestrial plant communities into a few plant functional types with 345 

parameterized properties (Cui et al., 2019; Sakschewski et al., 2015). In addition, the higher 
𝑈

𝑅
 346 

ratio from FLUXCOM product indicated its widely reported larger C uptake (Fig. 6) (Jung et 347 

al., 2020). Meanwhile, The the ignorance of fire, land-use change and other disturbancesyear-348 

to-year vegetation dynamic could lead to the smaller β by allowing for only limited variations 349 



14 
 

of phenological and physiological responses to environmental changesdynamics (Reichstein, 350 

Bahn, Mahecha, Kattge, & Baldocchi et al., 2014; Kunstler et al., 2016). Although the 351 

magnitude of IAVNEP depends on the spatial resolution (Marcolla, Rödenbeck, & Cescatti et al., 352 

2017), we recommend future model benchmarking analyses to use not only the global product 353 

compiled from machine-learning-based data product method (Bonan et al., 2018) but also the 354 

site-level measurements or indicators (i.e., ln (
𝑈

𝑅
) and β). 355 

4.4 Conclusions and further implications 356 

In summary, this study highlights the changes in NEP and IAVNEP over space on the land, and 357 

provides the 
𝑈

𝑅
  ratio and β as two simple local indicators for their spatial variations. These 358 

indicators could be helpful for locating the persistent terrestrial C sinks in where the ln (
𝑈

𝑅
) 359 

ratio is high but the β is low. Their estimates based on observations are also valuable for 360 

benchmarking and improving the simulation of land-atmospheric C exchanges in Earth system 361 

models.  362 

In addition, the findings in this study have some important implications for understanding 363 

the variation of NEP on the land. First, forest ecosystems have the largest annual NEP due to the 364 

largest ln (
𝑈

𝑅
) while croplands show the highest IAVNEP because of the highest β. Second, the 365 

spatial convergence of 
𝑈̅

𝑅̅
 suggests a tight linkage between plant growth and the non-growing 366 

season soil microbial activities (Xia, Chen, Piao, Ciais, Luo, & Wan et al., 2014; Zhao, Peichl, 367 

Ӧquist, & Nilsson et al., 2016). However, it remains unclear whether the inter-biome variation 368 

in 
𝑈̅

𝑅̅
  is due to different plant-microbe interactions between biomes. Third, the within-site 369 

convergent but spatially varying β needs better understanding. Previous studies have shown that 370 

a rising standard deviation of ecosystem functions could indicate an impending ecological state 371 

transition (Carpenter, & and Brock, 2006; Scheffer et al., 2009). Thus, a sudden shift of the β-372 

value may be an important early-warning signal for the critical transition of IAVNEP of an 373 

ecosystem.   374 

In additionFurthermore, considering the limited eddy-covariance sites with long-term 375 

observations, these findings need further validation once the longer time-series of measurements 376 
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from more sites and vegetation types become available. Overall, this study highlights the 377 

asynchronous changes in NEP and IAVNEP over space on the land, and provides the 
𝑈

𝑅
 ratio and 378 

β as two simple local indicators for their spatial variations. These indicators could be helpful for 379 

locating the persistent terrestrial C sinks in where the ln (
𝑈

𝑅
) ratio is high but the β is low. Their 380 

estimates based on observations are also valuable for benchmarking and improving the 381 

simulation of land-atmospheric C exchanges in Earth system models.  382 
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FIGURES 402 

Figure 1 Locations of carbon sinks (mean annual NEP) and their stability (IAVNEP) on the land. 403 

a, Spatial patterns of mean annual NEP and IAVNEP. b, Latitudinal patterns of mean annual NEP 404 

and IAVNEP. 405 

Figure 2 1 Relationship between annual NEP and 
𝑈

𝑅
  for 72 FLUXNET sites (of the form 406 

NEP = 𝛽 ∙ ln (
𝑈

𝑅
) ). a, Dependence of annual NEP on the ratio between total CO2 exchanges 407 

during net uptake (U) and release (R) periods (i.e., 
𝑈

𝑅
). Each line represents one flux site with at 408 

least 5 years of observations. b, Conceptual figure for the decomposition framework introduced 409 

in this study. Annual NEP can be quantitatively decomposed into the following indicators: 410 

𝑁𝐸𝑃 = 𝑈 − 𝑅. c, Distribution of the explanation of 
𝑈

𝑅
 on temporal variability of NEP (R2) for 411 

FLUXNET sites. 412 

Figure 2 Relationship between annual NEP and 
𝑈

𝑅
  for Jena Inversion product (of the form 413 

NEP = 𝛽 ∙ ln (
𝑈

𝑅
)). The black box indicates the location of the sample. 414 

Figure 3 Contributions of the two indicators in explaining the spatial patterns of mean annual 415 

NEP and IAVNEP. a, The relationship between annual mean NEP and ln (
𝑈

𝑅
) across FLUXNET 416 

sites (R2 = 0.65, P < 0.01). The insets show the variation of ln (
𝑈

𝑅
)  for different terrestrial 417 

biomes. b, The explanation of β on IAVNEP (R2 = 0.39, P < 0.01). The insets show the distribution 418 

of parameter β for different terrestrial biomes. The number of site-years at each site is indicated 419 

with the size of the point.  420 

Figure 4 The linear regression between 
𝑈

𝑅
 with 

𝐶𝑈𝑃

𝐶𝑅𝑃
 (R2 = 0.71, P < 0.01) and 

𝑈̅

𝑅̅
 (R2 = 0.09, 421 

P < 0.01) across sites. The insets show the relative contributions of each indicator to the spatial 422 

variation of 
𝑈

𝑅
. The number of site-years at each site is indicated with the size of the point. 423 

Figure 5 Representations of the spatially varying NEP and its local indicators in FLUXCOM 424 

product and the Community Land Model (CLM4.5) at the FLUXNET site level. a, The variation 425 

of mean annual NEP and IAVNEP derives from FLUXNET, FLUXCOM and CLM4.5. Variation 426 

in mean annual NEP: the standard deviation of mean annual NEP across sites; Variation in 427 

IAVNEP: the standard deviation of IAVNEP across sites. b, Representations of the local indicators 428 
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for NEP in FLUXNET, FLUXCOM and CLM4.5. The corresponding distributions of ln (
𝑈

𝑅
) 429 

and 𝛽 are shown at the top and right. Significance of the relationship between annual NEP and 430 

ln (
𝑈

𝑅
) for each site is indicated by the circle: closed circles: P<0.05; open circles: P>0.05. Note 431 

that the modeled results are from the pixels extracted from the same locations of the flux tower 432 

sites. 433 

Figure 6 Representations of the spatially varying NEP and its local indicators in FLUXCOM 434 

product and the Community Land Model (CLM4.5) at the global scale. a, The variation of mean 435 

annual NEP and IAVNEP derives from Jena Inversion, FLUXCOM and CLM4.5. Variation in 436 

mean annual NEP: the spatial variation of mean annual NEP; Variation in IAVNEP: the spatial 437 

variation of standard deviation in IAVNEP. b, Representations of the local indicators for NEP in 438 

Jena Inversion, FLUXCOM and CLM4.5. 439 

 440 

  441 
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 442 

Figure 1 Locations of carbon sinks (mean annual NEP) and their stability (IAVNEP) on the land. 443 

a, Spatial patterns of mean annual NEP and IAVNEP. b, Latitudinal patterns of mean annual NEP 444 

and IAVNEP. 445 

  446 
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 447 

Figure 2 1 Relationship between annual NEP and 
𝑈

𝑅
  for 72 FLUXNET sites (of the form 448 

NEP = 𝛽 ∙ ln (
𝑈

𝑅
)). a, Dependence of annual NEP on the ratio between total CO2 exchanges 449 

during net uptake (U) and release (R) periods (i.e., 
𝑈

𝑅
). Each line represents one flux site with at 450 

least 5 years of data. b, Conceptual figure for the decomposition framework introduced in this 451 

study. Annual NEP can be quantitatively decomposed into the following indicators: 𝑁𝐸𝑃 =452 

𝑈 − 𝑅. c, Distribution of the explanation of 
𝑈

𝑅
 on temporal variability of FLUXNET NEP (R2) 453 

for FLUXNET sites. 454 

  455 
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 456 

Figure 2 Relationship between annual NEP and 
𝑈

𝑅
  for Jena Inversion product (of the form 457 

NEP = 𝛽 ∙ ln (
𝑈

𝑅
)). The black box indicates the location of the sample. 458 

  459 
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 460 

Figure 3 Contributions of the two indicators in explaining the spatial patterns of mean annual 461 

NEP and IAVNEP. a, The relationship between annual mean NEP and ln (
𝑈

𝑅
) across FLUXNET 462 

sites (R2 = 0.65, P < 0.01). The insets show the variation of ln (
𝑈

𝑅
)  for different terrestrial 463 

biomes. b, The explanation of β on IAVNEP (R2 = 0.39, P < 0.01). The insets show the distribution 464 

of parameter β for different terrestrial biomes. The number of site-years at each site is indicated 465 

with the size of the point.  466 

  467 
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 468 

 469 

Figure 4 The relative contributions of the local indicators in explaining the spatial patterns of 470 

mean annual NEP. a, The linear regression between mean annual NEP with 
𝐶𝑈𝑃

𝐶𝑅𝑃
 (R2 = 0.33, P 471 

< 0.01) and 
𝑈̅

𝑅̅
 (R2 = 0.25, P < 0.01) across sites. b, The relative contributions of each indicator 472 

to the spatial variation of NEP. The number of site-years at each site is indicated with the size 473 
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of the point. 474 

Figure 4 The linear regression between 
𝑈

𝑅
 with 

𝐶𝑈𝑃

𝐶𝑅𝑃
 (R2 = 0.71, P < 0.01) and 

𝑈̅

𝑅̅
 (R2 = 0.09, 475 

P < 0.01) across sites. The insets show the relative contributions of each indicator to the spatial 476 

variation of 
𝑈

𝑅
. The number of site-years at each site is indicated with the size of the point. 477 

  478 
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 479 

Figure 5 Representations of the spatially varying NEP and its local indicators in FLUXCOM 480 

product and the Community Land Model (CLM4.5) at the FLUXNET site level. a, The variation 481 

of mean annual NEP and IAVNEP derives from FLUXNET, FLUXCOM and CLM4.5. Variation 482 

in mean annual NEP: the standard deviation of mean annual NEP across sites; Variation in 483 

IAVNEP: the standard deviation of IAVNEP across sites. b, Representations of the local indicators 484 

for NEP in FLUXNET, FLUXCOM and CLM4.5. The corresponding distributions of ln (
𝑈

𝑅
) 485 

and 𝛽 are shown at the top and right. Significance of the relationship between annual NEP and 486 

ln (
𝑈

𝑅
) for each site is indicated by the circle: closed circles: P < 0.05; open circles: P > 0.05. 487 

Note that the modeled results are from the pixels extracted from the same locations of the flux 488 

tower sites. 489 

 490 
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 491 

Figure 6 Representations of the spatially varying NEP and its local indicators in FLUXCOM 492 

product and the Community Land Model (CLM4.5) at the global scale. a, The variation of mean 493 

annual NEP and IAVNEP derives from Jena Inversion, FLUXCOM and CLM4.5. Variation in 494 

mean annual NEP: the spatial variation of mean annual NEP; Variation in IAVNEP: the spatial 495 

variation of standard deviation in IAVNEP. b, Representations of the local indicators for NEP in 496 

Jena Inversion, FLUXCOM and CLM4.5. 497 

  498 
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